JP6876268B2 - スパッタリングターゲット - Google Patents

スパッタリングターゲット Download PDF

Info

Publication number
JP6876268B2
JP6876268B2 JP2017038734A JP2017038734A JP6876268B2 JP 6876268 B2 JP6876268 B2 JP 6876268B2 JP 2017038734 A JP2017038734 A JP 2017038734A JP 2017038734 A JP2017038734 A JP 2017038734A JP 6876268 B2 JP6876268 B2 JP 6876268B2
Authority
JP
Japan
Prior art keywords
target
sputtering
less
phase
copper oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017038734A
Other languages
English (en)
Other versions
JP2017172039A (ja
Inventor
齋藤 淳
淳 齋藤
謙介 井尾
謙介 井尾
一郎 塩野
一郎 塩野
張 守斌
守斌 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to KR1020187021785A priority Critical patent/KR102237332B1/ko
Priority to PCT/JP2017/011207 priority patent/WO2017164168A1/ja
Priority to CN201780010079.8A priority patent/CN108603284A/zh
Publication of JP2017172039A publication Critical patent/JP2017172039A/ja
Application granted granted Critical
Publication of JP6876268B2 publication Critical patent/JP6876268B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、酸化銅膜を形成する際に用いられるスパッタリングターゲットに関するものである。
一般に、タッチセンサ等に用いられる導電性フィルムとしては、フィルムの両面に形成された透明導電体層と、各透明導電体層の表面に形成された金属層と、を有するものが知られている。
ここで、上述の導電性フィルムにおいては、ロール状に巻いた際に、隣接する導電性フィルム同士が密着してしまい、密着した導電性フィルムを剥がした際に、透明導電体層に傷が生じるといった問題があった。
そこで、特許文献1には、フィルム基材に無機ナノコーティング層を形成したフィルムが提案されている。このフィルムにおいては、無機ナノコーティング層によって隣接するフィルム同士の密着を抑制することが可能となる。なお、この無機ナノコーティング層として、酸化銅膜を適用することができる。
フィルム等の基材の表面に酸化銅膜を形成する方法としては、例えば、酸化銅ターゲットを用いてスパッタリングを行う方法、や、無酸素銅ターゲットを用いて酸素ガスの存在下でスパッタリング(反応性スパッタ)を行う方法が開示されている。
例えば、特許文献2には、酸素含有銅膜を成膜するための酸素含有銅ターゲットが提案されている。
また、特許文献3には、Cu/CuO複合合金からなるスパッタリングターゲットが開示されている。
特表2014−529516号公報 特開2008−280545号公報 特開2001−210641号公報
ところで、無酸素銅ターゲットを用いて酸素ガスの存在下でスパッタリングを行う場合には、銅と酸素との反応を十分に制御することができず、均一な酸化銅膜を成膜することが困難であった。
また、酸化銅ターゲットを用いた場合には、ターゲット自体の抵抗が非常に高く、DC(直流)スパッタが困難であることから、通常、RF(高周波)スパッタを行っている。このRF(高周波)スパッタにおいては、成膜速度が遅く、生産性が低下するといった問題があった。
さらに、特許文献2に記載された酸素含有銅ターゲットにおいては、酸素の含有量が少ないため、成膜された酸素含有銅膜が金属銅膜と同様の特性を有しており、酸化銅膜としての特性が不十分であった。
また、特許文献3には、CuOの配合率が80vol%を超えると加工が困難となることが記載されている。さらに、CuOの配合率が高くなると、成膜した配線膜の抵抗値が高くなることが記載されている。このため、特許文献3においては、CuOの配合率を80vol%以下に制限している。
なお、特許文献3に記載されているように、CuOの配合率が80vol%以下とされ、金属Cuの含有量が高い場合には、金属Cu相がネットワーク状に存在し、導電性が確保されている。このような構成のスパッタリングターゲットにおいては、金属Cuより導電性の低い酸化銅相が異常放電の原因となり、安定してスパッタを行うことができないおそれがあった。
この発明は、前述した事情に鑑みてなされたものであって、DCスパッタが可能であり、均一な酸化銅膜を成膜可能なスパッタリングターゲットを提供することを目的とする。
