WO2020195437A1 - プロスタグランジンの製造方法 - Google Patents

プロスタグランジンの製造方法 Download PDF

Info

Publication number
WO2020195437A1
WO2020195437A1 PCT/JP2020/007196 JP2020007196W WO2020195437A1 WO 2020195437 A1 WO2020195437 A1 WO 2020195437A1 JP 2020007196 W JP2020007196 W JP 2020007196W WO 2020195437 A1 WO2020195437 A1 WO 2020195437A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
compound
compound represented
solvent
Prior art date
Application number
PCT/JP2020/007196
Other languages
English (en)
French (fr)
Inventor
健裕 浅野
亮太 前西
淳平 竹中
孝之 愛宕
千裕 金井
Original Assignee
協和ファーマケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和ファーマケミカル株式会社 filed Critical 協和ファーマケミカル株式会社
Priority to CA3132572A priority Critical patent/CA3132572A1/en
Priority to KR1020217028116A priority patent/KR20210143744A/ko
Priority to JP2021508823A priority patent/JPWO2020195437A1/ja
Priority to CN202080019803.5A priority patent/CN113557227A/zh
Priority to EP20777827.5A priority patent/EP3950672A4/en
Priority to US17/436,472 priority patent/US20220169600A1/en
Publication of WO2020195437A1 publication Critical patent/WO2020195437A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C405/00Compounds containing a five-membered ring having two side-chains in ortho position to each other, and having oxygen atoms directly attached to the ring in ortho position to one of the side-chains, one side-chain containing, not directly attached to the ring, a carbon atom having three bonds to hetero atoms with at the most one bond to halogen, and the other side-chain having oxygen atoms attached in gamma-position to the ring, e.g. prostaglandins ; Analogues or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/93Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems condensed with a ring other than six-membered
    • C07D307/935Not further condensed cyclopenta [b] furans or hydrogenated cyclopenta [b] furans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated

