WO2020195429A1 - 無機物質粉末配合熱可塑性樹脂組成物および成形品 - Google Patents

無機物質粉末配合熱可塑性樹脂組成物および成形品 Download PDF

Info

Publication number
WO2020195429A1
WO2020195429A1 PCT/JP2020/007084 JP2020007084W WO2020195429A1 WO 2020195429 A1 WO2020195429 A1 WO 2020195429A1 JP 2020007084 W JP2020007084 W JP 2020007084W WO 2020195429 A1 WO2020195429 A1 WO 2020195429A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic substance
thermoplastic resin
calcium carbonate
substance powder
resin composition
Prior art date
Application number
PCT/JP2020/007084
Other languages
English (en)
French (fr)
Inventor
中村 宏
英二 水野
山口 太一
Original Assignee
株式会社Tbm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Tbm filed Critical 株式会社Tbm
Priority to EP20777080.1A priority Critical patent/EP3950819B1/en
Priority to CN202080017331.XA priority patent/CN113490713B/zh
Priority to US17/441,967 priority patent/US11549005B2/en
Priority to KR1020217034352A priority patent/KR102365289B1/ko
Publication of WO2020195429A1 publication Critical patent/WO2020195429A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio

Definitions

  • the present invention relates to a thermoplastic resin composition containing an inorganic substance powder and a molded product. More specifically, the present invention is suitable for producing a molded product having good appearance and mechanical properties, in which uneven distribution of inorganic substance particles is suppressed even when the thermoplastic resin is highly filled with the inorganic substance powder.
  • the present invention relates to a thermoplastic resin composition containing a high amount of inorganic substance powder, and a molded product using the same.
  • thermoplastic resins have been widely used together with paper materials derived from forest resources as materials for various industrial and household molded products, food packaging and molding packaging for general products, but environmental protection is provided. Now that it has become an international issue, it is also being considered to reduce the consumption of thermoplastic resins and paper materials in parallel with the viewpoint of making them non-toxic, recyclable, and incinerated.
  • thermoplastic resin composition containing an inorganic substance powder in which an inorganic substance powder is highly filled in a thermoplastic resin has been proposed and put into practical use (see, for example, Patent Document 1 and the like).
  • an inorganic substance powder calcium carbonate, in particular, is a resource that is abundant in the natural world, and can preferably meet the demand from the viewpoint of environmental protection.
  • the particle size of the calcium carbonate particles to be blended is small to reduce the voids generated between the adjacent calcium carbonate particles, but if the particles having a small particle size are highly filled, the mixture is kneaded into the thermoplastic resin. The viscosity increased significantly, making kneading impossible.
  • Japanese Unexamined Patent Publication No. 2013-10931 Japanese Unexamined Patent Publication No. 62-271708 Japanese Unexamined Patent Publication No. 2001-139733 Japanese Unexamined Patent Publication No. 2003-142636 Japanese Unexamined Patent Publication No. 1-261435 Japanese Unexamined Patent Publication No. 2-169795 JP-A-2002-80631
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an improved thermoplastic resin composition containing an inorganic substance powder and a molded product. According to the present invention, even if the thermoplastic resin is highly filled with the inorganic substance powder, the uneven distribution of the inorganic substance particles is suppressed, and the inorganic substance powder is suitable for producing a molded product having good appearance and mechanical properties. It is an object of the present invention to provide a thermoplastic resin composition containing a high amount of the above, and a molded product using the same.
  • the present inventors highly filled the thermoplastic resin with calcium carbonate particles as an inorganic substance powder, and found that the particles differed within a predetermined average particle size.
  • the particles differed within a predetermined average particle size.
  • the inorganic substance powder-containing thermoplastic resin composition containing the thermoplastic resin and the inorganic substance powder in a mass ratio of 50:50 to 10:90
  • the inorganic substance powder is used. It is a calcium carbonate particle, and the calcium carbonate particle contains at least two groups of particles having different average particle diameters, and the average particle diameter of each particle group is in the range of 0.7 ⁇ m or more and 6.0 ⁇ m or less. It is an inorganic substance powder-containing thermoplastic resin composition characterized by the above.
  • At least two groups of particles having different average particle sizes described above have a larger average particle size than the calcium carbonate particle group A having a smaller average particle size.
  • An inorganic substance powder-containing thermoplastic resin composition in which A: B is 1: 1 to 5: 1 in terms of mass ratio when divided into the calcium carbonate particle group B is shown.
  • the average particle size of the calcium carbonate particle group A having a small average particle size is a, and the average particles of the calcium carbonate particle group B having a large average particle size are defined as a.
  • An inorganic substance powder-containing thermoplastic resin composition having an a / b ratio of 0.85 or less when the diameter is b is shown.
  • the calcium carbonate particles having an average particle diameter of 0.7 ⁇ m or more and less than 2.2 ⁇ m are included as at least two groups of particles having different average particle diameters.
  • An inorganic substance powder-containing thermoplastic resin composition containing the group and a group of calcium carbonate particles having an average particle diameter of 2.2 ⁇ m or more and less than 6.0 ⁇ m in a mass ratio of 1: 1 to 5: 1 is shown. ..
  • the mass ratio of the thermoplastic resin to the inorganic substance powder in the inorganic substance powder-containing thermoplastic resin composition is 40:60 to 10
  • An inorganic substance powder-containing thermoplastic resin composition of: 90 is shown.
  • thermoplastic resin composition in which the thermoplastic resin is a polypropylene-based resin and / or a polyethylene-based resin is shown.
  • the inorganic substance powder-containing thermoplastic resin composition in which the calcium carbonate is heavy calcium carbonate is shown.
  • the inorganic substance powder-containing thermoplastic resin composition in which the calcium carbonate is heavy calcium carbonate without surface treatment is shown.
  • the present invention that solves the above problems is also a molded product comprising the above-mentioned inorganic substance powder-containing thermoplastic resin composition.
  • the present invention even if calcium carbonate particles are highly filled in the thermoplastic resin as an inorganic substance powder at a mass ratio of 50:50 to 10:90, uneven distribution of the calcium carbonate particles is suppressed, and the appearance and mechanical appearance are mechanical. It is possible to manufacture a molded product having good characteristics.
  • Thermoplastic resin composition containing inorganic substance powder contains the thermoplastic resin and the inorganic substance powder in a mass ratio of 50:50 to 10:90, and the inorganic substance powder to be blended is as follows. Calcium carbonate particles having a predetermined particle size distribution as described in detail are used.
  • each component constituting the thermoplastic resin composition according to the present invention will be described in detail.
  • thermoplastic resin that can be used in the inorganic substance powder-blended thermoplastic resin composition according to the present invention is not particularly limited, and various types are used depending on the use, function, and the like of the composition. obtain.
  • polyolefin resins such as polyethylene resins, polypropylene resins, polymethyl-1-pentene, and ethylene-cyclic olefin copolymers; ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers, and ethylene-methacrylic acid copolymers.
  • Functional groups such as polymers, metal salts of ethylene-methacrylic acid copolymers (ionomers), ethylene-acrylic acid alkyl ester copolymers, ethylene-methacrylic acid alkyl ester copolymers, maleic acid-modified polyethylenes, maleic acid-modified polypropylenes, etc.
  • Thermoplastic polyester-based resins such as aliphatic polyester-based resins such as group polyester resins, polybutylene succinates and polylactic acid; polycarbonate resins such as aromatic polycarbonates and aliphatic polycarbonates; atactic polystyrenes, syndiotactic polystyrenes and acrylonitrile- Polystyrene resins such as styrene (AS) copolymers and acrylonitrile-butadiene-styrene (ABS) copolymers; polyvinyl chloride resins such as polyvinyl chloride and vinylidene chloride; polyphenylene sulfides; polyether sulfone, polyether ketones , Polyether-based resins such as polyether ether ketones. These can be used alone or in combination of two or more.
  • thermoplastic resins it is preferable to use a polyolefin resin, an aromatic polyester resin, or an aliphatic polyester resin from the viewpoints of ease of molding, performance, economy, and the like.
  • the polyolefin-based resin is a polyolefin-based resin containing an olefin component unit as a main component, and specifically, as described above, a polypropylene-based resin, a polyethylene-based resin, and other polymethyl-1-pentene and ethylene-. Examples thereof include cyclic olefin copolymers and the like, as well as mixtures of two or more of them.
  • the above-mentioned "main component” means that the olefin component unit is contained in the polyolefin resin in an amount of 50% by mass or more, and the content thereof is preferably 75% by mass or more, more preferably 85% by mass. % Or more, more preferably 90% by mass or more.
  • the method for producing the polyolefin resin used in the present invention is not particularly limited, and can be obtained by any of a method using a Ziegler-Natta catalyst, a metallocene catalyst, a radical initiator such as oxygen or peroxide, or the like. It may be a radical.
  • polypropylene-based resin examples include resins having a propylene component unit of 50% by mass or more, and examples thereof include propylene homopolymers and copolymers with other ⁇ -olefins copolymerizable with propylene.
  • Other ⁇ -olefins that can be copolymerized with propylene include, for example, ethylene, 1-butene, isobutylene, 1-pentene, 3-methyl-1-butene, 1-hexene, and 3,4-dimethyl-1-butene.
  • 1-Heptene, 3-Methyl-1-hexene and other ⁇ -olefins having 4 to 10 carbon atoms are exemplified.
  • Propylene homopolymers include any of isotactics, syndiotactics, atactics, hemiisotactics and linear or branched polypropylenes exhibiting various stereoregularities.
  • the above-mentioned copolymer may be a random copolymer or a block copolymer, and may be not only a binary copolymer but also a ternary copolymer.
  • ethylene-propylene random copolymer, butene-1-propylene random copolymer, ethylene-butene-1-propylene random ternary copolymer, ethylene-propylene block copolymer and the like can be exemplified. ..
  • the other olefin copolymerizable with propylene in the copolymer is 25% by mass or less, particularly 15% by mass or less, when the total mass of the inorganic substance powder-blended thermoplastic resin composition is 100% by mass. It is preferable that it is contained in a proportion of 0.3% by mass, and the lower limit is preferably 0.3% by mass.
  • these polypropylene-based resins can be used alone or in combination of two or more.
  • polyethylene-based resin examples include resins having an ethylene component unit of 50% by mass or more.
  • high-density polyethylene HDPE
  • low-density polyethylene LDPE
  • medium-density polyethylene medium-density polyethylene
  • LLDPE linear low-density polyethylene
  • ethylene-vinyl acetate copolymer ethylene-propylene copolymer, ethylene-propylene-butene 1 copolymer, ethylene-butene 1 copolymer, ethylene-hexene 1 copolymer, ethylene-4 methylpentene 1
  • examples thereof include a copolymer, an ethylene-octene 1 copolymer, and a mixture of two or more of them.
  • polypropylene resins and / or polyethylene resins particularly polypropylene resins are preferably used because they have a particularly excellent balance between mechanical strength and heat resistance.
  • Calcium carbonate particles are used as the inorganic substance powder that can be blended in the inorganic substance powder-blended thermoplastic resin composition according to the present invention.
  • the characteristics of the calcium carbonate particles as a material itself will be described in detail later.
  • At least two groups of calcium carbonate particles having different average particle size distributions are used as the calcium carbonate particles which are the inorganic substance powders to be blended in the thermoplastic resin composition containing the inorganic substance powder.
  • the combination is not limited to the two groups, and may be a combination of three or more groups.
  • the calcium carbonate particle groups having different average particle diameters be produced separately and then kneaded into the resin material.
  • at least two groups of calcium carbonate particles having different average particle diameters may be mixed at the powder stage, or they may be added separately to the resin and mixed after kneading, but they are mixed at the powder stage. Is more preferable in terms of uniform dispersion.
  • Physical properties such as the appearance, mechanical strength, or viscosity of the thermoplastic resin composition during kneading of the molded product formed from the thermoplastic resin composition containing the inorganic substance powder to which calcium carbonate particles are added are determined by the added carbon dioxide. It is affected by the average particle size of the calcium particles. The appearance of the molded product tends to improve as the average particle size of the calcium carbonate particles decreases, but the viscosity during kneading tends to increase as the average particle size decreases. Although it depends on the application, if the viscosity of the thermoplastic resin composition during kneading is high, the molding itself becomes difficult, or the original physical properties of the resin are difficult to be exhibited, and especially when blended in a high content.
  • the larger the average particle size of the calcium carbonate particles the easier it is to knead into the thermoplastic resin composition, and the lower the cost per unit mass of the particles, which is economically advantageous.
  • uneven distribution of particles in the resin composition is likely to occur, and it is difficult to increase the blending amount.
  • the appearance of the molded product May decrease.
  • the present invention by blending a plurality of particle groups having different average particle diameters of calcium carbonate particles in a thermoplastic resin composition and kneading them, the properties of the calcium carbonate particles having a small outer diameter and the properties of the calcium carbonate particles having a large outer diameter are obtained. It is intended to bring out the excellent properties of both.
  • the calcium carbonate particle group B alone is coarsely dispersed in the thermoplastic resin.