上記課題を解決するために、本発明のスパッタリングターゲットは、金属銅相と酸化銅相とを有し、前記酸化銅相の体積率が80vol%を超えて90vol%以下の範囲内とされており、ターゲットスパッタ面における抵抗値の平均値に対するばらつきが50%以下とされ、ターゲット組織中の前記金属銅相の平均粒径が10μm以上200μm以下の範囲内とされており、p型半導体の性質を有していることを特徴としている。
本発明のスパッタリングターゲットによれば、酸化銅相の体積率が80vol%を超えているので、酸化銅相が十分に存在しており、酸素ガス存在下でスパッタを行わなくても、酸化銅膜を成膜することができる。
また、酸化銅相の体積率が90vol%以下の範囲内とされ、ターゲット組織中の前記金属銅相の粒径が10μm以上200μm以下の範囲内とされているので、比較的微細な金属銅相が均一に分散していることになる。そして、ターゲットスパッタ面における抵抗値の平均値に対するばらつきが50%以下とされており、ターゲットスパッタ面の抵抗値のばらつきが小さいことから、ターゲット全体として導電性が十分に確保されている。よって、DCスパッタによって酸化銅膜を安定して成膜することが可能となる。
また、ターゲット全体としてp型半導体の性質を有している金属銅相が島状に分散され、これらの金属銅相の間に存在する酸化銅相がp型半導体としてターゲットの導電に寄与することにより、ターゲット全体としてp型半導体の性質を有し、導電性を確保することができると考えられる。これにより、酸化銅相が異常放電の原因となることなく、DCスパッタによって酸化銅膜を成膜することが可能となる。
一方、金属Cu相がネットワーク状に存在し、導電性が確保されている場合、ターゲット全体として半導体の性質を有さない。このような構成のスパッタリングターゲットにおいては、金属Cuより導電性の低い酸化銅相が異常放電の原因となり、安定してスパッタを行うことができないおそれがある。
また、本発明のスパッタリングターゲットにおいては、抵抗値が10Ω・cm以下であることが好ましい。
この場合、ターゲットの抵抗値が十分に低く抑えられているので、確実にDCスパッタを行うことができる。
さらに、本発明のスパッタリングターゲットにおいては、X線回折分析の結果、CuOの回折強度I1と、CuOの回折強度I2との比I1/I2が0.15以下であることが好ましい。
この場合、酸化銅相においてCuOの存在比率が少なく、CuOの存在比率が高い。ここで、CuOは金属銅と反応してCuOを生成することから、CuOの存在比率が高い場合には、金属銅とCuOとが十分に反応していないことになる。このため、酸化銅相においてCuOの存在比率を0.15以下とすることにより、均一にCuOが分散していることになり、ターゲット内における抵抗値のばらつきを抑えることができる。
また、本発明のスパッタリングターゲットにおいては、X線光電子分光分析の結果、CuOのピーク強度IP1とCu及びCuOのピーク強度IP2との比IP1/IP2が、0.03以上0.4以下の範囲内とされていることが好ましい。
この場合、CuOのピーク強度IP1とCu及びCuOのピーク強度IP2との比IP1/IP2が0.03以上とされており、酸化銅相においてCuOが存在しているので、焼結体の強度が向上し、製造時における割れの発生を抑制することができる。一方、IP1/IP2が0.4以下とされているので、酸化銅相においてCuOの存在比率が少なくなり、ターゲット内における抵抗値のばらつきを抑えることができる。
さらに、本発明のスパッタリングターゲットにおいては、密度が5.5g/cm以上7.5g/cm以下の範囲内とされていることが好ましい。
この場合、密度が5.5g/cm以上とされているので、ターゲットスパッタ面に存在する空隙を低減でき、スパッタ時における異常放電の発生を抑制することが可能となる。また、密度が7.5g/cm以下とされているので、加工性が向上し、スパッタリングターゲットの成形が容易となる。
本発明によれば、DCスパッタが可能であり、均一な酸化銅膜を成膜可能なスパッタリングターゲットを提供することができる。
ターゲット形状が平板で、ターゲットスパッタ面が円形をなすスパッタリングターゲットのターゲットスパッタ面における抵抗値の測定位置を示す説明図である。 ターゲット形状が平板で、ターゲットスパッタ面が矩形をなすスパッタリングターゲットのターゲットスパッタ面における抵抗値の測定位置を示す説明図である。 ターゲット形状が円筒で、ターゲットスパッタ面が円筒外周面であるスパッタリングターゲットのターゲットスパッタ面における抵抗値の測定位置を示す説明図である。 本発明例2及び比較例1におけるXRD結果の一例を示す図である。 本発明例16におけるXPS結果の一例を示す図である。
以下に、本発明の一実施形態であるスパッタリングターゲットについて説明する。なお、本実施形態であるスパッタリングターゲットは、酸化銅膜を成膜する際に用いられるものである。
本実施形態であるスパッタリングターゲットは、金属銅相と酸化銅相とを有し、酸化銅相の体積率が80vol%を超えて90vol%以下の範囲内とされてとされている。なお、本実施形態では、Cuの含有量が70原子%以上74原子%以下の範囲内とされている。
金属銅相は、ターゲット中に島状に分散しており、金属銅相の平均粒径は、10μm以上200μm以下の範囲内とされている。
そして、本実施形態であるスパッタリングターゲットにおいては、ターゲットスパッタ面における抵抗値の平均値に対するばらつきが50%以下とされている。