Definitions

  • the present invention relates to a method for producing prostaglandins.
  • Prostaglandin is a general term for a group of endogenous physiologically active substances synthesized by metabolism from arachidonic acid by cyclooxygenase in vivo.
  • the prostaglandins there are many types, prostaglandin H 2, prostaglandin D 2, prostaglandin E 1, prostaglandin E 2, prostaglandin F 2.alpha, prostaglandin I 2 Hitoshigachi Has been done.
  • Prostaglandins are involved in a variety of physiological functions via their respective G protein-coupled receptors.
  • prostaglandins The chemical structure of prostaglandins is characteristic with a cyclopentane ring with four asymmetric carbons and two aliphatic side chains. Therefore, it has been attracting attention as a target for synthetic research or seeds for drug discovery for a long time, and various prostaglandin derivatives have been developed so far.
  • the (3aS, 4R, 5S, 6aR)-(+)-hexahydro-5-hydroxy-4- (hydroxymethyl) -2H-cyclopentane [b] furan-2-one used as its common intermediate is "Corey”. Also called “lactone”.
  • lactone Also called “lactone”.
  • the chemical structures of Corey lactones and typical commercially available prostaglandin derivatives are shown below.
  • Patent Document 1 discloses a method of binding a side chain unit having a desired stereochemistry to a cyclopentane derivative by a coupling reaction.
  • Patent Document 3 examines reducing the corresponding carbonyl group with an optically active reducing agent such as (-)-DIP-chloride TM .
  • an object of the present invention is to provide an efficient method for producing prostaglandins using an optically active catalyst and a synthetic intermediate thereof.
  • R 1 is a C 1-8 alkyl group which may be substituted with a phenyl group
  • R 2 is a group represented by the formula (2a), (2b) or (2c) (formula).
  • R 3 is a hydroxyl group, a C 1-3 alkoxy group, a mono C 1-3 alkyl amino group or a di C 1-3 alkyl amino group).
  • Ar 1 is an optionally substituted aryl group
  • Ar 2 is independently a phenyl group, a 3,5-dimethylphenyl group, or a 3,5-di (tert-butyl) -4-methoxyphenyl group.
  • W is a optionally substituted biphenyl group or an optionally substituted binaphthyl group.
  • Z is an ethylene group substituted with two or more groups selected from a phenyl group, a C 1-3 alkoxyphenyl group and a C 1-8 alkyl group, and L is a chlorine atom or Z. Is one of the carbon atoms constituting the phenyl group or the C 1-3 alkoxyphenyl group when has a phenyl group or a C 1-3 alkoxyphenyl group.
  • the solvent comprises at least one solvent selected from ether, alcohol, acetonitrile and water.
  • Ar 1 is a phenyl group and Ar 2 is a 3,5-dimethylphenyl group.
  • a hydroxyl group in a side chain can be introduced with high stereoselectivity, and a prostaglandin derivative can be efficiently produced.
  • One embodiment of the present invention is a method for producing the compound (1a), (1b), or (1c).
  • R 1 is an unsubstituted or phenyl group substituted C 1-8 alkyl group.
  • the C 1-8 alkyl group is a linear or branched chain alkyl group having 1 to 8 carbon atoms, and may be an optically active branched chain alkyl group.
  • Examples of the C 1-8 alkyl group include a methyl group, an ethyl group, a 1-propyl group, a 2-propyl group (also referred to as an isopropyl group), a 1-butyl group, and a 2-methyl-1-propyl group (isobutyl group).
  • 1-methyl-2-propyl group, tert-butyl group, 1-pentyl group, 2-methyl-1-butyl group, 3-pentyl group, 3-methyl-1-butyl group also referred to as isopentyl group.
  • 2,2-Dimethyl-1-propyl group (also referred to as neopentyl group), 1-hexyl group, 1-methyl-2-pentyl group, 2-methyl-2-pentyl group, 3-methyl-2 -Pentyl group, 1-heptyl group, 2-hepyl group, 2-methyl-1-hexyl group, 2-ethyl-1-pentyl group, 3-methyl-1-hexyl group, 3-ethyl-1-pentyl group, Examples thereof include 3-heptyl group, 4-heptyl group, 1-octyl group, 2-octyl group, 2-methyl-1-heptyl group, 3-ethyl-1-pentyl group, 3-propyl-1-butyl group and the like.
  • the C 1-8 alkyl group substituted with a phenyl group is a phenyl group in which a part of hydrogen atoms constituting the linear or branched alkyl group having 1 to 8 carbon atoms is described above. It is a replaced group.
  • Specific examples of the C 1-8 alkyl group substituted with a phenyl group include a phenylmethyl group (also referred to as a benzyl group), a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylpropyl group, and a 1-methyl group. Examples thereof include a -1-phenylethyl group.
  • R 2 is a group represented by formula (2a), (2b), or (2c), and R 3 is a hydroxyl group, C 1-3. It is an alkoxy group, a mono-C 1-3 alkylamino group, or a diC 1-3 alkylamino group.
  • the C 1-3 alkoxy group is a group composed of an oxygen atom to which a linear or branched alkyl group having 1 to 3 carbon atoms is bonded.
  • Examples of the C 1-3 alkoxy group include a methoxy group, an ethoxy group, a 1-propyloxy group, and a 2-propyloxy group (also referred to as an isopropyloxy group).
  • the mono-C 1-3 alkylamino group is a group consisting of an amino group in which one linear or branched alkyl group having 1 to 3 carbon atoms is bonded.
  • Examples of the mono-C 1-3 alkylamino group include a monomethylamino group, a monoethylamino group, a mono1-propylamino group, and a mono2-propylamino group.
  • the di-C 1-3 alkylamino group is a group consisting of an amino group in which two linear or branched alkyl groups having 1 to 3 carbon atoms are bonded.
  • Examples of the di-C 1-3 alkylamino group include N, N-dimethylamino group, N-ethyl-N-methylamino group, N, N-diethylamino group and N-ethyl-N- (1-propyl) amino.
  • Examples include groups, N, N-di (1-propyl) amino groups and N, N-di (2-propyl) amino groups.
  • the aryl group is an aromatic hydrocarbon group, and may be, for example, an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • the aryl group may be substituted with a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), a C 1-3 alkyl group, a C 1-3 alkoxy group, or a cyano group.
  • each Ar 2 is independently a phenyl group, a 3,5-dimethylphenyl group, or a 3,5-di (tert-butyl) -4-methoxyphenyl group.
  • four Ar 2 are the same as each other group.
  • W is a optionally substituted biphenyl group or an optionally substituted binaphthyl group.
  • (Ar 2 ) 2 P-WP (Ar 2 ) 2 is a bidentate ligand capable of coordinating with a ruthenium atom, and W is a single atropisomer, bis (methylenedioxy). It is preferably a phenyl) group or a binaphthyl group.
  • (Ar 2 ) 2 PWP (Ar 2 ) 2 includes, for example, 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl (BINAP), 2,2'-bis [di].
  • Z may be an ethylene group substituted with two or more groups selected from a phenyl group, a C 1-3 alkoxyphenyl group and a C 1-8 alkyl group, in which case L is a chlorine atom.
  • H 2 NZ-NH 2 is a bidentate ligand that can be coordinated to the ruthenium atom.
  • the H 2 N-Z-NH 2 for example, (S, R)-1,2-diphenyl ethylenediamine, (R, S)-1,2-diphenyl ethylenediamine, 1,2-bis (4-methoxyphenyl) Ethylenediamine, 1-methyl-2,2-diphenylethylenediamine, 1-isobutyl-2,2-diphenylethylenediamine, 1-isopropyl-2,2-diphenylethylenediamine (DPIPEN), 1-methyl-2,2-bis (4-) Methoxyphenyl) ethylenediamine (DAMEN), 1-isobutyl-2,2-bis (4-methoxyphenyl) ethylenediamine, 1-isopropyl-2,2-bis (4-methoxyphenyl) ethylenediamine (DAIPEN), 1-phenyl-2 , 2-bis (4-methoxyphenyl) ethylenediamine, 1,1-bis (4-methoxyphenyl) ethylenediamine (DAEN), 1-isopropyl
  • Z has a phenyl group or a C 1-3 alkoxyphenyl group
  • One of the atoms may be directly bonded to the ruthenium atom.
  • step 1 compound (3) is dissolved in a solvent in a predetermined container, an inorganic base is added, and the gas phase of the container is replaced with an inert gas.
  • step 2 after adding the metal complex (5), the gas phase is replaced with hydrogen gas, and the mixture is stirred for a predetermined time in a hydrogen atmosphere. It is preferable to stir vigorously so that hydrogen gas in the gas phase is easily mixed in the reaction solution.
  • the solvent may be any solvent that can dissolve compound (3) and does not inhibit catalytic hydrogen reduction.
  • Solvents include aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane and heptane, halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chlorobenzene and dichlorobenzene, diethyl ether and diisopropyl ether.
  • Ethers such as tetrahydrofuran, methyl tert-butyl ether, cyclopentyl methyl ether, 2-methyl tetrahydrofuran, methanol, ethanol, isopropyl alcohol, n-butyl alcohol, 2-butyl alcohol, tert-butyl alcohol, ethylene glycol, propylene glycol, 1, 2 -Alcohols such as propanediol and glycerin, acetonitrile, N, N-dimethylformamide (DMF), N, N-dimethylacetamide and the like can be mentioned.
  • These solvents may be used as a single solvent or may be optionally mixed and used. Water may be mixed as long as compound (3) can be dissolved.
  • the preferred solvent is at least one selected from ether, alcohol, acetonitrile and water.
  • the inorganic base may be a basic inorganic salt.
  • the inorganic base include potassium carbonate, sodium carbonate, cesium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, potassium hydroxide, sodium hydroxide, tripotassium phosphate, trisodium phosphate, dipotassium hydrogen phosphate, and phosphoric acid. Examples thereof include disodium hydrogen hydrogen, potassium dihydrogen phosphate, and sodium dihydrogen phosphate.
  • the amount of the inorganic base used may be 0.1 to 50 equivalents, more preferably 1 to 20 equivalents, relative to the number of moles of the metal complex (5).
  • the amount of the metal complex (5) used varies depending on the amount of the compound (3), the reaction conditions and the type of the metal complex (5), but is generally 0.1 to 0.1 to the number of moles of the compound (3). It is 25 mol%, more preferably 1-5 mol%.
  • the reaction temperature varies depending on the type of solvent used, but can be carried out at -50 to 50 ° C.
  • the preferred reaction temperature is ⁇ 20 to 10 ° C. If the reaction temperature is too low, the solubility of the compound (3) may decrease, and if the reaction temperature is too high, the compound (3), the compound (4) or the metal complex (5) may be decomposed.
  • the reaction may be carried out under normal pressure or under a predetermined pressure.
  • hydrogen gas may be contained in a rubber balloon and the balloon may be connected to the opening of a container (flask or the like). Since hydrogen gas is consumed as the reaction progresses, a sufficient amount of hydrogen gas should be used or hydrogen gas should be replenished during the reaction.
  • the gas phase of the container is replaced with an inert gas, and if necessary, the metal complex is removed by filtration, and the usual purification methods such as extraction, crystallization, distillation, and various chromatographies are used alone. Alternatively, it can be purified in combination as appropriate.
  • Step 2 The method according to this embodiment may further include a step of obtaining compound (7) by reacting compound (4) with compound (6).
  • R 1 and Ar 1 are the same as the definitions in equation (4).
  • Ar 3 is an optionally substituted aryl group.
  • An aryl group which may be substituted in the Ar 3 may be the same as the definition of Ar 1, but preferably Ar 1 and Ar 3 are different from one another.
  • Preferred Ar 3 is an o-nitrophenyl group, an m-nitrophenyl group, or a p-nitrophenyl group.
  • Compound (6) is a reagent that acylates the hydroxyl group of compound (4).
  • X is a leaving group.
  • the leaving group include a halogen atom (for example, a fluorine atom, a chlorine atom and a bromine atom) and a relatively bulky acyloxy group (for example, a pivaloyloxy group).
  • step 2 for example, a solvent, a base and an additive are added to the compound (4) in a predetermined container as necessary, the compound (6) is added, and then the mixture is stirred for a predetermined time.
  • the reaction may be carried out without a solvent or in a solvent.
  • the reaction is preferably carried out in an organic solvent.
  • the solvent used may be any solvent that can dissolve the compound (4) and the compound (6) and does not inhibit the reaction.
  • the solvent include aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane and heptane, carboxylic acid esters such as ethyl acetate and isopropyl acetate, dichloromethane, 1,2-dichloroethane, chlorobenzene and di.
  • halogenated hydrocarbons such as chlorobenzene, diethyl ether, diisopropyl ether, tetrahydrofuran, methyl tert-butyl ether, cyclopentyl methyl ether, and ethers such as 2-methyl tetrahydrofuran.
  • solvents may be used as a single solvent or may be optionally mixed and used.
  • the amount of the solvent used is preferably such that the molar concentration of compound (4) is 0.2 to 1.2 mol / L.
  • a base may be added to the reaction solution to accelerate the reaction.
  • the base include trialkylamines such as triethylamine and N, N-diethyl-N-isopropylamine, and nitrogen-containing aromatic compounds such as pyridine and 2,6-dimethylpyridine.
  • the amount of the base used varies depending on the amount of the compound (4), but is preferably 1 to 10 equivalents with respect to the number of moles of the compound (4).
  • additives such as 4-dimethylaminopyridine, imidazole, and N-methylimidazole may be added.
  • the amount of the additive used varies depending on the amount of compound (4), the type of base and the amount used, but is preferably 0.001 to 0.05 equivalents with respect to the number of moles of compound (4).
  • the reaction can usually be carried out at the temperature applied to the acylation reaction.
  • the reaction temperature may be, for example, ⁇ 20 to 60 ° C., preferably 0 to 30 ° C.
  • the product can be purified by using commonly used purification methods such as extraction, crystallization, distillation, and various types of chromatography alone or in combination as appropriate.
  • the method according to the present embodiment may further include a step of converting compound (7) into compound (8) by treating it with a base in a solvent.
  • R 1 is the same as the definition in equation (7).
  • step 3 for example, the solvent is added to the compound (7) in a predetermined container, mixed, the base is added, and then the mixture is stirred for a predetermined time.
  • the base in step 3 may be an organic base or an inorganic base.
  • the organic base include trialkylamines such as triethylamine and N, N-diethyl-N-isopropylamine, nitrogen-containing aromatic compounds such as pyridine and 2,6-dimethylpyridine, sodium ethoxide, potassium methoxide and sodium.
  • metal alkoxides such as ethoxide, potassium ethoxide, sodium tert-butoxide and potassium tert-butoxide.
  • Examples of the inorganic base include potassium carbonate, sodium carbonate, cesium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, potassium hydroxide, sodium hydroxide, tripotassium phosphate, trisodium phosphate, dipotassium hydrogen phosphate, and phosphoric acid. Examples thereof include disodium hydrogen hydrogen, potassium dihydrogen phosphate, and sodium dihydrogen phosphate.
  • the amount of the base used varies depending on the amount of the compound (7), but is preferably 1 to 10 equivalents with respect to the number of moles of the compound (7).
  • the solvent in step 3 is, for example, aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane and heptane, halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chlorobenzene and dichlorobenzene, and diethyl.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • aliphatic hydrocarbons such as hexane and heptane
  • halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chlorobenzene and dichlorobenzene, and diethyl.
  • Ether diisopropyl ether, tetrahydrofuran, methyl tert-butyl ether, cyclopentyl methyl ether, ethers such as 2-methyl tetrahydrofuran, methanol, ethanol, isopropyl alcohol, n-butyl alcohol, 2-butyl alcohol, tert-butyl alcohol, ethylene glycol, propylene Examples thereof include alcohols such as glycol, 1,2-propanediol and glycerin, acetonitrile, N, N-dimethylformamide (DMF), N, N-dimethylacetamide and the like. These solvents may be used as a single solvent or may be optionally mixed and used. Preferably, it contains water or alcohol.
  • the reaction product can be purified by using commonly used purification methods such as extraction, crystallization, distillation, and various types of chromatography alone or in combination as appropriate.
  • the method according to the present embodiment may further include a step of converting compound (8) into compound (1a) or (1b).
  • a step of converting compound (8) into compound (1a) or (1b) for these steps, the descriptions in Patent Documents 1 to 4 and Non-Patent Document 1 can be referred to.
  • Step 4 is a step for obtaining the compound (1a), and may consist of a plurality of steps.
  • Compound (1a) can be, for example, a prostaglandin F 2 ⁇ derivative such as dinoprost, bimatoprost or the like.
  • Step 5 is a step for obtaining the compound (1b), and may consist of a plurality of steps.
  • Compound (1b) can be, for example, a prostaglandin E 1 derivative such as alprostadil or limaprost, or a prostaglandin E 2 derivative such as dinoprostone.
  • Step 6 is a step for obtaining the compound (1c), and may consist of a plurality of steps.
  • Compound (1c) can be, for example, a prostaglandin F 2 ⁇ derivative such as latanoprost.
  • Another embodiment of the invention is compound (7').
  • R is an unsubstituted or phenyl group substituted C 1-8 alkyl group.
  • the definition of R is the same as the definition of R 1 in the equation (1a).
  • A is a nitro group bonded to any of the ortho-position, meta-position, and para-position of the benzene ring.
  • the compound (7') may be a single diastereomer or a mixture of a plurality of diastereomers.
  • compound (7') preferably has high optical purity.
  • the optical purity of compound (7') can be improved by performing recrystallization.
  • the solvent used for crystallization include aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic hydrocarbons such as hexane and heptane, carboxylic acid esters such as ethyl acetate and isopropyl acetate, dichloromethane, 1,2-.
  • Halogenized hydrocarbons such as dichloroethane, chlorobenzene and dichlorobenzene, diethyl ether, diisopropyl ether, tetrahydrofuran, methyl tert-butyl ether, cyclopentyl methyl ether, ether such as 2-methyl tetrahydrofuran, methanol, ethanol, isopropyl alcohol, 1-butanol and the like.
  • Examples include alcohol.
  • These solvents may be used as a single solvent or may be optionally mixed and used. Preferably, it contains a carboxylic acid ester or an alcohol.
  • a compound (7') having a higher optical purity can be obtained by dissolving the compound (7') having a lower optical purity in a solvent while heating as necessary and gradually cooling the compound (7').
  • the compound (7') has excellent crystallinity and is useful as a production intermediate for producing the compounds (1a), (1b), or (1c) having high optical purity.
  • the 1 H-NMR spectrum is shown by a chemical shift value ( ⁇ ) corrected with tetramethylsilane as an internal standard (0 ppm), and the split pattern is abbreviated as follows. s: singlet, d: doublet, t: triplet, q: quartet, dd: double doublet, ddd: double double doublet, dt: double triplet, m: multiplet, br: broad.
  • Step 1 Compound (3A) from commercially available (-)-Coley Lactone-Benzoate (trade name) and dimethyl-2-oxo-heptylphosphonate by the method described in Example 1 of Patent Document 5 and Example 8 of Patent Document 6. ) was prepared.
  • Compound (3A) (20.0 g, 54 mmol) and tripotassium phosphate (1.1 g) were suspended in a mixture of THF (100 mL) and ethanol (20 mL). The gas phase in the container was replaced with nitrogen gas under an ice bath.
  • Step 2 Ethyl acetate (50 mL) was added to compound (4A) to dissolve it, and TEA (10.9 g) and DMAP (33 mg) were added. An ethyl acetate solution (40 mL) of p-nitrobenzoic acid chloride (14.0 g) was added dropwise to the obtained solution, and the mixture was stirred for 1 hour. Ethyl acetate was added to the reaction solution, and the mixture was washed with water to recover the organic layer. After distilling off the solvent under reduced pressure, ethanol (100 mL) was added to the obtained residue, dissolved while heating, and gradually cooled to 0 ° C. to obtain crystals.
  • Step 3 A methanol solution (100 mL) of compound (7A) (20.0 g, 38 mmol) was ice-cooled, potassium carbonate (10.6 g) was added, and the mixture was reacted for 4 hours. Phosphoric acid diluted with water was added, and the mixture was washed with a toluene / hexane mixed solution (volume ratio 1/1). The solvent was evaporated under reduced pressure, and the obtained residue was extracted with ethyl acetate to recover the organic layer. The solvent of the organic layer was distilled off under reduced pressure to obtain compound (8A) (9.8 g, 37 mmol, yield 95%).
  • Step 5 Compound (8A) (9.8 g, 37 mmol) was converted to compound (10A) by the method described in Example 14 of Patent Document 7.
  • Compound (10A) is converted to compound (11A) by the method described in Example 1 of Patent Document 8, and compound (9A) (7.) is further referred to by the method described in Example 14 of Patent Document 9. 2 g, 19 mmol, yield 51% (3 steps)).
  • step 1 catalytic hydrogen reduction was carried out in the same manner under the following conditions.
  • the reaction conditions and results are shown in Table 1.
  • Step 1 Compound (3B) was prepared from commercially available (-)-Corey Lactone-Benzoate (trade name) and dimethyl-2-oxo-4-methyloctylphosphonate with reference to the methods described in Patent Documents 5 and 6. ..
  • Step 2 Compound (7B) (18.1 g, 33 mmol, yield 66%, diastereomer excess 97%) was obtained from compound (4B) with reference to the method described in Example 1. mp: 74 ° C; 1 1 HNMR (400MHz, CDCl 3 ): ⁇ 8.22-8.19 (m, 2H), 8.10-8.07 (m, 2H), 7.90-7.88 (m, 2H), 7 .52-7.49 (m, 1H), 7.37-7.33 (m, 2H), 5.77-5.71 (m, 1H), 5.67-5.61 (m, 1H) , 5.53 (dd, 1H), 5.23 (dd, 1H), 5.04 (ddd, 1H), 2.89-2.71 (m, 3H), 2.59 (ddd, 1H), 2.49 (d, 1H), 2.20 (ddd, 1H), 1.64 (t, 2H), 1.49-1.41 (m, 1H), 1.26-1.10 (m, 6H), 0.91
  • Step 5-4 (1S, 2R, 3R, 4R) -2- [4- (1,3-dioxolane-2-yl) butyl] -4-[(4-Methoxybenzyl) oxy] -3- ⁇ (3S, 5S, E) ) -3-[(4-Methoxybenzyl) oxy] -5-methylnona-1-en-1-yl ⁇ cyclopentanol
  • Compound (13B) (0.250 g, 0.401 mmol) was dissolved in ethyl acetate (3 mL), RhCl (PPh 3 ) 3 (0.074 g, 0.080 mmol) was added, and the mixture was added in a hydrogen atmosphere at room temperature for 5 hours.
  • Step 1 A compound (3C) was prepared from commercially available (-)-Corey Lactone-Benzoate (trade name) and dimethyl-2-oxo-4-phenylbutylphosphonate with reference to the method described in Patent Document 5.
  • Compound (4C) (diastereomer excess 80%) was obtained from compound (3C) (20.0 g, 49 mmol) in the same manner as in Example 1.
  • Step 2 Compound (7C) (20.0 g, 36 mmol, yield 74% (2 steps), diastereomer excess 99%) was obtained from compound (4C) in the same manner as in Example 1.
  • Step 3 Compound (8C) was obtained from compound (7C) according to the method described in Patent Document 1.
  • Step 6 Compound (10C) was obtained from compound (8C) (5.0 g, 9.0 mmol) according to the method described in Example 7 of Patent Document 5. Further, according to the method described in Patent Document 4, compound (9C) (1.1 g, 2.5 mmol, yield 28% (3 steps)) was obtained from compound (10C).
  • 1 1 HNMR 400 MHz, CDCl 3 ): ⁇ 7.29-7.23 (m, 2H), 7.21-7.17 (m, 3H), 5.48-5.43 (m, 1H), 5 .41-5.36 (m, 1H), 4.99 (m, 1H), 4.16 (m, 1H), 3.94 (m, 1H), 3.66 (m, 1H), 2.

