WO2020184531A1 - 金属銅/酸化銅含有粉、金属銅/酸化銅含有粉の製造方法、及び、スパッタリングターゲット材、スパッタリングターゲット材の製造方法 - Google Patents

金属銅/酸化銅含有粉、金属銅/酸化銅含有粉の製造方法、及び、スパッタリングターゲット材、スパッタリングターゲット材の製造方法 Download PDF

Info

Publication number
WO2020184531A1
WO2020184531A1 PCT/JP2020/010144 JP2020010144W WO2020184531A1 WO 2020184531 A1 WO2020184531 A1 WO 2020184531A1 JP 2020010144 W JP2020010144 W JP 2020010144W WO 2020184531 A1 WO2020184531 A1 WO 2020184531A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
copper
copper oxide
metallic copper
metallic
Prior art date
Application number
PCT/JP2020/010144
Other languages
English (en)
French (fr)
Inventor
拓真 武田
野中 荘平
曉 森
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN202080011450.4A priority Critical patent/CN113365763A/zh
Priority to KR1020217028744A priority patent/KR20210135516A/ko
Publication of WO2020184531A1 publication Critical patent/WO2020184531A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2303/00Functional details of metal or compound in the powder or product
    • B22F2303/30Coating alloy

Definitions

  • the present invention provides a method for producing metallic copper / copper oxide-containing powder, a method for producing metallic copper / copper oxide-containing powder, and a method for producing metallic copper / copper oxide-containing powder, which are suitable as raw material powders for sintered bodies such as sputtering target materials used when forming a copper oxide film. It relates to a sputtering target material and a method for manufacturing a sputtering target material.
  • the present application claims priority based on Japanese Patent Application No. 2019-0442446 filed in Japan on March 11, 2019, the contents of which are incorporated herein by reference.
  • a film having a transparent conductor layer formed on both sides of the film and a metal layer formed on the surface of each transparent conductor layer is known. ..
  • the adjacent conductive films are in close contact with each other, and when the adhered conductive films are peeled off, the transparent conductor layer is scratched. There was a problem such as.
  • Patent Document 1 proposes a film in which an inorganic nano-coating layer is formed on a film base material.
  • the inorganic nano-coating layer makes it possible to suppress the adhesion between adjacent films.
  • a copper oxide film can be applied as the inorganic nanocoating layer.
  • a method of forming a copper oxide film on the surface of a base material such as a film for example, a method of performing sputtering using a copper oxide target or sputtering (reactivity) using an oxygen-free copper target in the presence of oxygen gas.
  • a method of performing sputtering is disclosed.
  • RF radio frequency
  • Patent Documents 2 and 3 disclose a sputtering target material having a copper oxide phase and a metallic copper phase in order to form a stable and efficient copper oxide film. Since the sputtering target materials disclosed in Patent Documents 2 and 3 have a metallic copper phase, the specific resistance value is low, and it is possible to form a copper oxide film by DC (direct current) sputtering. Become.
  • Patent Documents 2 and 3 metallic copper powder and copper oxide powder are weighed and mixed so as to have a predetermined ratio, and the obtained mixed powder is used as a sintering raw material and heated under pressure by a hot press.
  • a sputtering target material made of a sintered body is manufactured.
  • the pressurizing direction is limited, so that it is necessary to increase the processing amount in the subsequent machining depending on the shape of the obtained sintered body. Therefore, it has been difficult to efficiently manufacture the sputtering target material.
  • the shape of the sintered body becomes stable because the sintering is performed isotropically, and the processing in the subsequent machining is performed. The amount can be reduced, and the sputtering target material can be efficiently manufactured. In addition, it is advantageous to increase the size of the target by manufacturing with HIP, which can take a large chamber structure with relatively relaxed restrictions on the size of the device.
  • the hot isotropic pressure method (HIP) described above, the molding container is filled with the raw material powder and the molding container is isotropically pressurized. Therefore, the filling rate of the raw material powder in the molding container is important. If the filling rate in the molded container is less than 60%, the container is greatly deformed during pressurization, and it becomes difficult to obtain a sintered body.
  • the fluidity of the raw material powder in order to fill the molding container with the raw material powder at a high density, it is necessary to ensure the fluidity of the raw material powder so that the raw material powder can be smoothly poured into the container.
  • the mixed powder obtained by mixing the above-mentioned metallic copper powder and copper oxide powder the fluidity was low and the filling rate in the molding container was insufficient. Therefore, it is difficult to increase the filling rate of the raw material powder into the molding container to 60% or more. Therefore, it was not possible to perform sintering by the above-mentioned hot isotropic pressurization method (HIP) using a mixed powder of metallic copper powder and copper oxide powder.
  • HIP hot isotropic pressurization method
  • the present invention has been made in view of the above-mentioned circumstances, and is a metallic copper / copper oxide-containing powder which can sufficiently improve the filling rate in a container and is particularly suitable as a sintering raw material, and this. It is an object of the present invention to provide a method for producing a metallic copper / copper oxide-containing powder, a sputtering target material capable of stably forming a copper oxide film, and a method for producing a sputtering target material.
  • the metallic copper / copper oxide-containing powder of the present invention is a metallic copper / copper oxide-containing powder composed of metallic copper powder, copper oxide powder, and unavoidable impurities.
  • the metal copper powder has a larger average particle size than the copper oxide powder, and is characterized by having composite particles having a structure in which the copper oxide powder is attached to the outer peripheral portion of the metal copper powder. It is supposed to be.
  • the copper oxide powder adheres to the outer peripheral portion of the metallic copper powder, so that the frictional force between the particles is increased, and filling can be promoted at the time of tapping.
  • the rate can be improved.
  • the structure is such that the copper oxide powder is attached to the outer peripheral portion of the metal copper powder, the abundance ratio of the copper oxide powder having low fluidity is relatively small, and the fluidity is ensured. Therefore, the filling rate in the container can be increased, and sintering can be performed by the hot isotropic pressurization method (HIP).
  • HIP hot isotropic pressurization method
  • a recess is formed in the outer peripheral portion of the metallic copper powder, and the composite particles are formed in the outer peripheral portion of the metallic copper powder. It is preferable that the recess is filled with the copper oxide powder.
  • the composite particles have a structure in which the recesses formed on the outer peripheral portion of the metallic copper powder are filled with the copper oxide powder, the copper oxide powder is placed on the outer peripheral portion of the metallic copper powder. It can be reliably attached. Therefore, the fluidity can be ensured and the filling rate can be improved.
  • the molar fraction of the metallic copper powder may be in the range of 50% or more and 75% or less.
  • the mole fraction of the metallic copper powder is 50% or more, the abundance ratio of the copper oxide powder having low fluidity is relatively small, and the fluidity can be ensured.
  • the molar fraction of the metallic copper powder is 75% or less, filling can be sufficiently promoted at the time of tapping, and the filling rate can be improved.
  • the angle of repose is in the range of 40 ° or more and 56 ° or less.
  • the angle of repose of the metallic copper / copper oxide-containing powder is 40 ° or more, the fluidity is not higher than necessary, the frictional force between the particles is secured, and the filling is sufficient at the time of tapping. It is possible to improve the filling rate.
  • the angle of repose of the metallic copper / copper oxide-containing powder is 56 ° or less, sufficient fluidity can be ensured.
  • the average particle size of the metallic copper powder is within the range of 30 ⁇ m or more and 200 ⁇ m or less, and the average particle size of the copper oxide powder is within the range of 1 ⁇ m or more and 10 ⁇ m or less. It is preferable that In this case, since the average particle size of the metal copper powder and the average particle size of the copper oxide powder are within the above ranges, the copper oxide powder can be reliably adhered to the outer peripheral portion of the metal copper powder. This makes it possible to reliably generate composite particles.
  • the method for producing a metallic copper / copper oxide-containing powder of the present invention is a method for producing a metallic copper / copper oxide-containing powder for producing the above-mentioned metallic copper / copper oxide-containing powder, wherein the metallic copper powder and the copper oxide powder are produced. It is characterized by including a mixing step of mixing, a compression step of compressing the obtained mixed powder to form a green compact, and a crushing step of crushing the green compact.
  • a compression step of compressing the obtained mixed powder to form a green compact is provided. Therefore, in this compression step, the metallic copper powder is used.
  • the copper oxide powder can be attached to the outer peripheral portion.
  • a crushing step of crushing the green compact obtained in the compression step composite particles having a structure in which the copper oxide powder is attached to the outer peripheral portion of the metallic copper powder can be obtained. Therefore, it is possible to produce a metallic copper / copper oxide-containing powder in which fluidity is ensured and the filling rate can be sufficiently improved during tapping.
  • the sputtering target material of the present invention is made of a sintered body of metallic copper / copper oxide-containing powder, and is characterized in that the area ratio of voids in the cross-sectional structure is less than 2%.
  • the specific resistance value is low, and a copper oxide film can be formed by DC (DC) sputtering. It becomes. Since the area ratio of voids in the cross-sectional structure is limited to less than 2%, the occurrence of abnormal discharge during sputtering can be suppressed, and a copper oxide film can be stably formed.
  • the sputtering target material of the present invention may have a cylindrical shape and an axial length of 150 mm or more.
  • the sputtering target material of the present invention may have a plate shape and the absolute maximum length of the sputtering surface may be 450 mm or more.
  • the absolute maximum length means the maximum distance between any two points on the contour of the sputtered surface. In these cases, the area of the sputtered surface is secured, and the copper oxide film can be efficiently formed on a large-area substrate.
  • the method for producing a sputtering target material of the present invention is a method for producing a sputtering target material composed of a sintered body of metallic copper / copper oxide-containing powder, and is a powder for filling a molding container with the above-mentioned metallic copper / copper oxide-containing powder. It has a filling step and a HIP sintering step of pressurizing and heating the metallic copper / copper oxide-containing powder filled in the molding container by a hot isotropic pressurizing method to sinter the powder.
  • the step is characterized in that the filling rate of the metallic copper / copper oxide-containing powder is 60% or more, and in the HIP sintering step, the pressurizing pressure is 80 MPa or more.
  • the method for producing a sputtering target material having this configuration since the above-mentioned metallic copper / copper oxide-containing powder is used, it is possible to set the filling rate in the molding container to 60% or more in the powder filling step. Become. Therefore, a sintered body can be stably obtained by the hot isotropic pressurization method. Further, since the pressurizing pressure is set to 80 MPa or more in the HIP sintering step, voids can be reduced by applying a sufficient pressurizing pressure for sintering, and the area ratio of voids in the cross-sectional structure can be reduced. It can be less than 2%. Further, since the sintering is performed by the hot isotropic pressure method, a large sputtering target material can be efficiently produced.
  • the metallic copper / copper oxide-containing powder of the present invention is a metallic copper / copper oxide-containing powder composed of a plurality of metallic copper particles and a plurality of copper oxide particles, and may contain unavoidable impurities.
  • the average particle size of the plurality of metallic copper particles may be larger than the average particle size of the plurality of copper oxide particles.
  • the metallic copper / copper oxide-containing powder may have composite particles composed of one or more metallic copper particles and a plurality of copper oxide particles.
  • the plurality of copper oxide particles may be attached to the outer peripheral portion of the metallic copper particles.