酸化銅相は、CuOを主体としており、一部にCuOが存在していてもよい。ここで、本実施形態であるスパッタリングターゲットにおいては、X線回折分析(XRD)の結果、CuOの回折強度I1と、CuOの回折強度I2との比I1/I2が0.15以下とされている。
さらに、本実施形態であるスパッタリングターゲットにおいては、X線光電子分光分析(XPS)の結果、CuOのピーク強度IP1とCu及びCuOのピーク強度IP2との比IP1/IP2が、0.03以上0.4以下の範囲内とされている。
そして、本実施形態であるスパッタリングターゲットにおいては、ターゲット全体としてp型半導体の性質を有している。
また、本実施形態であるスパッタリングターゲットの抵抗値は、10Ω・cm以下とされている。
さらに、本実施形態であるスパッタリングターゲットにおいては、密度が5.5g/cm以上7.5g/cm以下の範囲内とされている。
以下に、本実施形態であるスパッタリングターゲットにおける酸化銅相の体積率、金属銅相の平均粒径、抵抗値のばらつき、X線回折分析(XRD)の回折強度、X線光電子分光分析(XPS)のピーク強度、密度を、上述のように規定した理由について説明する。
(酸化銅相の体積率:80vol%超え、90vol%以下)
本実施形態であるスパッタリングターゲットにおいては、酸化銅膜をDCスパッタによって成膜するものであり、金属銅相と酸化銅相の存在比が特に重要となる。
ここで、酸化銅相の体積率が80vol%未満では、成膜された酸化銅膜中に金属銅が比較的多く存在し、酸化銅としての特性を有する酸化銅膜を成膜することができなくなるおそれがある。
一方、酸化銅相の体積率が90vol%を超えると、ターゲット全体の抵抗値が上昇し、DCスパッタを行うことができなくなるおそれがある。本実施形態では、金属銅相が島状に分散しており、これらの間に存在する酸化銅相が金属銅相と反応して縮退したp型半導体として作用することから、金属銅相が十分に分散していないとターゲット全体での抵抗値が上昇してしまうと考えられる。
このような理由から、本実施形態では、酸化銅相の体積率を80vol%超え、90vol%以下の範囲内に設定している。
なお、特性に優れた酸化銅膜を確実に成膜するためには、酸化銅相の体積率を85vol%以上とすることが好ましい。一方、スパッタリングターゲットの抵抗値をさらに低く抑えるためには、酸化銅相の体積率を85vol%以下とすることが好ましい。すなわち、酸化銅相の体積率を80vol%超え、90vol%以下の範囲内において、要求される特性又は抵抗値を考慮して、酸化銅相の体積率を適宜調整することが好ましい。
(金属銅相の平均粒径:10μm以上200μm以下)
DCスパッタによって酸化銅膜を成膜するためには、ターゲット全体で導電性を確保する必要がある。
本実施形態では、金属銅相の平均粒径が200μm以下と比較的微細であるので、金属銅相が比較的均一に分散していることになる。ここで、本実施形態では、上述のように、金属銅相が島状に分散しており、これらの間に存在する酸化銅相がp型半導体として作用することから、金属銅相が比較的均一に分散していることで、ターゲット全体で導電性を確保でき、DCスパッタを安定して行うことができる。
また、本実施形態であるスパッタリングターゲットを製造する場合、金属銅粉末を用いることになるが、金属銅相の平均粒径を10μm以上に規定することにより、金属銅粉末の粒径を過度に微細にする必要がなく、金属銅粉末の酸化を抑制することができる。
以上のことから、本実施形態では、金属銅相の平均粒径を10μm以上200μm以下の範囲内に設定している。なお、ターゲット全体で導電性を確保し、DCスパッタをさらに安定して行うためには、金属銅相の平均粒径の上限を150μm以下とすることが好ましく、100μm以下とすることがさらに好ましい。また、原料の金属銅粉末の酸化を確実に抑制するためには、金属銅相の平均粒径の下限を20μm以上とすることが好ましく、30μm以上とすることがさらに好ましい。
(ターゲットスパッタ面における抵抗値の平均値に対するばらつき:50%以下)
本実施形態であるスパッタリングターゲットにおいては、金属銅相が分散することによって導電性が確保され、DCスパッタが可能となる。ここで、ターゲットスパッタ面における抵抗値の平均値に対するばらつきが50%を超える場合には、金属銅相が均一に分散しておらず、DCスパッタを安定して行うことができなくなるおそれがある。また、スパッタ時に異常放電が発生するおそれがある。
このような理由から、本実施形態では、ターゲットスパッタ面における抵抗値の平均値に対するばらつきを50%以下に設定している。なお、金属銅相を均一に分散させてDCスパッタを確実に実施可能とするためには、ターゲットスパッタ面における抵抗値の平均値に対するばらつきを40%以下とすることが好ましく、30%以下とすることがさらに好ましい。
ここで、本実施形態においては、スパッタリングターゲットの形状が平板で、ターゲットスパッタ面が円形をなす場合には、図1に示すように、円の中心(1)、及び、円の中心を通過するとともに互いに直交する2本の直線上の外周部分(2)、(3)、(4)、(5)の5点で抵抗値を測定し、下記式により、ターゲットスパッタ面における抵抗値の平均値に対するばらつきを求めている。
また、スパッタリングターゲットの形状が平板で、ターゲットスパッタ面が矩形をなす場合には、図2に示すように、対角線が交差する交点(1)と、各対角線上の角部(2)、(3)、(4)、(5)の5点で抵抗値を測定し、下記式により、ターゲットスパッタ面における抵抗値の平均値に対するばらつきを求めている。