Abstract

本発明は、式(1a)、(1b)、又は(1c)で表される化合物の製造方法であって、式(5)で表される金属錯体、無機塩基、及び、溶媒の存在下、水素雰囲気下において、式(3)で表される化合物を還元して式(4)で表される化合物を得る工程を含む、方法。[式中、Arはアリール基であり、各Arはそれぞれ独立に、フェニル基等であり、Wはビフェニル基等であり、Zは、フェニル基等で置換されたエチレン基であり、Lは、塩素原子であるか、又は、Zがフェニル基又はC1-3アルコキシフェニル基を有する場合において、上記フェニル基又は上記C1-3アルコキシフェニル基を構成する炭素原子の1つである。]を提供する。

Description

プロスタグランジンの製造方法
 本発明は、プロスタグランジンの製造方法に関する。
 プロスタグランジン(PG)は、生体内でアラキドン酸からシクロオキシゲナーゼによる代謝を受けて合成される内因性生理活性物質群の総称である。プロスタグランジンには、数多くの種類があり、プロスタグランジンH、プロスタグランジンD、プロスタグランジンE、プロスタグランジンE、プロスタグランジンF2α、プロスタグランジンI等が知られている。プロスタグランジンは、それぞれに特異的なGタンパク質共役型受容体を介して、多様な生理機能に関与している。
 プロスタグランジンの化学構造は、4つの不斉炭素を有するシクロペンタン環及び2つの脂肪族側鎖を備える特徴的なものである。そのため、古くから合成研究の標的又は創薬のシーズとして注目され、これまでに様々なプロスタグランジン誘導体が開発されている。その共通中間体として利用される(3aS,4R,5S,6aR)-(+)-ヘキサヒドロ-5-ヒドロキシ-4-(ヒドロキシメチル)-2H-シクロペンタ[b]フラン-2-オンは、「Coreyラクトン」とも呼ばれる。Coreyラクトン及び代表的な市販のプロスタグランジン誘導体の化学構造を、以下に示す。
Figure JPOXMLDOC01-appb-C000006
 Coreyラクトンが開発されて以後、プロスタグランジン誘導体の合成における主な課題は、側鎖に存在する置換基の立体化学の制御である。特に所望の立体化学を有する水酸基を導入するために、さらに多くの検討が行われた。特許文献1では、対応するカルボニル基を還元した後、カラムクロマトグラフィーによりジアステレオマーを分離する方法、還元により生じた水酸基に更なる置換基を導入し、結晶化等により光学純度を高める方法が報告されている。特許文献2では、所望の立体化学を有する側鎖ユニットをシクロペンタン誘導体とカップリング反応により結合させる方法が開示されている。特許文献3では、対応するカルボニル基を、(-)-DIP-クロリドTM等の光学活性な還元剤を用いて還元することを検討している。
国際公開第2012/011128号 米国特許出願公開第2007/167641号明細書 中国特許出願公開第105985371号 欧州特許出願公開第2837621号 国際公開第2002/096898号 国際公開第2007/091697号 米国特許第6248783号明細書 米国特許第3726983号明細書 米国特許出願公開第2009/259066号明細書
E.J.Corey et al., J. Am. Chem. Soc.,1969, 91, 5675.
 しかしながら、上述の方法では、カラムクロマトグラフィーによる精製、誘導体化による工程数の増加、化学量論量の光学活性試薬の使用等が必要となり、経済的負荷及び環境負荷が懸念される。そこで、本発明の目的は、光学活性触媒を用いたプロスタグランジンの効率的製造方法及びその合成中間体を提供することにある。
 本発明は、以下の[1]~[6]を提供する。
[1] 式(1a)、(1b)、又は(1c)で表される化合物の製造方法であって、
Figure JPOXMLDOC01-appb-C000007
[式中、Rは、フェニル基で置換されていてもよいC1-8アルキル基であり、Rは、式(2a)、(2b)、又は(2c)で表される基(式中、Rは、水酸基、C1-3アルコキシ基、モノC1-3アルキルアミノ基又はジC1-3アルキルアミノ基である。)である。]
Figure JPOXMLDOC01-appb-C000008
 式(5)で表される金属錯体、無機塩基、及び、溶媒の存在下、水素雰囲気下において、式(3)で表される化合物を還元して式(4)で表される化合物を得る工程を含む、方法。
Figure JPOXMLDOC01-appb-C000009
[式中、Arは、置換されていてもよいアリール基であり、
 各Arはそれぞれ独立に、フェニル基、3,5-ジメチルフェニル基、又は、3,5-ジ(tert-ブチル)-4-メトキシフェニル基であり、
 Wは、置換されていてもよいビフェニル基、又は、置換されていてもよいビナフチル基であり、
 Zは、フェニル基、C1-3アルコキシフェニル基及びC1-8アルキル基から選択される2つ以上の基で置換されたエチレン基であり、Lは、塩素原子であるか、又は、Zがフェニル基又はC1-3アルコキシフェニル基を有する場合において、上記フェニル基又は上記C1-3アルコキシフェニル基を構成する炭素原子の1つである。]
[2] 溶媒が、エーテル、アルコール、アセトニトリル及び水から選択される少なくとも1つの溶媒を含む、[1]に記載の方法。
[3] Arが、フェニル基であり、Arが、3,5-ジメチルフェニル基である、[1]又は[2]に記載の方法。
[4] Rが、n-ペンチル基、2-メチルヘキシル基、又は、2-フェニルエチル基である、[1]~[3]のいずれかに記載の方法。
[5] 式(4)で表される化合物と式(6)で表される化合物との反応により、式(7)で表される化合物を得る工程を更に含む、[1]~[4]のいずれかに記載の方法。
Figure JPOXMLDOC01-appb-C000010
[式中、Rは、フェニル基で置換されていてもよいC1-8アルキル基であり、Ar及びArはそれぞれ独立にアリール基であり、Xは脱離基である。]
[6] 式(7’)で表される化合物。
Figure JPOXMLDOC01-appb-C000011
[式中、Rは、フェニル基で置換されていてもよいC1-8アルキル基であり、Aは、ニトロ基である。]
 本発明によれば、光学活性触媒を用いた接触水素還元を行うことにより、高い立体選択性で側鎖の水酸基を導入することができ、効率的にプロスタグランジン誘導体を製造することができる。
 本発明の一実施形態について、以下に詳述する。本明細書において、便宜上、「式(1)で表される化合物」等を「化合物(1)」等ともいう。
 本発明の一実施形態は、化合物(1a)、(1b)、又は(1c)の製造方法である。
Figure JPOXMLDOC01-appb-C000012
 式(1a)、(1b)、又は(1c)において、Rは、無置換又はフェニル基で置換されたC1-8アルキル基である。C1-8アルキル基は、炭素原子数が1~8個である直鎖状又は分枝鎖状アルキル基であり、光学活性な分枝鎖状アルキル基であってもよい。C1-8アルキル基としては、例えば、メチル基、エチル基、1-プロピル基、2-プロピル基(イソプロピル基ともいう。)、1-ブチル基、2-メチル-1-プロピル基(イソブチル基ともいう。)、1-メチル-2-プロピル基、tert-ブチル基、1-ペンチル基、2-メチル-1-ブチル基、3-ペンチル基、3-メチル-1-ブチル基(イソペンチル基ともいう。)、2,2-ジメチル-1-プロピル基(ネオペンチル基ともいう。)、1-ヘキシル基、1-メチル-2-ペンチル基、2-メチル-2-ペンチル基、3-メチル-2-ペンチル基、1-ヘプチル基、2-ヘプチル基、2-メチル-1-ヘキシル基、2-エチル-1-ペンチル基、3-メチル-1-ヘキシル基、3-エチル-1-ペンチル基、3-ヘプチル基、4-ヘプチル基、1-オクチル基、2-オクチル基、2-メチル-1-ヘプチル基、3-エチル-1-ペンチル基、3-プロピル-1-ブチル基等が挙げられる。また、フェニル基で置換されたC1-8アルキル基とは、上述の炭素原子数が1~8である直鎖状又は分枝鎖状アルキル基を構成する水素原子の一部がフェニル基に置き換えられた基である。フェニル基で置換されたC1-8アルキル基の具体例としては、フェニルメチル基(ベンジル基ともいう。)、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、1-メチル-1-フェニルエチル基等が挙げられる。
 式(1a)、(1b)、又は(1c)において、Rは、式(2a)、(2b)、又は(2c)で表される基であり、Rは、水酸基、C1-3アルコキシ基、モノC1-3アルキルアミノ基、又はジC1-3アルキルアミノ基である。
Figure JPOXMLDOC01-appb-C000013
 C1-3アルコキシ基は、炭素原子数が1~3個の直鎖状又は分枝鎖状アルキル基が結合した酸素原子からなる基である。C1-3アルコキシ基としては、例えば、メトキシ基、エトキシ基、1-プロピルオキシ基、2-プロピルオキシ基(イソプロピルオキシ基ともいう。)が挙げられる。
 モノC1-3アルキルアミノ基は、炭素原子数が1~3個の直鎖状又は分枝鎖状アルキル基が1つ結合したアミノ基からなる基である。モノC1-3アルキルアミノ基としては、例えば、モノメチルアミノ基、モノエチルアミノ基、モノ1-プロピルアミノ基、モノ2-プロピルアミノ基が挙げられる。
 ジC1-3アルキルアミノ基は、炭素原子数が1~3個の直鎖状又は分枝鎖状アルキル基が2つ結合したアミノ基からなる基である。ジC1-3アルキルアミノ基としては、例えば、N,N-ジメチルアミノ基、N-エチル-N-メチルアミノ基、N,N-ジエチルアミノ基、N-エチル-N-(1-プロピル)アミノ基、N,N-ジ(1-プロピル)アミノ基、N,N-ジ(2-プロピル)アミノ基が挙げられる。
(工程1)
 本実施形態に係る方法は、金属錯体(5)、無機塩基、及び、溶媒の存在下、水素雰囲気下において、化合物(3)を還元して化合物(4)を得る工程を含む。式(3)又は(4)において、Rは式(1)における定義と同じであり、Arは置換されていてもよいアリール基である。
Figure JPOXMLDOC01-appb-C000014
 アリール基は、芳香族炭化水素基であり、例えば、炭素原子数6~10の芳香族炭化水素基であってもよい。アリール基としては、例えば、フェニル基、ナフチル基が挙げられる。アリール基は、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、C1-3アルキル基、C1-3アルコキシ基、又はシアノ基で置換されていてもよい。
 式(5)において、各Arはそれぞれ独立に、フェニル基、3,5-ジメチルフェニル基、又は3,5-ジ(tert-ブチル)-4-メトキシフェニル基である。好ましくは、4つのArは互いに同じ基である。
 式(5)において、Wは、置換されていてもよいビフェニル基、又は、置換されていてもよいビナフチル基である。また、(ArP-W-P(Arは、ルテニウム原子に配位可能な二座配位子であり、Wは、単一のアトロプ異性体であるビス(メチレンジオキシフェニル)基又はビナフチル基であることが好ましい。(ArP-W-P(Arとしては、例えば、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(BINAP)、2,2’-ビス[ジ(p-トリル)ホスフィノ]-1,1’-ビナフチル(tolBINAP)、2,2’-ビス[ジ(m-トリル)ホスフィノ]-1,1’-ビナフチル、2,2’-ビス[ジ(3,5-キシリル)ホスフィノ]-1,1’-ビナフチル(xylyl-BINAP)、2,2’-ビス[ジ(p-t-ブチルフェニル)ホスフィノ]-1,1’-ビナフチル、2,2’-ビス[ジ(p-メトキシフェニル)ホスフィノ]-1,1’-ビナフチル、2,2’-ビス[ジ(3,5-ジ-t-ブチル-4-メトキシフェニル)ホスフィノ]-1,1’-ビナフチル、2,2’-ビス[ジ(シクロペンチル)ホスフィノ]-1,1’-ビナフチル、2,2’-ビス[ジ(シクロヘキシル)ホスフィノ]-1,1’-ビナフチル、2,2’-ビス(ジフェニルホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロ-1,1’-ビナフチル、2,2’-ビス(ジ-p-トリルホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロ-1,1’-ビナフチル、2,2’-ビス(ジ-m-トリルホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロ-1,1’-ビナフチル、2,2’-ビス(ジ-3,5-キシリルホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロ-1,1’-ビナフチル(xylyl-H8-BINAP)、2,2’-ビス(ジ-p-t-ブチルフェニルホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロ-1,1’-ビナフチル、2,2’-ビス(ジ-p-メトキシフェニルホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロ-1,1’-ビナフチル、2,2’-ビス(ジ-p-クロロフェニルホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロ-1,