  • the space between the calcium carbonate particles of the calcium carbonate particle group B and the resin can be filled with the calcium carbonate particles of the calcium carbonate particle group A, whereby the uneven distribution of the calcium carbonate particles is suppressed and the addition thereof.
  • the amount can be effectively improved.
  • dispersing the calcium carbonate particles of the calcium carbonate particle group A in the gaps where the calcium carbonate particles of the calcium carbonate particle group B are dispersed the distribution of the calcium carbonate particles in the resin composition is densified and the particles are tertiary. The original arrangement relationship is complicated, and the mechanical strength is also increased.
  • the calcium carbonate particles used in the present invention at least two groups of calcium carbonate particles having different average particle size distributions are used as described above, and the average particle size of each particle group is 0.7 ⁇ m or more. It is desirable that it is within the range of 6.0 ⁇ m or less. This is because even if at least a plurality of groups of calcium carbonate particles having different average particle size distributions are used, if extremely fine or extremely coarse particle groups are mixed, the desired uneven distribution of the inorganic substance powder can be suppressed and molding can be performed. This is because it is difficult to improve the appearance of the product.
  • the average particle size of the calcium carbonate particle group A having a small average particle size is a and the average particle size of the calcium carbonate particle group B having a large average particle size is b. It is desirable that the a / b ratio can be roughly classified into 0.85 or less, more preferably 0.10 to 0.70, and even more preferably about 0.10 to 0.50. This is because a particularly excellent effect can be expected by using those having a certain difference in average particle size in combination.
  • each calcium carbonate particle group used in the present invention preferably has a coefficient of variation (Cv) of the distribution of its particle diameter ( ⁇ m) of about 0.01 to 0.10, particularly 0.03 to 0. It is desirable that it is about .08.
  • Cv coefficient of variation
  • an inorganic substance powder-blended thermoplastic resin composition using a group of calcium carbonate particles having a particle size variation coefficient (Cv) of about 0.01 to 0.10 the particle size variation defined by the variation coefficient (Cv)
  • each of the particles of the calcium carbonate particle group having a small average particle size and the calcium carbonate particle group having a large average particle size is described above. It is considered that each particle group gives a more complementary effect in exerting actions such as suppressing uneven distribution of particles, improving the appearance and mechanical strength of the molded product.
  • the at least two groups of calcium carbonate particle groups having different average particle size distributions used in the present invention are not particularly limited as long as they are within the range of the average particle size as described above, but the combination of the calcium carbonate particle groups is not particularly limited.
  • the average particle size of the calcium carbonate particle group A having a small average particle size is 0.7 ⁇ m or more and less than 2.2 ⁇ m, more preferably 1.0 ⁇ m or more and less than 1.9 ⁇ m, and carbon dioxide having a large average particle size.
  • As the calcium particle group B it is particularly desirable to combine particles having an average particle diameter of 2.2 ⁇ m or more and 6.0 ⁇ m or less, more preferably 2.5 ⁇ m or more and 5.0 ⁇ m or less, and the two are substantially mixed.
  • the average particle size of the inorganic substance powder is a value calculated from the measurement result of the specific surface area by the air permeation method according to JIS M-8511.
  • a specific surface area measuring device SS-100 manufactured by Shimadzu Corporation can be preferably used.
  • the above-mentioned calcium carbonate particle group A having a small average particle diameter has an average particle diameter of 0.7 ⁇ m or more and less than 2.2 ⁇ m
  • the calcium carbonate particle group B having a large average particle diameter has an average particle diameter of 2.2 ⁇ m.
  • the boundary value of the average particle size between the calcium carbonate particle group A having a small average particle size and the calcium carbonate particle group B having a large average particle size is set to 2.2 ⁇ m.
  • the reason why the average particle size of the calcium carbonate particle group A having a small average particle size is 0.7 ⁇ m or more is that when the average particle size becomes too small, it is combined with the calcium carbonate particle group B having a large average particle size. Even so, when kneaded with the above-mentioned thermoplastic resin, the viscosity may increase significantly, which may make it difficult to manufacture a molded product.
  • one of the calcium carbonate particle groups having a relatively small average particle size has an average particle size. Is less than 2.2 ⁇ m, and it is desirable that one of the calcium carbonate particle groups having a relatively large average particle size has an average particle size of 2.2 ⁇ m or more.
  • the particle size of the calcium carbonate particles used as a whole, particularly in the particle size distribution exceeds 50 ⁇ m. It is preferable that it contains substantially no particles. On the other hand, if the particles become too fine, the viscosity may be remarkably increased when kneaded with the above-mentioned thermoplastic resin, which may make it difficult to manufacture a molded product. Therefore, it is preferable that the particles having a particle diameter of less than 0.5 ⁇ m are not substantially contained.
  • substantially free means an embodiment in which particles having the particle size are contained, for example, less than 0.1% by mass, more preferably less than 0.01% by mass, based on the total particle mass. To do.
  • the blending ratio of at least two groups of calcium carbonate particle groups having different average particle size distributions is the same as when a single calcium carbonate particle group is used.
  • the uneven distribution of calcium carbonate particles as described above is suppressed, the appearance of the obtained molded product is improved, the mechanical strength is improved, the viscosity is reduced during composition kneading, and the calcium carbonate particles from the molded product are reduced.
  • the calcium carbonate particle group A having a small average particle size and the calcium carbonate particle group B having a large average particle size as described above are not particularly limited as long as the effect of reducing the dropout of the particles can be obtained.
  • A: B is about 1: 1 to 5: 1, more preferably about 3: 1 to 5: 1 in terms of mass ratio. This is because a particularly excellent effect can be expected by using such a blending ratio.
  • the calcium carbonate particles used in the present invention are obtained by mechanically pulverizing and classifying those prepared by a synthetic method, so-called light calcium carbonate particles, and a natural raw material containing CaCO 3 as a main component such as limestone.
  • So-called heavy calcium carbonate particles may be used, and these may be combined, but from the viewpoint of economy, heavy calcium carbonate particles are preferable.
  • Heavy calcium carbonate is obtained by mechanically crushing and processing natural limestone, etc., and is clearly distinguished from synthetic calcium carbonate produced by a chemical precipitation reaction or the like.
  • heavy calcium carbonate particles are characterized by surface irregularity and high specific surface area due to particle formation performed by pulverization treatment. Due to the irregularity and high specific surface area of the heavy calcium carbonate particles, the heavy calcium carbonate particles have more contact interfaces with the thermoplastic resin when blended in the thermoplastic resin. Have.
  • the specific surface area of the heavy calcium carbonate particles is preferably about 3000 cm 2 / g or more and 35000 m 2 / g or less, although it depends on the average particle size thereof.
  • the average particle size of the heavy calcium carbonate particles is 0.7 ⁇ m or more and less than 2.2 ⁇ m, the average particles are 10,000 cm 2 / g or more and less than 35,000 m 2 / g, and the heavy calcium carbonate particles are average particles.
  • the diameter is 2.2 ⁇ m or more and less than 6.0 ⁇ m, it is desirable that the diameter is about 3000 cm 2 / g or more and 35000 m 2 / g or less.
  • the specific surface area referred to here is based on the air permeation method. When the specific surface area is within this range, it is possible to suppress a decrease in processability of the resin composition due to the addition of heavy calcium carbonate particles in the obtained molded product.
  • the indeterminate form of the heavy calcium carbonate particles can be expressed by the low degree of spheroidization of the particle shape, and is not particularly limited, but specifically, the roundness is 0.50. More than 0.95 or less, more preferably 0.55 or more and 0.93 or less, still more preferably 0.60 or more and 0.90 or less.
  • the roundness of the heavy calcium carbonate particles is within the range, the strength and molding processability of the product are also appropriate when the heavy calcium carbonate particles are mixed in the thermoplastic resin composition to form a molded product. It will be something like that.
  • the roundness can be expressed by (projected area of particles) / (area of a circle having the same peripheral length as the projected peripheral length of particles).
  • the method for measuring the roundness is not particularly limited, but for example, the projected area of the particle and the projected peripheral length of the particle are measured from a micrograph and set as (A) and (PM), respectively, and the projected circumference of the particle.
  • (r) be the radius of a circle that has the same circumference as the length.
  • PM 2 ⁇ r (1)
  • B ⁇ r 2 (2) Is.
  • the surface of the calcium carbonate particles may be surface-modified in advance according to a conventional method.
  • the surface modification method include a physical method such as plasma treatment and a method of chemically surface-treating the surface with a coupling agent or a surfactant.
  • the coupling agent include a silane coupling agent and a titanium coupling agent.
  • the surfactant may be any of anionic, cationic, nonionic and amphoteric, and examples thereof include higher fatty acids, higher fatty acid esters, higher fatty acid amides and higher fatty acid salts.
  • the calcium carbonate particles used are those that have not been surface-treated with an inorganic substance powder using a chemical treatment agent, or at least not surface-treated with a fatty acid-based compound as described above. It is preferable to use.
  • the surface treatment agent that had adhered to the calcium carbonate surface during molding is thermally decomposed, causing a slight odor. This is because it can be excluded. Therefore, in a particularly preferable embodiment of the present invention, heavy calcium carbonate which has not been surface-treated may be used as the inorganic substance powder used.
  • the crusher is not particularly limited, and an impact crusher, a crusher using a crushing medium such as a ball mill, a roller mill, or the like can be used.
  • the classification may be performed using an air classification, a wet cyclone, a decanter, or the like.
  • thermoplastic resin composition according to the present invention, as long as the action and effect of using at least two calcium carbonate particle groups having different average particle diameters as described above are not substantially impaired.
  • at least two calcium carbonate particle groups it is also possible to modify the color tone, mechanical properties, etc. of the resin composition by adding other inorganic substance powders, if necessary.
  • the powders of these other inorganic substances other than calcium carbonate are not particularly limited, but are, for example, magnesium carbonate, zinc oxide, titanium oxide, silica, alumina, clay, talc, kaolin, aluminum hydroxide, and hydroxide. Examples include magnesium.
  • the compounding ratio (mass%) of the above-mentioned thermoplastic resin contained in the inorganic substance powder-blended thermoplastic resin composition according to the present invention and the inorganic substance powder is particularly limited as long as the ratio is 50:50 to 10:90. Although not, the ratio is preferably 40:60 to 10:90, and more preferably 35:65 to 20:80.
  • the amount of the inorganic substance powder referred to here is the total amount of the total amount of at least two calcium carbonate particle groups as described above and the amount of other inorganic substance powder that can be added as needed.
  • the proportion of the inorganic substance powder is lower than 50% by mass in the blending ratio of the thermoplastic resin and the inorganic substance powder, a predetermined texture of the inorganic substance powder blended thermoplastic resin composition due to the blending of the inorganic substance powder. This is because physical properties such as impact resistance cannot be obtained, while if it is higher than 90% by mass, molding processing by extrusion molding, vacuum molding, or the like becomes difficult.
  • the inorganic substance powder-blended thermoplastic resin composition according to the present invention may be blended with other additives as an auxiliary agent, if necessary.
  • Other additives include, for example, colorants, lubricants, coupling agents, fluidity improvers, dispersants, antioxidants, UV absorbers, flame retardants, stabilizers, antistatic agents, foaming agents, plasticizers and the like. May be blended. These additives may be used alone or in combination of two or more. Further, these may be blended in the kneading step described later, or may be blended in advance in the inorganic substance powder blended thermoplastic resin composition before the kneading step.
  • the amount of these other additives added is desired by blending the above-mentioned thermoplastic resin and at least two calcium carbonate particle groups having different average particle diameters. It is not particularly limited as long as it does not impair the effect of the above, but for example, when the total mass of the thermoplastic resin composition containing the inorganic substance powder is 100%, these other additives are each about 0 to 5% by mass. It is desirable that the mixture is blended in a proportion of 10% by mass or less in the total amount of the other additives.
  • any known organic pigment, inorganic pigment, or dye can be used.
  • organic pigments such as azo-based, anthraquinone-based, phthalocyanine-based, quinacridone-based, isoindolinone-based, geoosazine-based, perinone-based, quinophthalone-based, and perylene-based pigments, ultramarine blue, titanium oxide, titanium yellow, and iron oxide.
  • inorganic pigments such as (valve handle), chromium oxide, zinc oxide, and carbon black.
  • lubricant examples include fatty acid-based lubricants such as stearic acid, hydroxystearic acid, composite stearic acid, and oleic acid, aliphatic alcohol-based lubricants, stearoamide, oxystearoamide, oleylamide, elcilamide, ricinolamide, behenamide, and methylol.