さらに、スパッタリングターゲットの形状が円筒で、ターゲットスパッタ面が円筒外周面である場合は、図3に示すように、軸線O方向に半分の地点から外周方向に90°間隔の(1)、(2)、(3)、(4)の4点で抵抗値を測定し、下記式により、ターゲットスパッタ面における抵抗値の平均値に対するばらつきを求めている。
(ばらつき)%= 標準偏差/平均値×100
(抵抗値:10Ω・cm以下)
DCスパッタを行うために、本実施形態であるスパッタリングターゲットにおいては、抵抗値を10Ω・cm以下とすることが好ましく、1Ω・cm以下とすることがさらに好ましい。
なお、本実施形態におけるスパッタリングターゲットの抵抗値は、上述の5点の測定値の平均値とする。
(CuOの回折強度I1とCuOの回折強度I2との比I1/I2:0.15以下)
スパッタリングターゲットを焼結によって製造する場合、CuOと金属銅とが反応してCuOが生成する。ここで、CuOの回折強度I1とCuOの回折強度I2との比I1/I2が0.15以下である場合には、CuOの存在比率が低く、金属銅とCuOとが十分に反応していることになる。このため、ターゲット内において抵抗値のばらつきが抑えられ、異常放電の発生が抑制される。
以上のことから、本実施形態では、CuOの回折強度I1とCuOの回折強度I2との比I1/I2を0.15以下に設定している。なお、抵抗値のばらつきを確実に抑制して異常放電の発生を抑制するためには、CuOの回折強度I1とCuOの回折強度I2との比I1/I2を0.1以下とすることが好ましく、0.05以下とすることがさらに好ましい。
(X線光電子分光分析(XPS)におけるCuOのピーク強度IP1とCu及びCuOのピーク強度IP2との比IP1/IP2:0.03以上0.4以下)
上述のようにスパッタリングターゲットを焼結によって製造する場合、CuOと金属銅とが反応してCuOが生成する。ここで、X線光電子分光分析(XPS)におけるCuOのピーク強度IP1とCu及びCuOのピーク強度IP2との比IP1/IPが0.03以上である場合には、酸化銅相にCuOが存在することになり、焼結体の強度が向上し、製造時における割れの発生を抑制することができる。一方、IP1/IPが0.4以下である場合には、金属銅とCuOとが十分に反応していることになり、ターゲット内において抵抗値のばらつきが抑えられ、異常放電の発生が抑制される。
以上のことから、本実施形態では、X線光電子分光分析(XPS)におけるCuOのピーク強度IP1とCu及びCuOのピーク強度IP2との比IP1/IP2を0.03以上0.4以下の範囲内に設定している。なお、焼結体の強度を向上させて製造時の割れを確実に抑制するためには、上述のIP1/IP2の下限を0.05以上とすることが好ましく、0.1以上とすることがさらに好ましい。また、抵抗値のばらつきを確実に抑制して異常放電の発生を抑制するためには、上述のIP1/IP2の上限を0.3以下とすることが好ましく、0.2以下とすることがさらに好ましい。
なお、図5に示すように、X線光電子分光分析(XPS)におけるCuのピークとCuOのピークとを分離することが困難であることから、Cu及びCuOのピーク強度IP2を用いてCuOの存在比率を規定している。
(密度:5.5g/cm以上 7.5g/cm以下)
スパッタリングターゲットの密度が5.5g/cm以上であると、ターゲットスパッタ面に存在する空隙を低減でき、スパッタ時における異常放電の発生を抑制することが可能となる。一方、スパッタリングターゲットの密度が7.5g/cm以下であると、加工性が向上し、スパッタリングターゲットの成形が容易となる。
このため、本実施形態では、スパッタリングターゲットの密度を5.5g/cm以上7.5g/cm以下の範囲内に規定している。
なお、スパッタ時の異常放電を確実に抑制するためには、スパッタリングターゲットの密度の下限を6.0g/cm以上とすることが好ましく、6.2g/cm以上とすることがより好ましい。また、スパッタリングターゲットの加工性を確実に確保するためには、スパッタリングターゲットの密度の上限を7.0g/cm以下とすることが好ましく、6.8g/cm以下とすることがより好ましい。
(スパッタリングターゲットの製造方法)
次に、本実施形態であるスパッタリングターゲットの製造方法について説明する。
まず、金属銅粉末、酸化銅粉末を準備する。ここで、金属銅粉末としては、純度4N以上のものを使用することが好ましい。また、この金属銅粉末の粒径を調整することにより、スパッタリングターゲット中の金属銅相の平均粒径を制御することが可能となる。具体的には、金属銅粉末の平均粒径を10μm以上200μm以下の範囲内とすることが好ましい。
また、酸化銅粉末としては、CuO粉末、CuO粉末、及び、これらの混合粉末を用いることができる。CuO粉末及びCuO粉末は、純度2N以上のものを使用することが好ましい。CuO粉末及びCuO粉末の平均粒径は1μm以上30μm以下の範囲内とすることが好ましい。
次に、秤量された金属銅粉末及び酸化銅粉末を、ボールミル、ヘンシェルミキサー、ロッキングミキサー等の混合装置によって混合し、原料粉末とする。このとき、金属銅粉末の酸化を防ぐために、混合装置内の雰囲気をAr等の不活性ガス雰囲気とすることが好ましい。
次に、上述の原料粉末を用いて、ホットプレス等によって焼結して焼結体を得る。得られた焼結体を機械加工することで、本実施形態であるスパッタリングターゲットが製造される。なお、焼結温度は600℃以上900℃以下、保持時間は30min以上600min以下の範囲内、加圧圧力を10MPa以上50MPa以下の範囲内とすることが好ましい。