1’-ビナフチル、2,2’-ビス(ジシクロペンチルホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロ-1,1’-ビナフチル、2,2’-ビス(ジシクロヘキシルホスフィノ)-5,5’,6,6’,7,7’,8,8’-オクタヒドロ-1,1’-ビナフチル、((4,4’-ビ-1,3-ベンゾジオキソール)-5,5’-ジイル)ビス(ジフェニルホスフィン)(segphos)、(4,4’-ビ-1,3-ベンゾジオキソール)-5,5’-ジイル)ビス(ジ(3,5-キシリル)ホスフィン)(dm-segphos)、((4,4’-ビ-1,3-ベンゾジオキソール)-5,5’-ジイル)ビス(ジ(3,5-ジ-t-ブチル-4-メトキシフェニル)ホスフィン)、((4,4’-ビ-1,3-ベンゾジオキソール)-5、5’-ジイル)ビス(ジ(4-メトキシフェニル)ホスフィン)、((4,4’-ビ-1,3-ベンゾジオキソール)-5,5’-ジイル)ビス(ジシクロヘキシルホスフィン)、((4,4’-ビ-1,3-ベンゾジオキソール)-5、5’-ジイル)ビス(ビス(3,5-ジ-t-ブチルフェニル)ホスフィン)、2,2’-ビス(ジ-3,5-キシリルホスフィノ)-6,6’-ジメトキシ-1,1’-ビフェニル(xylyl-MeO-biphep)、2,2’-ビス(ジフェニルホスフィノ)-6,6’-ジメチル-1,1-ビフェニル、2,2’-ビス(ジ-p-トリルホスフィノ)-6,6’-ジメチル-1,1’-ビフェニル、2,2’-ビス(ジ-o-トリルホスフィノ)-6,6’-ジメチル-1,1’-ビフェニル、2,2’-ビス(ジ-m-フルオロフェニルホスフィノ)-6,6’-ジメチル-1,1’-ビフェニル、2,2’-ビス(ジフェニルホスフィノ)-6,6’-ジメトキシ-1,1’-ビフェニル、2,2’-ビス(ジ-p-トリルホスフィノ)-6,6’-ジメトキシ-1,1’-ビフェニル、2,2’,6,6’-テトラメトキシ-4,4’-ビス(ジ-3,5-キシリルホスフィノ)-3,3’-ビピリジン(xylyl-p-phos)、2,2’,6,6’-テトラメトキシ-4,4’-ビス(ジフェニルホスフィノ)-3,3’-ビピリジン、2,2’,6,6’-テトラメトキシ-4,4’-ビス(ジ-p-トリルホスフィノ)-3,3’-ビピリジン、2,2’,6,6’-テトラメトキシ-4,4’-ビス(ジ-o-トリルホスフィノ)-3,3’-ビピリジン、4,12-ビス(ジ-3,5-キシリルホスフィノ)-[2.2]-パラシクロファン、4,12-ビス(ジフェニルホスフィノ)-[2.2]-パラシクロファン、4,12-ビス(ジ-p-トリルホスフィノ)-[2.2]-パラシクロファン、4,12-ビス(ジ-o-トリルホスフィノ)-[2.2]-パラシクロファン、1,1’-ビス(2,4-ジエチルホスフォタノ)フェロセン、1,13-ビス(ジフェニルホスフィノ)-7,8-ジヒドロ-6H-ジベンゾ[f,h][1,5]ジオキソニン、1,13-ビス(ビス(3,5-ジメチルフェニル)ホスフィノ)-7,8-ジヒドロ-6H-ジベンゾ[f,h][1,5]ジオキソニン(xylyl-C3-tunephos)、6,6’-ビス(ビス(3,5-ジメチルフェニル)ホスフィノ)-2,2’,3,3’-テトラヒドロ-5,5’-ビ-1,4-ベンゾジオキシン(xylyl-synphos)等が挙げられる。
 式(5)において、Zは、フェニル基、C1-3アルコキシフェニル基及びC1-8アルキル基から選択される2つ以上の基で置換されたエチレン基であってもよく、その場合、Lは、塩素原子である。HN-Z-NHは、ルテニウム原子に配位可能な二座配位子である。HN-Z-NHとしては、例えば、(S,R)-1,2-ジフェニルエチレンジアミン、(R,S)-1,2-ジフェニルエチレンジアミン、1,2-ビス(4-メトキシフェニル)エチレンジアミン、1-メチル-2,2-ジフェニルエチレンジアミン、1-イソブチル-2,2-ジフェニルエチレンジアミン、1-イソプロピル-2,2-ジフェニルエチレンジアミン(DPIPEN)、1-メチル-2,2-ビス(4-メトキシフェニル)エチレンジアミン(DAMEN)、1-イソブチル-2,2-ビス(4-メトキシフェニル)エチレンジアミン、1-イソプロピル-2,2-ビス(4-メトキシフェニル)エチレンジアミン(DAIPEN)、1-フェニル-2,2-ビス(4-メトキシフェニル)エチレンジアミン、1,1-ビス(4-メトキシフェニル)エチレンジアミン(DAEN)、1-イソプロピル-2,2-ビス(3-メトキシフェニル)エチレンジアミン(3-DAIPEN)等が挙げられる。好ましいHN-Z-NHは、光学活性な1,2-ジフェニルエチレンジアミン又は1-イソプロピル-2,2-ジ(4-メトキシフェニル)エチレンジアミンである。
 また、Zがフェニル基又はC1-3アルコキシフェニル基を有する場合において、ルテナビシクロ[2.2.1]ヘプタン構造を形成するように、当該フェニル基又はC1-3アルコキシフェニル基を構成する炭素原子の1つが、ルテニウム原子と直接結合していてもよい。
 工程1では、所定の容器中で化合物(3)を溶媒に溶解させ、無機塩基を加えて、容器の気相を不活性ガスで置換する。次に、金属錯体(5)を加えた後、気相を水素ガスで置換し、所定の時間、水素雰囲気下で撹拌する。反応溶液中に気相中の水素ガスが混じりやすくなるように、強く撹拌することが好ましい。
 溶媒は、化合物(3)を溶解可能であり、接触水素還元を阻害しない溶媒であればよい。溶媒は、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン等の脂肪族炭化水素、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルtert-ブチルエーテル、シクロペンチルメチルエーテル、2-メチルテトラヒドロフラン等のエーテル、メタノール、エタノール、イソプロピルアルコール、n-ブチルアルコール、2-ブチルアルコール、tert-ブチルアルコール、エチレングリコール、プロピレングリコール、1,2-プロパンジオール、グリセリン等のアルコール、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド等が挙げられる。これらの溶媒は、単一溶媒として用いてもよく、任意に混合して用いてもよい。化合物(3)を溶解可能な範囲において、水を混合してもよい。好ましい溶媒は、エーテル、アルコール、アセトニトリル及び水から選択される少なくとも1種である。
 溶媒の使用量は、化合物(3)のモル濃度が、0.05~1.5モル/Lとなる量であることが好ましく、0.1~0.9モル/Lとなる量であることがより好ましい。
 無機塩基は、塩基性の無機塩であればよい。無機塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸水素カリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウム、リン酸三カリウム、リン酸三ナトリウム、リン酸水素二カリウム、リン酸水素二ナトリウム、リン酸二水素カリウム、リン酸二水素ナトリウムが挙げられる。
 無機塩基の使用量は、金属錯体(5)のモル数に対して、0.1~50当量であってよく、より好ましくは1~20当量である。
 金属錯体(5)の使用量は、化合物(3)の量、反応条件及び金属錯体(5)の種類によって異なるが、一般的に、化合物(3)のモル数に対して、0.1~25モル%、より好ましくは1~5モル%である。
 反応温度は、使用する溶媒の種類によって異なるが、-50~50℃で行うことができる。好ましい反応温度は、-20~10℃である。反応温度が低すぎると、化合物(3)の溶解性が低下する場合があり、反応温度が高すぎると、化合物(3)、化合物(4)又は金属錯体(5)が分解する場合がある。
 反応は、常圧で行ってもよく、所定の圧力下で行ってもよい。例えば、ゴム製のバルーンに水素ガスを封じ込めて、バルーンを容器(フラスコ等)の開口部に接続する方法で行ってもよい。反応の進行に伴い、水素ガスが消費されるため、十分な量の水素ガスを使用するか、反応の途中で水素ガスを補充する。
 反応終了するときは、容器の気相を不活性ガスで置換した後、必要に応じて、金属錯体をろ去し、抽出、結晶化、蒸留、各種クロマトグラフィー等、通常用いられる精製法を単独又は適宜組み合わせて精製することができる。
(工程2)
 本実施形態に係る方法は、化合物(4)と化合物(6)との反応により、化合物(7)を得る工程を更に含んでもよい。式(7)において、R及びArは、式(4)における定義と同じである。
Figure JPOXMLDOC01-appb-C000015
 式(6)又は式(7)において、Arは置換されていてもよいアリール基である。Arにおける置換されていてもよいアリール基は、Arの定義と同じであってよいが、Ar及びArは互いに異なる基であることが好ましい。好ましいArは、o-ニトロフェニル基、m-ニトロフェニル基、又はp-ニトロフェニル基である。
 化合物(6)は、化合物(4)の水酸基をアシル化する試薬である。式(6)において、Xは脱離基である。脱離基としては、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子)、比較的嵩高いアシルオキシ基(例えば、ピバロイルオキシ基)が挙げられる。
 工程2では、例えば、所定の容器中で化合物(4)に、必要に応じて溶媒、塩基及び添加剤を加えて、化合物(6)を加えた後、所定の時間、撹拌する。
 反応は、無溶媒で行ってもよく、溶媒中で行ってもよい。反応は、有機溶媒中で行われることが好ましい。使用される溶媒は、化合物(4)、化合物(6)を溶解することができ、反応を阻害しないものであればよい。溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン等の脂肪族炭化水素、酢酸エチル、酢酸イソプロピル等のカルボン酸エステル、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルtert-ブチルエーテル、シクロペンチルメチルエーテル、2-メチルテトラヒドロフラン等のエーテルが挙げられる。これらの溶媒は、単一溶媒として用いてもよく、任意に混合して用いてもよい。溶媒の使用量は、化合物(4)のモル濃度が、0.2~1.2モル/Lとなる量であることが好ましい.
 反応を加速するために、塩基を反応溶液に加えてもよい。塩基としては、例えば、トリエチルアミン、N,N-ジエチル-N-イソプロピルアミン等のトリアルキルアミン、ピリジン、2,6-ジメチルピリジン等の含窒素芳香族化合物が挙げられる。塩基の使用量は、化合物(4)の量により異なるが、化合物(4)のモル数に対して、1~10当量であることが好ましい。
 また、反応をさらに加速するために、4-ジメチルアミノピリジン、イミダゾール,N-メチルイミダゾール等の添加剤を加えてもよい。添加剤の使用量は、化合物(4)の量及び塩基の種類及び使用量により異なるが、化合物(4)のモル数に対して、0.001~0.05当量であることが好ましい。
 反応は、通常アシル化反応に適用される温度で行うことができる。反応温度は、例えば、-20~60℃であってもよく、0~30℃であることが好ましい。
 生成物は、抽出、結晶化、蒸留、各種クロマトグラフィー等、通常用いられる精製法を単独又は適宜組み合わせて精製することができる。
(工程3)
 本実施形態に係る方法は、化合物(7)を溶媒中、塩基で処理することにより、化合物(8)に変換する工程を更に含んでもよい。式(8)において、Rは式(7)における定義と同じである。
Figure JPOXMLDOC01-appb-C000016
 工程3では、例えば、所定の容器中で化合物(7)に溶媒を加えて混合し、塩基を加えた後、所定の時間、撹拌する。
 工程3における塩基は、有機塩基であってもよく、無機塩基であってもよい。有機塩基としては、例えば、トリエチルアミン、N,N-ジエチル-N-イソプロピルアミン等のトリアルキルアミン、ピリジン、2,6-ジメチルピリジン等の含窒素芳香族化合物、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、ナトリウムtert-ブトキシド、カリウムtert-ブトキシド等の金属アルコキシドが挙げられる。無機塩基としては、例えば、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、炭酸水素カリウム、炭酸水素ナトリウム、水酸化カリウム、水酸化ナトリウム、リン酸三カリウム、リン酸三ナトリウム、リン酸水素二カリウム、リン酸水素二ナトリウム、リン酸二水素カリウム、リン酸二水素ナトリウムが挙げられる。塩基の使用量は、化合物(7)の量により異なるが、化合物(7)のモル数に対して、1~10当量であることが好ましい。
 工程3における溶媒は、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン等の脂肪族炭化水素、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルtert-ブチルエーテル、シクロペンチルメチルエーテル、2-メチルテトラヒドロフラン等のエーテル、メタノール、エタノール、イソプロピルアルコール、n-ブチルアルコール、2-ブチルアルコール、tert-ブチルアルコール、エチレングリコール、プロピレングリコール、1,2-プロパンジオール、グリセリン等のアルコール、アセトニトリル、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド等が挙げられる。これらの溶媒は、単一溶媒として用いてもよく、任意に混合して用いてもよい。好ましくは、水又はアルコールを含む。