  • fatty acid-based lubricants such as stearic acid, hydroxystearic acid, composite stearic acid, and oleic acid
  • aliphatic alcohol-based lubricants such as stearoamide, oxystearoamide, oleylamide, elcilamide, ricinolamide, behenamide, and methylol.
  • Aliphatic amide lubricants such as amide, methylene bisstearoamide, methylene bisstearobehenamide, higher fatty acid bisamide acid, complex amide, stearate-n-butyl, methyl hydroxystearate, polyhydric alcohol fatty acid ester, Examples thereof include saturated fatty acid esters, aliphatic ester-based lubricants such as ester-based waxes, and fatty acid metal soap-based lubricants.
  • a phosphorus-based antioxidant As the antioxidant, a phosphorus-based antioxidant, a phenol-based antioxidant, and a pentaerythritol-based antioxidant can be used.
  • Phosphorus-based more specifically, phosphorus-based antioxidant stabilizers such as phosphite ester and phosphoric acid ester are preferably used.
  • the phosphite ester include phosphodiesters such as triphenylphosphite, trisnonylphenylphosphite, tris (2,4-di-t-butylphenyl) phosphite, diesters, monoesters and the like. Can be mentioned.
  • Examples of the phosphoric acid ester include trimethyl phosphate, triethyl phosphate, tributyl phosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, tris (nonylphenyl) phosphate, 2-ethylphenyldiphenyl phosphate and the like. These phosphorus-based antioxidants may be used alone or in combination of two or more.
  • phenolic antioxidants examples include ⁇ -tocopherol, butylhydroxytoluene, cinapyl alcohol, vitamin E, n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2-.
  • t-Butyl-6- (3'-t-Butyl-5'-methyl-2'-hydroxybenzyl) -4-methylphenylacrylate, 2,6-di-t-butyl-4- (N, N-dimethyl) Aminomethyl) phenol, 3,5-di-t-butyl-4-hydroxybenzylphosphonate diethyl ester, and tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxymethyl] methane Etc. are exemplified, and these can be used alone or in combination of two or more kinds.
  • the flame retardant is not particularly limited, but for example, a halogen-based flame retardant or a non-phosphorus-based halogen-based flame retardant such as a phosphorus-based flame retardant or a metal hydrate can be used.
  • a halogen-based flame retardant or a non-phosphorus-based halogen-based flame retardant such as a phosphorus-based flame retardant or a metal hydrate
  • the halogen-based flame retardant include halogenated bisphenol compounds such as halogenated bisphenyl alkane, halogenated bisphenyl ether, halogenated bisphenyl thioether, and halogenated bisphenyl sulfone, brominated bisphenol A, and bromine.
  • Bisphenol-bis (alkyl ether) -based compounds such as bisphenol S, chlorinated bisphenol A, and chlorinated bisphenol S, and as phosphorus-based flame retardants, tris (diethylphosphinic acid) aluminum, bisphenol A bis (diphenyl phosphate) , Triaryl isopropyl phosphate, cresyldi 2, 6-xylenyl phosphate, aromatic condensed phosphate, etc., as metal hydrates, for example, aluminum trihydrate, magnesium dihydride, or a combination thereof.
  • Etc. can be exemplified respectively, and these can be used alone or in combination of two or more kinds. It works as a flame retardant aid and can improve the flame retardant effect more effectively.
  • antimony oxide such as antimony trioxide and antimony pentoxide, zinc oxide, iron oxide, aluminum oxide, molybdenum oxide, titanium oxide, calcium oxide, magnesium oxide and the like can be used in combination as a flame retardant aid. ..
  • the foaming agent is mixed or press-fitted into a thermoplastic resin composition containing an inorganic substance powder, which is a raw material that is melted in a melt-kneader, and undergoes a phase change from solid to gas, liquid to gas, or the gas itself. It is mainly used to control the foaming ratio (foaming density) of the foamed sheet.
  • the foaming agent dissolved in the thermoplastic resin composition containing an inorganic substance powder as a raw material changes its phase to a gas depending on the resin temperature and dissolves in the molten resin when it is liquid at room temperature, and does not change its phase when it is gas at room temperature. It dissolves in the molten resin as it is.
  • the foaming agent dispersed and dissolved in the molten resin expands inside the sheet because the pressure is released, and foams by forming a large number of fine closed cells in the sheet. A sheet is obtained.
  • the foaming agent secondarily acts as a plasticizer that lowers the melt viscosity of the raw material resin composition, and lowers the temperature for bringing the raw material resin composition into a plasticized state.
  • effervescent agent examples include aliphatic hydrocarbons such as propane, butane, pentane, hexane and heptane; alicyclic hydrocarbons such as cyclobutane, cyclopentane and cyclohexane; chlorodifluoromethane, difluoromethane, trifluoromethane and trichlorofluoro.
  • Methane dichloromethane, dichlorofluoromethane, dichlorodifluoromethane, chloromethane, chloroethane, dichlorotrifluoroethane, dichloropentafluoroethane, tetrafluoroethane, difluoroethane, pentafluoroethane, trifluoroethane, dichlorotetrafluoroethane, trichlorotrifluoroethane , Tetrachlorodifluoroethane, perfluorocyclobutane and other halogenated hydrocarbons; carbon dioxide, nitrogen, air and other inorganic gases; water and the like.
  • a carrier resin containing the active ingredient of the foaming agent can also be preferably used.
  • the carrier resin include crystalline olefin resins. Of these, crystalline polypropylene resin is preferable.
  • the active ingredient include hydrogen carbonate and the like. Of these, hydrogen carbonate is preferred.
  • a foaming agent concentrate containing a crystalline polypropylene resin as a carrier resin and a bicarbonate as a pyrolysis foaming agent is preferable.
  • the content of the foaming agent contained in the foaming agent in the molding step can be appropriately set according to the amount of the thermoplastic resin, the heavy calcium carbonate particles, etc., and can be adjusted to the total mass of the thermoplastic resin composition containing the inorganic substance powder. On the other hand, it is preferably in the range of 0.04 to 5.00% by mass.
  • thermoplastic resin composition containing inorganic substance powder As the method for producing the inorganic substance powder-blended thermoplastic resin composition of the present invention, a usual method can be used, and it may be appropriately set according to the molding method (extrusion molding, injection molding, vacuum molding, etc.), for example.
  • the thermoplastic resin and at least two groups of calcium oxide particles having different average particle diameters, which are inorganic substance powders, may be kneaded and melted before being charged into the molding machine from the hopper, and may be integrally molded with the molding machine and simultaneously thermoplastic.
  • the resin and the inorganic substance powder may be kneaded and melted.
  • melt kneading it is preferable to uniformly disperse the inorganic substance powder in the thermoplastic resin and to apply a high shear stress to knead the mixture.
  • a twin-screw kneader it is preferable to uniformly disperse the inorganic substance powder in the thermoplastic resin and to apply a high shear stress to knead the mixture.
  • the inorganic substance powder-blended thermoplastic resin composition may be in the form of pellets or not in the form of pellets, but in the form of pellets.
  • the shape of the pellet is not particularly limited, and for example, pellets such as a cylinder, a sphere, and an elliptical sphere may be formed.
  • the size of the pellet may be appropriately set according to the shape, but for example, in the case of a spherical pellet, the diameter may be 1 to 10 mm. In the case of an elliptical spherical pellet, it may have an elliptical shape with an aspect ratio of 0.1 to 1.0 and an aspect ratio of 1 to 10 mm. In the case of cylindrical pellets, the diameter may be in the range of 1 to 10 mm and the length may be in the range of 1 to 10 mm. These shapes may be formed on the pellets after the kneading step described later. The shape of the pellet may be formed according to a conventional method.
  • the molded product according to the present invention is a molded product molded by using the above-mentioned inorganic substance powder-blended thermoplastic resin composition.
  • the shape of the molded product according to the present invention is not particularly limited and may be of various forms, but for example, as various molded products such as sheets, food containers and other containers. Can be molded.
  • the wall thickness of the molded product according to the present invention is not particularly limited, and may vary from thin to thick depending on the form of the molded product.
  • the wall thickness is 40 ⁇ m. Molded articles having a wall thickness of ⁇ 5,000 ⁇ m, more preferably 50 ⁇ m to 1,000 ⁇ m are shown. If the wall thickness is within this range, it is possible to form a homogeneous and defect-free molded product without causing problems in moldability and workability and without causing uneven thickness.
  • the wall thickness is 50 ⁇ m to 1,000 ⁇ m, and further preferably the wall thickness is 50 ⁇ m to 400 ⁇ m.
  • a sheet having a wall thickness within such a range can be suitably used in place of general printing / information and packaging paper or synthetic paper.
  • the method for producing the molded product of the present invention is not particularly limited as long as it can be molded into the desired shape, and any of conventionally known methods such as extrusion molding, injection molding, vacuum molding, blow molding, and calendar molding can be used. Can also be molded. Furthermore, even when the thermoplastic resin composition according to the present invention contains a foaming agent to obtain a molded product in the form of a foam, if it can be molded into a desired shape, it can be used as a foam molding method.
  • liquid phase foaming methods such as injection foaming, extrusion foaming, and foaming blow, or solid phase foaming methods such as bead foaming, batch foaming, press foaming, and normal pressure secondary foaming is used.
  • solid phase foaming methods such as bead foaming, batch foaming, press foaming, and normal pressure secondary foaming is used.
  • the injection foaming method and the extrusion foaming method can be preferably used in one aspect of the thermoplastic composition containing crystalline polypropylene as a carrier resin and hydrogen carbonate as a pyrolytic foaming agent.
  • the molding temperature at the time of molding varies to some extent depending on the molding method, the type of thermoplastic resin used, and the like, and therefore cannot be unconditionally defined. However, for example, 180 to 260 ° C., more preferably 190 to At a temperature of 230 ° C., the thermoplastic resin composition according to the present invention can be molded into a predetermined shape with good draw-down characteristics and spreadability without causing local modification of the composition.
  • the manufacturing method thereof is not particularly limited as long as it is in the form of a sheet, and the conventional known molding method as described above can be used. In consideration of the smoothness of the sheet surface, it is preferable to adopt a method of making a sheet by extrusion molding with an extruder.
  • a direct method in which the kneading step and the step of molding into a sheet shape are continuously performed may be used, or for example, a method using a T-die type twin-screw extrusion molding machine may be used.
  • a method using a T-die type twin-screw extrusion molding machine may be used.
  • biaxial stretching sequential biaxial stretching or simultaneous biaxial stretching may be used.
  • the density of the sheet decreases. As the density decreases, the whiteness of the sheet becomes good.
  • Tensile strength, elongation Tensile strength and elongation were measured using Autograph AG-100kNXplus (Shimadzu Corporation) under the conditions of 23 ° C. and 50% RH according to JIS K 7161-2: 2014. The test piece had a dumbbell shape cut out from the molded product shown below. The stretching speed was 10 mm / min.
  • A1 Polypropylene homopolymer (manufactured by Prime Polymer Co., Ltd .: Prime Polypro (trade name) E111G, melting point 160 ° C)
  • A2 Polypropylene block copolymer (manufactured by Prime Polymer Co., Ltd .: Prime Polypro (trade name) BJS-MU, melting point 160 ° C.)
  • A3 High-density polyethylene homopolymer (manufactured by Keiyo Polyethylene Co., Ltd .: B5803, melting point 133 ° C)
  • B1 Heavy calcium carbonate particles (without surface treatment) Average particle size 0.70 ⁇ m, specific surface area 32,000 cm 2 / g (manufactured by Bikita Powder Industry Co., Ltd., Softon 3200)
  • B2 Heavy calcium carbonate particles (without surface treatment) Average particle size 0.85 ⁇ m, specific surface area 26,000 cm 2 / g (manufactured by Bikita Powder Industry Co., Ltd., Softon 2600)
  • B3 Heavy calcium carbonate particles (without surface treatment) Average particle size 1.00 ⁇ m, specific surface area 22,000 cm 2 / g (manufactured by Bikita Powder Industry Co., Ltd., Softon 2200)
  • B4 Heavy calcium carbonate particles (without surface treatment) Average particle size 1.50 ⁇ m, specific surface area 15,000 cm 2 / g (manufactured by Bikita Powder Industry Co., Ltd., Softon 1500)
  • B5 Heavy calcium carbonate particles (without surface treatment) Average particle size 3.60 ⁇ m,
  • F1 Hindered phenolic antioxidant (pentaerythritol tetrakis [3- (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate]
  • F2 Tris (2,4-di-t-butylphenyl) phosphite
  • Example 1 The polypropylene homopolymer A1 was used as the thermoplastic resin (A), and the above B2 and B6 were used as the inorganic substance powder (B) in the blending ratios shown in Table 1.
  • the antistatic agent, lubricant and antioxidant the above D, E, F1 and F2 were used in appropriate amounts, and the total amount thereof was 6.0 parts by mass.
  • the blending amounts of the antistatic agent, the lubricant and the antioxidant were the same in the other Examples and Comparative Examples shown below except for Example 5.
  • Table 1 the numerical values of each component are the values of parts by mass.
  • the obtained sheet was evaluated for tensile strength, elongation, and surface appearance characteristics by the above procedure. The results obtained are shown in Table 2.
  • Example 2 Comparative Examples 1 to 6
  • a sheet having a wall thickness of 200 ⁇ m was prepared in the same manner as in Example 1 except that the types and amounts of each component in the thermoplastic resin composition were changed as shown in Table 1 below. Its characteristics were evaluated. The results obtained are shown in Table 2.
  • the inorganic substance powder is uniformly added to the resin component without uneven distribution and extruded without any problem.
  • the molding could be performed stably, the appearance of the obtained molded product was excellent, and the molded product having good mechanical properties could be obtained.
  • Example 20 A thermoplastic resin composition containing an inorganic substance powder having the same composition as that of Example 1 is sheet-molded by a twin-screw extruder at a temperature of 220 ° C. with a T-die, and then further into a deep dish-shaped container at a temperature of 220 ° C. Was vacuum formed.
  • a container body having sufficient mechanical properties and a good appearance could be manufactured without causing any trouble during processing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