  • the recess formed on the outer peripheral portion of the metallic copper particles may be filled with the plurality of copper oxide particles. A part of the plurality of copper oxide particles adhering to the outer peripheral portion of the metallic copper particles may fill the recess.
  • a metallic copper / copper oxide-containing powder which can sufficiently improve the filling rate in a container and is particularly suitable as a sintering raw material, and a method for producing the metallic copper / copper oxide-containing powder, Further, it is possible to provide a sputtering target material capable of stably forming a copper oxide film, and a method for producing the sputtering target material.
  • the metallic copper / copper oxide-containing powder according to the present embodiment is suitably used as a sintering raw material, for example, when producing a sintered body constituting a sputtering target material used for forming a copper oxide film. Is something that can be done.
  • An observation photograph of the metallic copper / copper oxide-containing powder of the present embodiment is shown in FIG. Further, FIG. 2 shows an observation photograph of a mixed powder obtained by mixing a metallic copper powder composed of a plurality of metallic copper particles and a copper oxide powder composed of a plurality of copper oxide particles.
  • the metallic copper / copper oxide-containing powder 10 contains the metallic copper powder 11 and the copper oxide powder 12.
  • the metal copper powder 11 has a larger average particle size than the copper oxide powder 12.
  • the metallic copper / copper oxide-containing powder 10 according to the present embodiment has composite particles 15 having a structure in which the copper oxide powder 12 is attached to the outer peripheral portion of the metallic copper powder 11.
  • a recess is formed in the outer peripheral portion thereof.
  • the recess is a portion of the surface of the metal copper powder 11 that is recessed inward and whose cross section is recessed in an acute angle shape.
  • the composite particles 15 have a structure in which the copper oxide powder 12 is filled in the recesses formed on the outer peripheral portion of the metal copper powder 11.
  • the structure in which the recesses are filled with the copper oxide powder 12 means that the copper oxide powder 12 adheres to at least one of the recesses formed on the outer peripheral surface of the metal copper powder 11, and the outer peripheral shape of the composite particles 15 is flat or flat. It means a structure having a protruding shape.
  • the metallic copper powder 11 for example, electrolytic copper powder can be used. As shown in FIGS. 1 and 2, the electrolytic copper powder has a concave portion formed on the outer peripheral portion thereof due to the residual dendrite structure. Further, in the present embodiment, it is preferable to use the metal copper powder 11 having a purity of 99.99 mass% or more. Further, in the present embodiment, the average particle size of the metallic copper powder 11 is in the range of 30 ⁇ m or more and 200 ⁇ m or less.
  • the molar fraction of the metallic copper powder is in the range of 50% or more and 75% or less.
  • the angle of repose is within the range of 40 ° or more and 56 ° or less.
  • the structure of the composite particles 15, the content of the metallic copper powder 11, the rest angle, and the average particle diameters of the metallic copper powder 11 and the copper oxide powder 12 are described above. Explain the reason specified as.
  • the metallic copper powder 11 has high fluidity, the filling rate does not improve even if tapping is performed. It is presumed that this is because the frictional force between the particles is low even after tapping, and the particles slide and move during tapping. Therefore, in the present embodiment, the copper oxide powder 12 is adhered to the outer peripheral portion of the metal copper powder 11 to secure the frictional force between the particles, sufficiently promote the filling at the time of tapping, and improve the filling rate. There is. Further, due to the presence of the composite particles 15, the abundance ratio of the copper oxide powder 12 having low fluidity is relatively small, and the fluidity is ensured.
  • the composite particles 15 have a structure in which the recesses formed on the outer peripheral portion of the metal copper powder 11 are filled with the copper oxide powder 12, so that the metal copper powder 11 and the copper oxide powder 12 are firmly fixed to each other. Will be done.
  • the mole fraction of the metallic copper powder 11 is 50% or more, the content of the copper oxide powder 12 having low fluidity becomes relatively small. , Liquidity can be ensured.
  • the molar fraction of the metal copper powder 11 is 75% or less, the presence of the copper oxide powder 12 that does not form the composite particles 15 can be suppressed, and filling can be sufficiently promoted at the time of tapping. It is possible to improve the filling rate.
  • the lower limit of the molar fraction of the metallic copper powder 11 is preferably 55% or more, and more preferably 60% or more.
  • the upper limit of the molar fraction of the metallic copper powder 11 is preferably 70% or less, and more preferably 65% or less.
  • the molar fraction of the metallic copper powder 11 referred to here means the ratio of the number of elements of metallic copper to the total number of elements of metallic copper and the number of molecules of copper oxide contained in the metallic copper / copper oxide-containing powder 10.
  • the mole fraction of the metallic copper powder 11 can be calculated from the composition and mixing ratio of the metallic copper powder 11 and the copper oxide powder 12 used as raw materials in the production of the metallic copper / copper oxide-containing powder 10.
  • the angle of repose of the powder can be measured by the method specified in, for example, JIS R9301-2-2 "Alumina powder-Part 2: Physical property measurement method-2: Angle of repose".
  • the angle of repose is 40 ° or more, the fluidity does not become higher than necessary, the frictional force between the particles is secured, and tapping is performed. Sometimes filling can be sufficiently promoted and the filling rate can be improved.
  • the metallic copper / copper oxide-containing powder 10 of the present embodiment when the angle of repose is set to 56 ° or less, fluidity can be ensured.
  • the lower limit of the angle of repose of the metallic copper / copper oxide-containing powder 10 is preferably 45 ° or more, and more preferably 48 ° or more.
  • the upper limit of the angle of repose of the metallic copper / copper oxide-containing powder 10 is preferably 54 ° or less, and more preferably 52 ° or less.
  • the metallic copper powder 11 has a larger average particle size than the copper oxide powder 12.
  • the average particle size of the metallic copper powder is within the range of 30 ⁇ m or more and 200 ⁇ m or less and the average particle size of the copper oxide powder 12 is within the range of 1 ⁇ m or more and 10 ⁇ m or less, the outer peripheral portion of the metallic copper powder 11 is oxidized.
  • the copper powder 12 can be reliably adhered, and the above-mentioned composite particle 15 can be reliably produced.
  • the lower limit of the average particle size of the metallic copper powder 11 is preferably 40 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • the upper limit of the average particle size of the metallic copper powder 11 is preferably 150 ⁇ m or less, and more preferably 100 ⁇ m or less.
  • the lower limit of the average particle size of the copper oxide powder 12 is preferably 2 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • the upper limit of the average particle size of the copper oxide powder 12 is preferably 8 ⁇ m or less, and more preferably 7 ⁇ m or less.
  • the average particle size of the metallic copper / copper oxide-containing powder, the metallic copper powder, and the copper oxide powder can be measured by the laser diffraction / scattering method particle size distribution measurement method.
  • Metallic copper / copper oxide-containing powder, metallic copper powder, and copper oxide powder were ultrasonically dispersed in an aqueous solution of Na hexametaphosphate and analyzed by Microtrac MT3000II manufactured by Microtrac Bell Co., Ltd. The average particle size was taken as the MV value of the obtained particle size distribution.
  • the above-mentioned metal copper powder 11 and copper oxide powder 12 are prepared. Then, the metallic copper powder 11 and the copper oxide powder 12 are weighed so as to have a predetermined ratio, and mixed using a mixing device such as a Henschel mixer. At this time, in order to prevent the oxidation of the metallic copper powder, it is preferable that the atmosphere in the mixing device is an inert gas atmosphere such as Ar.
  • compression step S02 Next, the mixed powder obtained as described above is pressed to form a green compact.
  • a uniaxial pressure press may be used when molding the green compact.
  • the pressurizing pressure is preferably in the range of 100 MPa or more and 200 MPa or less.
  • the copper oxide powder 12 is crimped to the outer peripheral portion of the metal copper powder 11, and the concave portion formed on the outer peripheral portion of the metal copper powder 11 is filled with the copper oxide powder 12.
  • crushing step S03 The green compact obtained as described above is pulverized to obtain a pulverized powder.
  • the crushing method is not particularly limited, and crushing may be performed manually or using a crushing device.
  • the obtained pulverized powder is classified by a sieve or the like to obtain a metallic copper / copper oxide-containing powder 10 having a predetermined particle size distribution.
  • the metallic copper / copper oxide-containing powder 10 includes composite particles 15 having a structure in which the copper oxide powder 12 is attached to the outer peripheral portion of the metallic copper powder 11.
  • the metallic copper / copper oxide-containing powder 10 according to the present embodiment is produced.
  • the sputtering target material according to this embodiment is used when forming a copper oxide film by DC (direct current) sputtering.
  • the sputtering target 20 has a cylindrical sputtering target material 21 extending along the axis O and a cylindrical shape inserted into the inner peripheral side of the sputtering target material 21. It includes a backing tube 22. The cylindrical sputtering target material 21 and the backing tube 22 are joined via a joining layer 23 made of an In or In alloy.
  • the sputtering target material 21 of the present embodiment is made of the sintered body of the metallic copper / copper oxide-containing powder 10 of the present embodiment described above, and has a metallic copper phase and a copper oxide phase.
  • the volume ratio of the copper oxide phase exceeds 80 vol% and is within the range of 97.5 vol% or less.
  • the area ratio of voids in the cross-sectional structure is limited to less than 2%. That is, the number of voids is sufficiently reduced.
  • the area ratio of voids can be calculated by image-processing a cross-sectional observation photograph with commercially available image software or the like to binarize it, and then measuring the area of the region recognized as voids in the binarized image. it can.
  • the size of the cylindrical sputtering target material 21 of the present embodiment is, for example, an outer diameter DT within a range of 145 mm ⁇ DT ⁇ 170 mm, an inner diameter d T within a range of 120 mm ⁇ d T ⁇ 140 mm, and an axis line.
  • O direction length L T is in a range of 150 mm ⁇ L T ⁇ 300 mm.
  • the backing tube 22 is provided to hold the cylindrical sputtering target material 21 and secure mechanical strength, and further supplies power to the cylindrical sputtering target material 21 and has a cylindrical shape. It has a function of cooling the sputtering target material 21. Therefore, the backing tube 22 is required to have excellent mechanical strength, electrical conductivity, and thermal conductivity, and is made of, for example, stainless steel such as SUS304, titanium, or the like.
  • the size of the backing tube 22, for example in the range outer diameter D B of 119.5mm ⁇ D B ⁇ 139.5mm, within the inner diameter d B is 110mm ⁇ d B ⁇ 130mm
  • the axis O direction length L B is in the range of 170 mm ⁇ L B ⁇ 2000 mm.
  • the metallic copper / copper oxide-containing powder 10 is prepared.
  • the metallic copper / copper oxide-containing powder 10 is filled in the molding container.
  • the metallic copper / copper oxide-containing powder 10 was compacted using a jig.
  • the filling rate was set to 60% or more.
  • the filling rate of the molded container can be calculated as follows.
  • the weight of the metallic copper / copper oxide-containing powder 10 filled in the molding container is measured, and the bulk density is calculated by dividing this weight by the internal volume of the molding container.
  • the weight of the metallic copper powder W Cu (g) the weight of the copper oxide powder (CuO) W CuO (g), the weight of the copper oxide powder (Cu 2 O) W Cu2O (g)
  • the theoretical density D of the metallic copper Cu 8.9 g / cm 3
  • theoretical density of copper oxide (CuO) D CuO 6.3 g / cm 3
  • the theoretical density of the metallic copper / copper oxide-containing powder 10 is calculated by the following formula.
  • the metallic copper / copper oxide-containing powder 10 filled in the molding container is pressurized and heated by a hot isotropic pressure method to obtain a sintered body.
  • the pressurizing pressure is set within the range of 80 MPa or more and 150 MPa or less
  • the heating temperature is set within the range of 700 ° C. or higher and 850 ° C. or lower.