 溶媒の使用量は、化合物(7)のモル濃度が、0.05~1.0モル/Lとなる量であることが好ましく、0.1~0.5モル/Lとなる量であることがより好ましい。
 反応生成物は、抽出、結晶化、蒸留、各種クロマトグラフィー等、通常用いられる精製法を単独又は適宜組み合わせて精製することができる。
 本実施形態に係る方法は、化合物(8)から化合物(1a)又は(1b)に変換するための工程を更に含んでもよい。これらの工程は、特許文献1~4及び非特許文献1の記載を参考にすることができる。
(工程4)
 工程4は、化合物(1a)を得るための工程であり、複数の段階からなっていてもよい。化合物(1a)は、例えば、ジノプロスト等のプロスタグランジンF2α誘導体、ビマトプロスト等であり得る。
(工程5)
 工程5は、化合物(1b)を得るための工程であり、複数の段階からなっていてもよい。化合物(1b)は、例えば、アルプロスタジル、リマプロスト等のプロスタグランジンE誘導体、ジノプロストン等のプロスタグランジンE誘導体であり得る。
(工程6)
 工程6は、化合物(1c)を得るための工程であり、複数の段階からなっていてもよい。化合物(1c)は、例えば、ラタノプロスト等プロスタグランジンF2α誘導体であり得る。
 本発明の他の実施形態は、化合物(7’)である。
Figure JPOXMLDOC01-appb-C000017
 式(7’)において、Rは、無置換又はフェニル基で置換されたC1-8アルキル基である。Rの定義は、式(1a)におけるRの定義と同じである。
 式(7’)において、Aは、ベンゼン環のオルト位、メタ位、パラ位のいずれかの位置に結合しているニトロ基である。
 化合物(7’)は、単一のジアステレオマーであってもよく、複数のジアステレオマーの混合物であってもよい。化合物(1a)、(1b)、又は(1c)を製造するためには、化合物(7’)は光学純度が高いことが好ましい。
 化合物(7’)の光学純度は、再結晶化を行うことにより向上させることができる。結晶化に使用する溶媒としては、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン等の脂肪族炭化水素、酢酸エチル、酢酸イソプロピル等のカルボン酸エステル、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン、ジクロロベンゼン等のハロゲン化炭化水素、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルtert-ブチルエーテル、シクロペンチルメチルエーテル、2-メチルテトラヒドロフラン等のエーテル、メタノール、エタノール、イソプロピルアルコール、1-ブタノール等のアルコール等が挙げられる。これらの溶媒は、単一溶媒として用いてもよく、任意に混合して用いてもよい。好ましくは、カルボン酸エステル又はアルコールを含む。光学純度の低い化合物(7’)を、必要に応じて加熱しながら、溶媒に溶解させ、徐々に冷却することによって、光学純度のより高い化合物(7’)を得ることができる。
 化合物(7’)は結晶性に優れており、光学純度の高い化合物(1a)、(1b)、又は(1c)を製造するための製造中間体として有用である。
 本発明の一実施形態を、実施例を用いてより詳細に説明する。
 以下の説明において使用される略語は、通常、当該分野の技術常識にしたがって理解されるべきである。略語の意味は、具体的には、以下のとおりである。
Bz:ベンゾイル
CAN:ヘキサニトラトセリウム(IV)酸アンモニウム
CSA:10-カンファースルホン酸
DIBAL-H:水素化ジイソブチルアルミニウム
DMAP:4-ジメチルアミノピリジン
DMF:N,N-ジメチルホルムアミド
Et:エチル
IPA:イソプロピルアルコール
n-:ノルマル
NMR:核磁気共鳴スペクトル
p-:パラ
ph:フェニル
PMB:パラメトキシベンジル
Me-THF:2-メチルテトラヒドロフラン
TEA:トリエチルアミン
tert:ターシャリー
THF:テトラヒドロフラン
THP:テトラヒドロピラン-2-イル
 H-NMRスペクトルは、テトラメチルシランを内部標準(0ppm)として補正した化学シフト値(δ)で示し、分裂パターンは、以下のように略記する。s:シングレット、d:ダブレット、t:トリプレット、q:カルテット、dd:ダブルダブレット、ddd:ダブルダブルダブレット、dt:ダブルトリプレット、m:マルチプレット、br:ブロード。
実施例1:ジノプロストンの製造方法
Figure JPOXMLDOC01-appb-C000018
(工程1)
 特許文献5の実施例1および特許文献6の実施例8に記載の方法により、市販の(-)-Corey Lactone-Benzoate(商品名)及びジメチル-2-オキソ-へプチルホスホナートから化合物(3A)を調製した。化合物(3A)(20.0g、54mmol)及びリン酸三カリウム(1.1g)をTHF(100mL)及びエタノール(20mL)の混液に懸濁させた。氷浴下で容器内の気相を窒素ガスで置換した。懸濁液に(R)-RUCY-xylBINAP(東京化成工業、0.64g、0.52mmol)を加えた後、気相を水素ガスで置換して24時間撹拌した。気相を窒素ガスで置換した後、溶媒を減圧留去して化合物(4A)(ジアステレオマー過剰率87%)を得た。得られた化合物(4A)は、更なる精製を行わずに、工程2に使用した。
(工程2)
 化合物(4A)に酢酸エチル(50mL)を加えて溶解させ、TEA(10.9g)及びDMAP(33mg)を加えた。得られた溶液に、p-ニトロ安息香酸クロリド(14.0g)の酢酸エチル溶液(40mL)を滴下し、1時間撹拌した。反応溶液に酢酸エチルを加え、水で洗浄して有機層を回収した。溶媒を減圧留去した後、得られた残渣にエタノール(100mL)を加えて、加熱しながら溶解させ、0℃まで徐々に冷却して結晶を得た。得られた結晶をエタノールで洗浄し、減圧下乾燥して、化合物(7A)(21.1g、40mmol、収率74%、ジアステレオマー過剰率99%)を得た。
mp:105℃;
HNMR(400MHz,CDCl):δ 8.26-8.21(m,2H),8.14-8.09(m,2H),7.91(dd,2H),7.53(dd,1H),7.38(dd,2H),5.76-5.65(m,2H),5.46(ddd,1H),5.25(ddd,1H),5.06(ddd,1H),2.90-2.74(m,3H),2.61(ddd,1H),2.51(d,1H),2.22(ddd,1H),1.74(m,2H),1.36-1.26(m,6H),0.86(t,3H);
13CNMR(100MHz,CDCl):δ 176.1,165.8,163.8,150.4,135.7,133.3,132.0,131.3,130.6,129.5,129.4,128.4,123.5,83.0,78.5,75.8,53.9,42.4,37.5,34.7,34.2,31.4,24.8,22.4,13.9
(工程3)
 化合物(7A)(20.0g、38mmol)のメタノール溶液(100mL)を氷冷し、炭酸カリウム(10.6g)を加えて、4時間反応させた。水で希釈したリン酸を加え、トルエン/ヘキサン混液(体積比1/1)で洗浄した。溶媒を減圧留去し、得られた残渣を酢酸エチルで抽出し、有機層を回収した。有機層の溶媒を減圧留去して、化合物(8A)(9.8g、37mmol、収率95%)を得た。
HNMR(400MHz,CDCl):δ 5.60(dd,1H),5.44(dd,1H),4.88(ddd,1H),4.08-4.03(m,1H),3.97-3.91(m,1H),2.78-2.69(m,1H),2.62-2.49(m,2H)2.47-2.38(m,2H),2.31-2.22(m,2H),1.98-1.91(m,1H),1.63-1.42(m,2H),1.38-1.23(m,6H),0.89(t,3H);
13CNMR(100MHz,CDCl):δ 176.9,136.8,130.2,82.4,76.3,72.8,56.12,42.34,39.61,37.05,34.0,31.6,25.1,22.5,13.9)
(工程5)
Figure JPOXMLDOC01-appb-C000019
 特許文献7の実施例14に記載の方法により、化合物(8A)(9.8g、37mmol)を化合物(10A)に変換した。化合物(10A)を特許文献8の実施例1に記載の方法により、化合物(11A)に変換し、さらに特許文献9の実施例14に記載の方法を参考にして、化合物(9A)(7.2g、19mmol、収率51%(3工程))に変換した。
mp:66℃
HNMR(400MHz,CDCl):δ 5.68(dd,1H),5.58(dd,1H),5.47-5.34(m,2H),4.20-4.10(m,1H),4.05(dd,1H),2.75(dd,1H),2.47-1.93(m,9H),1.82-1.43(m,4H),1.40-1.20(m,6H),0.89(t,3H)
13CNMR(100MHz,CDCl):δ 214.4,177.6,136.7,130.9,126.9,73.2,72.5,54.6,53.6,46.4,37.2,33.2,31.8,26.4,25.3,24.6,22.8,14.2
 工程1について、以下の条件で同様に接触水素還元を行った。反応条件及び結果を表1に示す。
Figure JPOXMLDOC01-appb-T000020
実施例9:リマプロストの製造方法
Figure JPOXMLDOC01-appb-C000021
(工程1)
 特許文献5及び6に記載の方法を参考にして、市販の(-)-Corey Lactone-Benzoate(商品名)、及びジメチル-2-オキソ-4-メチルオクチルホスホナートから化合物(3B)を調製した。
HNMR(300MHz,CDCl):δ 8.02-7.96(m,2H),7.62-7.55(m,1H),7.50-7.42(m,2H),6.68(dd,1H),6.24(d,1H),5.33(q,1H),5.14-5.08(m,1H),2.96-2.85(m,3H),2.68-2.28(m,5H),2.05-1.93(m,1H),1.32-1.15(m,6H),0.92-0.84(m,6H)
 実施例1に記載の方法を参考にして、化合物(3B)(20.0g、50mmol)より化合物(4B)(ジアステレオマー過剰率87%)を得た。
(工程2)
 実施例1に記載の方法を参考にして、化合物(4B)より化合物(7B)(18.1g、33mmol、収率66%、ジアステレオマー過剰率97%)を得た。
mp:74℃;
HNMR(400MHz,CDCl):δ 8.22-8.19(m,2H),8.10-8.07(m,2H),7.90-7.88(m,2H),7.52-7.49(m,1H),7.37-7.33(m,2H),5.77-5.71(m,1H),5.67-5.61(m,1H),5.53(dd,1H),5.23(dd,1H),5.04(ddd,1H),2.89-2.71(m,3H),2.59(ddd,1H),2.49(d,1H),2.20(ddd,1H),1.64(t,2H),1.49-1.41(m,1H),1.26-1.10(m,6H),0.91(d,3H),0.85(t,3H);
13CNMR(100MHz,CDCl):δ 176.2,165.9,163.9,150.5,135.9,133.4,132.4,131.5,130.7,129.6,128.5,123.6,83.1,78.6,74.7,54.0,42.5,41.5,37.6,36.6,34.8,29.5,29.0,23.0,19.9,14.2
(工程3)
 実施例1に記載の方法を参考にして、化合物(7B)(18.1g、33mmol)より化合物(8B)(9.2g、31mmol、収率95%)を得た。
HNMR(400MHz,CDCl):δ 5.56(dd,1H),5.44(dd,1H),4.88(ddd,1H),4.17-4.08(m,1H),3.96-3.89(m,1H),2.78-2.21(m,6H),1.93(ddd,1H),1.87(br,1H),1.63(Br,1H),1.45-1.08(m,9H),0.93-0.82(m,6H)
(工程5)
Figure JPOXMLDOC01-appb-C000022
(工程5-1)
(3aR,4R,5R,6aS)-5-[(4-メトキシベンジル)オキシ]-4-{(3S,5S,E)-3-[(4-メトキシベンジル)オキシ]-5-メチルノナ-1-エン-1-イル}ヘキサヒドロ-2H-シクロペンタ[b]フラン-2-オン(10B)
 化合物(8B)(0.29g、0.98mmol)にジクロロメタン(3mL)を加えて溶解させ、4-メトキシベンジル 2,2,2-トリクロロアセトイミダート(0.69g)及びCSA(0.01g)を加え、室温で撹拌した。反応溶液に飽和炭酸水素ナトリウム水溶液、酢酸エチルを加えて珪藻土でろ過し、溶媒を減圧留去した。残渣を超臨界液体クロマトグラフィー(装置名:Viridis CSH Fluoro-Phenyl OBD Prep Column、二酸化炭素/メタノール/クロロホルム=90/5/5~80/10/10)で精製することにより、化合物(10B)(0.374g、収率71%)を得た。