熱可塑性樹脂中に無機物質粉末を高充填しても、無機物質粒子の偏在が抑制され、外観、機械的特性が良好な成形品を製造するのに適した、無機物質粉末を高配合した熱可塑性樹脂組成物、およびこれを用いた成形品を提供する。 熱可塑性樹脂と無機物質粉末とを質量比50:50~10:90の割合で含有する無機物質粉末含有熱可塑性樹脂組成物において、前記無機物質粉末が炭酸カルシウム粒子であり、前記炭酸カルシウム粒子は、平均粒子径の異なる少なくとも2群の粒子群を含み、かつ各粒子群の平均粒子径がいずれも0.7μm以上6.0μm以下の範囲内にあることを特徴とする無機物質粉末含有熱可塑性樹脂組成物およびこれを用いた成形品である。

Description

無機物質粉末配合熱可塑性樹脂組成物および成形品
 本発明は、無機物質粉末配合熱可塑性樹脂組成物および成形品に関する。詳しく述べると、本発明は、熱可塑性樹脂中に無機物質粉末を高充填しても、無機物質粒子の偏在が抑制され、外観、機械的特性が良好な成形品を製造するのに適した、無機物質粉末を高配合した熱可塑性樹脂組成物、およびこれを用いた成形品に関する。
 従来より、熱可塑性樹脂は、工業用および家庭用の各種成形品、食品包装や一般用品の成形包装等の材料として、森林資源を源とする紙資材と共に広く用いられてきたが、環境保護が国際的な問題となって来た現在、これらを無毒で、リサイクル可能とする、焼却できるといった観点と並行して、熱可塑性樹脂ならびに紙資材の消費量を低減することも大いに検討されている。
 このような点から、無機物質粉末を熱可塑性樹脂中に高充填してなる無機物質粉末配合熱可塑性樹脂組成物が提唱され、実用化されている(例えば、特許文献1等参照)。無機物質粉末として、特に、炭酸カルシウムは、自然界に豊富に存在する資源であり、環境保護といった観点からの要望に好ましく応えることができるものである。
 しかしながら、炭酸カルシウム粒子を熱可塑性樹脂に充填して二軸押出機等の混練機で混錬すると、隣接する炭酸カルシウム粒子間で生じる空隙(デッドスペース)が原因となり、特に、炭酸カルシウム粒子を60質量%以上の割合で高充填しようとすると、熱可塑性樹脂中に炭酸カルシウム粒子を均一に分散させることが極めて困難であった。その結果、炭酸カルシウム粒子が熱可塑性樹脂中に偏在し、成形品の表面状態の不均一や機械的特性のバラツキが大きく、実用上問題となる課題があった。配合する炭酸カルシウム粒子の粒子径を小さなものとして、隣接する炭酸カルシウム粒子間で生じる空隙を小さくすることも考えられるが、粒子径の小さなものを高充填すると熱可塑性樹脂中に混錬する際の粘度が大幅に上昇し、混錬が不可能となってしまうものであった。
 一般的にマトリックス中への添加剤の充填率を高める上では、複数種の充填剤を用いることが考えられ、例えば、特許文献2~7においては、種々のマトリックスに対して、同種または異種の充填剤を組み合わせて用いることが提案されている。
 しかしながら、このような各特許文献に開示される技術においては、熱可塑性樹脂中に無機物質粉末として炭酸カルシウム粒子、特に重質炭酸カルシウム粒子を高充填する場合における偏在の問題を考慮したものはなく、各特許文献に開示されるような条件を元にこれを応用しても、成形品の表面状態の均一性や機械的特性の向上といった所望する改善は図れないものである。
特開2013-10931号公報 特開昭62-271708号公報 特開2001-139733号公報 特開2003-142636号公報 特開平1-261435号公報 特開平2-169795号公報 特開2002-80631号公報
 本発明は以上の実情に鑑みてなされたものであり、改良された無機物質粉末配合熱可塑性樹脂組成物および成形品を提供することを課題とする。本発明は、また熱可塑性樹脂中に無機物質粉末を高充填しても、無機物質粒子の偏在が抑制され、外観、機械的特性が良好な成形品を製造するのに適した、無機物質粉末を高配合した熱可塑性樹脂組成物、およびこれを用いた成形品を提供することを課題とする。
 本発明者らは、上記課題を解決する上で鋭意検討を行った結果、熱可塑性樹脂中に炭酸カルシウム粒子を無機物質粉末として高充填するにおいて、所定の平均粒子径の範囲内において、異なる粒径分布、すなわち異なる平均粒子径を有する少なくとも2群の炭酸カルシウム粒子群用いることで、熱可塑性樹脂中における無機物質粉末の偏在を抑制でき、外観、機械的特性が良好な成形品が得られるとの知見により本発明に到達したものである。
 すなわち、上記課題を解決する本発明は、熱可塑性樹脂と無機物質粉末とを質量比50:50~10:90の割合で含有する無機物質粉末含有熱可塑性樹脂組成物において、前記無機物質粉末が炭酸カルシウム粒子であり、前記炭酸カルシウム粒子は、平均粒子径の異なる少なくとも2群の粒子群を含み、かつ各粒子群の平均粒子径がいずれも0.7μm以上6.0μm以下の範囲内にあることを特徴とする無機物質粉末含有熱可塑性樹脂組成物である。
 本発明に係る無機物質粉末含有熱可塑性樹脂組成物の一態様においては、前記した平均粒子径の異なる少なくとも2群の粒子群が、平均粒子径が小さい炭酸カルシウム粒子群Aと平均粒子径が大きい炭酸カルシウム粒子群Bとに分けた場合に、質量比でA:Bが、1:1~5:1となる無機物質粉末含有熱可塑性樹脂組成物が示される。
 本発明に係る無機物質粉末含有熱可塑性樹脂組成物の一態様においては、平均粒子径が小さい炭酸カルシウム粒子群Aの平均粒子径をaとし、平均粒子径が大きい炭酸カルシウム粒子群Bの平均粒子径をbとした場合に、a/b比率が0.85以下となる無機物質粉末含有熱可塑性樹脂組成物が示される。
 本発明に係る無機物質粉末含有熱可塑性樹脂組成物の一態様においては、前記した平均粒子径の異なる少なくとも2群の粒子群として、平均粒子径が0.7μm以上2.2μm未満の炭酸カルシウム粒子群と、平均粒子径2.2μm以上6.0μm未満の炭酸カルシウム粒子群とを質量比1:1~5:1で含有しているものである無機物質粉末含有熱可塑性樹脂組成物が示される。
 本発明に係る無機物質粉末含有熱可塑性樹脂組成物の一態様においては、前記無機物質粉末含有熱可塑性樹脂組成物中における前記熱可塑性樹脂と前記無機物質粉末の質量比が、40:60~10:90である無機物質粉末含有熱可塑性樹脂組成物が示される。
 本発明に係る無機物質粉末含有熱可塑性樹脂組成物の一態様においては、前記熱可塑性樹脂が、ポリプロピレン系樹脂および/またはポリエチレン系樹脂である無機物質粉末含有熱可塑性樹脂組成物が示される。
 本発明に係る無機物質粉末含有熱可塑性樹脂組成物の一態様においては、前記炭酸カルシウムが重質炭酸カルシウムである無機物質粉末含有熱可塑性樹脂組成物が示される。
本発明に係る無機物質粉末含有熱可塑性樹脂組成物の一態様においては、前記炭酸カルシウムが表面処理されていない重質炭酸カルシウムである無機物質粉末含有熱可塑性樹脂組成物が示される。
 上記課題を解決する本発明はまた、上記の無機物質粉末含有熱可塑性樹脂組成物からなる成形品である。
 本発明によれば、熱可塑性樹脂中に無機物質粉末として炭酸カルシウム粒子を質量比50:50~10:90の割合で高充填しても、炭酸カルシウム粒子の偏在が抑制され、外観、機械的特性が良好な成形品を製造することができるものである。
 以下、本発明を実施形態に基づき詳細に説明する。
≪無機物質粉末配合熱可塑性樹脂組成物≫
 本発明の無機物質粉末配合熱可塑性樹脂組成物は、熱可塑性樹脂と無機物質粉末とを質量比50:50~10:90の割合で含有するものであり、配合される無機物質粉末として以下に詳述するような所定の粒子径分布を有する炭酸カルシウム粒子を用いたものである。以下、本発明に係る熱可塑性樹脂組成物を構成する各成分につき、それぞれ詳細に説明する。
≪熱可塑性樹脂≫
 本発明に係る無機物質粉末配合熱可塑性樹脂組成物において用いられ得る熱可塑性樹脂としては、特に限定されるものではなく、当該組成物のその用途、機能等に応じて、各種のものが用いられ得る。例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリメチル-1-ペンテン、エチレン-環状オレフィン共重合体等のポリオレフィン系樹脂;エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸共重合体の金属塩(アイオノマー)、エチレン-アクリル酸アルキルエステル共重合体、エチレン-メタクリル酸アルキルエステル共重合体、マレイン酸変性ポリエチレン、マレイン酸変性ポリプロピレン等の官能基含有ポリオレフィン系樹脂;ナイロン-6、ナイロン-6,6、ナイロン-6,10、ナイロン-6,12等のポリアミド系樹脂;ポリエチレンテレフタレートおよびその共重合体、ポリエチレンナフタレート、ポリブチレンテレフタレート等の芳香族ポリエステル系樹脂、ポリブチレンサクシネート、ポリ乳酸等の脂肪族ポリエステル系樹脂等の熱可塑性ポリエステル系樹脂;芳香族ポリカーボネート、脂肪族ポリカーボネート等のポリカーボネート樹脂;アタクティックポリスチレン、シンジオタクティックポリスチレン、アクリロニトリル-スチレン(AS)共重合体、アクリロニトリル-ブタジエン-スチレン(ABS)共重合体等のポリスチレン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等のポリ塩化ビニル系樹脂;ポリフェニレンスルフィド;ポリエーテルスルフォン、ポリエーテルケトン、ポリエーテルエーテルケトン等のポリエーテル系樹脂等が挙げられる。これらは、1種を単独でまたは2種以上を組み合わせて用いることができる。 
 これらの熱可塑性樹脂のうち、その成形容易性、性能面および経済面等からポリオレフィン系樹脂、芳香族ポリエステル系樹脂、脂肪族ポリエステル系樹脂を用いることが好ましい。
 ここで、ポリオレフィン系樹脂とは、オレフィン成分単位を主成分とするポリオレフィン系樹脂であり、具体的には、上記したようにポリプロピレン系樹脂やポリエチレン系樹脂、その他、ポリメチル-1-ペンテン、エチレン-環状オレフィン共重合体など、さらにそれらの2種以上の混合物などが挙げられる。なお、上記「主成分とする」とは、オレフィン成分単位がポリオレフィン系樹脂中に50質量%以上含まれることを意味し、その含有量は好ましくは75質量%以上であり、より好ましくは85質量%以上であり、さらに好ましくは90質量%以上である。なお、本発明に使用されるポリオレフィン系樹脂の製造方法は特に制限はなく、チーグラー・ナッタ系触媒、メタロセン系触媒、酸素、過酸化物等のラジカル開始剤等を用いる方法等のいずれによって得られたものであってもよい。
 前記ポリプロピレン系樹脂としては、プロピレン成分単位が50質量%以上の樹脂が挙げられ、例えば、プロピレン単独重合体、またはプロピレンと共重合可能な他のα-オレフィンとの共重合体等が挙げられる。プロピレンと共重合可能な他のα-オレフィンとしては、例えば、エチレンや、1-ブテン、イソブチレン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、3,4-ジメチル-1-ブテン、1-ヘプテン、3-メチル-1-ヘキセンなどの炭素数4~10のα-オレフィンが例示される。プロピレン単独重合体としては、アイソタクティック、シンジオタクティック、アタクチック、ヘミアイソタクチックおよび種々の立体規則性を示す直鎖または分枝状ポリプロピレン等のいずれもが包含される。また上記共重合体は、ランダム共重合体であってもブロック共重合体であってもよく、さらに二元共重合体のみならず三元共重合体であってもよい。具体的には、例えば、エチレン-プロピレンランダム共重合体、ブテン-1-プロピレンランダム共重合体、エチレン-ブテン-1-プロピレンランダム3元共重合体、エチレン-プロピレンブロック共重合体などを例示できる。なお、上記共重合体中のプロピレンと共重合可能な他のオレフィンは、無機物質粉末配合熱可塑性樹脂組成物全体の質量を100質量%とした場合に、25質量%以下、特に15質量%以下の割合で含有されていることが好ましく、下限値としては0.3質量%であることが好ましい。また、これらのポリプロピレン系樹脂は、単独または2種以上を混合して用いることができる。
 また、前記ポリエチレン系樹脂としては、エチレン成分単位が50質量%以上の樹脂が挙げられ、例えば、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、中密度ポリエチレン、直鎖状低密度ポリエチレン(LLDPE)、エチレン-酢酸ビニル共重合体、エチレン-プロピレン共重合体、エチレン-プロピレン-ブテン1共重合体、エチレン-ブテン1共重合体、エチレン-ヘキセン1共重合体、エチレン-4メチルペンテン1共重合体、エチレン-オクテン1共重合体等、さらにそれらの2種以上の混合物が挙げられる。
 前記したポリオレフィン系樹脂の中でも、ポリプロピレン系樹脂および/またはポリエチレン系樹脂、特に、機械的強度と耐熱性とのバランスに特に優れることからポリプロピレン系樹脂が好ましく用いられる。
 ≪無機物質粉末≫
 本発明に係る無機物質粉末配合熱可塑性樹脂組成物中に配合され得る無機物質粉末としては、炭酸カルシウム粒子が用いられる。炭酸カルシウム粒子の素材自体としての特性については、後に詳述する。
 しかして、本発明においては、無機物質粉末配合熱可塑性樹脂組成物中に配合される無機物質粉末である炭酸カルシウム粒子として、平均粒子径分布の異なる少なくとも2群の炭酸カルシウム粒子群を用いる。平均粒子径分布の異なるものであれば、2群の組合せに限られず、3群またはそれ以上の群の組合せであってもよい。
 特に限定されるものではないが、平均粒子径が異なる炭酸カルシウム粒子群は、それぞれ別々に製造し、その後、樹脂材料に混練することが望ましい。また、平均粒子径の異なる少なくとも2群の炭酸カルシウム粒子群を混ぜるのは、粉体の段階で混ぜても、樹脂へ別々に添加して混練後混ぜてもよいが、粉体の段階で混ぜるのが均一分散の点でより好ましい。
 炭酸カルシウム粒子を添加してなる無機物質粉末配合熱可塑性樹脂組成物より形成される成形品の外観、機械的強度、あるいは熱可塑性樹脂組成物混錬時の粘度等の物性は、添加される炭酸カルシウム粒子の平均粒子径により影響を受けるものである。成形品の外観は炭酸カルシウム粒子の平均粒子径が小さくなるほど、向上する傾向があるが、混錬時の粘度は平均粒子径が小さくなるほど高まる傾向がある。用途にもよるが、熱可塑性樹脂組成物混錬時の粘度が高いと成形自体が困難となったり、あるいは樹脂本来の物性が発揮されにくくなり、特に高含有量で配合する場合にあってはその傾向が顕著となる。一方で、炭酸カルシウム粒子の平均粒子径が大きくなるほど、熱可塑性樹脂組成物中への混錬は概して容易となり、また粒子の単位質量あたりのコストも低いものとなるため経済的にも有利であるものの、樹脂組成物中での粒子の偏在が生じやすく、かつ配合量を高めることが困難となり、また、当該無機物質粉末配合熱可塑性樹脂組成物により成形品を形成した場合に、成形品の外観が低下する虞れがある。ゆえに、本発明は、炭酸カルシウム粒子の平均粒子径が異なる複数の粒子群を熱可塑性樹脂組成物中に配合し混練することで炭酸カルシウム粒子の外径の小さいものの性質と、大きいものとの性質の優れた性質を双方に発揮させるものである。