  • the lower limit of the pressurizing pressure is preferably 90 MPa or more, and more preferably 95 MPa or more.
  • the upper limit of the pressurizing pressure is preferably 130 MPa or less, and more preferably 110 MPa or less.
  • the lower limit of the heating temperature is preferably 720 ° C. or higher, and more preferably 740 ° C. or higher.
  • the upper limit of the heating temperature is preferably 850 ° C. or lower, and more preferably 800 ° C. or lower.
  • the sintered body obtained in the HIP sintering step S13 is machined to obtain a sputtering target having a predetermined shape and dimensions.
  • the sputtering target of the present embodiment is manufactured by the above-mentioned process.
  • the composite particles 15 to which the copper oxide powder 12 is attached are provided on the outer peripheral portion of the metallic copper powder 11.
  • the frictional force between the particles becomes large, filling can be sufficiently promoted at the time of tapping, and the filling rate can be improved.
  • the copper oxide powder 12 adheres to the outer peripheral portion of the metallic copper powder 11 the abundance ratio of the copper oxide powder 12 having low fluidity becomes relatively small, and the fluidity of the metallic copper / copper oxide-containing powder 10 becomes low. It will improve.
  • the fluidity is ensured and the frictional force between the particles is secured. Therefore, for example, the filling rate when filled in the molding container is set. It can be 60% or more, preferably 65% or more, and stable sintering can be performed by the hot isotropic pressurization method (HIP).
  • HIP hot isotropic pressurization method
  • the above-mentioned composite particles 15 have a structure in which the copper oxide powder 12 is filled in the recess formed on the outer peripheral portion of the metallic copper powder 11.
  • the copper oxide powder 12 can be reliably adhered to the outer peripheral portion of the metallic copper powder 11, the fluidity of the metallic copper / copper oxide-containing powder 10 can be ensured, and the filling is sufficiently promoted at the time of tapping. It is possible to improve the filling rate.
  • the mole fraction of the metallic copper powder 11 when the mole fraction of the metallic copper powder 11 is within the range of 50% or more and 75% or less, the abundance ratio of the copper oxide powder 12 is relative. By reducing the amount, the fluidity can be ensured, the filling can be sufficiently promoted at the time of tapping, and the filling rate can be improved.
  • the angle of repose when the angle of repose is within the range of 40 ° or more and 56 ° or less, sufficient fluidity can be ensured and the particles can be separated from each other. By securing the frictional force, the filling rate can be sufficiently improved.
  • the average particle size of the metallic copper powder 11 is within the range of 30 ⁇ m or more and 200 ⁇ m or less, and the average particle size of the copper oxide powder 12 is 1 ⁇ m or more and 10 ⁇ m or less.
  • the copper oxide powder 12 can be reliably adhered to the outer peripheral portion of the metal copper powder 11, and the above-mentioned composite particle 15 can be reliably generated.
  • a concave portion is formed on the outer peripheral portion of the metal copper powder 11, it is possible to sufficiently fill the concave portion with the copper oxide powder 12.
  • the compression step S02 for compressing the mixed powder obtained in the mixing step S01 to form a green compact is provided.
  • the copper oxide powder 12 can be pressure-bonded to the outer peripheral portion of the metal copper powder 11.
  • the pulverization step S03 for pulverizing the green compact obtained in the compression step S02 the composite particles 15 having a structure in which the copper oxide powder 12 is attached to the outer peripheral portion of the metal copper powder 11 can be obtained. Therefore, it is possible to produce the metallic copper / copper oxide-containing powder 10 in which the fluidity is ensured and the filling rate is excellent.
  • the sputtering target material 21 of the present embodiment since it is composed of a sintered body of metallic copper / copper oxide-containing powder 10, the specific resistance value is low, and a copper oxide film is formed by DC (DC) sputtering. It becomes possible to do. Further, since the area ratio of voids in the cross-sectional structure is limited to less than 2%, the occurrence of abnormal discharge during sputtering can be suppressed, and a copper oxide film can be stably formed.
  • the sputtering target material 21 has a cylindrical shape, since the axial line O direction length L T is in a range of 150 mm ⁇ L T ⁇ 300 mm, the sputtering surface (cylindrical surface) The area of copper oxide film can be efficiently formed on a large-area substrate.
  • the filling rate in the molding container is set to 60% or more in the powder filling step S11. Is possible. Therefore, a sintered body can be stably obtained by the hot isotropic pressurization method. Further, since the pressurizing pressure is set within the range of 80 MPa or more and 150 MPa or less in the HIP sintering step S13, voids can be reduced by applying a sufficient pressurizing pressure for sintering, and the cross-sectional structure can be reduced. The area ratio of voids to occupy can be less than 2%. Further, since the sintering is performed by the hot isotropic pressurization method, the large sputtering target material 21 can be efficiently manufactured.
  • the present invention is not limited to this, and can be appropriately changed without departing from the technical idea of the invention.
  • the electrolytic copper powder is used as the metal copper powder, but the present invention is not limited to this, and other metal copper powder may be used.
  • the sputtering target material 21 having a cylindrical shape has been described, but the present invention is not limited to this, and for example, a disk type having a circular sputtering surface. It may be a sputtering target of the above, or it may be a rectangular flat plate type sputtering target having a rectangular sputter surface. In these sputtering targets, the absolute maximum length of the sputtered surface (the largest of the distances between any two points on the contour of the sputtered surface) is preferably 450 mm or more.
  • Example 1 As the metallic copper powder, an electrolytic copper powder (purity: 99.99 mass% or more, average particle size: 75 ⁇ m) was prepared. Further, as the copper oxide powder, CuO powder (purity: 99.99 mass% or more, average particle size: 5 ⁇ m) was prepared. These metallic copper powder and copper oxide powder were weighed so as to have the molar ratios shown in Table 1 and mixed in an Ar atmosphere using a Henschel mixer to obtain a mixed powder of the metallic copper powder and the copper oxide powder.
  • the obtained mixed powder was pressurized at a pressure of 167 MPa by a uniaxial pressure method to form a green compact.
  • the obtained molded product was pulverized using a mortar.
  • the mixture was classified using a sieve having a mesh size of 710 ⁇ m to obtain a metallic copper / copper oxide-containing powder.
  • a mixed powder of metallic copper powder and copper oxide powder mixed using a Henschel mixer was used.
  • the following items were evaluated for the obtained metallic copper / copper oxide-containing powder of the present invention example and the mixed powder of the metallic copper powder and the copper oxide powder of the comparative example.
  • the obtained metallic copper / copper oxide-containing powder was dispersed in an epoxy resin, cured, and then polished and ion milled to prepare an observation sample. This observation sample was SEM-observed at a magnification of 50 to 500 times. From the elemental contrast in the BSE-COMPO image, the presence or absence of composite particles having a structure in which the copper oxide powder was attached to the outer periphery of the metallic copper powder was confirmed (the BSE-COMPO image means a composition image obtained by a reflected electron detector). .. The evaluation results are shown in Table 1.
  • the lid of the molding container was sealed by welding, the degassing tube connected to the lid in advance was connected to the vacuum pump, and the inside of the molding container was evacuated and heated to 380 ° C. to degas the gas inside. After degassing, the degassing tube was sealed.
  • the degassed molded container was subjected to HIP treatment at 800 ° C. and 98 MPa. Then, the deformed state of the molded container, the presence or absence of cracks in the molded container, and the area ratio of the voids when the HIP treatment was performed were evaluated.
  • a sintered body is produced by a hot press method (pressurized pressure 30 MPa) using a mixed powder of metallic copper powder and copper oxide powder mixed using a Henschel mixer, and voids of the sintered body are produced. The area ratio of was evaluated.
  • FIGS. 6A and 6B show binarized images of the cross-sectional observation results of the sintered body.
  • FIG. 6A is HIP-sintered Example 1 of the present invention
  • FIG. 6B is Hot-press-sintered Reference Example 1.
  • Comparative Example 1-3 using a mixed powder of metallic copper powder and copper oxide powder mixed using a Henschel mixer, the fluidity was insufficient. In addition, the filling rate was insufficient. Therefore, the deformation of the molded container at the time of HIP became large, and cracks occurred. Further, in Reference Example 1 obtained by hot press sintering, as shown in FIG. 6B, many voids were present, and the area ratio of the voids exceeded 2%.
  • the angle of repose was in a certain range and the fluidity was excellent.
  • the filling rate became high. Therefore, the deformation of the molded container at the time of HIP is suppressed to be small, and the occurrence of cracks is suppressed.
  • the number of voids was small, and the area ratio of voids was suppressed to less than 2%. Therefore, in the case of the example of the present invention, it was possible to stably produce a sintered body by HIP.
  • Example 2 A molded container made of SPCC (ordinary steel) having the shape and dimensions shown in Table 2 is prepared, filled with the metallic copper / copper oxide-containing powder of Example 1 of the present invention in Example 1, and under the same conditions as in Example 1. , HIP sintering was carried out. Then, the molded container was removed by machining, the sintered body was taken out, and the dimensions were measured.
  • SPCC ordinary steel
  • Example 1 of the present invention By using the metallic copper / copper oxide-containing powder of Example 1 of the present invention, a flat plate having an absolute maximum length of the sputtered surface of 450 mm or more, which is difficult to sinter with a vacuum hot press device of a general scale, and A cylindrical sintered body having a length of 150 mm or more in the axial direction and having no cracks could be obtained.
  • Example 3 As Examples 21 and 22 of the present invention, the metallic copper / copper oxide-containing powder of the present invention Example 1 and the metallic copper / copper oxide-containing powder of the present invention Example 5 in the above-mentioned Example 1 were prepared. Three cylindrical sintered bodies having the shape and dimensions shown in Example 16 of the present invention of Example 2 were produced, and these were machined to obtain an outer diameter of 155 mm, an inner diameter of 135 mm, and a length of 198 mm. Three sputtering target materials with dimensions were obtained. Three of these were joined side by side to a backing tube made of Ti with a length of 640 mm to obtain a cylindrical sputtering target.
  • Example 21 the mixed powder of Comparative Example 1 in Example 1 was prepared, and the mixed powder was filled in a graphite mold in which a graphite core rod was arranged in the center, and the conditions were the same as those in Reference Example 1.
  • the graphite was sintered by the vacuum hot press method. By machining the obtained sintered body, four cylindrical target materials having the same outer diameter and inner diameter as those of Examples 21 and 22 of the present invention and having a length of 148 mm were produced. This was joined to the same backing tube as above and used as a sputtering target of the reference example.
  • the above-mentioned sputtering target was mounted on a cylindrical sputtering apparatus SPH-2324-MF manufactured by Showa Vacuum Co., Ltd., and a sputtering test was performed.
  • the sputtering conditions were electric power: DC 1500 W, gas pressure: Ar gas, 0.4 Pa. Discharging was performed for 1 hour under this condition, and the number of abnormal discharges that occurred was counted and recorded by the arc count function attached to the DC power supply. The results are shown in Table 3.
  • the filling rate when filled in a container can be sufficiently improved, and a metallic copper / copper oxide-containing powder particularly suitable as a sintering raw material, this metallic copper / copper oxide. It was confirmed that it is possible to provide a method for producing the contained powder, and a sputtering target capable of stably forming a copper oxide film, and a method for producing the sputtering target.
  • a metallic copper / copper oxide-containing powder which can sufficiently improve the filling rate in a container and is particularly suitable as a sintering raw material, and a method for producing the metallic copper / copper oxide-containing powder, Further, it is possible to provide a sputtering target material capable of stably forming a copper oxide film, and a method for producing the sputtering target material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