HNMR(400MHz,CDCl):δ 7.25-7.16(m,4H),6.88-6.83(m,4H),5.48(dd,1H),5.41(dd,1H),4.98-4.93(m,1H),4.57-4.21(m,4H),3.81-3.73(m,8H),2.79-2.61(m,3H),2.53-2.46(m,1H),2.34-2.11(m,2H),1.55-1.02(m,7H),0.91-0.82(m,6H)
(工程5-2)
(3aR,4R,5R,6aS)-5-[(4-メトキシベンジル)オキシ]-4-{(3S,5S,E)-3-[(4-メトキシベンジル)オキシ]-5-メチルノナ-1-エン-1-イル}ヘキサヒドロ-2H-シクロペンタ[b]フラン-2-オール(11B)
 化合物(10B)(0.370g、0.69mmol)をジクロロメタン(7mL)に溶解し、-78℃でDIBAL-H(1mol/Lヘキサン溶液、0.758mL)を静かに滴下した。-78℃で30分間撹拌後、飽和Roscelle塩水溶液を加えて室温で30分間撹拌し、酢酸エチルを加えて珪藻土でろ過し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘプタン/酢酸エチル=2/1~1/1)で精製することにより、化合物(11B)(0.348g、収率94%)を得た。
HNMR(400MHz,CDCl):δ 7.25-7.18(m,4H),6.87-6.79(m,4H),5.68-5.36(m,3H),4.68-4.20(m,5H),3.81-3.69(m,8H),2.52-2.17(m,4H),2.06-1.77(m,2H),1.54-1.36(m,3H),1.29-0.99(m,7H),0.91-0.82(m,6H)
(工程5-3)
(1S,2R,3R,4R)-2-[(Z)-4-(1,3-ジオキソラン-2-イル)ブト-2-エン-1-イル]-4-[(4-メトキシベンジル)オキシ]-3-{(3S,5S,E)-3-[(4-メトキシベンジル)オキシ]-5-メチルノナ-1-エン-1-イル}シクロペンタノール(13B)
 化合物(12B)(2-(1,3-ジオキソラン-2-イル)エチルトリフェニルホスホニウムブロミド、1.40g、3.16mmol)をTHF(6mL)に懸濁し、カリウムtert-ブトキシド(0.354g、3.16mmol)を加えて室温で30分間撹拌した。褐色懸濁状の反応溶液に、氷冷下、化合物(11B)(0.340g、0.631mmol)のTHF(2mL)溶液を滴下し、0℃で30分間撹拌した。反応溶液に飽和塩化アンモニウム水溶液、酢酸エチルを加えて珪藻土でろ過し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘプタン/酢酸エチル=4/1~2/1、続いてクロロホルム/メタノール=50/1~30/1)で精製することにより、化合物(13B)(0.258g、収率66%)を白色固体として得た。
HNMR(400MHz,CDCl):δ 7.25-7.18(m,4H),6.86-6.79(m,4H),5.56-5.40(m,4H),4.93-4.89(m,1H),4.54-4.22(m,4H),4.13-4.07(m,1H),4.01-3.83(m,4H),3.81-3.74(m,8H),3.01-2.97(m,1H),2.68-2.55(m,2H),2.45-2.34(m,2H),2.18-1.99(m,2H),1.90-1.83(m,1H),1.56-1.37(m,4H),1.30-1.01(m,6H),0.89-0.82(m,6H)
(工程5-4)
(1S,2R,3R,4R)-2-[4-(1,3-ジオキソラン-2-イル)ブチル]-4-[(4-メトキシベンジル)オキシ]-3-{(3S,5S,E)-3-[(4-メトキシベンジル)オキシ]-5-メチルノナ-1-エン-1-イル}シクロペンタノール(14B)
 化合物(13B)(0.250g、0.401mmol)を酢酸エチル(3mL)に溶解し、RhCl(PPh(0.074g、0.080mmol)を加えて、水素雰囲気下、室温で5時間撹拌した。反応溶液を減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘプタン/酢酸エチル=4/1~2/1)、続いてアミノシリカゲルカラムクロマトグラフィー(ヘプタン/酢酸エチル=4/1~2/1)で精製することにより、化合物(14B)(0.208g、収率83%)を白色固体として得た。
HNMR(400MHz,CDCl):δ 7.25-7.18(m,4H),6.87-6.81(m,4H),5.48(dd,1H),5.38(dd,1H),4.86-4.81(m,1H),4.52-4.21(m,4H),4.18-4.12(m,1H),3.98-3.91(m,2H),3.86-3.73(m,10H),2.54-2.47(m,1H),2.20-1.95(m,3H),1.72-1.02(m,18H),0.91-0.81(m,6H)
Figure JPOXMLDOC01-appb-C000023
(工程5-5)
(E)-メチル 7-((1R,2R,3R,5S)-5-ヒドロキシ-3-[(4-メトキシベンジル)オキシ]-2-{(3S,5S,E)-3-[(4-メトキシベンジル)オキシ]-5-メチルノナ-1-エン-1-イル}シクロペンチル)ヘプト-2-エノエート(17B)
 化合物(14B)(0.190g、0.304mmol)をTHF(4mL)に溶解し、氷冷下、6mol/L塩酸(2mL)を加えて、室温で終夜撹拌した。反応溶液に飽和炭酸水素ナトリウム水溶液を加えて酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘプタン/酢酸エチル=2/1~1/1)で精製することにより、化合物15Bの粗精製物を白色固体として得た。得られた粗精製物をジクロロメタン(4mL)に溶解し、氷冷下、メチル(トリフェニルホスホラニリデン)アセテート(16B)(0.508g,1.52mmol)を加えて、室温で2時間撹拌した。反応溶液をシリカゲルカラムクロマトグラフィー(ヘプタン/酢酸エチル=2/1~1/1)で精製することにより、化合物(17B)(0.131g、収率68%)を白色固体として得た。
(工程5-6)
(E)-7-((1R,2R,3R,5S)-5-ヒドロキシ-3-[(4-メトキシベンジル)オキシ]-2-{(3S,5S,E)-3-[(4-メトキシベンジル)オキシ]-5-メチルノナ-1-エン-1-イル}シクロペンチル)ヘプト-2-エン酸(18B)
 化合物(17B)(0.0900g、0.141mmol)をエタノール(2mL)に懸濁し、氷冷下、1mol/L水酸化カリウム水溶液(0.565mL、0.565mmol)を加えて、40℃で3時間撹拌した。氷冷下、反応溶液に1mol/L塩酸(0.60mL)、酢酸エチルを加えて珪藻土でろ過し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(ヘプタン/酢酸エチル=4/1~2/1、続いてクロロホルム/メタノール=20/1~10/1)で精製することにより化合物(18B)(0.0826g、収率94%)を白色固体として得た。
HNMR(400MHz,CDCl):δ 7.24-7.17(m,4H),7.04(dt,1H),6.87-6.81(m,4H),5.81(dt,1H),5.49(dd,1H),5.39(dd,1H),4.53-4.23(m,4H),4.17-4.12(m,1H),3.86-3.72(m,8H),2.55-2.46(m,1H),2.26-2.19(m,2H),2.02-1.93(m,2H),1.68-1.03(m,17H),0.91-0.81(m,6H)
(工程5-7)
(E)-7-((1R,2R,3R)-3-[(4-メトキシベンジル)オキシ]-2-{(3S,5S,E)-3-[(4-メトキシベンジル)オキシ]-5-メチルノナ-1-エン-1-イル}-5-オキソシクロペンチル)ヘプト-2-エン酸(19B)
 化合物(18B)(80.0mg、0.128mmol)をジクロロメタン(1mL)に溶解し、氷冷下、Dess-Martin Periiodinane(109mg、0.257mmol)を加えて室温で2時間撹拌した。反応溶液に水、酢酸エチルを加えて珪藻土でろ過し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=20/1~10/1、続いてヘプタン/酢酸エチル=1/1)で精製することにより、化合物(19B)(80.0mg、定量的)を無色透明油状物として得た。
HNMR(400MHz,CDCl):δ 7.24-7.18(m,4H),7.02(dt,1H),6.87-6.80(m,4H),5.80(dt,1H),5.61(dd,1H),5.52(dd,1H),4.56-4.25(m,4H),3.92-3.75(m,8H),2.77-2.59(m,2H),2.28-2.16(m,3H),2.02-1.94(m,1H),1.69-1.03(m,18H),0.90-0.83(m,6H)
(工程5-8)
(E)-7-{(1R,2R,3R)-3-ヒドロキシ-2-[(3S,5S,E)-3-ヒドロキシ-5-メチルノナ-1-エン-1-イル]-5-オキソシクロペンチル}ヘプト-2-エン酸(9B)
 化合物(19B)(10.0mg、16.0μmol)をアセトニトリル(0.5mL)及び水(0.05mL)の混合溶媒に溶解し、氷冷下、CAN(35.3mg、64.0μmol)を加えて、室温で30分間撹拌した。氷冷下、酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液で抽出した。水層に1mol/L塩酸を液性がpH5になるまで加えて、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=20/1~10/1)で精製することにより、化合物(9B)(4.4mg、収率74%)を得た。
HNMR(400MHz,CDCl):δ 7.00(dt,1H),5.81(d,1H),5.66(dd,1H),5.56(dd,1H),4.25-4.17(m,1H),4.11-4.01(m,1H),3.40(br,1H),2.75(dd,1H),2.41-2.32(m,1H),2.27-2.14(m,3H),2.08-1.97(m,1H),1.67-1.11(m,16H),0.95-0.84(m,6H)
実施例10:ラタノプロストの製造方法
Figure JPOXMLDOC01-appb-C000024
(工程1)
 特許文献5に記載の方法を参考にして、市販の(-)-Corey Lactone-Benzoate(商品名)及びジメチル-2-オキソ-4-フェニルブチルホスホナートから化合物(3C)を調製した。実施例1と同様にして、化合物(3C)(20.0g、49mmol)より化合物(4C)(ジアステレオマー過剰率80%)を得た。
(工程2)
 実施例1と同様にして、化合物(4C)より化合物(7C)(20.0g、36mmol、収率74%(2工程)、ジアステレオマー過剰率99%)を得た。
HNMR(400MHz,CDCl):δ 8.22-8.19(m,2H),8.07-8.03(m,2H),7.91-7.89(m,2H),7.52-7.48(m,1H),7.37-7.33(m,2H),7.26-7.17(m,2H),7.16-7.10(m,3H),5.74-5.67(m,2H),5.51-5.46(m,1H),5.25-5.21(m,1H),5.05-5.01(m,1H)2.88-2.46(m,7H),2.23-1.99(m,3H);
13CNMR(100MHz,CDCl):δ 176.2,165.9,163.8,150.6,140.8,135.6,133.4,132.5,130.9,130.7,129.6,129.4,128.7,128.5,128.4,126.3,123.6,83.1,78.6,77.5,77.1,76.8,75.3,54.0,42.5,37.5,35.8,34.8,31.6
(工程3)
 特許文献1に記載の方法にしたがい、化合物(7C)より化合物(8C)を得た。
(工程6)
Figure JPOXMLDOC01-appb-C000025
 特許文献5の実施例7に記載の方法にしたがい、化合物(8C)(5.0g,9.0mmol)より化合物(10C)を得た。さらに、特許文献4に記載の方法にしたがい、化合物(10C)より化合物(9C)(1.1g、2.5mmol、収率28%(3工程))を得た。
HNMR(400MHz,CDCl):δ 7.29-7.23(m,2H),7.21-7.17(m,3H),5.48-5.43(m,1H),5.41-5.36(m,1H),4.99(m,1H),4.16(m,1H),3.94(m,1H),3.66(m,1H),2.82-2.77(m,3H),2.70-2.09(m,8H)1.90-1.31(m,12H),1.22(d,6H);
13CNMR(100MHz,CDCl):δ 173.5,142.1,129.6,129.3,128.4,125.8,78.8,74.7,71.3,67.7,52.9,51.9,42.5,39.0,35.8,34.0,32.1,29.6,26.9,26.6,24.9,21.8。