ここで、酸化銅粉末としてCuO粉末を使用する場合には、焼結温度を720℃以上とすることで、CuOとCuとの反応を促進させることができ、スパッタリングターゲット中におけるCuOの存在比率を低減することが可能となる。
以上のような構成とされた本実施形態であるスパッタリングターゲットにおいては、酸化銅相の体積率が80vol%を超えているので、酸化銅相が十分に存在しており、酸素ガス存在下でスパッタを行わなくても、酸化銅膜を成膜することができる。また、酸化銅相の体積率が90vol%以下の範囲内とされ、ターゲット組織中の前記金属銅相の粒径が10μm以上200μm以下の範囲内とされているので、金属銅相が比較的均一に分散されており、ターゲット全体として導電性が確保されることになる。これにより、DCスパッタによって酸化銅膜を成膜することができる。
また、本実施形態であるスパッタリングターゲットにおいては、金属銅相の平均粒径が200μm以下とされているので、金属銅相がターゲット中に微細に分散していることになり、ターゲット全体で導電性を確保することができる。これにより、DCスパッタを安定して行うことができる。一方、金属銅相の平均粒径が10μm以上とされているので、ターゲット製造時において金属銅粉末の粒径を過度に小さくする必要がなく、金属銅粉末の酸化を抑制することができ、焼結を良好に行うことができる。
さらに、本実施形態では、ターゲットスパッタ面における比抵抗値の平均値に対するばらつきが50%以下とされていることから、ターゲット全体として導電性が十分に確保されることになり、DCスパッタによって安定して酸化銅膜を成膜することが可能となる。
また、本実施形態では、金属銅相が島状に分散されており、これら金属銅相の間に存在する酸化銅相が金属銅相と反応して縮退したp型半導体として作用することにより、ターゲット全体としてp型半導体の性質を有しており、導電性が確保されていると考えられる。よって、DCスパッタによって酸化銅膜を成膜することができる。
さらに、本実施形態では、スパッタリングターゲットの抵抗値が10Ω・cm以下とされているので、確実にDCスパッタを行うことができる。
また、本実施形態では、X線回折分析(XRD)の結果、CuOの回折強度I1と、CuOの回折強度I2との比I1/I2が0.15以下とされていることから、酸化銅相として均一にCuOが分散していることになり、ターゲット内における抵抗値のばらつきを抑えることができる。
さらに、本実施形態では、X線光電子分光分析の結果、CuOのピーク強度IP1とCu及びCuOのピーク強度IP2との比IP1/IP2が、0.03以上とされているので、焼結体の強度が向上し、製造時における割れの発生を抑制することができる。また、IP1/IP2が0.4以下とされているので、酸化銅相においてCuOの存在比率が少なくなり、ターゲット内における抵抗値のばらつきを抑えることができる。
さらに、本実施形態であるスパッタリングターゲットにおいては、密度が5.5g/cm以上とされているので、スパッタ時における異常放電の発生を抑制することができる。一方、密度が7.5g/cm以下とされているので、加工性が確保されており、このスパッタリングターゲットを良好に成形することができる。
以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
以下に、本発明の有効性を確認するために行った確認実験の結果について説明する。
(スパッタリングターゲット)
原料粉末として、金属銅粉末(純度:99.9mass%以上、平均粒径は表1に記載)、CuO粉末(純度:99mass%以上,平均粒径5μm)、CuO粉末(純度:99mass%以上,平均粒径3μm)を準備した。
これらの原料を、表1に記載のmol比となるように秤量し、Arガス雰囲気とされたボールミル装置の容器内に、秤量した原料と、この原料の3倍の重量のジルコニアボール(直径:5mm)を投入し、3時間混合した。
得られた原料粉末を篩分けした後、ホットプレスの平板及び円筒形状用の成形型に充填し、200kgf/cmの加圧下で、表1に示す焼結温度で平板形状は3時間、円筒形状は5時間保持した。
得られた焼結体を機械加工し、評価用のスパッタリングターゲット(126mm×178mm×6mm、円筒形状:(φ155mm−φ135mm)×150mmL)を製造した。そして、以下の項目について評価した。評価結果を表1、表2に示す。
(ターゲット中の酸化銅相の体積率)
ターゲット中の銅の濃度(原子%)を滴定法により測定し、残を酸素として算出する。算出した酸素が全量CuOとして存在すると仮定して銅との体積率を算出した。なお、空孔については考慮していないため、ここでの体積率は空孔を除いたものである。
(ターゲットの組成)
ターゲット中の銅の濃度を滴定法により測定し、残を酸素として算出した。
(膜の組成)
膜中の銅の濃度を滴定法により測定し、残を酸素として算出した。
(ターゲットの密度)
重量と寸法より密度を算出した。
(ターゲットの抵抗値)
スパッタリングターゲットについて、抵抗測定装置により、抵抗率を測定した。平板形状であれば、図1および図2に示したようなターゲットスパッタ面内の5箇所(1〜5)の測定点について、円筒形状であれば、図3に示したようなターゲットスパッタ面内の4箇所(1〜4)の測定点について、抵抗率を測定した。測定された面内の抵抗率の平均値を、表2に示した。この測定においては、抵抗測定装置として、三菱化学株式会社製の低抵抗率計(Loresta−GP)を用い、四探針法で、抵抗率(Ω・cm)測定した。測定時の温度は23±5℃、湿度は50±20%にて測定した。