金属銅粉(11)と酸化銅粉(12)と不可避不純物からなる金属銅/酸化銅含有粉(10)であって、金属銅粉(11)は、酸化銅粉(12)よりも平均粒径が大きくされており、金属銅粉(11)の外周部に酸化銅粉(12)が付着した構造の複合粒子(15)を有している。また、金属銅粉(11)の外周部には、凹部が形成されており、複合粒子(15)は、金属銅粉(11)の外周部に形成された前記凹部に酸化銅粉(12)が充填された構造とされていてもよい。

Description

金属銅/酸化銅含有粉、金属銅/酸化銅含有粉の製造方法、及び、スパッタリングターゲット材、スパッタリングターゲット材の製造方法
 本発明は、例えば酸化銅膜を形成する際に用いられるスパッタリングターゲット材等の焼結体の原料粉として好適な金属銅/酸化銅含有粉、金属銅/酸化銅含有粉の製造方法、及び、スパッタリングターゲット材、スパッタリングターゲット材の製造方法に関するものである。
 本願は、2019年3月11日に、日本に出願された特願2019-044246号に基づき優先権を主張し、その内容をここに援用する。
 一般に、タッチセンサ等に用いられる導電性フィルムとしては、フィルムの両面に形成された透明導電体層と、各透明導電体層の表面に形成された金属層と、を有するものが知られている。
 ここで、上述の導電性フィルムにおいては、ロール状に巻いた際に、隣接する導電性フィルム同士が密着してしまい、密着した導電性フィルムを剥がした際に、透明導電体層に傷が生じるといった問題があった。
 そこで、特許文献1には、フィルム基材に無機ナノコーティング層を形成したフィルムが提案されている。このフィルムにおいては、無機ナノコーティング層によって隣接するフィルム同士の密着を抑制することが可能となる。なお、この無機ナノコーティング層として、酸化銅膜を適用することができる。
 フィルム等の基材の表面に酸化銅膜を形成する方法としては、例えば、酸化銅ターゲットを用いてスパッタリングを行う方法、や、無酸素銅ターゲットを用いて酸素ガスの存在下でスパッタリング(反応性スパッタ)を行う方法が開示されている。
 しかしながら、酸化銅ターゲットを用いた場合には、ターゲット自体の抵抗が非常に高く、DC(直流)スパッタが困難であることから、通常、RF(高周波)スパッタを行っている。このRF(高周波)スパッタにおいては、成膜速度が遅く、生産性が低下するといった問題があった。
 また、無酸素銅ターゲットを用いて酸素ガスの存在下でスパッタリングを行う場合には、銅と酸素との反応を十分に制御することができず、均一な酸化銅膜を成膜することが困難であった。
 そこで、例えば特許文献2、3には、酸化銅膜を安定して効率的に成膜するために、酸化銅相と金属銅相とを有するスパッタリングターゲット材が開示されている。
 これら特許文献2、3に開示されたスパッタリングターゲット材においては、金属銅相を有しているので、比抵抗値が低くなり、DC(直流)スパッタによって酸化銅膜を成膜することが可能となる。
日本国特表2014-529516号公報(A) 日本国特開2017-172039号公報(A) 日本国特開2018-145523号公報(A)
 ところで、特許文献2、3においては、金属銅粉と酸化銅粉とを所定の比率となるように秤量して混合し、得られた混合粉末を焼結原料とし、ホットプレスによって加圧加熱することにより、焼結体からなるスパッタリングターゲット材を製造している。
 しかしながら、ホットプレスによって焼結体を製造する場合には、加圧方向が限定されるため、得られた焼結体の形状によっては、その後の機械加工における加工量を多くする必要がある。このため、スパッタリングターゲット材を効率良く製造することが困難であった。
 また、製品の大面積化が増々要求されていることに伴って、ターゲットの大型化、円筒型については長尺化が要求されるようになっている。しかしながらホットプレスでは装置サイズの制限上、大型化や円筒の長尺化が困難であった。また、大型にすればするほど単位面積に加えられる荷重が小さくなり、高品質のターゲットを製造することが困難になってくる。さらに、大型化に対応するため分割数を多くすれば生産性が低下し、コスト面でも不利である。
 一方、熱間等方加圧法(HIP)によって焼結を実施した場合には、等方的に加圧されることから、焼結体の形状が安定することになり、その後の機械加工における加工量を低減でき、スパッタリングターゲット材を効率良く製造することが可能となる。
 また、装置サイズの制限が比較的緩和で大型なチャンバー構造が取れるHIPで製造する方がターゲットの大型化には有利である。
 上述の熱間等方加圧法(HIP)によって焼結する場合には、成形容器内に原料粉を充填し、この成形容器を等方加圧することになる。このため、成形容器内への原料粉の充填率が重要となる。なお、成形容器への充填率が60%未満となると、加圧時に容器が大きく変形してしまい、焼結体を得ることが困難となる。
 ここで、成形容器内に原料粉を高密度に充填するためには、容器内に円滑に原料粉を流し込むことができるように、原料粉の流動性を確保する必要がある。
 上述の金属銅粉と酸化銅粉とを混合した混合粉においては、流動性が低く、成形容器内への充填率が不十分であった。このため、成形容器内への原料粉の充填率を60%以上と高くすることが困難であった。
 よって、金属銅粉と酸化銅粉の混合粉末を用いて、上述の熱間等方加圧法(HIP)によって焼結を行うことができなかった。
 この発明は、前述した事情に鑑みてなされたものであって、容器内への充填率を十分に向上させることができ、焼結原料として特に適した金属銅/酸化銅含有粉、及び、この金属銅/酸化銅含有粉の製造方法、及び、安定して酸化銅膜を成膜可能なスパッタリングターゲット材、スパッタリングターゲット材の製造方法を提供することを目的とする。
 上記の課題を解決するために、本発明者らが鋭意検討した結果、以下のような知見を得た。
 金属銅粉においては、粒子間の摩擦力が低いため、流動性は高くなるが、タッピングしても充填が促進されず、充填率が低くなることが分かった。一方、酸化銅粉においては、粒子同士の摩擦力が高いため、タッピングした際に充填が促進され、充填率が高くなるが、流動性が不十分であることが分かった。このため、単に金属銅粉と酸化銅粉とを混合した混合粉においては、流動性が低くなり、かつ、充填率が不十分となった。
 そこで、容器内への充填率を高くするためには、流動性を確保しつつ、タッピングした際に充填が十分に促進されるように構成する必要があるとの知見を得た。
 本発明は、上述の知見に基づいてなされたものであって、本発明の金属銅/酸化銅含有粉は、金属銅粉と酸化銅粉と不可避不純物からなる金属銅/酸化銅含有粉であって、前記金属銅粉は、前記酸化銅粉よりも平均粒径が大きくされており、前記金属銅粉の外周部に前記酸化銅粉が付着した構造の複合粒子を有していることを特徴としている。
 この構成の金属銅/酸化銅含有粉によれば、金属銅粉の外周部に酸化銅粉が付着することにより、粒子間の摩擦力が大きくなり、タッピング時に充填を促進させることができ、充填率を向上させることができる。また、金属銅粉の外周部に酸化銅粉が付着した構造とされているので、流動性の低い酸化銅粉の存在比率が相対的に少なくなり、流動性が確保されることになる。
 よって、容器内への充填率を高くすることができ、熱間等方加圧法(HIP)によって焼結を行うことができる。
 ここで、本発明の金属銅/酸化銅含有粉においては、前記金属銅粉の外周部には、凹部が形成されており、前記複合粒子は、前記金属銅粉の外周部に形成された前記凹部に前記酸化銅粉が充填された構造とされていることが好ましい。
 この場合、前記複合粒子が、前記金属銅粉の外周部に形成された前記凹部に前記酸化銅粉が充填された構造とされているので、前記金属銅粉の外周部に前記酸化銅粉を確実に付着させることができる。よって、流動性を確保することができ、かつ、充填率を向上させることができる。
 また、本発明の金属銅/酸化銅含有粉においては、前記金属銅粉のモル分率が50%以上75%以下の範囲内とされていてもよい。
 この場合、前記金属銅粉のモル分率が50%以上とされているので、流動性の低い酸化銅粉の存在比率が相対的に少なくなり、流動性を確保することができる。一方、前記金属銅粉のモル分率が75%以下とされているので、タッピング時に充填を十分に促進させることができ、充填率を向上させることができる。
 さらに、本発明の金属銅/酸化銅含有粉においては、安息角が40°以上56°以下の範囲内とされていることが好ましい。
 この場合、金属銅/酸化銅含有粉の安息角が40°以上とされているので、流動性が必要以上に高くなく、粒子間の摩擦力が確保されることになり、タッピング時に充填を十分に促進させることができ、充填率を向上させることが可能となる。一方、金属銅/酸化銅含有粉の安息角が56°以下とされているので、十分な流動性を確保することができる。
 さらに、本発明の金属銅/酸化銅含有粉においては、前記金属銅粉の平均粒径が30μm以上200μm以下の範囲内とされ、前記酸化銅粉の平均粒径が1μm以上10μm以下の範囲内とされていることが好ましい。
 この場合、前記金属銅粉の平均粒径および前記酸化銅粉の平均粒径が上述の範囲内とされているので、前記金属銅粉の外周部に前記酸化銅粉を確実に付着させることができ、複合粒子を確実に生成することが可能となる。
 本発明の金属銅/酸化銅含有粉の製造方法は、上述の金属銅/酸化銅含有粉を製造する金属銅/酸化銅含有粉の製造方法であって、金属銅粉と酸化銅粉とを混合する混合工程と、得られた混合粉を圧縮して圧粉体を形成する圧縮工程と、前記圧粉体を粉砕する粉砕工程と、を備えていることを特徴としている。
 この構成の金属銅/酸化銅含有粉の製造方法によれば、得られた混合粉を圧縮して圧粉体を形成する圧縮工程を備えているので、この圧縮工程において、前記金属銅粉の外周部に前記酸化銅粉を付着させることができる。そして、圧縮工程で得られた圧粉体を粉砕する粉砕工程により、前記金属銅粉の外周部に前記酸化銅粉が付着した構造の複合粒子を得ることができる。
 よって、流動性が確保され、タッピング時に充填率を十分に向上させることが可能な金属銅/酸化銅含有粉を製造することができる。
 本発明のスパッタリングターゲット材は、金属銅/酸化銅含有粉の焼結体からなり、断面組織に占めるボイドの面積率が2%未満であることを特徴としている。