Claims (6)

  1.  式(1a)、(1b)、又は(1c)で表される化合物の製造方法であって、
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは、フェニル基で置換されていてもよいC1-8アルキル基であり、Rは、式(2a)、(2b)又は(2c)で表される基(式中、Rは、水酸基、C1-3アルコキシ基、モノC1-3アルキルアミノ基又はジC1-3アルキルアミノ基である。)である。]
    Figure JPOXMLDOC01-appb-C000002
     式(5)で表される金属錯体、無機塩基、及び、溶媒の存在下、水素雰囲気下において、式(3)で表される化合物を還元して式(4)で表される化合物を得る工程を含む、方法。
    Figure JPOXMLDOC01-appb-C000003
    [式中、Arは、置換されていてもよいアリール基であり、
     各Arはそれぞれ独立に、フェニル基、3,5-ジメチルフェニル基、又は、3,5-ジ(tert-ブチル)-4-メトキシフェニル基であり、
     Wは、置換されていてもよいビフェニル基、又は、置換されていてもよいビナフチル基であり、
     Zは、フェニル基、C1-3アルコキシフェニル基及びC1-8アルキル基から選択される2つ以上の基で置換されたエチレン基であり、Lは、塩素原子であるか、又は、Zがフェニル基又はC1-3アルコキシフェニル基を有する場合において、前記フェニル基又は前記C1-3アルコキシフェニル基を構成する炭素原子の1つである。]
  2.  前記溶媒が、エーテル、アルコール、及びアセトニトリルから選択される少なくとも1つの溶媒を含む、請求項1に記載の方法。
  3.  Arが、フェニル基であり、Arが、3,5-ジメチルフェニル基である、請求項1又は2に記載の方法。
  4.  Rが、n-ペンチル基、2-メチルヘキシル基、又は、2-フェニルエチル基である、請求項1~3のいずれか一項に記載の方法。
  5.  式(4)で表される化合物と式(6)で表される化合物との反応により、式(7)で表される化合物を得る工程を更に含む、請求項1~4のいずれか一項に記載の方法。
    Figure JPOXMLDOC01-appb-C000004
    [式中、Rは、フェニル基で置換されていてもよいC1-8アルキル基であり、Ar及びArはそれぞれ独立にアリール基であり、Xは脱離基である。]
  6.  式(7’)で表される化合物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、Rは、フェニル基で置換されていてもよいC1-8アルキル基であり、Aは、ニトロ基である。]
PCT/JP2020/007196 2019-03-27 2020-02-21 プロスタグランジンの製造方法 WO2020195437A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3132572A CA3132572A1 (en) 2019-03-27 2020-02-21 Method for producing pkrostaglandin
KR1020217028116A KR20210143744A (ko) 2019-03-27 2020-02-21 프로스타글란딘의 제조 방법
JP2021508823A JPWO2020195437A1 (ja) 2019-03-27 2020-02-21
CN202080019803.5A CN113557227A (zh) 2019-03-27 2020-02-21 前列腺素的制造方法
EP20777827.5A EP3950672A4 (en) 2019-03-27 2020-02-21 PROCESS FOR PRODUCTION OF PROSTAGLANDIN
US17/436,472 US20220169600A1 (en) 2019-03-27 2020-02-21 Method for producing pkrostaglandin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-060295 2019-03-27
JP2019060295 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020195437A1 true WO2020195437A1 (ja) 2020-10-01

