WO2020189217A1 - チップ抵抗器 - Google Patents

チップ抵抗器 Download PDF

Info

Publication number
WO2020189217A1
WO2020189217A1 PCT/JP2020/007960 JP2020007960W WO2020189217A1 WO 2020189217 A1 WO2020189217 A1 WO 2020189217A1 JP 2020007960 W JP2020007960 W JP 2020007960W WO 2020189217 A1 WO2020189217 A1 WO 2020189217A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
layer
electrodes
chip resistor
back surface
Prior art date
Application number
PCT/JP2020/007960
Other languages
English (en)
French (fr)
Inventor
高徳 篠浦
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2021507143A priority Critical patent/JPWO2020189217A1/ja
Priority to CN202080021826.XA priority patent/CN113597649B/zh
Priority to US17/430,204 priority patent/US11688532B2/en
Priority to DE112020001355.3T priority patent/DE112020001355T5/de
Publication of WO2020189217A1 publication Critical patent/WO2020189217A1/ja
Priority to US18/314,621 priority patent/US20230274861A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/006Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistor chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/02Housing; Enclosing; Embedding; Filling the housing or enclosure
    • H01C1/028Housing; Enclosing; Embedding; Filling the housing or enclosure the resistive element being embedded in insulation with outer enclosing sheath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/148Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals embracing or surrounding the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/23Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by opening or closing resistor geometric tracks of predetermined resistive values, e.g. snapistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • H01C17/281Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/06Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material including means to minimise changes in resistance with changes in temperature