 この構成のスパッタリングターゲット材によれば、金属銅/酸化銅含有粉の焼結体で構成されているので、比抵抗値が低く、DC(直流)スパッタによって酸化銅膜を成膜することが可能となる。そして、断面組織に占めるボイドの面積率が2%未満に制限されているので、スパッタ時における異常放電の発生を抑制でき、安定して、酸化銅膜を成膜することができる。
 ここで、本発明のスパッタリングターゲット材においては、円筒形状をなし、軸線方向長さが150mm以上とされていてもよい。
 あるいは、本発明のスパッタリングターゲット材においては、板形状をなし、スパッタ面の絶対最大長が450mm以上とされていてもよい。ここで、絶対最大長とは、スパッタ面の輪郭上の任意の2点間の距離の内、最大のものを意味する。
 これらの場合、スパッタ面の面積が確保され、大面積の基材に対して効率的に酸化銅膜を成膜することができる。
 本発明のスパッタリングターゲット材の製造方法は、金属銅/酸化銅含有粉の焼結体からなるスパッタリングターゲット材の製造方法であって、上述の金属銅/酸化銅含有粉を成形容器に充填する粉末充填工程と、前記成形容器内に充填した前記金属銅/酸化銅含有粉を、熱間等方加圧法によって加圧及び加熱して焼結するHIP焼結工程と、を有し、前記粉末充填工程では、前記金属銅/酸化銅含有粉の充填率を60%以上とし、前記HIP焼結工程では、加圧圧力を80MPa以上とすることを特徴としている。
 この構成のスパッタリングターゲット材の製造方法によれば、上述の金属銅/酸化銅含有粉を用いているので、粉末充填工程において、成形容器内への充填率を60%以上とすることが可能となる。よって、熱間等方加圧法により、安定して焼結体を得ることが可能となる。
 また、HIP焼結工程で、加圧圧力を80MPa以上としているので、十分な加圧圧力を負荷して焼結することにより、ボイドを減少させることができ、断面組織に占めるボイドの面積率を2%未満とすることができる。
 さらに、熱間等方加圧法によって焼結しているので、大型のスパッタリングターゲット材を効率的に製造することができる。
 本願発明の金属銅/酸化銅含有粉は、複数の金属銅粒子と複数の酸化銅粒子とからなる金属銅/酸化銅含有粉であって、不可避不純物を含んでもよい。
 前記複数の金属銅粒子の平均粒径は、前記複数の酸化銅粒子の平均粒径よりも大きくてもよい。
 前記金属銅/酸化銅含有粉は、一つ又は複数の金属銅粒子と複数の酸化銅粒子とからなる複合粒子を有してもよい。
 金属銅粒子の外周部には、前記複数の酸化銅粒子が付着していてもよい。
 金属銅粒子の外周部に形成された凹部は、前記複数の酸化銅粒子により充填されていてもよい。
 金属銅粒子の外周部に付着した、前記複数の酸化銅粒子の一部は、前記凹部を充填してもよい。
 本発明によれば、容器内への充填率を十分に向上させることができ、焼結原料として特に適した金属銅/酸化銅含有粉、及び、この金属銅/酸化銅含有粉の製造方法、及び、安定して酸化銅膜を成膜可能なスパッタリングターゲット材、スパッタリングターゲット材の製造方法を提供することができる。
本発明の一実施形態に係る金属銅/酸化銅含有粉の観察写真である。 金属銅粉と酸化銅粉とを混合した混合粉の観察写真である。 本実施形態である金属銅/酸化銅含有粉の製造方法を示すフロー図である。 本実施形態であるスパッタリングターゲット材を用いたスパッタリングターゲットの説明図であり、平面図を示す。 本実施形態であるスパッタリングターゲット材を用いたスパッタリングターゲットの説明図であり、正面図を示す。 本実施形態であるスパッタリングターゲット材の製造方法を示すフロー図である。 実施例(本発明例1)における断面観察結果の二値化処理像である。 実施例(参考例1)における断面観察結果の二値化処理像である。
 以下に、本発明の実施形態である金属銅/酸化銅含有粉、金属銅/酸化銅含有粉の製造方法、及び、スパッタリングターゲット材、スパッタリングターゲット材の製造方法について添付した図面を参照して説明する。
<金属銅/酸化銅含有粉>
 本実施形態に係る金属銅/酸化銅含有粉は、例えば、酸化銅膜を成膜する際に使用されるスパッタリングターゲット材を構成する焼結体を製造する際に、焼結原料として好適に用いられるものである。
 本実施形態の金属銅/酸化銅含有粉の観察写真を図1に示す。また、複数の金属銅粒子からなる金属銅粉と複数の酸化銅粒子からなる酸化銅粉を混合した混合粉の観察写真を図2に示す。
 本実施形態に係る金属銅/酸化銅含有粉10は、図1に示すように、金属銅粉11と酸化銅粉12とを含有している。ここで、金属銅粉11は、酸化銅粉12よりも平均粒径が大きくされている。
 そして、本実施形態に係る金属銅/酸化銅含有粉10においては、金属銅粉11の外周部に酸化銅粉12が付着した構造の複合粒子15を有している。
 ここで、本実施形態の金属銅粉11においては、図1及び図2に示すように、その外周部に凹部が形成されている。
 凹部とは金属銅粉11の表面上で内側に凹んでいる部分のうち、その断面が鋭角形状に凹んだものをいう。
 そして、上述の複合粒子15は、金属銅粉11の外周部に形成された前記凹部に酸化銅粉12が充填された構造とされている。
 凹部に酸化銅粉12が充填された構造とは、金属銅粉11の外周面に形成された凹部の少なくとも一つに、酸化銅紛12が付着し、複合粒子15の外周形状が平坦形状又は突出形状となっている構造を意味する。
 金属銅粉11としては、例えば電解銅粉を用いることができる。なお、電解銅粉は、デンドライト組織が残存することによって、図1及び図2に示すように、その外周部に凹部が形成されることになる。また、本実施形態では、金属銅粉11は、純度が99.99mass%以上のものを使用することが好ましい。
 また、本実施形態では、金属銅粉11の平均粒径は、30μm以上200μm以下の範囲内とされている。
 酸化銅粉12としては、CuO粉、CuO粉、及び、CuO粉とCuO粉の混合粉を用いることができる。また、本実施形態では、酸化銅粉12は、純度が99mass%以上のものを使用することが好ましい。
 また、本実施形態では、酸化銅粉12の平均粒径は、1μm以上10μm以下の範囲内とされている。
 また、本実施形態に係る金属銅/酸化銅含有粉10においては、前記金属銅粉のモル分率が50%以上75%以下の範囲内とされていることが好ましい。
 さらに、本実施形態に係る金属銅/酸化銅含有粉10においては、安息角が40°以上56°以下の範囲内とされていることが好ましい。
 以下に、本実施形態の金属銅/酸化銅含有粉10において、複合粒子15の構造、金属銅粉11の含有量、安息角、金属銅粉11及び酸化銅粉12の平均粒径を、上述のように規定した理由を説明する。
(複合粒子15)
 金属銅粉11は、流動性が高いが、タッピングを実施しても充填率が向上しない。これは、タッピングを実施しても、粒子間の摩擦力が低いため、タッピング時に粒子が滑るように移動するためと推測される。そこで、本実施形態では、金属銅粉11の外周部に酸化銅粉12を付着させることにより、粒子間の摩擦力を確保し、タッピング時に充填を十分に促進させ、充填率の向上を図っている。
 また、複合粒子15が存在することにより、流動性の低い酸化銅粉12の存在比率が相対的に少なくなり、流動性が確保されることになる。
 ここで、複合粒子15を、金属銅粉11の外周部に形成された前記凹部に酸化銅粉12が充填された構造とすることにより、金属銅粉11と酸化銅粉12とが強固に固着されることになる。
(金属銅粉11のモル分率)
 本実施形態である金属銅/酸化銅含有粉10において、金属銅粉11のモル分率を50%以上とした場合には、流動性の低い酸化銅粉12の含有量が相対的に少なくなり、流動性を確保することができる。一方、金属銅粉11のモル分率を75%以下とした場合には、複合粒子15を形成しない酸化銅粉12が存在することを抑制でき、タッピング時に充填を十分に促進させることができ、充填率を向上させることが可能となる。
 なお、金属銅粉11のモル分率の下限は、55%以上とすることが好ましく、60%以上とすることがさらに好ましい。一方、金属銅粉11のモル分率の上限は、70%以下とすることが好ましく、65%以下とすることがさらに好ましい。
 ここでいう金属銅粉11のモル分率とは、金属銅/酸化銅含有粉10に含まれる金属銅の元素数と酸化銅の分子数の合計に対する金属銅の元素数の割合を意味する。
 金属銅粉11のモル分率は、金属銅/酸化銅含有粉10の製造に、原材料として使用する金属銅粉末11及び酸化銅粉末12の組成及び混合比率から計算することができる。
(安息角)
 粉体を自由落下させた際に形成される粉体層の安息角が小さいほど、粉体の流動性が高いことになる。なお、粉体の安息角は、例えばJIS R9301-2-2「アルミナ粉末-第2部:物性測定方法-2:安息角」に規定された方法で測定することができる。
 ここで、本実施形態である金属銅/酸化銅含有粉10において、安息角を40°以上とした場合には、流動性が必要以上に高くならず、粒子同士の摩擦力が確保され、タッピング時に充填を十分に促進させることができ、充填率を向上させることが可能となる。一方、本実施形態である金属銅/酸化銅含有粉10において、安息角を56°以下とした場合には、流動性を確保することが可能となる。
 なお、金属銅/酸化銅含有粉10の安息角の下限は、45°以上とすることが好ましく、48°以上とすることがさらに好ましい。一方、金属銅/酸化銅含有粉10の安息角の上限は、54°以下とすることが好ましく、52°以下とすることがさらに好ましい。
(金属銅粉11及び酸化銅粉12の平均粒径)
 本実施形態である金属銅/酸化銅含有粉10においては、上述のように、金属銅粉11は、酸化銅粉12よりも平均粒径が大きくされている。そして、金属銅粉の平均粒径を30μm以上200μm以下の範囲内とし、酸化銅粉12の平均粒径を1μm以上10μm以下の範囲内とした場合には、金属銅粉11の外周部に酸化銅粉12を確実に付着させることができ、上述の複合粒子15を確実に生成することが可能となる。
 なお、金属銅粉11の平均粒径の下限は、40μm以上とすることが好ましく、50μm以上とすることがさらに好ましい。一方、金属銅粉11の平均粒径の上限は、150μm以下とすることが好ましく、100μm以下とすることがさらに好ましい。
 また、酸化銅粉12の平均粒径の下限は、2μm以上とすることが好ましく、3μm以上とすることがさらに好ましい。一方、酸化銅粉12の平均粒径の上限は、8μm以下とすることが好ましく、7μm以下とすることがさらに好ましい。