 例えば、ある平均粒子径を有する炭酸カルシウム粒子群Aに、これよりも大きい平均粒子径を有する炭酸カルシウム粒子群Bを混ぜると、炭酸カルシウム粒子群Bが単独で熱可塑性樹脂中に粗く分散する複合状態のものにおいて、炭酸カルシウム粒子群Bの炭酸カルシウム粒子と樹脂との空間を、炭酸カルシウム粒子群Aの炭酸カルシウム粒子により埋めることができ、これによって、炭酸カルシウム粒子の偏在が抑制され、その添加量を効果的に向上させることができる。また、炭酸カルシウム粒子群Bの炭酸カルシウム粒子が分散した隙間に炭酸カルシウム粒子群Aの炭酸カルシウム粒子に分散させることにより、樹脂組成物中における炭酸カルシウム粒子の分布の緻密化と、粒子相互の三次元的な配置関係の複雑化がなされ、力学的な強度も増大する。
 本発明で用いられる炭酸カルシウム粒子としては、上記したように平均粒子径分布が異なる少なくとも2群の炭酸カルシウム粒子群を用いるものであるが、各粒子群の平均粒子径がいずれも0.7μm以上6.0μm以下の範囲内にあることが望まれる。これは、平均粒子径分布が異なる少なくとも複数群の炭酸カルシウム粒子群を用いたとしても、極端に微細あるいは極端に粗大な粒子群を配合すると、無機物質粉末の所期の偏在の抑制や、成形品の外観の向上が困難となるためである。
 また、特に限定されるわけではないが、平均粒子径が小さい炭酸カルシウム粒子群Aの平均粒子径をaとし、平均粒子径が大きい炭酸カルシウム粒子群Bの平均粒子径をbとした場合に、a/b比率が0.85以下、より好ましくは0.10~0.70、さらに好ましくは0.10~0.50程度となるように大別できるものであることが望ましい。このようなある程度明確な平均粒子径の差をもったものを併用することで、特に優れた効果が期待できるためである。
 また、本発明で用いられるそれぞれの炭酸カルシウム粒子群は、その粒子径(μm)の分布の変動係数(Cv)が0.01~0.10程度であることが望ましく、特に0.03~0.08程度であることが望ましい。粒子径の変動係数(Cv)が0.01~0.10程度の炭酸カルシウム粒子群を用いた無機物質粉末配合熱可塑性樹脂組成物では、該変動係数(Cv)で規定される粒子径のばらつきにおいて、平均粒子径の小さな炭酸カルシウム粒子群と平均粒子径の大きな炭酸カルシウム粒子群との各粒子が、該炭酸カルシウム粒子を用いた無機物質粉末配合熱可塑性樹脂組成物における、上記したような粒子の偏在の抑制、成形品の外観および機械的強度の向上等の作用をもたらす上で、各粒子群がより相補的に効果を与えるためと考えられる。
 本発明において用いられる平均粒子径分布が異なる少なくとも2群の炭酸カルシウム粒子群としては、上記したような平均粒子径の範囲内であれば、その炭酸カルシウム粒子群の組合せとしては、特に限定されないが、平均粒子径の小さい炭酸カルシウム粒子群Aとしてその平均粒子径が、0.7μm以上2.2μm未満のもの、より好ましくは1.0μm以上1.9μm未満のもの、また平均粒子径の大きい炭酸カルシウム粒子群Bとしてはその平均粒子径は2.2μm以上6.0μm以下のもの、より好ましくは2.5μm以上5.0μm以下のものを組合せることが、特に望ましく、両者を実質的に混合均質化してなる混合物とすることが好ましい。両者を混ぜ合わせることで、平均粒子径の小さい炭酸カルシウム粒子群Aだけ、または平均粒子径の大きい炭酸カルシウム粒子群Bだけを単独で用いるより、良好な高い充填性において、炭酸カルシウムの偏在を抑制でき、外観および、破断伸び等の機械的特性が良好な成形品を得ることができ、また樹脂組成物からなる成形品からの複合材からの炭酸カルシウム粒子の脱落を低減することが可能である。
 なお、本明細書において述べる無機物質粉末、すなわち炭酸カルシウム粒子の平均粒子径は、JIS M-8511に準じた空気透過法による比表面積の測定結果から計算した値をいう。測定機器としては、例えば、島津製作所社製の比表面積測定装置SS-100型を好ましく用いることができる。
 上記した平均粒子径の小さい炭酸カルシウム粒子群Aとしてその平均粒子径が、0.7μm以上2.2μm未満のものと、平均粒子径の大きい炭酸カルシウム粒子群Bとしてその平均粒子径が2.2μm以上6.0μm以下のものとを組み合わせて用いる実施形態において、平均粒子径の小さな炭酸カルシウム粒子群Aと平均粒子径の大きい炭酸カルシウム粒子群Bとの平均粒子径の境界値を2.2μmとするのは、本発明者らが鋭意検討し多くの実験を行った結果、この値より大きい粒子群と小さい粒子群とを組み合わせることで、添加された炭酸カルシウムの偏在を最も効果的に抑制し、外観および機械的特性の良好な成形品をできることができるとの結論を得たことに基づくものである。
 また、平均粒子径の小さい炭酸カルシウム粒子群Aとしてその平均粒子径が0.7μm以上とするのは、平均粒子径が小さくなり過ぎると、平均粒子径の大きい炭酸カルシウム粒子群Bと組み合わせた場合であっても、前述した熱可塑性樹脂と混練した際に粘度が大きく上昇し、成形品の製造が困難となる虞れがあるためである。
 一方、平均粒子径の大きい炭酸カルシウム粒子群Bとしてその平均粒子径を6.0μm以下のものとするのは、平均粒子径が大きくなり過ぎると、平均粒子径の小さな炭酸カルシウム粒子群Aと組み合わせた場合であっても、前述した熱可塑性樹脂と混練した際に粒子の偏在が生じたり、得られる成形品の外観が低下する虞れがあるためである。
 なお、本発明において、平均粒子径分布が異なる炭酸カルシウム粒子群として3つ以上のものを用いる実施形態においても、相対的に平均粒子径の小さい炭酸カルシウム粒子群の1つは、その平均粒子径が2.2μm未満であり、また相対的に平均粒子径の大きい炭酸カルシウム粒子群の1つは、その平均粒子径が2.2μm以上であるものとすることが望ましい。
 上記したように、本発明においては、平均粒子径分布が異なる少なくとも2群の炭酸カルシウム粒子群を用いるが、用いられる炭酸カルシウム粒子の全体として、特に、その粒径分布において、粒子径50μmを超える粒子を実質的に含有しないことが好ましい。一方、粒子が細かくなり過ぎると、前述した熱可塑性樹脂と混練した際に粘度が著しく上昇し、成形品の製造が困難になる虞れがある。そのため、その粒子径は0.5μm未満の粒子も実質的に含有しないことがが好ましい。ここで「実質的に含有しない」とは、当該粒子径の粒子が、例えば、全粒子質量の0.1質量%未満、より好ましくは0.01質量%未満しか含まれないような態様を意味する。
 さらに、本発明に係る無機物質粉末配合熱可塑性樹脂組成物において、前記の平均粒子径分布の異なる少なくとも2群の炭酸カルシウム粒子群の配合割合としては、単独の炭酸カルシウム粒子群を使用した場合と比較して、上記したような炭酸カルシウム粒子の偏在の抑制、得られる成形品における外観の向上、機械的強度の向上、さらには組成物混錬時における粘度の低下、成形品からの炭酸カルシウム粒子の脱落の低減等の効果が得られる限り、特に限定されるものではないが、例えば、上記したような平均粒子径が小さい炭酸カルシウム粒子群Aと平均粒子径が大きい炭酸カルシウム粒子群Bとに分けた場合に質量比で、A:Bが、1:1~5:1程度、より好ましくは3:1~5:1程度であることが望ましい。このような配合割合とすることで、特に優れた効果が期待できるためである。
 ここで、本発明で用いられる炭酸カルシウム粒子としては、合成法により調製されたもの、いわゆる軽質炭酸カルシウム粒子と、石灰石などCaCOを主成分とする天然原料を機械的に粉砕分級して得られる、いわゆる重質炭酸カルシウム粒子とのいずれであっても良く、これらを組合わせることも可能であるが、経済性の観点で、好ましくは、重質炭酸カルシウム粒子である。
 重質炭酸カルシウムとは、天然の石灰石などを機械的に粉砕・加工して得られるものであって、化学的沈殿反応等によって製造される合成炭酸カルシウムとは明確に区別される。
 重質炭酸カルシウム粒子は、例えば、合成法による軽質炭酸カルシウムなどとは異なり、粒子形成が粉砕処理によって行われたことに起因する、表面の不定形性、比表面積の高さに特徴を有する。重質炭酸カルシウム粒子がこのように不定形性、比表面積の高さを有するため、熱可塑性樹脂中に配合した場合に重質炭酸カルシウム粒子は、熱可塑性樹脂に対してより多くの接触界面を有する。
 特に限定されるわけではないが、重質炭酸カルシウム粒子の比表面積としては、その平均粒子径によっても左右されるが、3000cm/g以上35000m/g以下程度であることが望まれ、特に、重質炭酸カルシウム粒子として平均粒子径が、0.7μm以上2.2μm未満のものである場合には、10000cm/g以上35000m/g未満程度、また、重質炭酸カルシウム粒子として平均粒子径が、2.2μm以上6.0μm未満のものである場合には、3000cm/g以上35000m/g以下程度であることが望ましい。ここでいう比表面積は空気透過法によるものである。比表面積がこの範囲内にあると、得られる成形品において、重質炭酸カルシウム粒子を配合することによる樹脂組成物の加工性の低下を抑制できる。
 また、重質炭酸カルシウム粒子の不定形性は、粒子形状の球形化の度合いが低いことで表わすことができ、特に限定されるわけではないが、具体的には、真円度が0.50以上0.95以下、より好ましくは0.55以上0.93以下、さらに好ましくは0.60以上0.90以下である。重質炭酸カルシウム粒子の真円度が範囲内にあると、熱可塑性樹脂組成物中に重質炭酸カルシウム粒子を配合して成形品を形成した場合に、製品としての強度や成形加工性も適度なものとなる。
 なお、ここで、真円度とは、(粒子の投影面積)/(粒子の投影周囲長と同一周囲長を持つ円の面積)で表せるものである。真円度の測定方法は特に限定されるものではないが、例えば、顕微鏡写真から粒子の投影面積と粒子の投影周囲長とを測定し、各々(A)と(PM)とし、粒子の投影周囲長と同一周囲長を持つ円の半径を(r)とすると、
PM=2πr  (1)
であり、粒子の投影周囲長と同一周囲長を持つ円の面積を(B)とすると、
B=πr  (2)
である。(1)式を変形すると、r=PM/2π  (3)
となるから、(2)式に(3)式を代入すると、
B=π×(PM/2π)  (4)
となり、真円度=A/B=A×4π/(PM)
となる。測定する粒子は、粉末の粒度分布を代表するように、サンプリングを行う。測定粒子の数が多い程、測定値の信頼性は増すが、測定時間も考慮して、一般に100個程度の粒子の平均値で表すものとされており、本明細書においても100個の粒子の平均値とした。これらの測定は走査型顕微鏡や実体顕微鏡などで得られる各粒子の投影図を一般に商用されている画像解析ソフトによってすることによって真円度を求めることが可能である。
 また、炭酸カルシウム粒子の熱可塑性樹脂中への分散性を高めるために、炭酸カルシウム粒子の表面をあらかじめ常法に従い表面改質しておいてもよい。表面改質法としては、プラズマ処理等の物理的な方法や、カップリング剤や界面活性剤で表面を化学的に表面処理するものなどが例示できる。カップリング剤としては、例えば、シランカップリング剤やチタンカップリング剤等が挙げられる。界面活性剤としては、アニオン性、カチオン性、ノニオン性および両性のいずれのものであってもよく、例えば、高級脂肪酸、高級脂肪酸エステル、高級脂肪酸アミド、高級脂肪酸塩等が挙げられる。
 しかしながら、本発明の好ましい実施形態においては、用いられる炭酸カルシウム粒子としては、化学的処理剤を用いた無機物質粉末の表面処理、少なくとも、上記したような脂肪酸系化合物による表面処理をしていないものを用いることが好ましい。炭酸カルシウム粒子として、このように表面処理をしていないものを用いることで、成形時において炭酸カルシウム表面に付着していた表面処理剤が熱分解して、わずかながらでも臭気の要因となることを排除できるためである。従って、本発明の特に好ましい一実施形態においては、用いられる無機物質粉末として表面処理をしていない重質炭酸カルシウムを用いることが挙げられる。
 なお、重質炭酸カルシウム粒子を得る上での粉砕方法には乾式法と湿式法とがあるが、経済性の観点で、乾式法が好ましい。粉砕機に関しても特に限定されるものではなく、衝撃式粉砕機、ボールミル等の粉砕メディアを用いた粉砕機、ローラーミル等が使用できる。また、分級も空気分級、湿式サイクロン、デカンターなどを利用した分級で良い。
 本発明に係る無機物質粉末配合熱可塑性樹脂組成物においては、上記したような平均粒子径の異なる少なくとも2つの炭酸カルシウム粒子群を用いることによる作用および効果を実質的に損なうことのない限りにおいて、上記したような少なくとも2つの炭酸カルシウム粒子群以外に、必要に応じて、その他の無機物質粉末を添加することにより、樹脂組成物の色調や機械的特性等を改質することも可能である。
 これらの炭酸カルシウム以外のその他の無機物質粉末としては、特に限定されるものではないが、例えば、炭酸マグネシウム、酸化亜鉛、酸化チタン、シリカ、アルミナ、クレー、タルク、カオリン、水酸化アルミニウム、水酸化マグネシウム等が挙げられる。
 本発明に係る無機物質粉末配合熱可塑性樹脂組成物に含まれる上記した熱可塑性樹脂と、無機物質粉末との配合比(質量%)は、50:50~10:90の比率であれば特に限定されないが、40:60~10:90の比率であることが好ましく、35:65~20:80の比率であることがさらに好ましい。なお、ここで言う無機物質粉末の量は、上記したような少なくとも2つの炭酸カルシウム粒子群の合計量と、必要により加えられ得るその他の無機物質粉末の量とを合わせた総量である。熱可塑性樹脂と無機物質粉末との配合比において、無機物質粉末の割合が50質量%より低いものであると、無機物質粉末を配合したことによる無機物質粉末配合熱可塑性樹脂組成物の所定の質感、耐衝撃性等の物性が得られないものとなり、一方90質量%よりも高いものであると、押出成形、真空成形等による成形加工が困難となるためである。
≪その他の添加剤≫
 本発明に係る無機物質粉末配合熱可塑性樹脂組成物には、必要に応じて、補助剤としてその他の添加剤を配合することも可能である。その他の添加剤としては、例えば、色剤、滑剤、カップリング剤、流動性改良材、分散剤、酸化防止剤、紫外線吸収剤、難燃剤、安定剤、帯電防止剤、発泡剤、可塑剤等を配合してもよい。これらの添加剤は、単独で用いてもよく、2種以上を併用してもよい。また、これらは、後述の混練工程において配合してもよく、混練工程の前にあらかじめ無機物質粉末配合熱可塑性樹脂組成物に配合していてもよい。本発明に係る無機物質粉末配合熱可塑性樹脂組成物において、これらのその他の添加剤の添加量は、上記した熱可塑性樹脂と、平均粒子径の異なる少なくとも2つの炭酸カルシウム粒子群との配合による所望の効果を阻害しない限り特に限定されるものではないが、例えば、無機物質粉末配合熱可塑性樹脂組成物全体の質量を100%とした場合に、これらその他の添加剤はそれぞれ0~5質量%程度の割合で、かつ当該その他の添加剤全体で10質量%以下となる割合で配合されることが望まれる。