Definitions

  • This disclosure relates to chip resistors.
  • Patent Document 1 discloses an example of a chip resistor.
  • the chip resistor includes an insulating substrate, a pair of top electrodes arranged at both ends of the insulating substrate, a pair of back electrodes, a resistor conductive to the pair of top electrodes, a pair of top electrodes, and a pair. It is provided with a pair of end face electrodes that conduct the back surface electrodes with each other.
  • the chip resistor is mounted on the wiring board via solder.
  • heat is generated from the resistor.
  • the thermal stress caused by the difference in thermal strain between the pair of backside electrodes and the solder acts on the solder.
  • the magnitude of the thermal stress is relatively large, if the thermal stress repeatedly acts on the solder, cracks may occur in the solder. If the solder cracks, the current path between the wiring board and the chip resistor may be obstructed. Therefore, in the chip resistor, a measure for suppressing the occurrence of cracks in the solder due to thermal stress is required.
  • the present disclosure provides a chip resistor capable of suppressing the occurrence of cracks in the solder interposed between the wiring board and the pair of back electrode when the chip resistor is used. Is the subject.
  • the chip resistors provided by the present disclosure are a pair of top and back surfaces that face opposite to each other in the thickness direction, and a pair that are separated from each other in one direction orthogonal to the thickness direction and are connected to the top surface and the back surface.
  • a substrate having side surfaces of the above, a pair of upper surface electrodes separated from each other in the one direction and in contact with the upper surface, and a resistor arranged on the upper surface and connected to the pair of upper surface electrodes separated from each other in the one direction.
  • Each of the pair of back surface electrodes is provided with a pair of back surface electrodes in contact with the back surface, a pair of front surface electrodes in contact with the pair of side surfaces, and a pair of side electrodes connected to the pair of back surface electrodes.
  • FIG. 21 is a partially enlarged cross-sectional view of FIG. It is a top view explaining the manufacturing process of the chip resistor shown in FIG. It is a top view explaining the manufacturing process of the chip resistor shown in FIG. It is sectional drawing of the chip resistor which concerns on 4th Embodiment of this disclosure. It is a partially enlarged sectional view of FIG. It is a top view explaining the manufacturing process of the chip resistor shown in FIG. It is a top view explaining the manufacturing process of the chip resistor shown in FIG.
  • the chip resistor A10 according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 5.
  • the chip resistor A10 includes a substrate 10, a resistor 20, a pair of electrodes 30, and a protective layer 40.
  • FIG. 2 transmits the pair of external electrodes 34 (details will be described later) forming a part of the pair of electrodes 30 and the upper layer 42 (details will be described later) of the protective layer 40.
  • FIG. 4 is transparent to the pair of external electrodes 34 for convenience of understanding.
  • the thickness direction of the substrate 10 is referred to as "thickness direction z" for convenience.
  • One direction orthogonal to the thickness direction z is called “first direction x”.
  • the direction orthogonal to both the thickness direction z and the first direction x is referred to as a "second direction y”.
  • the chip resistor A10 is surface-mounted on the wiring board of various electronic devices.
  • the chip resistor A10 functions to limit the current flowing through the wiring board.
  • the chip resistor A10 is a thick film (metal glaze film) type resistor. As shown in FIG. 1, the chip resistor A10 has a rectangular shape when viewed along the thickness direction z. In this case, the first direction x corresponds to the longitudinal direction of the chip resistor A10. In addition, the chip resistor A10 may have a rectangular shape with the second direction y as the longitudinal direction when viewed along the thickness direction z.
  • a resistor 20, a pair of electrodes 30, and a protective layer 40 are arranged on the substrate 10.
  • the substrate 10 has an insulating property. When viewed along the thickness direction, the substrate 10 has a rectangular shape having a pair of peripheral edges along the first direction x as long sides.
  • the chip resistor A10 When the chip resistor A10 is used, heat is generated from the resistor 20, so that the substrate 10 is required to have excellent heat dissipation. Therefore, it is desirable that the material of the substrate 10 has a relatively high thermal conductivity.
  • the substrate 10 is made of ceramics containing alumina (Al 2 O 3 ).
  • the substrate 10 has an upper surface 11, a back surface 12, and a pair of side surfaces 13.
  • the upper surface 11 and the back surface 12 face opposite to each other in the thickness direction z.
  • the top surface 11 faces upward in FIG.
  • the back surface 12 faces downward in FIG.
  • the back surface 12 faces the wiring board.
  • the pair of side surfaces 13 are connected to the upper surface 11 and the back surface 12. As shown in FIGS. 2 and 4, the pair of side surfaces 13 are separated from each other in the first direction x.
  • the resistor 20 is arranged on the upper surface 11 of the substrate 10 as shown in FIGS. 1, 2 and 5. When viewed along the thickness direction z, the resistor 20 has a band shape extending in the first direction x.
  • the resistor 20 is made of a material containing metal particles and glass.
  • the metal particles are, for example, ruthenium oxide (RuO 2 ) or a silver (Ag) -palladium (Pd) alloy.
  • the resistor 20 is formed with a trimming groove 21 penetrating in the thickness direction z.
  • the trimming groove 21 is integrally formed with respect to both the resistor 20 and the lower layer 41 (details will be described later) of the protective layer 40 covering the resistor 20.
  • the trimming groove 21 is L-shaped when viewed from the thickness direction z.
  • One end of the resistor 20 in the second direction y is opened by the trimming groove 21.
  • the shape of the trimming groove 21 when viewed along the thickness direction z is not limited to the example shown by the chip resistor A10.
  • each of the pair of electrodes 30 includes a top electrode 31, a back surface electrode 32, a side electrode 33, and an external electrode 34.
  • the pair of top surface electrodes 31 are separated from each other in the first direction x and are in contact with the top surface 11 of the substrate 10.
  • the pair of top electrodes 31 are connected to both ends of the resistor 20 in the first direction x.
  • the pair of top electrodes 31 are conducting to the resistor 20.
  • Each of the pair of top electrodes 31 has a band shape extending in the second direction y.
  • the pair of top electrodes 31 are made of a material containing silver particles and glass.
  • each of the pair of back surface electrodes 32 are separated from each other in the first direction x and are in contact with the back surface 12 of the substrate 10.
  • Each of the pair of back surface electrodes 32 has a band shape extending in the second direction y.
  • each of the pair of backside electrodes 32 has a first layer 321 and a second layer 322.
  • the first layer 321 is in contact with the upper surface 11 of the substrate 10.
  • the first layer 321 is made of a material having insulating properties and containing a synthetic resin.
  • the synthetic resin is, for example, an epoxy resin.
  • the first layer 321 reaches the boundary between any one of the pair of side surfaces 13 of the substrate 10 and the back surface 12.
  • the second layer 322 covers at least a part of the first layer 321.
  • the second layer 322 covers the entire first layer 321.
  • the second layer 322 is made of a material containing metal particles and a synthetic resin. As a result, the second layer 322 has conductivity.
  • the metal particles contain silver.
  • the synthetic resin is, for example, an epoxy resin.
  • the pair of side electrode 33s are in contact with the pair of side surfaces 13 of the substrate 10.
  • the pair of side electrodes 33 are connected to the pair of top electrodes 31 and the pair of back electrodes 32.
  • the pair of back surface electrodes 32 are conductive to the resistor 20 via the pair of side electrode 33 and the pair of top surface electrodes 31.
  • the pair of side electrodes 33 are made of a metal thin film.
  • the metal thin film is made of an alloy containing nickel (Ni) and chromium (Cr).
  • each of the pair of side electrode 33 has an upper surface portion 331, a back surface portion 332, and a side surface portion 333.
  • the upper surface portion 331 overlaps the upper surface 11 of the substrate 10 when viewed along the thickness direction z, and is in contact with any of the pair of upper surface electrodes 31.
  • the back surface portion 332 overlaps the back surface 12 of the substrate 10 when viewed along the thickness direction z, and is in contact with any of the second layer 322 of the pair of back surface electrodes 32. ..
  • the side surface portion 333 is in contact with either the pair of side surface 13s of the substrate 10 and the pair of top surface electrodes 31.
  • the side surface portion 333 is connected to the upper surface portion 331 and the back surface portion 332.
  • the thicknesses of the upper surface portion 331, the back surface portion 332, and the side surface portion 333 are all uniform.
  • the pair of external electrodes 34 covers the pair of top electrodes 31, the pair of back electrodes 32, and the pair of side electrodes 33.
  • the pair of external electrodes 34 are electrically connected to any of the pair of upper surface electrodes 31, the pair of back surface electrodes 32, and the pair of side electrode 33.
  • the pair of electrodes 30 are conducting to the resistor 20.
  • the pair of external electrodes 34 are made of a plating layer.
  • each of the pair of external electrodes 34 has an intermediate portion 341 and an external 342.
  • the intermediate portion 341 includes one of the pair of upper surface electrodes 31, one of the pair of back surface electrodes 32 that overlaps the upper surface electrode 31 when viewed along the thickness direction, and a pair that connects to the upper surface electrode 31 and the back surface electrode 32. It covers one of the side electrodes.
  • the intermediate portion 341 contains nickel.
  • the outer 342 covers the intermediate portion 341.
  • the outer 342 contains tin (Sn).
  • the protective layer 40 covers the resistor 20 as shown in FIGS. 1 and 5.
  • the protective layer 40 has a lower layer 41 and an upper layer 42.
  • the lower layer 41 covers a part of the resistor 20.
  • the resistor 20 protrudes from both ends of the lower layer 41 in the first direction x toward the first direction x.
  • the trimming groove 21 described above is formed in the lower layer 41.
  • the lower layer 41 is made of a material containing glass.
  • the upper layer 42 covers a part of the resistor 20 and the lower layer 41.
  • the upper layer 42 further covers a part of the upper surface 11 of the substrate 10 and a part of the pair of upper surface electrodes 31.
  • the upper layer 42 is made of, for example, a material containing a black epoxy resin.
  • the configuration of the pair of side electrodes 33 is different from the configuration of the chip resistor A10 described above.
  • each of the upper surface portions 331 of the pair of side electrode 33 bulges from the surface of any one of the pair of upper surface electrodes 31 in the thickness direction z.
  • Each of the back surface portions 332 of the pair of side electrode 33 bulges from the surface of any of the second layers 322 of the pair of back surface electrodes 32 in the thickness direction z.
  • Each of the side surface portions 333 of the pair of side electrode 33 bulges from any of the pair of side surfaces 13 of the substrate 10 in the first direction x.
  • the pair of side electrodes 33 are made of a material containing silver particles and a synthetic resin.
  • the synthetic resin is, for example, an epoxy resin.
  • a plurality of upper surface electrodes 82 in contact with the upper surface 811 are formed on a sheet-shaped base material 81 having an upper surface 811 and a back surface 812 facing opposite sides in the thickness direction z.
  • the upper surface 811 is provided with a plurality of primary grooves 81A extending in the second direction y and a plurality of secondary grooves 81B extending in the first direction x.
  • the plurality of primary grooves 81A and the plurality of secondary grooves 81B are both recessed from the upper surface 811 in the thickness direction z.