(ばらつき)%= 標準偏差/平均値×100
(pn判定)
スパッタリングターゲットについて、PN判定器により、PN判定を行った。平板形状であれば、図1および図2に示したようなターゲットスパッタ面内の1箇所(1)の測定点について、円筒形状であれば、図3に示したようなターゲットスパッタ面内の1箇所(1)の測定点について、PN判定した。判定した結果を、表2に示した。この測定においては、PN判定器として、エヌピイエス株式会社製のPN判定器(MODEL PN−01)を用い、熱起電力方式プローブにて、PN判定した。測定時の温度は23±5℃、湿度は50±20%にて測定した。
(金属銅相の粒径)
スパッタリングターゲットの組織中における金属銅相の粒子についてEBSDで得られたIQマップから、その大きさを確認した。なお、IQマップは500μm×750μmの断面範囲を観察し粒子サイズを定量測定した。
なお、EBSDは株式会社TSLソリューションズのOIM Data Collectionを用いてパターンを収集し、同社製OIM Analysis 5.31を用いて粒子の大きさを算出した。
(X線回折分析)
X線回折分析(XRD)は、以下の条件で行った。なお、強度比の算出はCuOの111面の強度をI1、CuOの200面の強度をI2として算出した。分析結果の一例を図4に示す。
試料の準備:試料はSiC−Paper(grit 180)にて研磨の後、測定試料とした。
装置:理学電気社製(RINT−Ultima/PC)
管球:Cu
管電圧:40kV
管電流:40mA
走査範囲(2θ):5°〜80°
スリットサイズ:発散(DS)2/3度、散乱(SS)2/3度、受光(RS)0.8mm
測定ステップ幅:2θで0.02度
スキャンスピード:毎分2度
試料台回転スピード:30rpm
(X線光電子分光分析)
X線光電子分光分析(XPS)は、以下の条件で行った。なお、測定試料の測定面を研磨紙♯2000で表面研磨し、最表面からArスパッタを行い分析した。なお、スパッタ開始から20分後に本測定を行い、Cu2p3/2スペクトルのデータを用いた。分析結果の一例を図5に示す。
装置:ULVAC−PHI PHI5000 VersaProbeII
X線源:Monochromated AlKα 50W
パスエネルギー:187.85eV(Survey)、46.95、58.7eV(Profile)
測定間隔:0.8eV/step(Survey)、0.1、0.125eV/step(Profile)
試料面に対する光電子取り出し角:45deg
分析エリア:約200μmφ
(製造時の割れ)
上述の条件でスパッタリングターゲットを20枚作成し、その際に割れが生じた枚数をカウントした。
(異常放電回数)
得られたスパッタリングターゲットについて、スパッタリング時の異常放電発生回数を以下の手順で測定した。
平板状のスパッタリングターゲットにおいては、以下の成膜条件により、成膜試験を行った。
電源:DC600W
全圧:0.4Pa
スパッタリングガス:Ar=50sccm
ターゲット−基板(TS)距離:70mm
また、円筒形状のスパッタリングターゲットにおいては、以下の成膜条件により、成膜試験を行った。
ターゲットサイズ:(φ155mm−φ135mm)×150mmL(4分割)
電源:DC2000W
全圧:0.4Pa
スパッタリングガス:Ar=160sccm
ターゲット−基板(TS)距離:60mm
上記成膜条件において1時間のスパッタリングを行い、異常放電の発生回数をスパッタ電源装置に付属したアーキングカウンターにて自動的にその回数を計測した。
(膜の抵抗値)
この測定においては、抵抗測定装置として、三菱化学株式会社製の低抵抗率計(Loresta−GP)を用い、四探針法で、シート抵抗(Ω/sq)を測定した。測定時の温度は23±5℃、湿度は50±20%にて測定した。
測定に使用したサンプルは、上述のスパッタ条件にて作製した。膜はガラス基板上に狙い膜厚を200nmとして成膜した。
Figure 0006876268
Figure 0006876268
酸化銅相の体積率が90vol%を超えた比較例1及び比較例3においては、抵抗値が高く、DCスパッタができなかった。
酸化銅相の体積率が80vol%以下とされた比較例2及び比較例4においては、成膜された酸化銅膜の抵抗値が低く、酸化銅膜としての特性が不十分であった。
ターゲットスパッタ面における抵抗値の平均値に対するばらつきが50%を超える比較例5においては、異常放電の発生回数が多く、安定してスパッタすることができなかった。
金属銅相の粒径が10μm未満である比較例6においては、異常放電の発生回数が多く、安定してスパッタすることができなかった。
金属銅相の粒径が200μmを超える比較例7においては、異常放電の発生回数が多く、安定してスパッタすることができなかった。
これに対して、本発明例によれば、抵抗値が低く、DCスパッタが可能であり、特性に優れた酸化銅膜を成膜可能であることが確認された。
また、X線光電子分光分析の結果、CuOのピーク強度IP1とCu及びCuOのピーク強度IP2との比IP1/IP2が0.03以上0.4以下の範囲内とされた本発明例1〜3、7,8,10〜14、16、17においては、製造時における割れの発生が抑制されることが確認された。