 以下に、これらのうち、重要と考えられるものについて例を挙げて説明するが、これらに限られるものではない。
 色剤としては、公知の有機顔料または無機顔料あるいは染料のいずれをも用いることができる。具体的には、アゾ系、アンスラキノン系、フタロシアニン系、キナクリドン系、イソインドリノン系、ジオオサジン系、ペリノン系、キノフタロン系、ペリレン系顔料などの有機顔料や群青、酸化チタン、チタンイエロー、酸化鉄(弁柄)、酸化クロム、亜鉛華、カーボンブラックなどの無機顔料が挙げられる。
 滑剤としては、例えば、ステアリン酸、ヒドロキシステアリン酸、複合型ステアリン酸、オレイン酸等の脂肪酸系滑剤、脂肪族アルコール系滑剤、ステアロアミド、オキシステアロアミド、オレイルアミド、エルシルアミド、リシノールアミド、ベヘンアミド、メチロールアミド、メチレンビスステアロアミド、メチレンビスステアロベヘンアミド、高級脂肪酸のビスアミド酸、複合型アミド等の脂肪族アマイド系滑剤、ステアリン酸-n-ブチル、ヒドロキシステアリン酸メチル、多価アルコール脂肪酸エステル、飽和脂肪酸エステル、エステル系ワックス等の脂肪族エステル系滑剤、脂肪酸金属石鹸系滑剤等を挙げることができる。
 酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、ペンタエリスリトール系酸化防止剤が使用できる。リン系、より具体的には亜リン酸エステル、リン酸エステル等のリン系酸化防止安定剤が好ましく用いられる。亜リン酸エステルとしては、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、等の亜リン酸のトリエステル、ジエステル、モノエステル等が挙げられる。
 リン酸エステルとしては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリス(ノニルフェニル)ホスフェート、2-エチルフェニルジフェニルホスフェート等が挙げられる。これらリン系酸化防止剤は単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 フェノール系の酸化防止剤としては、α-トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネイト、2-t-ブチル-6-(3'-t-ブチル-5'-メチル-2'-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-t-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネイトジエチルエステル、およびテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン等が例示され、これらは単独でまたは2種以上を組合せて使用することができる。
 難燃剤としては、特に限定されないが、例えば、ハロゲン系難燃剤や、あるいはリン系難燃剤や金属水和物などの非リン系ハロゲン系難燃剤を用いることができる。ハロゲン系難燃剤としては、具体的には例えば、ハロゲン化ビスフェニルアルカン、ハロゲン化ビスフェニルエーテル、ハロゲン化ビスフェニルチオエーテル、ハロゲン化ビスフェニルスルフォンなどのハロゲン化ビスフェノール系化合物、臭素化ビスフェノールA、臭素化ビスフェノールS、塩素化ビスフェノールA、塩素化ビスフェノールSなどのビスフェノール-ビス(アルキルエーテル)系化合物等が、またリン系難燃剤としては、トリス(ジエチルホスフィン酸)アルミニウム、ビスフェノールAビス(ジフェニルホスフェート)、リン酸トリアリールイソプロピル化物、クレジルジ2、6-キシレニルホスフェート、芳香族縮合リン酸エステル等が、金属水和物としては、例えば、アルミニウム三水和物、二水酸化マグネシウムまたはこれらの組み合わせ等がそれぞれ例示でき、これらは単独でまたは2種以上を組合せて使用することができる。難燃助剤として働き、より効果的に難燃効果を向上させることが可能となる。さらに、例えば、三酸化アンチモン、五酸化アンチモン等の酸化アンチモン、酸化亜鉛、酸化鉄、酸化アルミ、酸化モリブデン、酸化チタン、酸化カルシウム、酸化マグネシウム等を難燃助剤として併用することも可能である。
 発泡剤は、溶融混練機内で溶融状態にされている原料である無機物質粉末配合熱可塑性樹脂組成物に混合し、または圧入し、固体から気体、液体から気体に相変化するもの、または気体そのものであり、主として発泡シートの発泡倍率(発泡密度)を制御するために使用される。原料となる無機物質粉末配合熱可塑性樹脂組成物に溶解した発泡剤は、常温で液体のものは樹脂温度によって気体に相変化して溶融樹脂に溶解し、常温で気体のものは相変化せずそのまま溶融樹脂に溶解する。溶融樹脂に分散溶解した発泡剤は、溶融樹脂を押出ダイからシート状に押出した際に、圧力が開放されるのでシート内部で膨張し、シート内に多数の微細な独立気泡を形成して発泡シートが得られる。発泡剤は、副次的に原料樹脂組成物の溶融粘度を下げる可塑剤として作用し、原料樹脂組成物を可塑化状態にするための温度を低くする。
 発泡剤としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素類;シクロブタン、シクロペンタン、シクロヘキサンなどの脂環式炭化水素類;クロロジフルオロメタン、ジフロオロメタン、トリフルオロメタン、トリクロロフルオロメタン、ジクロロメタン、ジクロロフルオロメタン、ジクロロジフルオロメタン、クロロメタン、クロロエタン、ジクロロトリフルオロエタン、ジクロロペンタフルオロエタン、テトラフルオロエタン、ジフルオロエタン、ペンタフルオロエタン、トリフルオロエタン、ジクロロテトラフルオロエタン、トリクロロトリフルオロエタン、テトラクロロジフルオロエタン、パーフルオロシクロブタンなどのハロゲン化炭化水素類;二酸化炭素、チッ素、空気などの無機ガス;水などが挙げられる。
 発泡剤としては、さらに、例えば、キャリアレジンに発泡剤の有効成分が含まれるものも好ましくを用いる事ができる。キャリアレジンとしては、結晶性オレフィン樹脂等が挙げられる。これらのうち、結晶性ポリプロピレン樹脂が好ましい。また、有効成分としては、炭酸水素塩等が挙げられる。これらのうち、炭酸水素塩が好ましい。結晶性ポリプロピレン樹脂をキャリアレジンとし、炭酸水素塩を熱分解型発泡剤として含む発泡剤コンセントレートであることが好ましい。
 成形工程において発泡剤に含まれる発泡剤の含有量は熱可塑性樹脂、重質炭酸カルシウム粒子の量等に応じて、適宜設定することができ、無機物質粉末配合熱可塑性樹脂組成物の全質量に対して0.04~5.00質量%の範囲とすることが好ましい。
<無機物質粉末配合熱可塑性樹脂組成物の製造方法>
 本発明の無機物質粉末配合熱可塑性樹脂組成物の製造方法は、通常の方法を使用することができ、成形方法(押出成形、射出成形、真空成形等)に応じて適宜設定してよく、例えば、成形機にホッパーから投入する前に熱可塑性樹脂と無機物質粉末である平均粒子径の異なる少なくとも2つの酸化カルシウム粒子群とを混練溶融してもよく、成形機と一体で成形と同時に熱可塑性樹脂と前記無機物質粉末とを混練溶融してもよい。溶融混練は、熱可塑性樹脂に無機物質粉末を均一に分散させる傍ら、高い剪断応力を作用させて混練することが好ましく、例えば二軸混練機で混練することが好ましい。
 本発明の無機物質粉末配合熱可塑性樹脂組成物の製造方法において、無機物質粉末配合熱可塑性樹脂組成物はペレットの形態であってもよく、ペレットの形態でなくてもよいが、ペレットの形態である場合、ペレットの形状は特に限定されず、例えば、円柱、球形、楕円球状等のペレットを成形してもよい。
 ペレットのサイズは、形状に応じて適宜設定すれば良いが、例えば、球形ペレットの場合、直径1~10mmであってよい。楕円球状のペレットの場合、縦横比0.1~1.0の楕円状とし、縦横1~10mmであってよい。円柱ペレットの場合は、直径1~10mmの範囲内、長さ1~10mmの範囲内であってよい。これらの形状は、後述する混練工程後のペレットに対して成形させてよい。ペレットの形状は、常法に従って成形させてよい。
≪成形品≫
 本発明に係る成形品は、上記した無機物質粉末配合熱可塑性樹脂組成物を用いて成形された成形品である。
 本発明に係る成形品の形状等においては特に限定されるものではなく、各種の形態のものであってもよいが、例えば、シート、食品用容器およびその他の容器体等の各種成形品等として成形され得る。
 本発明に係る成形品の肉厚としては特に限定されるものではなく、その成形品の形態に応じて、薄肉のものから厚肉のものまで種々のものであり得るが、例えば、肉厚40μm~5,000μm、より好ましくは肉厚50μm~1,000μmである成形品が示される。この範囲内の肉厚であれば、成形性、加工性の問題なく、偏肉を生じることなく均質で欠陥のない成形品を形成することが可能である。
 特に、成形品の形態が、シートである場合には、より好ましくは、肉厚50μm~1,000μm、さらに好ましくは肉厚50μm~400μmであることが望ましい。このような範囲内の肉厚を有するシートであれば、一般的な印刷・情報用、および包装用の用途の紙あるいは合成紙に代えて、好適に使用できるものである。
≪成形品の製造方法≫
 本発明の成形品の製造方法としては、所期の形状に成形できるものであれば特に限定されず、従来公知の押出成形、射出成形、真空成形、ブロー成形、カレンダー成形等のいずれの方法によっても成形加工可能である。さらにまた、本発明に係る熱可塑性樹脂組成物が発泡剤を含有し、発泡体である態様の成形品を得る場合においても、所期の形状に成形できるものであれば発泡体の成形方法として従来公知の、例えば、射出発泡,押出発泡,発泡ブロー等の液相発泡法、あるいは、例えば、ビーズ発泡,バッチ発泡,プレス発泡,常圧二次発泡等の固相発泡法のいずれを用いることも可能である。前記したように、結晶性ポリプロピレンをキャリアレジンとし、炭酸水素塩を熱分解型発泡剤として含む熱可塑性組成物の一態様においては、射出発泡法および押出発泡法が望ましく用いられ得る。
 なお、成形時における成形温度としては、その成形方法や使用する熱可塑性樹脂の種類等によってもある程度異なるため、一概には規定できるものではないが、例えば、180~260℃、より好ましくは190~230℃の温度であれば、本発明に係る熱可塑性樹脂組成物が、良好なドローダウン特性、延展性を持って、かつ組成物が局部的にも変性を生じることなく所定形状に成形できる。
<シートの製造方法>
 本発明に係る成形品がシートである態様において、その製造方法としても、シート状にする方法であれば特に限定されず、上記したような従来の公知の成形方法を用いることができるが、特に、シート表面の平滑性を考慮すると、押出機で押出成形してシートを作る方式を採用することが好ましい。
 成形は、混練する工程と、シート状に成形する工程とを連続的に行う直接方法を用いてもよく、例えば、Tダイ方式の二軸押出し成形機を使用する方法を用いてもよい。
 さらに、シート状に成形する場合においては、その成形時あるいはその成形後に一軸方向またはニ軸方向に、ないしは、多軸方向(チューブラー法による延伸等)に延伸することが可能である。ニ軸延伸の場合には、逐次ニ軸延伸でも同時ニ軸延伸であってもよい。
 成形後のシートに対し、延伸(例えば、縦および/または横延伸)を行うと、シートの密度が低下する。密度が低下することによりシートの白色度が良好なものとなる。
 以下本発明を、実施例に基づきより具体的に説明する。なお、これらの実施例は、本明細書に開示され、また添付の請求の範囲に記載された、本発明の概念および範囲の理解を、より容易なものとする上で、特定の態様および実施形態の例示の目的のためにのみ記載するのであって、本発明はこれらの実施例に何ら限定されるものではない。
(評価方法)
 以下の実施例および比較例においての各物性値はそれぞれ以下の方法により評価されたものである。
(無機物質粉末の平均粒径)
 島津製作所社製の比表面積測定装置SS-100型を用い、JIS M-8511に準じた空気透過法による比表面積の測定結果から計算した。
(無機物質粉末の比表面積)
 マイクロトラック・ベル社製、BELSORP-miniを用い、窒素ガス吸着法によって求めた。
(粒子の真円度)
 粉末の粒度分布を代表するように、100個の粒子のサンプリングを行い、光学顕微鏡を用いて得たこれらの各粒子の投影図を粒子の画像を市販の画像解析ソフトを用いて画像解析することによって真円度を求めた。測定原理としては、粒子の投影面積と粒子の投影周囲長とを測定し、各々(A)と(PM)とし、粒子の投影周囲長と同一周囲長を持つ円の半径を(r)とすると、
PM=2πr  (1)
であり、粒子の投影周囲長と同一周囲長を持つ円の面積を(B)とすると、
B=πr  (2)
である。(1)式を変形すると、r=PM/2π  (3)
となるから、(2)式に(3)式を代入すると、
B=π×(PM/2π)  (4)
となり、真円度=A/B=A×4π/(PM)
を求めるものである。
(引張強度、伸び)
 引張強度、伸びは、JIS K 7161-2:2014に準じて、23℃、50%RHの条件下で、オートグラフAG-100kNXplus(株式会社島津製作所)を用いて測定した。試験片としては、下記に示す成形品より切り出したダンベル形状とした。延伸速度は10mm/分であった。
(製品外観)
成形品表面の外観の平滑性を目視により調べ、次の評価基準によって評価した。
[評価基準]
○:表面に凹凸、傷等が全く観察されず良好な平滑性を有する。
△:表面に僅かに浅い凹凸が観察される。
×:表面に凹凸が数多く観察される。
(材料)
 以下の実施例および比較例において使用した成分はそれぞれ以下のものであった。
・熱可塑性樹脂(A)
A1: ポリプロピレン単独重合体((株)プライムポリマー製:プライムポリプロ(商品名)E111G、融点160℃)
A2:ポリプロピレンブロック共重合体((株)プライムポリマー製:プライムポリプロ(商品名)BJS-MU、融点160℃)
A3:高密度ポリエチレン単独重合体(京葉ポリエチレン(株)製:B5803、融点133℃)
・無機物質粉末(B)
B1:重質炭酸カルシウム粒子(表面処理なし) 平均粒径0.70μm、比表面積32,000cm/g(備北粉化工業株式会社製、ソフトン3200)
B2:重質炭酸カルシウム粒子(表面処理なし) 平均粒径0.85μm、比表面積26,000cm/g(備北粉化工業株式会社製、ソフトン2600)
B3:重質炭酸カルシウム粒子(表面処理なし) 平均粒径1.00μm、比表面積22,000cm/g(備北粉化工業株式会社製、ソフトン2200)
B4:重質炭酸カルシウム粒子(表面処理なし) 平均粒径1.50μm、比表面積15,000cm/g(備北粉化工業株式会社製、ソフトン1500)
 