  • the plurality of primary grooves 81A and the plurality of secondary grooves 81B are also provided on the back surface 812.
  • the formation positions of the plurality of primary grooves 81A and the plurality of secondary grooves 81B on the back surface 812 correspond to the formation positions of the plurality of primary grooves 81A and the plurality of secondary grooves 81B on the upper surface 811.
  • each of the plurality of primary grooves 81A and the plurality of regions 80 partitioned by the plurality of secondary grooves 81B corresponds to the substrate 10 of the chip resistor A10.
  • the plurality of upper surface electrodes 82 are individually formed in a plurality of regions 80 located on the upper surface 811 of the base material 81 in a state of being separated from each other in the first direction x.
  • Each of the plurality of upper surface electrodes 82 is formed so as to straddle each of the plurality of primary grooves 81A.
  • a pair of top electrode 82 straddling the pair of primary grooves 81A that partition each of the plurality of regions 80 is formed.
  • the pair of top electrodes 82 correspond to the pair of top electrodes 31 of the chip resistor A10.
  • the plurality of top electrode 82s are formed by printing a paste containing silver particles and glass frit on the top surface 811 and then firing the paste.
  • a plurality of back surface electrodes 83 in contact with the back surface 812 of the base material 81 are formed.
  • the plurality of back surface electrodes 83 are individually formed in a plurality of regions 80 located on the back surface 812 in a state of being separated from each other in the first direction x.
  • Each of the plurality of back surface electrodes 83 is composed of the first layer 831 and the second layer 832.
  • each of the plurality of first layers 831 is formed so as to straddle each of the plurality of primary grooves 81A.
  • the plurality of first layers 831 are formed by printing a paste containing an epoxy resin as a main component on the back surface 812 and then heat-curing the paste.
  • a plurality of second layers 832 that individually cover the plurality of first layers 831 are formed.
  • Each of the plurality of second layers 832 is formed so as to cover the entire of each of the plurality of first layers 831.
  • a pair of first layer 831 and a pair of second layer 832 straddling the pair of primary grooves 81A that partition each of the plurality of regions 80 are formed.
  • the pair of first layer 831 and the pair of second layer 832 correspond to a pair of back electrode 32 of the chip resistor A10.
  • the plurality of second layers 832 are formed by individually printing a paste containing an epoxy resin as a main component and containing silver particles on the plurality of first layers 831 and then heat-curing the paste. As a result, a plurality of back surface electrodes 83 are formed.
  • a plurality of resistors 84 in contact with the upper surface 811 of the base material 81 are formed.
  • the plurality of resistors 84 are individually formed in the plurality of regions 80 located on the upper surface 811.
  • the resistor 84 in each of the plurality of regions 80 corresponds to the resistor 20 of the chip resistor A10.
  • both ends of the resistor 84 in the first direction x are in contact with the pair of top electrodes 82.
  • the plurality of resistors 84 are formed by printing a paste containing metal particles and glass frit on the back surface 812 and then firing the paste.
  • the metal particles are ruthenium oxide or a silver-palladium alloy.
  • a plurality of lower layers 851 that individually cover the plurality of resistors 84 are formed.
  • Each of the plurality of lower layers 851 corresponds to the lower layer 41 of the protective layer 40 of the chip resistor A10.
  • the plurality of lower layers 851 are formed by individually printing the glass paste on the plurality of resistors 84 and then firing the glass paste.
  • a plurality of trimming grooves 841 penetrating in the thickness direction z are integrally formed with respect to both the plurality of resistors 84 and the plurality of lower layers 851.
  • Each of the plurality of trimming grooves 841 corresponds to the trimming groove 21 in the chip resistor A10.
  • the plurality of trimming grooves 841 are formed by a laser trimming device.
  • Each of the plurality of trimming grooves 841 is formed by the following procedure. First, a probe for measuring the resistance value is brought into contact with both ends of the resistor 84 to be formed of the trimming groove 841 in the first direction x. Next, a groove that penetrates both the resistor 84 and the lower layer 851 in the thickness direction z is formed along the second direction y from one end of the resistor 84 in the second direction y. After forming a groove until the resistance value of the resistor 84 becomes close to a predetermined value (the resistance value of the chip resistor A10), a groove is formed from the end of the groove this time along the first direction x. When the resistance value of the resistor 84 reaches a predetermined value, the formation of the groove is completed. From the above, a plurality of trimming grooves 841 are formed.
  • a plurality of upper layers 852 covering a plurality of resistors 84, a plurality of lower layers 851, and a part of each of the plurality of upper surface electrodes 82 are formed.
  • the plurality of upper layers 852 are formed so as to be separated from each other in the first direction x and to form a band extending in the second direction y.
  • the plurality of upper layers 852 straddle a plurality of secondary grooves 81B provided on the upper surface 811 of the base material 81.
  • a part of the upper layer 852 in the plurality of regions 80 located on the upper surface 811 corresponds to the upper layer 42 of the protective layer 40 of the chip resistor A10.
  • the plurality of upper layers 852 are formed by printing a paste containing an epoxy resin as a main component that integrally covers the plurality of resistors 84 and the plurality of lower layers 851, and then heat-curing the paste.
  • the base material 81 is divided along the plurality of primary grooves 81A. As a result, a plurality of strip-shaped base materials 81 extending in the second direction y can be obtained.
  • a pair of side surfaces 813 appear at both ends of the plurality of base materials 81 in the first direction x.
  • the pair of side surfaces 813 face the first direction x.
  • a pair of side electrode 86s in contact with the pair of side surfaces 813 of the base material 81 are formed.
  • the pair of side electrode 86s are formed so as to be in contact with both the pair of top electrodes 82 and the second layer 832 of the pair of back electrodes 83.
  • the pair of side electrode 86s are formed by forming a nickel-chromium alloy on a part of each of the pair of side surfaces 813, the pair of top electrodes 82, and the pair of back electrodes 83 by a sputtering method.
  • the base material 81 is divided along the secondary groove 81B. As a result, the base material 81 which is a plurality of individual pieces can be obtained.
  • the individual substrate 81 corresponds to the substrate 10 of the chip resistor A10.
  • a pair of upper surface electrodes 82, a pair of back surface electrodes 83, a resistor 84, a lower layer 851, an upper layer 852, and a pair of side electrode 86s are arranged on the individual base material 81.
  • a pair of top electrodes 82, a pair of back electrodes 83, and a pair of external electrodes 87 that individually cover the pair of side electrodes 86 arranged on the individual base material 81 are provided.
  • the pair of external electrodes 87 correspond to the pair of external electrodes 34 of the chip resistor A10.
  • Each of the pair of external electrodes 87 is composed of an intermediate portion 871 and an external 872.
  • the intermediate portion 871 corresponds to each intermediate portion 341 of the pair of external electrodes 34 of the chip resistor A10.
  • the outer 872 corresponds to the outer 342 of each of the pair of external electrodes 34 of the chip resistor A10.
  • the intermediate portion 871 and the outer 872 are each formed by electrolytic barrel plating.
  • the intermediate portion 871 is formed by depositing nickel on each of the pair of top electrode 82, the pair of back electrode 83, and the pair of side electrodes 86 exposed from the base material 81.
  • the outer 872 is formed by depositing tin on the intermediate portion 871.
  • each of the pair of backside electrodes 32 has a first layer 321 and a second layer 322.
  • the first layer 321 is in contact with the back surface 12 of the substrate 10.
  • the second layer 322 covers at least a part of the first layer 321.
  • the second layer 322 is made of a material containing metal particles and a synthetic resin.
  • the second layer 322 is located closer to the solder than the first layer 321 in each of the pair of back electrode 32s.
  • the Young's modulus of the second layer 322 is relatively smaller than the Young's modulus of the pair of backside electrodes 32 made of a material containing glass and metal particles.
  • the first layer 321 of the pair of backside electrodes 32 is made of a material having insulating properties and containing a synthetic resin.
  • Each of the second layers 322 of the pair of backside electrodes 32 covers the entire first layer 321. In this way, by forming each of the pair of back surface electrodes 32 into a two-layer structure of the first layer 321 and the second layer 322 both containing synthetic resin, the effect of reducing the thermal stress generated in the solder is ensured. It is possible to increase the adhesive force of the pair of back surface electrodes 32 to the back surface 12 of the substrate 10 and avoid a decrease in the tensile strength of the pair of back surface electrodes 32.
  • the first layer 321 has an insulating property, but the second layer 322 has a conductive property.
  • the second layer 322 covers the entire first layer 321.
  • the pair of side electrodes 33 are made of a metal thin film.
  • the thickness of each of the pair of side electrodes 33 can be made thinner than the thickness of each of the pair of side electrodes 33 made of a material containing silver particles and synthetic resin, such as the chip resistor A11.
  • the chip resistor A10 further includes a pair of upper surface electrodes 31, a pair of back surface electrodes 32, and a pair of external electrodes 34 that cover the pair of side electrodes 33.
  • the pair of external electrodes 34 are made of a plating layer.
  • the pair of external electrodes 34 has an intermediate portion 341 containing nickel and an external 342 covering the intermediate portion 341 and containing tin.
  • the intermediate portion 341 attaches a pair of upper surface electrodes 31, a pair of back surface electrodes 32, and a pair of side electrodes 33 in order to alleviate thermal shock caused by solder or the like. It can be protected from the thermal shock.
  • FIGS. 19 and 20 The chip resistor A20 according to the second embodiment of the present disclosure will be described with reference to FIGS. 19 and 20.
  • the same or similar elements as the chip resistor A10 described above are designated by the same reference numerals, and duplicate description will be omitted.
  • the cross-sectional position in FIG. 19 is the same as the cross-sectional position in FIG.
  • the configuration of the pair of back surface electrodes 32 is different from the configuration of the chip resistor A10 described above.
  • the first layer 321 is separated from the boundary between any of the pair of side surfaces 13 of the substrate 10 and the back surface 12 of the substrate 10 in the first direction x. Therefore, as shown in FIG. 20, the back surface 12 has a region 121 located between the boundary between any of the pair of side surfaces 13 and the back surface 12 and the first layer 321.
  • Each of the second layers 322 of the pair of back surface electrodes 32 is in contact with the region 121 of the back surface 12 of the substrate 10.
  • each of the pair of backside electrodes 32 has a first layer 321 and a second layer 322.
  • the first layer 321 is in contact with the back surface 12 of the substrate 10.
  • the second layer 322 covers at least a part of the first layer 321.
  • the second layer 322 is made of a material containing metal particles and a synthetic resin. Therefore, the chip resistor A20 also makes it possible to suppress the occurrence of cracks in the solder interposed between the wiring board and the pair of back surface electrodes 32 when the chip resistor A20 is used.
  • each of the first layer 321 of the pair of backside electrodes 32 is separated from the boundary between any of the pair of side surfaces 13 of the substrate 10 and the back surface 12 of the substrate 10 in the first direction x. There is.