Claims (5)

  1. 金属銅相と酸化銅相とを有し、前記酸化銅相の体積率が80vol%を超えて90vol%以下の範囲内とされており、
    ターゲットスパッタ面における抵抗値の平均値に対するばらつきが50%以下とされ、
    ターゲット組織中の前記金属銅相の平均粒径が10μm以上200μm以下の範囲内とされており、
    p型半導体の性質を有していることを特徴とするスパッタリングターゲット。
  2. 抵抗値が10Ω・cm以下であることを特徴とする請求項1に記載のスパッタリングターゲット。
  3. CuOの回折強度I1とCuOの回折強度I2との比I1/I2が0.15以下であることを特徴とする請求項1又は請求項2に記載のスパッタリングターゲット。
  4. X線光電子分光分析の結果、CuOのピーク強度IP1とCu及びCuOのピーク強度IP2との比IP1/IP2が、0.03以上0.4以下の範囲内とされていることを特徴とする請求項1から請求項3のいずれか一項に記載のスパッタリングターゲット。
  5. 密度が5.5g/cm以上7.5g/cm以下の範囲内とされていることを特徴とする請求項1から請求項4のいずれか一項に記載のスパッタリングターゲット。
JP2017038734A 2016-03-22 2017-03-01 スパッタリングターゲット Active JP6876268B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187021785A KR102237332B1 (ko) 2016-03-22 2017-03-21 스퍼터링 타깃
PCT/JP2017/011207 WO2017164168A1 (ja) 2016-03-22 2017-03-21 スパッタリングターゲット
CN201780010079.8A CN108603284A (zh) 2016-03-22 2017-03-21 溅射靶