B5:重質炭酸カルシウム粒子(表面処理なし) 平均粒径3.60μm、比表面積6,000cm/g(備北粉化工業株式会社製、BF100)
B6:重質炭酸カルシウム粒子(表面処理なし) 平均粒径5.00μm、比表面積4,000cm/g(備北粉化工業株式会社製、BF200)
B7:軽質炭酸カルシウム粒子 平均粒径1.5μm(白石工業(株)製、PC)
Ba:重質炭酸カルシウム粒子(表面処理なし) 平均粒径8.00μm、比表面積2,700cm/g(備北粉化工業株式会社製、BF300)
・帯電防止剤(D)
D:ラウリン酸ジエタノールアミド
・滑剤(E)
E:アルカンスルホン酸ナトリウム(アルキル基の炭素数(平均値)=12)
・酸化防止剤(F)
F1:ヒンダードフェノール系酸化防止剤(ペンタエリスリトール テトラキス[3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]
F2:トリス(2,4-ジ-t-ブチルフェニル)ホスファイト
実施例1
 熱可塑性樹脂(A)としてポリプロピレン単独重合体A1を、無機物質粉末(B)として上記B2とB6を、表1に示す配合割合において用いた。帯電防止剤、滑剤および酸化防止材としては、上記D、E、F1およびF2をそれぞれ適量にて用いこれらの合計量を6.0質量部とした。帯電防止剤、滑剤および酸化防止材の配合量は、以下に示す他の実施例および比較例において、実施例5を除き共通とした。なお、表1において各成分の数値は質量部の値である。各成分を、二軸スクリューを装備した押出成形機(東洋精機製作所製Tダイ押出成形装置(φ20mm、L/D=25)に投入し、200℃で混練し、混練した原料を220℃(ダイ温度)でTダイからシートに押出し、東洋精機製フィルム・シート引き取り機で巻き取った。なお、このようにして得られたシートを測定した肉厚は200μmであった。
 得られたシートについて、上記した手順によって、引張強度、伸びおよび表面外観の特性を評価した。得られた結果を表2に示す。
実施例2~10、比較例1~6
 上記実施例1と、熱可塑性樹脂組成物中における各成分の種類および量をそれぞれ、下記表1に示すように変更する以外は実施例1と同様にして、肉厚200μmのシートを作製し、その特性を評価した。得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から示されるように、本発明に係る実施例においては、無機物質粉末の高い配合量においても、樹脂成分中に無機物質粉末を偏在させることなく均質に添加して問題なく押出成形を安定して行うことができ、得られる成形品の外観に優れ、かつ機械的特性としても良好な成形品を得ることができた。
実施例20
 実施例1と同じ組成の無機物質粉末配合熱可塑性樹脂組成物を、ニ軸押出機により220℃の温度でTダイにてシート成形後、さらに220℃の温度で、深皿状の容器体への真空成形を行った。その結果、上記実施例1の場合と同様に、十分な機械的特性を有しかつ外観の良好な容器体が、加工時の不具合等を生じることなく製造できた。