  • Each of the second layers 322 of the pair of back surface electrodes 32 is in contact with the boundary between any of the pair of side surfaces 13 and the back surface 12 and the region 121 of the back surface 12 located between the first layer 321. It is known that the thermal stress generated in the solder when the chip resistor A20 is used is particularly concentrated near the boundary between any one of the pair of side surfaces 13 of the substrate 10 and the back surface 12. As a result, the thickness of the first layer 321 is made larger while not affecting the dividing step of the base material 81 shown in FIGS. 14 and 15 and ensuring the effect of reducing the thermal stress generated in the solder. be able to.
  • FIGS. 21 and 22 The chip resistor A30 according to the third embodiment of the present disclosure will be described with reference to FIGS. 21 and 22.
  • the same or similar elements as the above-mentioned chip resistor A10 are designated by the same reference numerals, and duplicate description will be omitted.
  • the cross-sectional position in FIG. 21 is the same as the cross-sectional position in FIG.
  • the configuration of the pair of back surface electrodes 32 is different from the configuration of the chip resistor A10 described above.
  • the first layer 321 of the pair of back surface electrodes 32 has conductivity.
  • the first layer 321 is made of a material containing silver particles and glass. As shown in FIGS. 21 and 22, the first layer 321 is separated from the boundary between any of the pair of side surfaces 13 of the substrate 10 and the back surface 12 of the substrate 10 in the first direction x. Therefore, as shown in FIG. 22, the back surface 12 has a region 121 located between the boundary between any one of the pair of side surfaces 13 and the back surface 12 and the first layer 321.
  • each of the second layer 322 of the pair of back surface electrodes 32 is in contact with the region 121 of the back surface 12 of the substrate 10.
  • the second layer 322 covers a part of the first layer 321. Further, in the chip resistor A30, the second layer 322 bulges from the back surface 12 in the thickness direction z.
  • the step of forming the plurality of back electrode 83 is different from the example of the manufacturing method of the chip resistor A10 described above. Therefore, in the description of an example of the method for manufacturing the chip resistor A30, only the step of forming the plurality of back electrode 83 is described.
  • each of the plurality of first layers 831 is formed so as to be separated from the plurality of primary grooves 81A of the base material 81 in the first direction x.
  • a pair of first layers 321 separated from each other in the first direction x are formed in each of the plurality of regions 80 located on the back surface 812 of the base material 81.
  • the plurality of first layers 831 are formed by printing a paste containing silver particles and glass frit on the back surface 812 and then firing the paste.
  • a plurality of second layers 832 in contact with the plurality of first layers 831 are formed.
  • Each of the plurality of second layers 832 is formed so as to cover a part of each of two adjacent first layers 831 with any one of the plurality of primary grooves 81A interposed therebetween and fill the gap 812A.
  • the portion overlapping the gap 812A when viewed along the thickness direction z is recessed toward the back surface 812.
  • Each of the plurality of second layers 832 is made by printing a paste containing an epoxy resin as a main component and containing silver particles on the gap 812A and the two first layers 831 located next to the gap 812A, and then the paste. Is formed by thermosetting. As a result, a plurality of back surface electrodes 83 are formed.
  • each of the pair of backside electrodes 32 has a first layer 321 and a second layer 322.
  • the first layer 321 is in contact with the back surface 12 of the substrate 10.
  • the second layer 322 covers at least a part of the first layer 321.
  • the second layer 322 is made of a material containing metal particles and a synthetic resin. Therefore, the chip resistor A30 also makes it possible to suppress the occurrence of cracks in the solder interposed between the wiring board and the pair of back surface electrodes 32 when the chip resistor A30 is used.
  • the first layer 321 of the pair of back electrode 32s is made of a material having conductivity and containing glass.
  • the first layer 321 is separated from the boundary between any one of the pair of side surfaces 13 of the substrate 10 and the back surface 12 of the substrate 10 in the first direction x.
  • Each of the second layers 322 of the pair of back surface electrodes 32 is in contact with the boundary between any of the pair of side surfaces 13 and the back surface 12 and the region 121 of the back surface 12 located between the first layer 321.
  • the adhesive force between the first layer 321 and the second layer 322 is relatively small. Therefore, by configuring the first layer 321 and the second layer 322 to be in contact with the back surface 12 of the substrate 10, it is possible to prevent the pair of back surface electrodes 32 from peeling off from the substrate 10.
  • Each of the second layers 322 of the pair of back surface electrodes 32 covers a part of the first layer 321 and bulges from the back surface 12 of the substrate 10 in the thickness direction z.
  • FIGS. 25 and 26 The chip resistor A40 according to the fourth embodiment of the present disclosure will be described with reference to FIGS. 25 and 26.
  • the same or similar elements as the chip resistor A10 described above are designated by the same reference numerals, and duplicate description will be omitted.
  • the cross-sectional position in FIG. 25 is the same as the cross-sectional position in FIG.
  • the configuration of the pair of back surface electrodes 32 is different from the configuration of the chip resistor A10 described above.
  • the first layer 321 of the pair of back surface electrodes 32 has conductivity.
  • the first layer 321 is made of a material containing silver particles and glass. As shown in FIGS. 25 and 26, the first layer 321 is separated from the boundary between any of the pair of side surfaces 13 of the substrate 10 and the back surface 12 of the substrate 10 in the first direction x. Therefore, as shown in FIG. 26, the back surface 12 has a region 121 located between the boundary between any one of the pair of side surfaces 13 and the back surface 12 and the first layer 321.
  • each of the second layer 322 of the pair of back surface electrodes 32 is in contact with the region 121 of the back surface 12 of the substrate 10.
  • the second layer 322 covers the entire first layer 321.
  • the step of forming the plurality of back electrode 83 is different from the example of the manufacturing method of the chip resistor A10 described above. Therefore, here, only the step of forming the plurality of back surface electrodes 83 will be described.
  • each of the plurality of first layers 831 is formed so as to be separated from the plurality of primary grooves 81A of the base material 81 in the first direction x.
  • a pair of first layers 321 separated from each other in the first direction x are formed in each of the plurality of regions 80 located on the back surface 812 of the base material 81.
  • the plurality of first layers 831 are formed by printing a paste containing silver particles and glass frit on the back surface 812 and then firing the paste.
  • a plurality of second layers 832 in contact with the plurality of first layers 831 are formed.
  • Each of the plurality of second layers 832 is formed so as to cover all of the two adjacent first layers 831 with the one of the plurality of primary grooves 81A interposed therebetween and fill the gap 812A.
  • Each of the plurality of second layers 832 is made by printing a paste containing an epoxy resin as a main component and containing silver particles on the gap 812A and the two first layers 831 located next to the gap 812A, and then the paste. Is formed by thermosetting. As a result, a plurality of back surface electrodes 83 are formed.
  • each of the pair of backside electrodes 32 has a first layer 321 and a second layer 322.
  • the first layer 321 is in contact with the back surface 12 of the substrate 10.
  • the second layer 322 covers at least a part of the first layer 321.
  • the second layer 322 is made of a material containing metal particles and a synthetic resin. Therefore, the chip resistor A40 also makes it possible to suppress the occurrence of cracks in the solder interposed between the wiring board and the pair of back surface electrodes 32 when the chip resistor A40 is used.
  • the present disclosure is not limited to the above-described embodiment.
  • the specific configuration of each part of the present disclosure can be freely redesigned.
  • Appendix 1 A substrate having an upper surface and a back surface facing opposite sides in the thickness direction, and a substrate having a pair of side surfaces separated from each other in one direction orthogonal to the thickness direction and connected to the upper surface and the back surface.
  • a pair of top surface electrodes that are separated from each other in one direction and are in contact with the top surface.
  • a resistor arranged on the upper surface and connected to the pair of upper surface electrodes,
  • a pair of back electrode electrodes that are separated from each other in one direction and are in contact with the back surface.
  • a pair of side electrodes that are in contact with the pair of side surfaces and are connected to the pair of top electrodes and the pair of back electrodes are provided.
  • Each of the pair of back surface electrodes has a first layer in contact with the back surface and a second layer covering at least a part of the first layer.
  • the second layer is a chip resistor made of a material containing metal particles and a synthetic resin.
  • the first layer is made of a material having insulating properties and containing a synthetic resin.
  • Appendix 3 The chip resistor according to Appendix 2, wherein the first layer reaches the boundary between any one of the pair of side surfaces and the back surface.
  • Appendix 4 The first layer is separated from the boundary between any one of the pair of side surfaces and the back surface in the one direction.
  • the chip resistor according to Appendix 2 wherein the second layer is in contact with a boundary between one of the pair of side surfaces and the back surface and a region of the back surface located between the first layer.
  • the first layer is made of a material that is conductive and contains glass.
  • Appendix 6 The chip resistor according to Appendix 5, wherein the first layer is made of a material containing silver particles.
  • Appendix 7 The chip resistor according to Appendix 5 or 6, wherein the second layer is in contact with a boundary between one of the pair of side surfaces and the back surface and a region of the back surface located between the first layer.
  • Appendix 8 The chip resistor according to Appendix 7, wherein the second layer covers a part of the first layer and bulges from the back surface in the thickness direction.
  • Appendix 9 The chip resistor according to Appendix 7, wherein the second layer covers the entire first layer.
  • Appendix 10 The chip resistor according to any one of Appendix 1 to 9, wherein the metal particles contain silver.
  • Appendix 11 The chip resistor according to any one of Appendix 1 to 10, wherein the pair of side electrodes are made of a metal thin film.
  • Appendix 12 The chip resistor according to Appendix 11, wherein the metal thin film is made of an alloy containing nickel and chromium.
  • Appendix 13 The chip resistor according to any one of Supplementary note 1 to 10, wherein the pair of side electrodes are made of a material containing silver particles and a synthetic resin.
  • Appendix 14 Further comprising a pair of top electrodes, a pair of back electrodes, and a pair of external electrodes covering the pair of side electrodes.
  • Each of the pair of external electrodes has an intermediate portion and an outer surface covering the intermediate portion.
  • the intermediate portion includes one of the pair of upper surface electrodes, one of the pair of back surface electrodes that overlaps the upper surface electrode when viewed along the thickness direction, and the pair of side surfaces connected to the upper surface electrode and the back surface electrode. Cover with one of the electrodes,
  • the chip resistor according to Appendix 14, wherein the intermediate portion contains nickel.
  • Appendix 16 The chip resistor according to Appendix 15, wherein the outside contains tin.
  • Appendix 17 The chip resistor according to any one of Supplementary note 1 to 16, wherein the substrate is made of ceramics containing alumina.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Non-Adjustable Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