 なお、金属銅/酸化銅含有粉、金属銅粉、酸化銅粉の平均粒径は、レーザー回折散乱式法粒度分布測定法で測定することができる。ヘキサメタリン酸Na水溶液に、金属銅/酸化銅含有粉、金属銅粉、酸化銅粉を、超音波分散させ、マイクロトラックベル株式会社製 マイクロトラックMT3000IIにて分析した。平均粒径は得られた粒度分布のMV値とした。
 次に、本実施形態である金属銅/酸化銅含有粉10の製造方法について、図3のフロー図を用いて説明する。
(混合工程S01)
 まず、上述した金属銅粉11と酸化銅粉12を準備する。そして、金属銅粉11と酸化銅粉12をそれぞれ所定の比率となるように秤量し、ヘンシェルミキサー等の混合装置を用いて混合する。このとき、金属銅粉の酸化を防ぐために、混合装置内の雰囲気をAr等の不活性ガス雰囲気とすることが好ましい。
(圧縮工程S02)
 次に、上述のようにして得られた混合粉を加圧して圧粉体を成形する。ここで、圧粉体を成形する際には、一軸加圧プレス機を用いてもよい。なお、加圧圧力は、100MPa以上200MPa以下の範囲内とすることが好ましい。
 この圧縮工程S02において、金属銅粉11の外周部に酸化銅粉12が圧着されるとともに、金属銅粉11の外周部に形成された凹部に酸化銅粉12が充填される。
(粉砕工程S03)
 上述のようにして得られた圧粉体を粉砕して粉砕粉を得る。ここで、粉砕方法については、特に制限はなく、手動で粉砕してもよいし、粉砕装置を用いて粉砕してもよい。
(分級工程S04)
 次に、得られた粉砕粉を篩等によって分級して、所定の粒度分布の金属銅/酸化銅含有粉10を得る。この金属銅/酸化銅含有粉10には、金属銅粉11の外周部に酸化銅粉12が付着した構造の複合粒子15が含まれることになる。
 上述の工程により、本実施形態である金属銅/酸化銅含有粉10が製造されることになる。
<スパッタリングターゲット材>
 次に、本実施形態に係るスパッタリングターゲット材について説明する。本実施形態に係るスパッタリングターゲット材は、DC(直流)スパッタにより、酸化銅膜を成膜する際に使用されるものである。
 図4A及び図4Bに、本実施形態に係るスパッタリングターゲット材21を用いたスパッタリングターゲット20を示す。
 このスパッタリングターゲット20は、図4A及び図4Bに示すように、軸線Oに沿って延在する円筒形状をなすスパッタリングターゲット材21と、このスパッタリングターゲット材21の内周側に挿入された円筒形状のバッキングチューブ22とを備えている。
 そして、円筒形状のスパッタリングターゲット材21とバッキングチューブ22は、In又はIn合金からなる接合層23を介して接合されている。
 また、本実施形態であるスパッタリングターゲット材21においては、上述した本実施形態である金属銅/酸化銅含有粉10の焼結体からなり、金属銅相と酸化銅相とを有するものとされており、酸化銅相の体積率が80vol%を超えて97.5vol%以下の範囲内とされている。このように、金属銅相と酸化銅相とを有する組織とすることにより、スパッタリングターゲット材21の導電性が確保されることになり、DC(直流)スパッタによって酸化銅膜を成膜することが可能となる。
 そして、本実施形態であるスパッタリングターゲット材21においては、断面組織に占めるボイドの面積率が2%未満に制限されている。すなわち、ボイドの個数が十分に低減されている。
 なお、ボイドの面積率は、断面観察写真を、市販の画像ソフト等によって画像処理して二値化し、二値化した画像でボイドと認識された領域の面積を測定することで算出することができる。
 ここで、本実施形態である円筒形状のスパッタリングターゲット材21のサイズは、例えば外径Dが145mm≦D≦170mmの範囲内、内径dが120mm≦d≦140mmの範囲内、軸線O方向長さLが150mm≦L≦300mmの範囲内とされている。
 バッキングチューブ22は、円筒形状のスパッタリングターゲット材21を保持して機械的強度を確保するために設けられたものであり、さらには円筒形状のスパッタリングターゲット材21への電力供給、及び、円筒形状のスパッタリングターゲット材21の冷却といった機能を有するものである。
 このため、バッキングチューブ22としては、機械的強度、電気伝導性及び熱伝導性に優れていることが求められており、例えばSUS304等のステンレス鋼、チタン等で構成されている。
 ここで、このバッキングチューブ22のサイズは、例えば外径Dが119.5mm≦D≦139.5mmの範囲内、内径dが110mm≦d≦130mmの範囲内、軸線O方向長さLが170mm≦L≦2000mmの範囲内とされている。
 次に、本実施形態であるスパッタリングターゲット材21の製造方法について、図5のフロー図を用いて説明する。
(粉末充填工程S11)
 まず、上述した本実施形態である金属銅/酸化銅含有粉10を準備する。この金属銅/酸化銅含有粉10を成形容器内に充填する。充填時には、治具を用いて金属銅/酸化銅含有粉10を押し固めた。これにより、充填率を60%以上とした。なお、成形容器への充填率は、以下のようにして算出することができる。
 まず、成形容器内に充填された金属銅/酸化銅含有粉10の重量を測定し、この重量を成形容器の内容積で割ることにより、嵩密度を算出する。
 つぎに、金属銅粉の重量WCu(g)、酸化銅粉(CuO)の重量WCuO(g)、酸化銅粉(CuO)の重量WCu2O(g)、金属銅の理論密度DCu=8.9g/cm、酸化銅(CuO)の理論密度DCuO=6.3g/cm、酸化銅(CuO)の理論密度DCu2O=6.0g/cmを用いて、以下の式によって、金属銅/酸化銅含有粉10の理論密度を算出する。
(理論密度)=(WCu+WCuO+WCu2O)/(WCu/DCu+WCuO/DCuO+WCu2O/DCu2O
 そして、上述の嵩密度と理論密度から、以下の式により、「充填率(%)」が算出される。
   (充填率)=(嵩密度)/(理論密度)×100
(真空脱気工程S12)
 次に、金属銅/酸化銅含有粉10を充填した成形容器の蓋を溶接で封止し、事前に蓋に接続した脱気管を真空ポンプへ接続し、成形容器内部を真空引きしながら加熱し、内部のガスを脱気し、脱気が終了したら脱気管を封止する。
(HIP焼結工程S13)
 次に、成形容器内に充填された金属銅/酸化銅含有粉10を、熱間等方加圧法によって、加圧及び加熱して焼結し、焼結体を得る。
 ここで、加圧圧力を80MPa以上150MPa以下の範囲内、加熱温度を700℃以上850℃以下の範囲内とする。
 なお、加圧圧力の下限は90MPa以上とすることが好ましく、95MPa以上とすることがさらに好ましい。一方、加圧圧力の上限は130MPa以下とすることが好ましく、110MPa以下とすることがさらに好ましい。
 また、加熱温度の下限は720℃以上とすることが好ましく、740℃以上とすることがさらに好ましい。一方、加熱温度の上限は850℃以下とすることが好ましく、800℃以下とすることがさらに好ましい。
(機械加工工程S14)
 HIP焼結工程S13で得られた焼結体に対して、機械加工を行うことにより、所定の形状及び寸法のスパッタリングターゲットを得る。
 上述の工程によって、本実施形態であるスパッタリングターゲットが製造される。
 以上のような構成とされた本実施形態である金属銅/酸化銅含有粉10によれば、金属銅粉11の外周部に酸化銅粉12が付着した複合粒子15を有しているので、粒子間の摩擦力が大きくなり、タッピング時に充填を十分に促進させることができ、充填率を向上させることが可能となる。また、金属銅粉11の外周部に酸化銅粉12が付着することにより、流動性の低い酸化銅粉12の存在比率が相対的に少なくなり、金属銅/酸化銅含有粉10の流動性が向上することになる。
 よって、本実施形態である金属銅/酸化銅含有粉10においては、流動性が確保されるとともに、粒子同士の摩擦力が確保されているので、成形容器内に充填した際の充填率を例えば60%以上、好ましくは65%以上とすることができ、熱間等方加圧法(HIP)によって安定して焼結を行うことができる。
 また、本実施形態である金属銅/酸化銅含有粉10において、上述の複合粒子15が、金属銅粉11の外周部に形成された凹部に酸化銅粉12が充填された構造とされている場合には、金属銅粉11の外周部に酸化銅粉12を確実に付着させることができ、金属銅/酸化銅含有粉10の流動性を確保できるとともに、タッピング時に充填を十分に促進させることができ、充填率を向上させることが可能となる。
 また、本実施形態である金属銅/酸化銅含有粉10において、金属銅粉11のモル分率を50%以上75%以下の範囲内とした場合には、酸化銅粉12の存在比率を相対的に少なくすることで流動性を確保することができるとともに、タッピング時に充填を十分に促進させることができ、充填率を向上させることが可能となる。
 さらに、本実施形態である金属銅/酸化銅含有粉10において、安息角を40°以上56°以下の範囲内とした場合には、十分な流動性を確保することができるとともに、粒子同士の摩擦力を確保することで充填率を十分に向上させることが可能となる。
 また、本実施形態である金属銅/酸化銅含有粉10において、金属銅粉11の平均粒径が30μm以上200μm以下の範囲内とされ、酸化銅粉12の平均粒径が1μm以上10μm以下の範囲内とされている場合には、金属銅粉11の外周部に酸化銅粉12を確実に付着させることができ、上述の複合粒子15を確実に生成することが可能となる。
 また、金属銅粉11の外周部に凹部が形成されている場合には、この凹部に酸化銅粉12を十分に充填させることが可能となる。
 本実施形態である金属銅/酸化銅含有粉10の製造方法によれば、混合工程S01で得られた混合粉を圧縮して圧粉体を形成する圧縮工程S02を備えているので、この圧縮工程S02において、金属銅粉11の外周部に酸化銅粉12を圧着させることができる。そして、圧縮工程S02で得られた圧粉体を粉砕する粉砕工程S03により、金属銅粉11の外周部に酸化銅粉12が付着した構造の複合粒子15を得ることができる。
 よって、流動性が確保され、かつ、充填率に優れた金属銅/酸化銅含有粉10を製造することができる。
 本実施形態であるスパッタリングターゲット材21によれば、金属銅/酸化銅含有粉10の焼結体で構成されているので、比抵抗値が低く、DC(直流)スパッタによって酸化銅膜を成膜することが可能となる。