Family

ID=72609003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007196 WO2020195437A1 (ja) 2019-03-27 2020-02-21 プロスタグランジンの製造方法

Country Status (7)

Country Link
US (1) US20220169600A1 (ja)
EP (1) EP3950672A4 (ja)
JP (1) JPWO2020195437A1 (ja)
KR (1) KR20210143744A (ja)
CN (1) CN113557227A (ja)
CA (1) CA3132572A1 (ja)
WO (1) WO2020195437A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726983A (en) 1971-05-14 1973-04-10 Alza Corp Pharmaceutical compositions comprising tetrahydropyran-2{40 -yl prostaglandin ethers
US6248783B1 (en) 2000-09-20 2001-06-19 Allergan Sales, Inc. Cyclopentane 1-hydroxy alkyl or alkenyl-2-one or 2-hydroxy derivatives as therapeutic agents
WO2002096898A2 (en) 2001-05-24 2002-12-05 Resolution Chemicals Limited Process for the preparation of prostaglandins and analogues thereof
US20070167641A1 (en) 2006-01-18 2007-07-19 Chirogate International Inc. Processes and intermediates for the preparations of prostaglandins
WO2007091697A2 (en) 2006-02-07 2007-08-16 R-Tech Ueno, Ltd. Method for preparing prostaglandin derivative
JP2008037782A (ja) * 2006-08-04 2008-02-21 Daiichi Fine Chemical Co Ltd プロスタグランジン誘導体の製造方法
US20090259066A1 (en) 2008-04-09 2009-10-15 Everlight Usa, Inc. Method for preparing prostaglandin F analogue
WO2012011128A1 (en) 2010-07-23 2012-01-26 Aptuit Laurus Private Limited Preparation of prostaglandin derivatives
EP2837621A1 (en) 2013-08-15 2015-02-18 Chirogate International Inc. Processes for the preparation of isomer free prostaglandins
JP2015506343A (ja) * 2011-12-21 2015-03-02 キノイン・ジヨージセル・エーシユ・ベジエーセテイ・テルメーケク・ジヤーラ・ゼー・エル・テー トラボプロストの調製方法
WO2015133405A1 (ja) * 2014-03-06 2015-09-11 日産化学工業株式会社 光学活性アゼチジノン化合物の製造方法
CN105985371A (zh) 2015-02-11 2016-10-05 常州博海威医药科技有限公司 制备利马前列腺素的关键中间体及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10598A (en) 1854-03-07 Improvement in sash-su stain ers
JPWO2014200094A1 (ja) * 2013-06-14 2017-02-23 日産化学工業株式会社 光学活性アルコール化合物の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3726983A (en) 1971-05-14 1973-04-10 Alza Corp Pharmaceutical compositions comprising tetrahydropyran-2{40 -yl prostaglandin ethers
US6248783B1 (en) 2000-09-20 2001-06-19 Allergan Sales, Inc. Cyclopentane 1-hydroxy alkyl or alkenyl-2-one or 2-hydroxy derivatives as therapeutic agents
WO2002096898A2 (en) 2001-05-24 2002-12-05 Resolution Chemicals Limited Process for the preparation of prostaglandins and analogues thereof
JP2005503354A (ja) * 2001-05-24 2005-02-03 レゾリューション ケミカルズ リミテッド プロスタグランジン及びそれらの類縁体の製法
US20070167641A1 (en) 2006-01-18 2007-07-19 Chirogate International Inc. Processes and intermediates for the preparations of prostaglandins
WO2007091697A2 (en) 2006-02-07 2007-08-16 R-Tech Ueno, Ltd. Method for preparing prostaglandin derivative
JP2008037782A (ja) * 2006-08-04 2008-02-21 Daiichi Fine Chemical Co Ltd プロスタグランジン誘導体の製造方法
US20090259066A1 (en) 2008-04-09 2009-10-15 Everlight Usa, Inc. Method for preparing prostaglandin F analogue
WO2012011128A1 (en) 2010-07-23 2012-01-26 Aptuit Laurus Private Limited Preparation of prostaglandin derivatives
JP2015506343A (ja) * 2011-12-21 2015-03-02 キノイン・ジヨージセル・エーシユ・ベジエーセテイ・テルメーケク・ジヤーラ・ゼー・エル・テー トラボプロストの調製方法
EP2837621A1 (en) 2013-08-15 2015-02-18 Chirogate International Inc. Processes for the preparation of isomer free prostaglandins
WO2015133405A1 (ja) * 2014-03-06 2015-09-11 日産化学工業株式会社 光学活性アゼチジノン化合物の製造方法
CN105985371A (zh) 2015-02-11 2016-10-05 常州博海威医药科技有限公司 制备利马前列腺素的关键中间体及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
COMAN, S. ET AL.: "Low metal loading Ru-MCM-41 stereocontrolled hydrogenation of prostaglandin intermediates", CHEM. COMMUN., pages 2175 - 2176, XP055742729 *
E. J. COREY ET AL., J. AM. CHEM. SOC., vol. 91, 1969, pages 5675
MATSUMURA, K. ET AL.: "Chiral Ruthenabicyclic Complexes: Precatalysts for Rapid, Enantioselective, and Wide-Scope Hydrogenation of Ketones", J. AM. CHEM. SOC., vol. 133, 2011, pages 10696 - 10699, XP055131776, DOI: 10.1021/ja202296w *
NORRIS, M. D. ET AL.: "Biomimetic Total Synthesis of Gracilioethers B and C", ORG. LETT., vol. 17, 2015, pages 668 - 671, XP055742727 *

Also Published As

Publication number Publication date
US20220169600A1 (en) 2022-06-02
EP3950672A1 (en) 2022-02-09
EP3950672A4 (en) 2023-01-11
CN113557227A (zh) 2021-10-26
TW202102472A (zh) 2021-01-16
JPWO2020195437A1 (ja) 2020-10-01
KR20210143744A (ko) 2021-11-29
CA3132572A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP2014514262A (ja) トレプロスチニル製造のための中間体の合成
JP2012519163A (ja) プロスタグランジン誘導体の製造方法
US6730803B2 (en) Synthetic intermediate for epothilone derivative and production method thereof
JPH05331128A (ja) (R)−(−)−4−シアノ−3−ヒドロキシ酪酸t−ブチルエステル及びその製造方法
TWI838487B (zh) 前列腺素之製造方法
WO2020195437A1 (ja) プロスタグランジンの製造方法
JPWO2018220888A1 (ja) Pge1コアブロック誘導体およびその製造方法
JP4677550B2 (ja) 環状エステル化合物
Nishida et al. Application of new chiral auxiliaries, trans-2-(N-arylsulfonyl-N-benzyl) cyclohexanols, in an asymmetric radical cyclization
RU2118312C1 (ru) Способ получения дизащищенного 2,3-гидроксиметилцитилциклобутанола
CN101130529B (zh) 光学活性2,3-二羟基丁内半缩醛衍生物的制备方法
KR20070076548A (ko) 프로스타글란딘 제조를 위한 방법 및 중간체
JP2008512451A (ja) ホスフィン酸アルキルの製造方法
KR20130110017A (ko) 산쇼올류의 제조 방법
KR101453413B1 (ko) 알파-카르볼린 유도체의 제조방법
KR20110117829A (ko) 알코올 화합물의 광학이성질체 제조방법
AU2016337627A1 (en) Methods for total synthesis of Resolvin E1
JP4488161B2 (ja) 光学活性α−シリルメチル−β−ヒドロキシスルホキシド化合物の製造法
KR101233809B1 (ko) 2,2 위치에 2 개의 치환기를 갖는 1,3-프로판디올을 이용한 탄소만을 가지는 4급 탄소 입체중심 화합물의 제조방법
JP3823668B2 (ja) スフィンゴミエリン類縁体およびその製法
JP3446225B2 (ja) シクロペンタン誘導体及びその製造方法
KR101237531B1 (ko) 탄소만을 가지는 4급 탄소 입체중심 화합물 제조용 촉매 및 이의 제조방법
JP5493404B2 (ja) 光学活性な環状エポキシアリールエステル誘導体の製造法
PL224738B1 (pl) Sposób wytwarzania analogów prostaglandyny F2α o strukturze 13,14-en-15-olu
JP2507519B2 (ja) 3−置換−1−シクロペンテノ―ル誘導体のジアステレオ選択的な製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3132572

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021508823

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020777827

Country of ref document: EP

Effective date: 20211027