チップ抵抗器は、基板と、一対の上面電極と、抵抗体と、一対の裏面電極と、一対の側面電極と、を備える。基板は、上面と、裏面と、一対の側面と、を有する。前記上面および前記裏面は、前記基板の厚さ方向において互いに反対側を向く。前記一対の側面は、前記厚さ方向に対して直交する一方向において互いに離間し、かつ前記上面および前記裏面につながっている。前記一対の上面電極は、前記一方向において互いに離間し、かつ前記上面に接している。前記抵抗体は、前記上面に配置され、かつ前記一対の上面電極につながっている。前記一対の裏面電極は、前記一方向において互いに離間し、かつ前記裏面に接している。前記一対の側面電極は、前記一対の側面に接し、かつ前記一対の上面電極、および前記一対の裏面電極につながっている。前記一対の裏面電極の各々は、第1層および第2層を有する。前記第1層は、前記裏面に接している。前記第2層は、前記第1層の少なくとも一部を覆い、かつ金属粒子および合成樹脂を含む材料からなる。

Description

チップ抵抗器
 本開示は、チップ抵抗器に関する。
 従来、様々な電子機器の配線基板に表面実装されるチップ抵抗器が広く知られている。特許文献1には、チップ抵抗器の一例が開示されている。当該チップ抵抗器は、絶縁基板と、絶縁基板の両端にそれぞれ配置された一対の上面電極、および一対の裏面電極と、一対の上面電極に導通する抵抗体と、一対の上面電極、および一対の裏面電極を相互に導通させる一対の端面電極とを備える。
 当該チップ抵抗器は、ハンダを介して配線基板に実装される。当該チップ抵抗器の使用時は、抵抗体から熱が発生する。これにより、一対の裏面電極、およびハンダの各々の熱ひずみの差に起因した熱応力がハンダに作用する。熱応力の大きさが比較的大である場合において、当該熱応力がハンダに繰り返し作用すると、ハンダに亀裂が発生することがある。ハンダに亀裂が発生すると、配線基板とチップ抵抗器との間の電流経路が阻害されるおそれがある。したがって、当該チップ抵抗器においては、熱応力によりハンダに亀裂が発生することを抑制する方策が求められる。
特開2008-53251号公報
 本開示は上記事情に鑑み、チップ抵抗器の使用時に、配線基板と、一対の裏面電極との間に介在するハンダに亀裂が発生することを抑制することが可能なチップ抵抗器を提供することをその課題とする。
 本開示によって提供されるチップ抵抗器は、厚さ方向において互いに反対側を向く上面および裏面、並びに前記厚さ方向に対して直交する一方向において互いに離間し、かつ前記上面および前記裏面につながる一対の側面を有する基板と、前記一方向において互いに離間し、かつ前記上面に接する一対の上面電極と、前記上面に配置され、かつ前記一対の上面電極につながる抵抗体と、前記一方向において互いに離間し、かつ前記裏面に接する一対の裏面電極と前記一対の側面に接し、かつ前記一対の上面電極、および前記一対の裏面電極につながる一対の側面電極と、を備え、前記一対の裏面電極の各々は、前記裏面に接する第1層と、前記第1層の少なくとも一部を覆う第2層と、を有し、前記第2層は、金属粒子および合成樹脂を含む材料からなる。
 本開示の構成および利点は、添付図面に基づき以下に行う詳細な説明によって、より明らかとなろう。
本開示の第1実施形態にかかるチップ抵抗器の平面図である。 図1に対応する平面図であり、一対の外部電極と、保護層の上層とを透過している。 図1に示すチップ抵抗器の底面図である。 図3に対応する底面図であり、一対の外部電極を透過している。 図1のV-V線に沿う断面図である。 本開示の第1実施形態の変形例にかかるチップ抵抗器の断面図である。 図1に示すチップ抵抗器の製造工程を説明する底面図である。 図1に示すチップ抵抗器の製造工程を説明する底面図である。 図1に示すチップ抵抗器の製造工程を説明する平面図である。 図1に示すチップ抵抗器の製造工程を説明する平面図である。 図1に示すチップ抵抗器の製造工程を説明する平面図である。 図1に示すチップ抵抗器の製造工程を説明する平面図である。 図1に示すチップ抵抗器の製造工程を説明する平面図である。 図1に示すチップ抵抗器の製造工程を説明する平面図である。 図14のXV-XV線に沿う断面図である。 図1に示すチップ抵抗器の製造工程を説明する断面図である。 図1に示すチップ抵抗器の製造工程を説明する平面図である。 図1に示すチップ抵抗器の製造工程を説明する断面図である。 本開示の第2実施形態にかかるチップ抵抗器の断面図である。 図19の部分拡大断面図である。 本開示の第3実施形態にかかるチップ抵抗器の断面図である。 図21の部分拡大断面図である。 図21に示すチップ抵抗器の製造工程を説明する平面図である。 図21に示すチップ抵抗器の製造工程を説明する平面図である。 本開示の第4実施形態にかかるチップ抵抗器の断面図である。 図25の部分拡大断面図である。 図25に示すチップ抵抗器の製造工程を説明する平面図である。 図25に示すチップ抵抗器の製造工程を説明する平面図である。
 本開示を実施するための形態について、添付図面に基づいて説明する。
 〔第1実施形態〕
 図1~図5に基づき、本開示の第1実施形態にかかるチップ抵抗器A10について説明する。チップ抵抗器A10は、基板10、抵抗体20、一対の電極30、および保護層40を備える。ここで、図2は、理解の便宜上、一対の電極30の一部をなす一対の外部電極34(詳細は後述)と、保護層40の上層42(詳細は後述)とを透過している。図4は、理解の便宜上、当該一対の外部電極34を透過している。
 チップ抵抗器A10と、後述するチップ抵抗器A20~A40との説明においては、便宜上、基板10の厚さ方向を「厚さ方向z」と呼ぶ。厚さ方向zに対して直交する一方向を「第1方向x」と呼ぶ。厚さ方向zおよび第1方向xの双方に対して直交する方向を「第2方向y」と呼ぶ。
 チップ抵抗器A10は、様々な電子機器の配線基板に表面実装される。チップ抵抗器A10は、当該配線基板に流れる電流を制限するという機能を果たす。チップ抵抗器A10は、厚膜(メタルグレーズ皮膜)型の抵抗器である。図1に示すように、厚さ方向zに沿ってみて視て、チップ抵抗器A10は矩形状である。この場合において、第1方向xは、チップ抵抗器A10の長手方向に相当する。この他、厚さ方向zに沿って視て、チップ抵抗器A10は、第2方向yを長手方向とする矩形状でもよい。
 基板10には、図1、図2および図5に示すように、抵抗体20、一対の電極30、および保護層40が配置されている。基板10は、絶縁性を有する。厚さ方向に沿って視て、基板10は、第1方向xに沿った一対の周縁を長辺とする矩形状である。チップ抵抗器A10の使用の際、抵抗体20から熱が発生するため、基板10は、放熱性に優れていることが求められる。このため、基板10の材料は、熱伝導率が比較的高いことが望ましい。チップ抵抗器A10においては、基板10は、アルミナ(Al23)を含むセラミックスからなる。
 図5に示すように、基板10は、上面11、裏面12、および一対の側面13を有する。上面11および裏面12は、厚さ方向zにおいて互いに反対側を向く。上面11は、図5の上方を向く。裏面12は、図5の下方を向く。チップ抵抗器A10を配線基板に実装した際、裏面12は、当該配線基板に対向する。一対の側面13は、上面11および裏面12につながっている。図2および図4に示すように、一対の側面13は、第1方向xにおいて互いに離間している。
 抵抗体20は、図1、図2および図5に示すように、基板10の上面11に配置されている。厚さ方向zに沿って視て、抵抗体20は、第1方向xに延びる帯状である。チップ抵抗器A10においては、抵抗体20は、金属粒子およびガラスを含む材料からなる。当該金属粒子は、たとえば、酸化ルテニウム(RuO2)、または銀(Ag)-パラジウム(Pd)合金である。
 図2および図5に示すように、抵抗体20には、厚さ方向zに貫通するトリミング溝21が形成されている。トリミング溝21は、抵抗体20と、抵抗体20を覆う保護層40の下層41(詳細は後述)との双方に対して一体となって形成されている。チップ抵抗器A10が示す例においては、厚さ方向zから視て、トリミング溝21はL字状である。抵抗体20の第2方向yの一端は、トリミング溝21により開口している。厚さ方向zにそって視たときのトリミング溝21の形状は、チップ抵抗器A10が示す例に限定されない。
 一対の電極30は、図1~図5に示すように、第1方向xにおいて互いに離間した状態で基板10に配置されている。抵抗体20の第1方向xの両端において、一対の電極30は、抵抗体20につながっている。チップ抵抗器A10を配線基板に実装した際、一対の電極30は、当該配線基板にハンダ接合される。これにより、一対の電極30は、抵抗体20と当該配線基板との導電経路を構成する。図5に示すように、一対の電極30の各々は、上面電極31、裏面電極32、側面電極33および外部電極34を含む。
 一対の上面電極31は、図2および図5に示すように、第1方向xにおいて互いに離間し、かつ基板10の上面11に接している。一対の上面電極31は、抵抗体20の第1方向xの両端につながっている。これにより、一対の上面電極31は、抵抗体20に導通している。一対の上面電極31の各々は、第2方向yに延びる帯状である。一対の上面電極31は、銀粒子およびガラスを含む材料からなる。
 一対の裏面電極32は、図4および図5に示すように、第1方向xにおいて互いに離間し、かつ基板10の裏面12に接している。一対の裏面電極32の各々は、第2方向yに延びる帯状である。図5に示すように、一対の裏面電極32の各々は、第1層321および第2層322を有する。
 図5に示すように、第1層321は、基板10の上面11に接している。チップ抵抗器A10においては、第1層321は、絶縁性を有し、かつ合成樹脂を含む材料からなる。当該合成樹脂は、たとえばエポキシ樹脂である。チップ抵抗器A10においては、第1層321は、基板10の一対の側面13のいずれかと、裏面12との境界まで到達している。
 図5に示すように、第2層322は、第1層321の少なくとも一部を覆っている。チップ抵抗器A10においては、第2層322は、第1層321の全体を覆っている。第2層322は、金属粒子および合成樹脂を含む材料からなる。これにより、第2層322は、導電性を有する。当該金属粒子は、銀を含む。また、当該合成樹脂は、たとえばエポキシ樹脂である。
 一対の側面電極33は、図2、図4および図5に示すように、基板10の一対の側面13に接している。一対の側面電極33は、一対の上面電極31、および一対の裏面電極32につながっている。これにより、一対の裏面電極32は、一対の側面電極33、および一対の上面電極31を介して抵抗体20に導通している。チップ抵抗器A10においては、一対の側面電極33は、金属薄膜からなる。当該金属薄膜は、ニッケル(Ni)およびクロム(Cr)を含む合金からなる。
 図5に示すように、一対の側面電極33の各々は、上面部331、裏面部332および側面部333を有する。図2および図5に示すように、上面部331は、厚さ方向zに沿って視て基板10の上面11に重なり、かつ一対の上面電極31のいずれかに接している。図4および図5に示すように、裏面部332は、厚さ方向zに沿って視て基板10の裏面12に重なり、かつ一対の裏面電極32の第2層322のいずれかに接している。図5に示すように、側面部333は、基板10の一対の側面13、および一対の上面電極31のそれぞれいずれかに接している。側面部333の厚さ方向zの両端において、側面部333は、上面部331および裏面部332につながっている。チップ抵抗器A10においては、上面部331、裏面部332、および側面部333の各々の厚さは、いずれも均一である。
 一対の外部電極34は、図1、図3および図5に示すように、一対の上面電極31、一対の裏面電極32、および一対の側面電極33を覆っている。これにより、一対の外部電極34は、一対の上面電極31、一対の裏面電極32、および一対の側面電極33のいずれにも導通している。あわせて、一対の電極30は、抵抗体20に導通している。一対の外部電極34は、めっき層からなる。
 図5に示すように、一対の外部電極34の各々は、中間部341および外部342を有する。中間部341は、一対の上面電極31のいずれかと、厚さ方向に沿って視て当該上面電極31に重なる一対の裏面電極32のいずれかと、当該上面電極31および当該裏面電極32につながる一対の側面電極のいずれかとを覆っている。中間部341は、ニッケルを含む。外部342は、中間部341を覆っている。外部342は、錫(Sn)を含む。
 保護層40は、図1および図5に示すように、抵抗体20を覆っている。保護層40は、下層41および上層42を有する。