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016057461 2016-03-22
JP2016057461 2016-03-22

Publications (2)

Publication Number Publication Date
JP2017172039A JP2017172039A (ja) 2017-09-28
JP6876268B2 true JP6876268B2 (ja) 2021-05-26

Family

ID=59970463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017038734A Active JP6876268B2 (ja) 2016-03-22 2017-03-01 スパッタリングターゲット

Country Status (3)

Country Link
JP (1) JP6876268B2 (ja)
KR (1) KR102237332B1 (ja)
CN (1) CN108603284A (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6447761B2 (ja) * 2017-03-01 2019-01-09 三菱マテリアル株式会社 スパッタリングターゲット及びスパッタリングターゲットの製造方法
WO2018159753A1 (ja) * 2017-03-01 2018-09-07 三菱マテリアル株式会社 スパッタリングターゲット及びスパッタリングターゲットの製造方法
WO2019049466A1 (ja) 2017-09-07 2019-03-14 本田技研工業株式会社 鞍乗り型車両の前部構造
WO2020044798A1 (ja) * 2018-08-27 2020-03-05 三菱マテリアル株式会社 酸化物スパッタリングターゲット、及び、酸化物スパッタリングターゲットの製造方法
JP6853440B2 (ja) * 2019-03-11 2021-03-31 三菱マテリアル株式会社 金属銅及び酸化銅含有粉、金属銅及び酸化銅含有粉の製造方法、及び、スパッタリングターゲット材、スパッタリングターゲット材の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210641A (ja) 2000-01-28 2001-08-03 Hitachi Ltd 半導体装置
JP4985083B2 (ja) 2007-05-08 2012-07-25 三菱マテリアル株式会社 酸素含有銅ターゲットの製造方法
CN101260507B (zh) * 2008-04-24 2010-12-15 复旦大学 一种p型半导体掺镍氧化铜靶材及其制备方法
JP2009280834A (ja) * 2008-05-19 2009-12-03 Ulvac Japan Ltd ターゲット、配線膜形成方法、薄膜トランジスタの製造方法
JP5102338B2 (ja) * 2010-08-24 2012-12-19 株式会社アルバック 光ディスク用誘電体ターゲット及び成膜方法
US9040120B2 (en) 2011-08-05 2015-05-26 Frito-Lay North America, Inc. Inorganic nanocoating primed organic film
CN103173733B (zh) * 2013-03-08 2014-09-17 北京航空航天大学 一种高导电性能Ag掺杂Cu2O基p型透明导电薄膜及其制备方法
WO2015170534A1 (ja) * 2014-05-08 2015-11-12 三井金属鉱業株式会社 スパッタリングターゲット材
JP6582698B2 (ja) * 2014-08-12 2019-10-02 東ソー株式会社 酸化物焼結体及びスパッタリングターゲット

Also Published As

Publication number Publication date
CN108603284A (zh) 2018-09-28
KR20180125946A (ko) 2018-11-26
KR102237332B1 (ko) 2021-04-06
JP2017172039A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
JP6876268B2 (ja) スパッタリングターゲット
JP5808513B1 (ja) スパッタリングターゲット材
CN105439541B (zh) 氧化铟烧结体、氧化铟透明导电膜以及该透明导电膜的制造方法
Frodelius et al. Annealing of thermally sprayed Ti2AlC coatings
JP6278229B2 (ja) 透明酸化物膜形成用スパッタリングターゲット及びその製造方法
JP6403087B2 (ja) 酸化ニオブスパッタリングターゲット及びその製造方法
TW201237193A (en) Zinc oxide sintered compact, sputtering target, and zinc oxide thin film
TWI554627B (zh) Sputtering target and high resistance transparent film manufacturing method
JP6447761B2 (ja) スパッタリングターゲット及びスパッタリングターゲットの製造方法
CN111465713B (zh) 溅镀靶材和溅镀靶
JP2016507004A (ja) (Ga)ZnSn酸化物スパッタリングターゲット
WO2017164168A1 (ja) スパッタリングターゲット
WO2018159753A1 (ja) スパッタリングターゲット及びスパッタリングターゲットの製造方法
JP6233233B2 (ja) スパッタリングターゲット及びその製造方法
TW202206401A (zh) 氧化鉬濺鍍靶及氧化鉬濺鍍靶之製造方法
Birkett et al. Structural and electrical properties of CuAlMo thin films prepared by magnetron sputtering
JP2019039070A (ja) SiCスパッタリングターゲット
JP2020007627A (ja) スパッタリングターゲットの製造方法
TWI837462B (zh) Cu-W-O濺鍍靶及氧化物薄膜
JP6800405B2 (ja) 酸化物焼結体、その製造方法及びスパッタリングターゲット
TW201536679A (zh) 矽化鋇系塊狀體、膜及其製造方法
Tomozawa et al. Ti-O Direct-Current-Sintered Bodies and Their Use for Sputter Deposition of TiO Thin Films: Fabrication and Characterization
Chiang et al. Synthesis and Processing of NaSICON/Polymer Membranes
JP2022125846A (ja) Cu-Bi2O3スパッタリングターゲット及びその製造方法
JP2013087337A (ja) スパッタリングターゲットおよびその製造方法

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210408

R150 Certificate of patent or registration of utility model

Ref document number: 6876268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150