 また、断面組織に占めるボイドの面積率が2%未満に制限されているので、スパッタ時における異常放電の発生を抑制でき、安定して、酸化銅膜を成膜することができる。
 さらに、本実施形態においては、スパッタリングターゲット材21は、円筒形状をなしており、軸線O方向長さLが150mm≦L≦300mmの範囲内とされているので、スパッタ面(円筒面)の面積が確保され、大面積の基材に対して効率的に酸化銅膜を成膜することができる。
 本実施形態であるスパッタリングターゲット材21の製造方法によれば、金属銅/酸化銅含有粉10を用いているので、粉末充填工程S11において、成形容器内への充填率を60%以上とすることが可能となる。よって、熱間等方加圧法により、安定して焼結体を得ることが可能となる。
 また、HIP焼結工程S13で、加圧圧力を80MPa以上150MPa以下の範囲内としているので、十分な加圧圧力を負荷して焼結することにより、ボイドを減少させることができ、断面組織に占めるボイドの面積率を2%未満とすることができる。
 さらに、熱間等方加圧法によって焼結しているので、大型のスパッタリングターゲット材21を効率的に製造することができる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、金属銅粉として電解銅粉を用いるものとして説明したが、これに限定されることはなく、他の金属銅粉を用いてもよい。
 また、本実施形態では、図4A及び図4Bに示すように、円筒形状をなすスパッタリングターゲット材21として説明したが、これに限定されることはなく、例えば、スパッタ面が円形をなす円板型のスパッタリングターゲットであってもよいし、スパッタ面が矩形形をなす矩形平板型のスパッタリングターゲットであってもよい。なお、これらのスパッタリングターゲットにおいては、スパッタ面の絶対最大長(スパッタ面の輪郭上の任意の2点間の距離の内、最大のもの)が450mm以上であることが好ましい。
 以下に、前述した本発明の金属銅/酸化銅含有粉、及び、金属銅/酸化銅含有粉の製造方法について評価した評価試験の結果について説明する。
(実施例1)
 金属銅粉として、電解銅粉(純度:99.99mass%以上、平均粒径:75μm)を準備した。また、酸化銅粉として、CuO粉(純度:99.99mass%以上、平均粒径:5μm)を準備した。
 これら金属銅粉及び酸化銅粉を、表1に記載のモル比になるように秤量し、ヘンシェルミキサーを用いてAr雰囲気下で混合し、金属銅粉及び酸化銅粉の混合粉を得た。
 そして、本発明例においては、得られた混合粉を、一軸加圧法によって圧力167MPaで加圧し、圧粉体を成形した。次に、得られた成形体を、乳鉢を用いて粉砕した。その後、目開き710μmの篩を用いて分級し、金属銅/酸化銅含有粉を得た。
 なお、比較例においては、ヘンシェルミキサーを用いて混合した金属銅粉及び酸化銅粉の混合粉とした。
 得られた本発明例の金属銅/酸化銅含有粉、及び、比較例の金属銅粉及び酸化銅粉の混合粉について、以下の項目について評価した。
(複合粒子の有無)
 得られた金属銅/酸化銅含有粉をエポキシ樹脂内に分散させ、これを硬化させた後、研磨、イオンミリング加工を実施して観察試料を作成した。この観察試料を倍率50倍から500倍でSEM観察した。BSE-COMPO像における元素コントラストから、金属銅粉の外周部に酸化銅粉が付着した構造の複合粒子の有無を確認した(BSE-COMPO像は反射電子検出器により得られる組成像を意味する)。評価結果を表1に示す。
(安息角)
 ホソカワミクロン株式会社製パウダーテスターPT-Xを用いて、注入法によって測定した。
 まず、200cmの粉体を、装置内に設置した篩付き供給容器に充填した。篩は、目開きが710μmのものを使用した。
 供給容器を上下方向に20秒間振動させ、粉体を自由落下でふるい落とし、装置に設置した安息角テーブル上に堆積させた。
 安息角テーブルから粉体が溢れた時点で粉体の供給を停止し、形成された粉体層の安息角を測定した。評価結果を表1に示す。
(充填率)
 SPCC(普通鋼)からなる成形容器に、粉体を充填した。充填時は、治具を押すことによって粉体を押し固めた。この時の充填率を表1に示す。なお、充填率は、上述の実施形態の欄に記載した式によって算出した。
(HIP焼結)
 成形容器の蓋を溶接で封止し、事前に蓋に接続した脱気管を真空ポンプへ接続し、成形容器内部を真空引きしながら380℃まで加熱し、内部のガスを脱気した。脱気後は、脱気管を封止した。脱気後の成形容器を、800℃、98MPaでHIP処理を行った。
 そして、HIP処理を実施した際の成形容器の変形状態、成形容器の割れの有無、ボイドの面積率について評価した。
 なお、参考例1として、ヘンシェルミキサーを用いて混合した金属銅粉及び酸化銅粉の混合粉を用いて、ホットプレス法(加圧圧力30MPa)によって焼結体を製造し、焼結体のボイドの面積率を評価した。
(ボイドの面積率)
 得られた焼結体から観察試料を採取し、切断面を研磨してSEM観察した。倍率は500倍、視野は245μm×170μmとした。得られたSEM画像に対して、Windows用のフリーウエアであるFiji(https://imagej.net/Fiji)を用いてボイド部分と非ボイド部の分離を実施した。フリーハンドラインで断面組織中のボイド部、及び非ボイド部をそれぞれ10か所指定し、得られた分離後の画像を白黒画像に変換して二値化処理を実施した。得られた二値化像から、ボイド部の面積を算出し、全てのボイド部の面積の合計値を、SEM画像中の二値化処理を行った全領域の面積で割ってボイド面積率を算出した。
 ここで、図6A及び図6Bに、焼結体の断面観察結果の二値化処理像を示す。図6AがHIP焼結した本発明例1、図6Bがホットプレス焼結した参考例1である。
Figure JPOXMLDOC01-appb-T000001
 ヘンシェルミキサーを用いて混合した金属銅粉及び酸化銅粉の混合粉を用いた比較例1-3においては、流動性が不十分であった。また、充填率が不十分であった。このため、HIP時における成形容器の変形が大きくなり、割れが生じた。
 また、ホットプレス焼結した参考例1においては、図6Bに示すように、ボイドが多く存在し、ボイドの面積率が2%を超えた。
 一方、本発明例においては、安息角が一定の範囲にあり、流動性に優れていた。また、充填率が高くなった。このため、HIP時における成形容器の変形が小さく抑えられており、割れの発生が抑制された。また、図6Aに示すように、ボイドの数が少なく、ボイドの面積率が2%未満に抑えられていた。
 よって、本発明例であれば、HIPによって焼結体を安定して製造することが可能であった。
(実施例2)
 表2に示す形状及び寸法のSPCC(普通鋼)からなる成形容器を準備し、実施例1における本発明例1の金属銅/酸化銅含有粉を充填して、実施例1と同様の条件において、HIP焼結を実施した。その後、機械加工により成型容器を除去して焼結体を取り出し、寸法の測定を実施した。
 本発明例1の金属銅/酸化銅含有粉を用いることにより、一般的な規模の真空ホットプレス装置では焼結することが困難である、スパッタ面の絶対最大長が450mm以上の平板、及び、軸方向の長さ150mm以上の円筒の、割れの無い焼結体を得ることができた。
Figure JPOXMLDOC01-appb-T000002
(実施例3)
 本発明例21、22として、上述の実施例1における本発明例1の金属銅/酸化銅含有粉、本発明例5の金属銅/酸化銅含有粉を準備した。これらを、実施例2の本発明例16に示す形状及び寸法の円筒型の焼結体を各3本ずつ作製し、これを機械加工することにより、外径155mm、内径135mm、長さ198mmの寸法の3本のスパッタリングターゲット材を得た。
 これをTi製の長さ640mmのバッキングチューブに3本並べて接合し、円筒型のスパッタリングターゲットを得た。
 また、参考例21として、実施例1における比較例1の混合粉を準備し、この混合粉を、中心部に黒鉛の芯棒を配置した黒鉛モールドに充填し、参考例1と同様の条件にて真空ホットプレス法による焼結を行った。得られた焼結体を機械加工することにより、外径内径は上記本発明例21、22と同じで、長さが148mmの円筒型ターゲット材を4本作製した。
 これを上記と同じバッキングチューブに接合し、参考例のスパッタリングターゲットとした。
(異常放電回数)
 上述のスパッタリングターゲットを、昭和真空株式会社製の円筒型スパッタ装置SPH-2324-MFに装着し、スパッタ試験を行った。スパッタ条件は、電力:直流1500W、ガス圧:Arガス、0.4Paとした。
 この条件で1時間の放電を行い、発生した異常放電の回数を直流電源付属のアークカウント機能により計数し記録した。その結果を表3に示す
(ボイドの面積率)
 スパッタ試験後のスパッタリングターゲット材をバッキングチューブから取り外し、所定のサイズに切断して、樹脂埋めして断面観察し、実施例1と同様に、ボイドの面積率を測定した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 ホットプレス焼結した参考例21においては、ボイドの面積率が2%を超えており、異常放電回数が18回と多くなった。
 これに対して、本発明の金属銅/酸化銅含有粉を用いてHIP焼結した本発明例21、22においては、ボイドの面積率が2%未満に抑えられており、異常放電回数も9回以下となった。よって、本発明のスパッタリングターゲットにおいては、安定して酸化銅膜が成膜可能であった。
 以上のことから、本発明によれば、容器内に充填した際の充填率を十分に向上させることができ、焼結原料として特に適した金属銅/酸化銅含有粉、この金属銅/酸化銅含有粉の製造方法、及び、安定して酸化銅膜を成膜可能なスパッタリングターゲット、スパッタリングターゲットの製造方法を提供可能であることが確認された。
 本発明によれば、容器内への充填率を十分に向上させることができ、焼結原料として特に適した金属銅/酸化銅含有粉、及び、この金属銅/酸化銅含有粉の製造方法、及び、安定して酸化銅膜を成膜可能なスパッタリングターゲット材、スパッタリングターゲット材の製造方法を提供することができる。
 10  金属銅/酸化銅含有粉
 11  金属銅粉
 12  酸化銅粉
 15  複合粒子
 21  スパッタリングターゲット材