 図2および図5に示すように、下層41は、抵抗体20の一部を覆っている。下層41の第1方向xの両端から、抵抗体20が第1方向xに向けてはみ出している。下層41には、先述したトリミング溝21が形成されている。下層41は、ガラスを含む材料からなる。
 図1および図5に示すように、上層42は、抵抗体20の一部と、下層41とを覆っている。上層42はさらに、基板10の上面11の一部と、一対の上面電極31の一部とを覆っている。上層42は、たとえば、黒色のエポキシ樹脂を含む材料からなる。
 〔第1実施形態の変形例〕
 次に、図6に基づき、チップ抵抗器A10の変形例であるチップ抵抗器A11について説明する。
 チップ抵抗器A11においては、一対の側面電極33の構成が、先述したチップ抵抗器A10の構成に対して異なる。
 チップ抵抗器A11においては、図6に示すように、一対の側面電極33の上面部331の各々は、一対の上面電極31のいずれかの表面から厚さ方向zに向けて膨出している。一対の側面電極33の裏面部332の各々は、一対の裏面電極32の第2層322のいずれかの表面から厚さ方向zに向けて膨出している。一対の側面電極33の側面部333の各々は、基板10の一対の側面13のいずれかから第1方向xに向けて膨出している。チップ抵抗器A11においては、一対の側面電極33は、銀粒子および合成樹脂を含む材料からなる。当該合成樹脂は、たとえばエポキシ樹脂である。
 次に、図7~図18に基づき、チップ抵抗器A10の製造方法の一例について説明する。ここで、図16および図18の各々における断面位置は、図15における断面位置と同一である。
 最初に、図7に示すように、厚さ方向zにおいて互いに反対側を向く上面811および裏面812を有するシート状の基材81に、上面811に接する複数の上面電極82を形成する。上面811には、第2方向yに延びる複数の一次溝81Aと、第1方向xに延びる複数の二次溝81Bとが設けられている。複数の一次溝81A、および複数の二次溝81Bは、ともに上面811から厚さ方向zに凹んでいる。複数の一次溝81A、および複数の二次溝81Bは、裏面812にも設けられている。裏面812における複数の一次溝81A、および複数の二次溝81Bの各々の形成位置は、上面811における複数の一次溝81A、および複数の二次溝81Bの各々の形成位置に対応している。上面811および裏面812において、複数の一次溝81A、および複数の二次溝81Bにより区画された複数の領域80の各々が、チップ抵抗器A10の基板10に相当する。
 図7に示すように、複数の上面電極82は、基材81の上面811に位置する複数の領域80において、第1方向xにおいて互いに離間した状態で個別に形成される。複数の上面電極82の各々は、複数の一次溝81Aの各々を跨ぐように形成する。これにより、複数の領域80の各々を区画する一対の一次溝81Aを跨ぐ一対の上面電極82が形成される。当該一対の上面電極82が、チップ抵抗器A10の一対の上面電極31に相当する。複数の上面電極82は、銀粒子およびガラスフリットが含有されたペーストを上面811に印刷した後、当該ペーストを焼成することにより形成される。
 次いで、図8および図9に示すように、基材81の裏面812に接する複数の裏面電極83を形成する。複数の裏面電極83は、裏面812に位置する複数の領域80において、第1方向xにおいて互いに離間した状態で個別に形成される。複数の裏面電極83の各々は、第1層831および第2層832により構成される。まず、図8に示すように、複数の第1層831の各々を、複数の一次溝81Aの各々を跨ぐように形成する。複数の第1層831は、エポキシ樹脂を主剤としたペーストを裏面812に印刷した後、当該ペーストを熱硬化させることにより形成される。
 次に、図9に示すように、複数の第1層831を個別に覆う複数の第2層832を形成する。複数の第2層832の各々は、複数の第1層831の各々の全体を覆うように形成される。これにより、複数の領域80の各々を区画する一対の一次溝81Aを跨ぐ一対の第1層831、および一対の第2層832が形成される。当該一対の第1層831、および当該一対の第2層832が、チップ抵抗器A10の一対の裏面電極32に相当する。複数の第2層832は、エポキシ樹脂を主剤とし、かつ銀粒子が含有されたペーストを複数の第1層831に個別に印刷した後、当該ペーストを熱硬化させることにより形成される。以上により、複数の裏面電極83が形成される。
 次いで、図10に示すように、基材81の上面811に接する複数の抵抗体84を形成する。複数の抵抗体84は、上面811に位置する複数の領域80に個別に形成される。複数の領域80の各々における抵抗体84が、チップ抵抗器A10の抵抗体20に相当する。複数の領域80の各々において、抵抗体84の第1方向xの両端は、一対の上面電極82に接する。複数の抵抗体84は、金属粒子およびガラスフリットが含有されたペーストを裏面812に印刷した後、当該ペーストを焼成することにより形成される。当該金属粒子は、酸化ルテニウム、または銀-パラジウム合金である。
 次いで、図11に示すように、複数の抵抗体84を個別に覆う複数の下層851を形成する。複数の下層851の各々が、チップ抵抗器A10の保護層40の下層41に相当する。複数の下層851は、ガラスペーストを複数の抵抗体84に個別に印刷した後、当該ガラスペーストを焼成することにより形成される。
 次いで、図12に示すように、厚さ方向zに貫通する複数のトリミング溝841を、複数の抵抗体84、および複数の下層851の双方に対して一体的に形成する。複数のトリミング溝841の各々が、チップ抵抗器A10におけるトリミング溝21に相当する。複数のトリミング溝841は、レーザトリミング装置により形成される。
 複数のトリミング溝841の各々は、次の手順により形成される。最初に、トリミング溝841の形成対象となる抵抗体84の第1方向xの両端に、抵抗値測定用のプローブを接触させる。次いで、抵抗体84の第2方向yの一端から、抵抗体84および下層851の双方を厚さ方向zに貫通する溝を第2方向yに沿って形成する。抵抗体84の抵抗値が所定の値(チップ抵抗器A10の抵抗値)に近い値になるまで溝を形成した後、当該溝の終端から今度は第1方向xに沿った溝を形成する。抵抗体84の抵抗値が所定の値となったとき、当該溝の形成を終了する。以上より、複数のトリミング溝841が形成される。
 次いで、図13に示すように、複数の抵抗体84、および複数の下層851と、複数の上面電極82のそれぞれ一部ずつとを覆う複数の上層852を形成する。複数の上層852は、第1方向xにおいて互いに離間した状態で、かつ第2方向yに延びる帯状となるように形成される。複数の上層852は、基材81の上面811に設けられた複数の二次溝81Bを跨いでいる。上面811に位置する複数の領域80における上層852の一部が、チップ抵抗器A10の保護層40の上層42に相当する。複数の上層852は、複数の抵抗体84、および複数の下層851に対して一体となって覆うエポキシ樹脂を主剤としたペーストを印刷した後、当該ペーストを熱硬化させることにより形成される。
 次いで、図14に示すように、基材81を複数の一次溝81Aに沿って分割する。これにより、第2方向yに延びる帯状である複数の基材81が得られる。本工程により、図15に示すように、複数の基材81の第1方向xの両端に、一対の側面813が現れる。一対の側面813は、第1方向xを向く。
 次いで、図16に示すように、基材81の一対の側面813に接する一対の側面電極86を形成する。一対の側面電極86は、一対の上面電極82、および一対の裏面電極83の第2層832の双方にも接するように形成される。一対の側面電極86は、一対の側面813と、一対の上面電極82、および一対の裏面電極83のそれぞれ一部とに、ニッケル-クロム合金をスパッタリング法により成膜することにより形成される。
 次いで、図17に示すように、基材81を二次溝81Bに沿って分割する。これにより、複数の個片となった基材81が得られる。個片となった基材81が、チップ抵抗器A10の基板10に相当する。個片となった基材81には、一対の上面電極82、一対の裏面電極83、抵抗体84、下層851、上層852、および一対の側面電極86が配置されている。
 最後に、図18に示すように、個片となった基材81に配置された一対の上面電極82、一対の裏面電極83、および一対の側面電極86を個別に覆う一対の外部電極87を形成する。一対の外部電極87が、チップ抵抗器A10の一対の外部電極34に相当する。一対の外部電極87の各々は、中間部871および外部872により構成される。中間部871が、チップ抵抗器A10の一対の外部電極34の各々の中間部341に相当する。外部872が、チップ抵抗器A10の一対の外部電極34の各々の外部342に相当する。
 中間部871および外部872は、それぞれ電解バレルめっきにより形成される。中間部871は、基材81から露出した一対の上面電極82、一対の裏面電極83、および一対の側面電極86の各々に対してニッケルを析出させることにより形成される。外部872は、中間部871に対して錫を析出させることにより形成される。以上の工程を経ることによって、チップ抵抗器A10が製造される。
 次に、チップ抵抗器A10の作用効果について説明する。
 チップ抵抗器A10によれば、一対の裏面電極32の各々は、第1層321および第2層322を有する。第1層321は、基板10の裏面12に接している。第2層322は、第1層321の少なくとも一部を覆っている。第2層322は、金属粒子および合成樹脂を含む材料からなる。チップ抵抗器A10を配線基板に実装すると、一対の裏面電極32の各々において、第2層322が第1層321よりもハンダの近くに位置する。第2層322のヤング率は、ガラスおよび金属粒子を含む材料からなる一対の裏面電極32のヤング率よりも相対的に小である。これにより、チップ抵抗器A10の使用時にハンダに発生する熱応力を低減することができる。したがって、チップ抵抗器A10によれば、チップ抵抗器A10の使用時に、配線基板と、一対の裏面電極32との間に介在するハンダに亀裂が発生することを抑制することが可能となる。
 チップ抵抗器A10においては、一対の裏面電極32の第1層321は、絶縁性を有し、かつ合成樹脂を含む材料からなる。一対の裏面電極32の第2層322の各々は、第1層321の全体を覆っている。このように、一対の裏面電極32の各々を、ともに合成樹脂を含む第1層321および第2層322の二層構成とすることにより、ハンダに発生する熱応力の低減効果を確保しつつ、基板10の裏面12に対する一対の裏面電極32の接着力を高め、かつ一対の裏面電極32の引張強度の低下を回避できる。
 チップ抵抗器A10の一対の裏面電極32の各々においては、第1層321は、絶縁性を有するものの、第2層322は、導電性を有する。第2層322は、第1層321の全体を覆っている。これにより、図18に示す一対の外部電極87を形成する工程において、一対の裏面電極83の全体を覆う一対の外部電極87を形成することができる。
 チップ抵抗器A10においては、一対の側面電極33は、金属薄膜からなる。これにより、一対の側面電極33の各々の厚さを、チップ抵抗器A11のように銀粒子および合成樹脂を含む材料からなる一対の側面電極33の各々の厚さよりも薄くすることができる。
 チップ抵抗器A10は、一対の上面電極31、一対の裏面電極32、および一対の側面電極33を覆う一対の外部電極34をさらに備える。一対の外部電極34は、めっき層からなる。一対の外部電極34は、ニッケルを含む中間部341と、中間部341を覆い、かつ錫を含む外部342とを有する。これにより、チップ抵抗器A10を配線基板に実装する際、ハンダと外部342とが一体となった合金となり、当該配線基板に対するチップ抵抗器A10の実装性が良好なものとなる。あわせて、チップ抵抗器A10を配線基板に実装する際、中間部341がハンダなどに起因した熱衝撃を緩和するため、一対の上面電極31、一対の裏面電極32、および一対の側面電極33を当該熱衝撃から保護することができる。
 〔第2実施形態〕
 図19および図20に基づき、本開示の第2実施形態にかかるチップ抵抗器A20について説明する。これらの図において、先述したチップ抵抗器A10と同一または類似の要素には同一の符号を付して、重複する説明を省略する。ここで、図19における断面位置は、図5における断面位置と同一である。
 チップ抵抗器A20においては、一対の裏面電極32の構成が、先述したチップ抵抗器A10の構成に対して異なる。
 図19および図20に示すように、第1層321は、基板10の一対の側面13のいずれかと、基板10の裏面12との境界から、第1方向xに離間している。このため、図20に示すように、裏面12は、一対の側面13のいずれかと裏面12との境界と、第1層321との間に位置する領域121を有する。一対の裏面電極32の第2層322の各々は、基板10の裏面12の領域121に接している。