Claims (9)

  1.  熱可塑性樹脂と無機物質粉末とを質量比50:50~10:90の割合で含有する無機物質粉末含有熱可塑性樹脂組成物において、前記無機物質粉末が炭酸カルシウム粒子であり、前記炭酸カルシウム粒子は、平均粒子径の異なる少なくとも2群の粒子群を含み、かつ各粒子群の平均粒子径がいずれも0.7μm以上6.0μm以下の範囲内にあることを特徴とする無機物質粉末含有熱可塑性樹脂組成物。
  2.  平均粒子径の異なる少なくとも2群の粒子群が、平均粒子径が小さい炭酸カルシウム粒子群Aと平均粒子径が大きい炭酸カルシウム粒子群Bとに分けた場合に、質量比でA:Bが、1:1~5:1となるものである請求項1に記載の無機物質粉末含有熱可塑性樹脂組成物。
  3.  平均粒子径が小さい炭酸カルシウム粒子群Aの平均粒子径をaとし、平均粒子径が大きい炭酸カルシウム粒子群Bの平均粒子径をbとした場合に、a/b比率が0.85以下となることを特徴とする請求項1または2に記載の無機物質粉末配合熱可塑性樹脂組成物。
  4.  前記した平均粒子径の異なる少なくとも2群の粒子群として、平均粒子径が0.7μm以上2.2μm未満の炭酸カルシウム粒子群と、平均粒子径2.2μm以上6.0μm未満の炭酸カルシウム粒子群とを質量比1:1~5:1で含有しているものである請求項1~3のいずれか1つに記載の無機物質粉末含有熱可塑性樹脂組成物。
  5.  前記無機物質粉末含有熱可塑性樹脂組成物中における前記熱可塑性樹脂と前記無機物質粉末の質量比が、40:60~10:90である請求項1~4のいずれか1つに記載の無機物質粉末含有熱可塑性樹脂組成物。
  6.  前記熱可塑性樹脂が、ポリプロピレン系樹脂および/またはポリエチレン系樹脂である請求項1~5のいずれか1つに記載の無機物質粉末含有熱可塑性樹脂組成物。
  7.  前記炭酸カルシウムが重質炭酸カルシウムである請求項1~6のいずれか1つに記載の無機物質粉末含有熱可塑性樹脂組成物。
  8.  前記炭酸カルシウムが表面処理されていない重質炭酸カルシウムである請求項7に記載の無機物質粉末含有熱可塑性樹脂組成物。
  9.  請求項1~8のいずれか1つに記載の無機物質粉末含有熱可塑性樹脂組成物からなる成形品。
PCT/JP2020/007084 2019-03-25 2020-02-21 無機物質粉末配合熱可塑性樹脂組成物および成形品 WO2020195429A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20777080.1A EP3950819B1 (en) 2019-03-25 2020-02-21 Thermoplastic resin composition and formed article
CN202080017331.XA CN113490713B (zh) 2019-03-25 2020-02-21 含无机物质粉末的热塑性树脂组合物及成形品
US17/441,967 US11549005B2 (en) 2019-03-25 2020-02-21 Inorganic substance powder-containing thermoplastic resin composition and formed article
KR1020217034352A KR102365289B1 (ko) 2019-03-25 2020-02-21 무기 물질 분말 배합 열가소성 수지 조성물 및 성형품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-056441 2019-03-25
JP2019056441A JP6661152B1 (ja) 2019-03-25 2019-03-25 無機物質粉末配合熱可塑性樹脂組成物および成形品

Publications (1)

Publication Number Publication Date
WO2020195429A1 true WO2020195429A1 (ja) 2020-10-01

Family

ID=69998036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007084 WO2020195429A1 (ja) 2019-03-25 2020-02-21 無機物質粉末配合熱可塑性樹脂組成物および成形品

Country Status (6)

Country Link
US (1) US11549005B2 (ja)
EP (1) EP3950819B1 (ja)
JP (1) JP6661152B1 (ja)
KR (1) KR102365289B1 (ja)
CN (1) CN113490713B (ja)
WO (1) WO2020195429A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6764210B1 (ja) * 2020-03-25 2020-09-30 株式会社Tbm 卵殻粉末含有熱可塑性樹脂組成物及び成形品
JP7113571B1 (ja) 2022-01-31 2022-08-05 株式会社Tbm フレキシブルフラットケーブル
JP7202744B1 (ja) 2022-01-31 2023-01-12 株式会社Tbm Rfタグ用の高周波誘電体の製造方法
JP7113579B1 (ja) * 2022-05-24 2022-08-05 株式会社Tbm 積層シート、及び食品用包装容器
JP7152091B1 (ja) 2022-05-26 2022-10-12 株式会社Tbm 積層シート、及び食品用包装容器
JP7152089B1 (ja) 2022-05-26 2022-10-12 株式会社Tbm 積層シート、及び食品用包装容器
JP7152092B1 (ja) 2022-05-26 2022-10-12 株式会社Tbm 積層シート、及び食品用包装容器
JP7152090B1 (ja) 2022-05-26 2022-10-12 株式会社Tbm 積層シート、及び食品用包装容器
JP7191429B1 (ja) 2022-06-10 2022-12-19 株式会社Tbm 誘電体材料の製造方法
CN115160694B (zh) * 2022-07-27 2024-02-02 长虹美菱股份有限公司 一种冰箱用接水盘材料及其制备方法
JP7248359B1 (ja) * 2022-12-28 2023-03-29 株式会社Tbm 積層シート、及び食品用包装容器
JP7310041B1 (ja) * 2023-05-18 2023-07-18 株式会社Tbm 積層シート、及び食品用包装容器
JP7494371B1 (ja) 2023-11-22 2024-06-03 株式会社Tbm 歯ブラシ
JP7481774B1 (ja) 2023-11-22 2024-05-13 株式会社Tbm シート、積層シート、又は飲食品用包装容器

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271708A (ja) 1986-05-21 1987-11-26 Mitsubishi Electric Corp フイラ−充填樹脂の製造方法
JPH01261435A (ja) 1988-04-13 1989-10-18 Denki Kagaku Kogyo Kk 樹脂用充填材
JPH02169795A (ja) 1988-12-16 1990-06-29 Oji Paper Co Ltd 紙用複合填料
JPH08199004A (ja) * 1995-01-20 1996-08-06 Fuji Electric Co Ltd ポリエステルプリミックス成形材料
JP2001139733A (ja) 1999-09-01 2001-05-22 Kitagawa Ind Co Ltd 熱伝導シート及びその製造方法
JP2002080631A (ja) 2000-09-08 2002-03-19 Okayama Prefecture 合成樹脂成形物用複合フィラー
JP2003142636A (ja) 2001-08-02 2003-05-16 Nec Kyushu Ltd 封止用樹脂、樹脂封止型半導体及びシステムインパッケージ
JP2007284468A (ja) * 2006-04-12 2007-11-01 Hitachi Chem Co Ltd 樹脂組成物及びそれを含む被膜形成材料
JP2012062377A (ja) * 2010-09-15 2012-03-29 Ricoh Co Ltd 感熱性粘着材料
US20120196950A1 (en) * 2010-01-08 2012-08-02 C-Stone Llc Biodegradable polymer composition with calcium carbonate and methods and products using same
JP2013010931A (ja) 2011-05-31 2013-01-17 Tbm Co Ltd 無機物質粉末高配合薄膜シートの製造方法
CN103724914A (zh) * 2012-10-10 2014-04-16 北京汽车玻璃钢有限公司 一种用于制造a级表面产品的片状模塑料及其制备方法
JP2015514031A (ja) * 2012-04-13 2015-05-18 ニューページ コーポレーション インクジェット印刷用記録媒体
JP2018171860A (ja) * 2017-03-31 2018-11-08 トッパン・フォームズ株式会社 インクジェット用記録シート

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0314855A (ja) 1989-06-13 1991-01-23 Sumitomo Chem Co Ltd 熱可塑性樹脂組成物
JP3299826B2 (ja) 1993-10-05 2002-07-08 株式会社ユポ・コーポレーション 印刷性の優れた白色樹脂フィルム
JP5371253B2 (ja) * 2008-01-31 2013-12-18 アキレス株式会社 液状添加剤を含有する熱可塑性樹脂組成物の製造方法
JP6317601B2 (ja) 2014-03-06 2018-04-25 株式会社カネカ 熱可塑性エラストマー組成物
KR101559705B1 (ko) * 2015-04-17 2015-10-13 오승근 분해성 수지 펠렛 및 이를 이용한 성형품
JP6248065B2 (ja) 2015-06-10 2017-12-13 白石工業株式会社 白色樹脂組成物
CN105219070A (zh) 2015-09-24 2016-01-06 金发科技股份有限公司 一种热塑性树脂组合物及其制备方法与应用
JP6526093B2 (ja) 2016-05-06 2019-06-05 キヤノン株式会社 熱可塑性樹脂組成物、成形品及び成形品の製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62271708A (ja) 1986-05-21 1987-11-26 Mitsubishi Electric Corp フイラ−充填樹脂の製造方法
JPH01261435A (ja) 1988-04-13 1989-10-18 Denki Kagaku Kogyo Kk 樹脂用充填材
JPH02169795A (ja) 1988-12-16 1990-06-29 Oji Paper Co Ltd 紙用複合填料
JPH08199004A (ja) * 1995-01-20 1996-08-06 Fuji Electric Co Ltd ポリエステルプリミックス成形材料
JP2001139733A (ja) 1999-09-01 2001-05-22 Kitagawa Ind Co Ltd 熱伝導シート及びその製造方法
JP2002080631A (ja) 2000-09-08 2002-03-19 Okayama Prefecture 合成樹脂成形物用複合フィラー
JP2003142636A (ja) 2001-08-02 2003-05-16 Nec Kyushu Ltd 封止用樹脂、樹脂封止型半導体及びシステムインパッケージ
JP2007284468A (ja) * 2006-04-12 2007-11-01 Hitachi Chem Co Ltd 樹脂組成物及びそれを含む被膜形成材料
US20120196950A1 (en) * 2010-01-08 2012-08-02 C-Stone Llc Biodegradable polymer composition with calcium carbonate and methods and products using same
JP2012062377A (ja) * 2010-09-15 2012-03-29 Ricoh Co Ltd 感熱性粘着材料
JP2013010931A (ja) 2011-05-31 2013-01-17 Tbm Co Ltd 無機物質粉末高配合薄膜シートの製造方法
JP2015514031A (ja) * 2012-04-13 2015-05-18 ニューページ コーポレーション インクジェット印刷用記録媒体
CN103724914A (zh) * 2012-10-10 2014-04-16 北京汽车玻璃钢有限公司 一种用于制造a级表面产品的片状模塑料及其制备方法
JP2018171860A (ja) * 2017-03-31 2018-11-08 トッパン・フォームズ株式会社 インクジェット用記録シート

Also Published As

Publication number Publication date
JP2020158560A (ja) 2020-10-01
KR20210136136A (ko) 2021-11-16
US20220089849A1 (en) 2022-03-24
KR102365289B1 (ko) 2022-02-23
EP3950819A1 (en) 2022-02-09
CN113490713B (zh) 2023-01-17
EP3950819A4 (en) 2022-05-18
JP6661152B1 (ja) 2020-03-11
EP3950819C0 (en) 2023-07-19
EP3950819B1 (en) 2023-07-19
CN113490713A (zh) 2021-10-08
US11549005B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
WO2020195429A1 (ja) 無機物質粉末配合熱可塑性樹脂組成物および成形品
JP6764210B1 (ja) 卵殻粉末含有熱可塑性樹脂組成物及び成形品
JP6647660B1 (ja) 無機物質粉末配合熱可塑性樹脂組成物、無機物質粉末配合熱可塑性樹脂組成物の成形体並びにその製造方法
JP6919954B1 (ja) 樹脂組成物及び成形品
WO2022196434A1 (ja) 無機物質粉末充填樹脂組成物及び成形品
JP6933408B1 (ja) 無機物質粉末充填樹脂組成物及び成形品
WO2022196436A1 (ja) 無機物質粉末充填樹脂組成物及び成形品
JP6962631B1 (ja) 樹脂組成物及び成形品
JP7079536B1 (ja) 無機物質粉末充填樹脂組成物及び成形品
JP2023128331A (ja) 積層シート及び食品包装容器
JP6704150B1 (ja) 通気性フィルム用樹脂組成物、通気性フィルム及びその製法
JP6762632B1 (ja) 無機物質粉末含有ポリオレフィン系樹脂成形体の製造方法
JP6758692B1 (ja) 無機物質粉末含有ポリオレフィン系樹脂成形体の製造方法
JP7282404B2 (ja) 高周波誘電体
JP6795217B1 (ja) 光拡散シート
JP7499398B1 (ja) 樹脂組成物およびこれを含む成形品
JP6892185B1 (ja) 無機物質粉末充填樹脂組成物及び成形品
JP2023074203A (ja) 無機物質粉末充填樹脂組成物及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20777080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217034352

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020777080

Country of ref document: EP

Effective date: 20211025