Claims (10)

  1.  金属銅粉と酸化銅粉と不可避不純物からなる金属銅/酸化銅含有粉であって、
     前記金属銅粉は、前記酸化銅粉よりも平均粒径が大きくされており、
     前記金属銅粉の外周部に前記酸化銅粉が付着した構造の複合粒子を有していることを特徴とする金属銅/酸化銅含有粉。
  2.  前記金属銅粉の外周部には、凹部が形成されており、前記複合粒子は、前記金属銅粉の外周部に形成された前記凹部に前記酸化銅粉が充填された構造とされていることを特徴とする請求項1に記載の金属銅/酸化銅含有粉。
  3.  前記金属銅粉のモル分率が50%以上75%以下の範囲内とされていることを特徴とする請求項1又は請求項2に記載の金属銅/酸化銅含有粉。
  4.  安息角が40°以上56°以下の範囲内とされていることを特徴とする請求項1から請求項3のいずれか一項に記載の金属銅/酸化銅含有粉。
  5.  前記金属銅粉の平均粒径が30μm以上200μm以下の範囲内とされ、前記酸化銅粉の平均粒径が1μm以上10μm以下の範囲内とされていることを特徴とする請求項1から請求項4のいずれか一項に記載の金属銅/酸化銅含有粉。
  6.  請求項1から請求項5のいずれか一項に記載の金属銅/酸化銅含有粉を製造する金属銅/酸化銅含有粉の製造方法であって、
     金属銅粉と酸化銅粉とを混合する混合工程と、
     得られた混合粉を圧縮して圧粉体を形成する圧縮工程と、
     前記圧粉体を粉砕する粉砕工程と、
    を備えていることを特徴とする金属銅/酸化銅含有粉の製造方法。
  7.  金属銅/酸化銅含有粉の焼結体からなり、断面組織に占めるボイドの面積率が2%未満であることを特徴とするスパッタリングターゲット材。
  8.  円筒形状をなし、軸線方向長さが150mm以上とされていることを特徴とする請求項7に記載のスパッタリングターゲット材。
  9.  板形状をなし、スパッタ面の絶対最大長が450mm以上とされていることを特徴とする請求項7に記載のスパッタリングターゲット材。
  10.  金属銅/酸化銅含有粉の焼結体からなるスパッタリングターゲット材の製造方法であって、
     請求項1から請求項5のいずれか一項に記載の金属銅/酸化銅含有粉を成形容器に充填する粉末充填工程と、前記成形容器内に充填した前記金属銅/酸化銅含有粉を、熱間等方加圧法によって加圧及び加熱して焼結するHIP焼結工程と、を有し、
     前記粉末充填工程では、前記金属銅/酸化銅含有粉の充填率を60%以上とし、
     前記HIP焼結工程では、加圧圧力を80MPa以上とすることを特徴とするスパッタリングターゲット材の製造方法。
PCT/JP2020/010144 2019-03-11 2020-03-10 金属銅/酸化銅含有粉、金属銅/酸化銅含有粉の製造方法、及び、スパッタリングターゲット材、スパッタリングターゲット材の製造方法 WO2020184531A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080011450.4A CN113365763A (zh) 2019-03-11 2020-03-10 含金属铜-氧化铜的粉末、含金属铜-氧化铜的粉末的制造方法及溅射靶材、溅射靶材的制造方法
KR1020217028744A KR20210135516A (ko) 2019-03-11 2020-03-10 금속구리/산화구리 함유 분말, 금속구리/산화구리 함유 분말의 제조 방법, 및 스퍼터링 타깃재, 스퍼터링 타깃재의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019044246A JP6853440B2 (ja) 2019-03-11 2019-03-11 金属銅及び酸化銅含有粉、金属銅及び酸化銅含有粉の製造方法、及び、スパッタリングターゲット材、スパッタリングターゲット材の製造方法
JP2019-044246 2019-03-11

Publications (1)

Publication Number Publication Date
WO2020184531A1 true WO2020184531A1 (ja) 2020-09-17

Family

ID=72426283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010144 WO2020184531A1 (ja) 2019-03-11 2020-03-10 金属銅/酸化銅含有粉、金属銅/酸化銅含有粉の製造方法、及び、スパッタリングターゲット材、スパッタリングターゲット材の製造方法

Country Status (4)

Country Link
JP (1) JP6853440B2 (ja)
KR (1) KR20210135516A (ja)
CN (1) CN113365763A (ja)
WO (1) WO2020184531A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034582A (ja) * 1999-07-26 2000-02-02 Jsr Corp 複合粒子および中空粒子
JP2018145523A (ja) * 2017-03-01 2018-09-20 三菱マテリアル株式会社 スパッタリングターゲット及びスパッタリングターゲットの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073047A (ja) * 1999-09-06 2001-03-21 Hitachi Metals Ltd 低熱膨張銅合金及びこれを用いた半導体装置並びに低熱膨張銅合金の製造方法
US9040120B2 (en) 2011-08-05 2015-05-26 Frito-Lay North America, Inc. Inorganic nanocoating primed organic film
EP2740553A1 (en) * 2012-12-07 2014-06-11 Sandvik Intellectual Property AB Method for manufacture of HIP consolidated component
WO2015170534A1 (ja) * 2014-05-08 2015-11-12 三井金属鉱業株式会社 スパッタリングターゲット材
JP6480266B2 (ja) * 2015-05-27 2019-03-06 株式会社神戸製鋼所 鉄基粉末冶金用混合粉及びその製造方法、並びに、焼結体
JP6876268B2 (ja) 2016-03-22 2021-05-26 三菱マテリアル株式会社 スパッタリングターゲット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034582A (ja) * 1999-07-26 2000-02-02 Jsr Corp 複合粒子および中空粒子
JP2018145523A (ja) * 2017-03-01 2018-09-20 三菱マテリアル株式会社 スパッタリングターゲット及びスパッタリングターゲットの製造方法

Also Published As

Publication number Publication date
KR20210135516A (ko) 2021-11-15
JP2020147773A (ja) 2020-09-17
JP6853440B2 (ja) 2021-03-31
CN113365763A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
KR20090018575A (ko) 인산 리튬 소결체의 제조방법 및 스펏터링 타겟
TW201704494A (zh) 多晶鎢及鎢合金燒結體以及該製造方法
JP2012237056A (ja) MoCrターゲット材の製造方法およびMoCrターゲット材
CN102812152A (zh) 溅射靶-背衬板组装体
JP2011225985A (ja) 円筒型Mo合金ターゲットの製造方法
KR102519021B1 (ko) 텅스텐 실리사이드 타깃 및 그 제조 방법
TWI545214B (zh) 鎢靶之製造方法
KR101546594B1 (ko) 몰리브덴 타겟의 제조 방법
CN105683407A (zh) 溅镀靶及其制造方法
WO1995004167A1 (fr) Cible en siliciure metallique a point de fusion eleve, son procede de production, couche en siliciure metallique a point de fusion eleve, et dispositif a semi-conducteurs
JP5884820B2 (ja) 希土類系ボンド磁石の製造方法
JP7033873B2 (ja) スパッタリングターゲット組立品及びその製造方法
WO2014024519A1 (ja) 焼結体およびスパッタリングターゲット
WO2020184531A1 (ja) 金属銅/酸化銅含有粉、金属銅/酸化銅含有粉の製造方法、及び、スパッタリングターゲット材、スパッタリングターゲット材の製造方法
KR20210049815A (ko) 스퍼터링 타깃 및 스퍼터링 타깃의 제조 방법
JP4721090B2 (ja) Mo系ターゲット材の製造方法
JPH04334832A (ja) 電極材料の製造方法
CN117587366A (zh) Mn-Zn-O系溅射靶及其制备方法
WO2016056441A1 (ja) W-Tiスパッタリングターゲット
EP2703349B1 (en) Lanthanum boride sintered body and method for producing the same
EP4169639A1 (en) Electric current sintering method and electric current sintering device
WO2016039154A1 (ja) 電極材料の製造方法及び電極材料
JP4591749B2 (ja) Moターゲット材の製造方法
JP2020012196A (ja) 放電加工用電極材若しくは半導体用ヒートシンク並びにそれらの製造方法
WO2023238285A1 (ja) 粉末、金属部品、電気接点、及び粉末の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20769208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20769208

Country of ref document: EP

Kind code of ref document: A1