 次に、チップ抵抗器A20の作用効果について説明する。
 チップ抵抗器A20によれば、一対の裏面電極32の各々は、第1層321および第2層322を有する。第1層321は、基板10の裏面12に接している。第2層322は、第1層321の少なくとも一部を覆っている。第2層322は、金属粒子および合成樹脂を含む材料からなる。したがって、チップ抵抗器A20によっても、チップ抵抗器A20の使用時に、配線基板と、一対の裏面電極32との間に介在するハンダに亀裂が発生することを抑制することが可能となる。
 チップ抵抗器A20においては、一対の裏面電極32の第1層321の各々は、基板10の一対の側面13のいずれかと、基板10の裏面12との境界から、第1方向xに離間している。一対の裏面電極32の第2層322の各々は、一対の側面13のいずれかと裏面12との境界と、第1層321との間に位置する裏面12の領域121に接している。チップ抵抗器A20の使用時にハンダに発生する熱応力は、特に基板10の一対の側面13のいずれかと、裏面12との境界付近において集中することが知られている。これにより、図14および図15に示す基材81の分割工程に影響を及ぼすことなく、かつハンダに発生する熱応力の低減効果を確保しつつ、第1層321の厚さをより大とすることができる。
 〔第3実施形態〕
 図21および図22に基づき、本開示の第3実施形態にかかるチップ抵抗器A30について説明する。これらの図において、先述したチップ抵抗器A10と同一または類似の要素には同一の符号を付して、重複する説明を省略する。ここで、図21における断面位置は、図5における断面位置と同一である。
 チップ抵抗器A30においては、一対の裏面電極32の構成が、先述したチップ抵抗器A10の構成に対して異なる。
 一対の裏面電極32の第1層321は、導電性を有する。第1層321は、銀粒子およびガラスを含む材料からなる。図21および図22に示すように、第1層321は、基板10の一対の側面13のいずれかと、基板10の裏面12との境界から、第1方向xに離間している。このため、図22に示すように、裏面12は、一対の側面13のいずれかと裏面12との境界と、第1層321との間に位置する領域121を有する。
 図22に示すように、一対の裏面電極32の第2層322の各々は、基板10の裏面12の領域121に接している。チップ抵抗器A20においては、第2層322は、第1層321の一部を覆っている。さらにチップ抵抗器A30においては、第2層322は、裏面12から厚さ方向zに向けて膨出している。
 次に、図23および図24に基づき、チップ抵抗器A30の製造方法の一例について説明する。
 チップ抵抗器A30の製造方法の一例では、先述したチップ抵抗器A10の製造方法の一例に対して、複数の裏面電極83を形成する工程が異なる。このため、チップ抵抗器A30の製造方法の一例の説明においては、複数の裏面電極83を形成する工程の説明のみに留める。
 まず、図23に示すように、複数の第1層831の各々を、基材81の複数の一次溝81Aから第1方向xに離間させて形成する。これにより、基材81の裏面812に位置する複数の領域80の各々には、第1方向xにおいて互いに離間した一対の第1層321が形成される。複数の一次溝81Aのいずれかを挟んで隣り合う2つの第1層831の間には、裏面812の一部である隙間812Aが現れる。複数の第1層831は、銀粒子およびガラスフリットが含有されたペーストを裏面812に印刷した後、当該ペーストを焼成することにより形成される。
 次いで、図24に示すように、複数の第1層831に接する複数の第2層832を形成する。複数の第2層832の各々は、複数の一次溝81Aのいずれかを挟んで隣り合う2つの第1層831のそれぞれ一部ずつを覆い、かつ隙間812Aを埋めるように形成する。この際、複数の第2層832の各々において、厚さ方向zに沿って視て隙間812Aに重なる部分が裏面812に向けて凹むようにする。複数の第2層832の各々は、エポキシ樹脂を主剤とし、かつ銀粒子が含有されたペーストを、隙間812A、および隙間812Aの隣に位置する2つの第1層831に印刷した後、当該ペーストを熱硬化させることにより形成される。以上により、複数の裏面電極83が形成される。
 次に、チップ抵抗器A30の作用効果について説明する。
 チップ抵抗器A30によれば、一対の裏面電極32の各々は、第1層321および第2層322を有する。第1層321は、基板10の裏面12に接している。第2層322は、第1層321の少なくとも一部を覆っている。第2層322は、金属粒子および合成樹脂を含む材料からなる。したがって、チップ抵抗器A30によっても、チップ抵抗器A30の使用時に、配線基板と、一対の裏面電極32との間に介在するハンダに亀裂が発生することを抑制することが可能となる。
 チップ抵抗器A30においては、一対の裏面電極32の第1層321は、導電性を有し、かつガラスを含む材料からなる。第1層321は、基板10の一対の側面13のいずれかと、基板10の裏面12との境界から、第1方向xに離間している。一対の裏面電極32の第2層322の各々は、一対の側面13のいずれかと裏面12との境界と、第1層321との間に位置する裏面12の領域121に接している。チップ抵抗器A30においては、第1層321と第2層322との接着力が比較的小であることが、本開示の発明者により確認されている。したがって、第1層321および第2層322が、それぞれ基板10の裏面12に接する構成とすることにより、一対の裏面電極32が基板10から剥離することを防止できる。
 一対の裏面電極32の第2層322の各々は、第1層321の一部を覆い、かつ基板10の裏面12から厚さ方向zに向けて膨出している。これにより、チップ抵抗器A30を配線基板に実装する際、ハンダに含まれる気泡が第2層322により押し出されやすくなる。これにより、配線基板に対するチップ抵抗器A30の実装強度の向上を図ることができる。
 〔第4実施形態〕
 図25および図26に基づき、本開示の第4実施形態にかかるチップ抵抗器A40について説明する。これらの図において、先述したチップ抵抗器A10と同一または類似の要素には同一の符号を付して、重複する説明を省略する。ここで、図25における断面位置は、図5における断面位置と同一である。
 チップ抵抗器A40においては、一対の裏面電極32の構成が、先述したチップ抵抗器A10の構成に対して異なる。
 一対の裏面電極32の第1層321は、導電性を有する。第1層321は、銀粒子およびガラスを含む材料からなる。図25および図26に示すように、第1層321は、基板10の一対の側面13のいずれかと、基板10の裏面12との境界から、第1方向xに離間している。このため、図26に示すように、裏面12は、一対の側面13のいずれかと裏面12との境界と、第1層321との間に位置する領域121を有する。
 図26に示すように、一対の裏面電極32の第2層322の各々は、基板10の裏面12の領域121に接している。チップ抵抗器A40においては、第2層322は、第1層321の全体を覆っている。
 次に、図27および図28に基づき、チップ抵抗器A40の製造方法の一例について説明する。
 チップ抵抗器A40の製造方法の一例では、先述したチップ抵抗器A10の製造方法の一例に対して、複数の裏面電極83を形成する工程が異なる。このため、ここでは、複数の裏面電極83を形成する工程についてのみ説明する。
 まず、図27に示すように、複数の第1層831の各々を、基材81の複数の一次溝81Aから第1方向xに離間させて形成する。これにより、基材81の裏面812に位置する複数の領域80の各々には、第1方向xにおいて互いに離間した一対の第1層321が形成される。複数の一次溝81Aのいずれかを挟んで隣り合う2つの第1層831の間には、裏面812の一部である隙間812Aが現れる。複数の第1層831は、銀粒子およびガラスフリットが含有されたペーストを裏面812に印刷した後、当該ペーストを焼成することにより形成される。
 次いで、図28に示すように、複数の第1層831に接する複数の第2層832を形成する。複数の第2層832の各々は、複数の一次溝81Aのいずれかを挟んで隣り合う2つの第1層831のそれぞれ全部を覆い、かつ隙間812Aを埋めるように形成する。複数の第2層832の各々は、エポキシ樹脂を主剤とし、かつ銀粒子が含有されたペーストを、隙間812A、および隙間812Aの隣に位置する2つの第1層831に印刷した後、当該ペーストを熱硬化させることにより形成される。以上により、複数の裏面電極83が形成される。
 次に、チップ抵抗器A40の作用効果について説明する。
 チップ抵抗器A40によれば、一対の裏面電極32の各々は、第1層321および第2層322を有する。第1層321は、基板10の裏面12に接している。第2層322は、第1層321の少なくとも一部を覆っている。第2層322は、金属粒子および合成樹脂を含む材料からなる。したがって、チップ抵抗器A40によっても、チップ抵抗器A40の使用時に、配線基板と、一対の裏面電極32との間に介在するハンダに亀裂が発生することを抑制することが可能となる。
 本開示は、先述した実施形態に限定されるものではない。本開示の各部の具体的な構成は、種々に設計変更自在である。
 本開示における種々の実施形態は、以下の付記として規定しうる。
 付記1.厚さ方向において互いに反対側を向く上面および裏面、並びに前記厚さ方向に対して直交する一方向において互いに離間し、かつ前記上面および前記裏面につながる一対の側面を有する基板と、
 前記一方向において互いに離間し、かつ前記上面に接する一対の上面電極と、
 前記上面に配置され、かつ前記一対の上面電極につながる抵抗体と、
 前記一方向において互いに離間し、かつ前記裏面に接する一対の裏面電極と、
 前記一対の側面に接し、かつ前記一対の上面電極、および前記一対の裏面電極につながる一対の側面電極と、を備え、
 前記一対の裏面電極の各々は、前記裏面に接する第1層と、前記第1層の少なくとも一部を覆う第2層と、を有し、
 前記第2層は、金属粒子および合成樹脂を含む材料からなる、チップ抵抗器。
 付記2.前記第1層は、絶縁性を有し、かつ合成樹脂を含む材料からなり、
 前記第2層は、前記第1層の全体を覆っている、付記1に記載のチップ抵抗器。
 付記3.前記第1層は、前記一対の側面のいずれかと前記裏面との境界まで到達している、付記2に記載のチップ抵抗器。
 付記4.前記第1層は、前記一対の側面のいずれかと前記裏面との境界から前記一方向に離間し、
 前記第2層は、前記一対の側面のいずれかと前記裏面との境界と、前記第1層との間に位置する前記裏面の領域に接している、付記2に記載のチップ抵抗器。
 付記5.前記第1層は、導電性を有し、かつガラスを含む材料からなり、
 前記第1層は、前記一対の側面のいずれかと前記裏面との境界から前記一方向に離間している、付記1に記載のチップ抵抗器。
 付記6.前記第1層は、銀粒子を含む材料からなる、付記5に記載のチップ抵抗器。
 付記7.前記第2層は、前記一対の側面のいずれかと前記裏面との境界と、前記第1層との間に位置する前記裏面の領域に接している、付記5または6に記載のチップ抵抗器。
 付記8.前記第2層は、前記第1層の一部を覆い、かつ前記裏面から前記厚さ方向に向けて膨出している、付記7に記載のチップ抵抗器。
 付記9.前記第2層は、前記第1層の全体を覆っている、付記7に記載のチップ抵抗器。
 付記10.前記金属粒子は、銀を含む、付記1ないし9のいずれかに記載のチップ抵抗器。
 付記11.前記一対の側面電極は、金属薄膜からなる、付記1ないし10のいずれかに記載のチップ抵抗器。
 付記12.前記金属薄膜は、ニッケルおよびクロムを含む合金からなる、付記11に記載のチップ抵抗器。
 付記13.前記一対の側面電極は、銀粒子および合成樹脂を含む材料からなる、付記1ないし10のいずれかに記載のチップ抵抗器。
 付記14.前記一対の上面電極、前記一対の裏面電極、および前記一対の側面電極を覆う一対の外部電極をさらに備え、
 前記一対の外部電極は、めっき層からなる、付記1ないし13のいずれかに記載のチップ抵抗器。
 付記15.前記一対の外部電極の各々は、中間部と、前記中間部を覆う外部と、を有し、
 前記中間部は、前記一対の上面電極のいずれかと、前記厚さ方向に沿って視て当該上面電極に重なる前記一対の裏面電極のいずれかと、当該上面電極および当該裏面電極につながる前記一対の側面電極のいずれかと、を覆い、
 前記中間部は、ニッケルを含む、付記14に記載のチップ抵抗器。
 付記16.前記外部は、錫を含む、付記15に記載のチップ抵抗器。
 付記17.前記基板は、アルミナを含むセラミックスからなる、付記1ないし16のいずれかに記載のチップ抵抗器。

Claims (17)

  1.  厚さ方向において互いに反対側を向く上面および裏面、並びに前記厚さ方向に対して直交する一方向において互いに離間し、かつ前記上面および前記裏面につながる一対の側面を有する基板と、
     前記一方向において互いに離間し、かつ前記上面に接する一対の上面電極と、
     前記上面に配置され、かつ前記一対の上面電極につながる抵抗体と、
     前記一方向において互いに離間し、かつ前記裏面に接する一対の裏面電極と、
     前記一対の側面に接し、かつ前記一対の上面電極、および前記一対の裏面電極につながる一対の側面電極と、を備え、
     前記一対の裏面電極の各々は、前記裏面に接する第1層と、前記第1層の少なくとも一部を覆う第2層と、を有し、
     前記第2層は、金属粒子および合成樹脂を含む材料からなる、チップ抵抗器。
  2.  前記第1層は、絶縁性を有し、かつ合成樹脂を含む材料からなり、
     前記第2層は、前記第1層の全体を覆っている、請求項1に記載のチップ抵抗器。
  3.  前記第1層は、前記一対の側面のいずれかと前記裏面との境界まで到達している、請求項2に記載のチップ抵抗器。
  4.  前記第1層は、前記一対の側面のいずれかと前記裏面との境界から前記一方向に離間し、
     前記第2層は、前記一対の側面のいずれかと前記裏面との境界と、前記第1層との間に位置する前記裏面の領域に接している、請求項2に記載のチップ抵抗器。
  5.  前記第1層は、導電性を有し、かつガラスを含む材料からなり、
     前記第1層は、前記一対の側面のいずれかと前記裏面との境界から前記一方向に離間している、請求項1に記載のチップ抵抗器。
  6.  前記第1層は、銀粒子を含む材料からなる、請求項5に記載のチップ抵抗器。
  7.  前記第2層は、前記一対の側面のいずれかと前記裏面との境界と、前記第1層との間に位置する前記裏面の領域に接している、請求項5または6に記載のチップ抵抗器。
  8.  前記第2層は、前記第1層の一部を覆い、かつ前記裏面から前記厚さ方向に向けて膨出している、請求項7に記載のチップ抵抗器。
  9.  前記第2層は、前記第1層の全体を覆っている、請求項7に記載のチップ抵抗器。
  10.  前記金属粒子は、銀を含む、請求項1ないし9のいずれかに記載のチップ抵抗器。
  11.  前記一対の側面電極は、金属薄膜からなる、請求項1ないし10のいずれかに記載のチップ抵抗器。
  12.  前記金属薄膜は、ニッケルおよびクロムを含む合金からなる、請求項11に記載のチップ抵抗器。
  13.  前記一対の側面電極は、銀粒子および合成樹脂を含む材料からなる、請求項1ないし10のいずれかに記載のチップ抵抗器。
  14.  前記一対の上面電極、前記一対の裏面電極、および前記一対の側面電極を覆う一対の外部電極をさらに備え、
     前記一対の外部電極は、めっき層からなる、請求項1ないし13のいずれかに記載のチップ抵抗器。
  15.  前記一対の外部電極の各々は、中間部と、前記中間部を覆う外部と、を有し、
     前記中間部は、前記一対の上面電極のいずれかと、前記厚さ方向に沿って視て当該上面電極に重なる前記一対の裏面電極のいずれかと、当該上面電極および当該裏面電極につながる前記一対の側面電極のいずれかと、を覆い、
     前記中間部は、ニッケルを含む、請求項14に記載のチップ抵抗器。
  16.  前記外部は、錫を含む、請求項15に記載のチップ抵抗器。
  17.  前記基板は、アルミナを含むセラミックスからなる、請求項1ないし16のいずれかに記載のチップ抵抗器。
PCT/JP2020/007960 2019-03-18 2020-02-27 チップ抵抗器 WO2020189217A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021507143A JPWO2020189217A1 (ja) 2019-03-18 2020-02-27
CN202080021826.XA CN113597649B (zh) 2019-03-18 2020-02-27 片式电阻器
US17/430,204 US11688532B2 (en) 2019-03-18 2020-02-27 Chip resistor
DE112020001355.3T DE112020001355T5 (de) 2019-03-18 2020-02-27 Chip-widerstand
US18/314,621 US20230274861A1 (en) 2019-03-18 2023-05-09 Chip resistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-049482 2019-03-18
JP2019049482 2019-03-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/430,204 A-371-Of-International US11688532B2 (en) 2019-03-18 2020-02-27 Chip resistor
US18/314,621 Continuation US20230274861A1 (en) 2019-03-18 2023-05-09 Chip resistor

Publications (1)

Publication Number Publication Date
WO2020189217A1 true WO2020189217A1 (ja) 2020-09-24

Family

ID=72520761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007960 WO2020189217A1 (ja) 2019-03-18 2020-02-27 チップ抵抗器

Country Status (5)

Country Link
US (2) US11688532B2 (ja)
JP (1) JPWO2020189217A1 (ja)
CN (1) CN113597649B (ja)
DE (1) DE112020001355T5 (ja)
WO (1) WO2020189217A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022180979A1 (ja) * 2021-02-24 2022-09-01 Koa株式会社 チップ抵抗器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084905A (ja) * 2006-09-26 2008-04-10 Taiyosha Electric Co Ltd チップ抵抗器
JP2011165752A (ja) * 2010-02-05 2011-08-25 Taiyosha Electric Co Ltd チップ抵抗器
JP2018032670A (ja) * 2016-08-22 2018-03-01 Koa株式会社 チップ部品、チップ部品の実装構造、チップ抵抗器の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025802A (ja) * 2000-07-10 2002-01-25 Rohm Co Ltd チップ抵抗器
JP2003068505A (ja) * 2001-08-30 2003-03-07 Koa Corp チップ抵抗器およびその製造方法
JP2007088161A (ja) * 2005-09-21 2007-04-05 Koa Corp チップ抵抗器
JP2008053251A (ja) 2006-08-22 2008-03-06 Matsushita Electric Ind Co Ltd チップ抵抗器
JP2013074044A (ja) * 2011-09-27 2013-04-22 Koa Corp チップ抵抗器
JP6181500B2 (ja) * 2013-09-30 2017-08-16 Koa株式会社 チップ抵抗器およびその製造方法
US9997281B2 (en) * 2015-02-19 2018-06-12 Rohm Co., Ltd. Chip resistor and method for manufacturing the same
JP6732459B2 (ja) * 2015-02-19 2020-07-29 ローム株式会社 チップ抵抗器およびその製造方法
JP6499007B2 (ja) * 2015-05-11 2019-04-10 Koa株式会社 チップ抵抗器
JP7385358B2 (ja) * 2016-12-27 2023-11-22 ローム株式会社 チップ抵抗器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084905A (ja) * 2006-09-26 2008-04-10 Taiyosha Electric Co Ltd チップ抵抗器
JP2011165752A (ja) * 2010-02-05 2011-08-25 Taiyosha Electric Co Ltd チップ抵抗器
JP2018032670A (ja) * 2016-08-22 2018-03-01 Koa株式会社 チップ部品、チップ部品の実装構造、チップ抵抗器の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022180979A1 (ja) * 2021-02-24 2022-09-01 Koa株式会社 チップ抵抗器

Also Published As

Publication number Publication date
US20230274861A1 (en) 2023-08-31
CN113597649A (zh) 2021-11-02
CN113597649B (zh) 2023-01-13
US20220165459A1 (en) 2022-05-26
DE112020001355T5 (de) 2021-12-02
US11688532B2 (en) 2023-06-27
JPWO2020189217A1 (ja) 2020-09-24

Similar Documents

Publication Publication Date Title
US11189403B2 (en) Chip resistor and method for manufacturing the same
JP7093382B2 (ja) チップ抵抗器
JP7385358B2 (ja) チップ抵抗器
JP4909077B2 (ja) チップ抵抗器
JP7382451B2 (ja) チップ抵抗器
WO1998029880A1 (fr) Resistance pastille pour reseau et procede de fabrication
JP7063820B2 (ja) チップ抵抗器およびその製造方法
JP2016213352A (ja) チップ抵抗器
US20230274861A1 (en) Chip resistor
JP2018074143A (ja) 抵抗素子及び抵抗素子アセンブリ
JP2024015453A (ja) 抵抗器
JP2014135427A (ja) チップ抵抗器
JP7117114B2 (ja) チップ抵抗器
JP7117116B2 (ja) チップ抵抗器
JP4295035B2 (ja) チップ抵抗器の製造方法
WO2020170750A1 (ja) 抵抗器
JP4729398B2 (ja) チップ抵抗器
WO2022163120A1 (ja) チップ部品
CN113826173B (zh) 电阻器
WO2022190879A1 (ja) チップ部品の実装構造
JP6688035B2 (ja) チップ抵抗器
JP2020013804A (ja) チップ抵抗器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507143

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20773849

Country of ref document: EP

Kind code of ref document: A1