WO2016039154A1 - 電極材料の製造方法及び電極材料 - Google Patents

電極材料の製造方法及び電極材料 Download PDF

Info

Publication number
WO2016039154A1
WO2016039154A1 PCT/JP2015/074160 JP2015074160W WO2016039154A1 WO 2016039154 A1 WO2016039154 A1 WO 2016039154A1 JP 2015074160 W JP2015074160 W JP 2015074160W WO 2016039154 A1 WO2016039154 A1 WO 2016039154A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
electrode material
heat
solid solution
electrode
Prior art date
Application number
PCT/JP2015/074160
Other languages
English (en)
French (fr)
Inventor
啓太 石川
薫 北寄崎
将大 林
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to EP15839469.2A priority Critical patent/EP3187287B1/en
Priority to US15/508,256 priority patent/US10058923B2/en
Publication of WO2016039154A1 publication Critical patent/WO2016039154A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F3/26Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0475Impregnated alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium

Definitions

  • the present invention relates to a composition control technique for electrode materials.
  • Electrode materials used for electrodes such as vacuum interrupter (VI) include (1) large breaking capacity, (2) high withstand voltage performance, (3) low contact resistance, and (4) welding resistance. It is required to satisfy the following characteristics: (5) low contact consumption, (6) low cutting current, (7) excellent workability, (8) high mechanical strength, etc. .
  • a copper (Cu) -chromium (Cr) electrode has characteristics such as a large breaking capacity, a high withstand voltage performance, and a high resistance to welding, and is widely used as a contact material for a vacuum interrupter.
  • Cu—Cr electrodes it has been reported that the smaller the particle size of Cr particles, the better in terms of breaking current and contact resistance (for example, Non-Patent Document 1).
  • a method for producing a Cu—Cr electrode material generally, two methods, a sintering method (solid phase sintering method) and an infiltration method, are well known.
  • a sintering method solid phase sintering method
  • an infiltration method In the sintering method, Cu having good conductivity and Cr having excellent arc resistance are mixed at a certain ratio, the mixed powder is pressure-molded, and then sintered in a non-oxidizing atmosphere such as in a vacuum. Manufacture a knot.
  • the sintering method has an advantage that the composition of Cu and Cr can be freely selected, the gas content is higher than the infiltration method, and the mechanical strength may be lowered.
  • infiltration is performed by pressing Cr powder (or without molding), filling the container, and heating it above the melting point of Cu in a non-oxidizing atmosphere, such as in a vacuum.
  • Cu is infiltrated into the electrode to produce an electrode.
  • the infiltration method cannot freely select the composition ratio of Cu and Cr, but has the advantage that a material with less gas and voids is obtained and the mechanical strength is higher than the sintering method.
  • Cu powder as a base material, Cr powder for improving electrical characteristics, and Cr particles are made finer
  • heat-resistant element mobdenum (Mo), tungsten (W), niobium (Nb), tantalum (Ta), vanadium (V), zirconium (Zr), etc.
  • Mo mobdenum
  • W tungsten
  • Nb niobium
  • Ta tantalum
  • V vanadium
  • Zr zirconium
  • a heat-resistant element is added to a Cu—Cr-based electrode material made from Cr having a particle size of 200 to 300 ⁇ m, and Cr is refined through a microstructure technique. That is, alloying of Cr and a heat-resistant element is promoted, and precipitation of fine Cr—X (X is a heat-resistant element) particles is increased inside the Cu base material structure. As a result, Cr particles having a diameter of 20 to 60 ⁇ m are uniformly dispersed in the Cu substrate structure in a form having a heat-resistant element therein.
  • the content of Cr and heat-resistant elements in the Cu base material is increased, and Cr and Cr and heat-resistant elements are in solid solution. It is required to make the particle size of the fine particles uniformly dispersed in the Cu base material.
  • An object of the present invention is to provide an electrode material having a withstand voltage performance and a current interruption performance superior to those of a conventional Cu—Cr electrode, and particularly in an electrode material manufactured by an infiltration method, such as Cu and silver.
  • An object is to improve the filling rate of a porous body infiltrating a highly conductive metal.
  • a porous body is molded by a mold molding method or the like.
  • the molding pressure is increased in order to improve the filling rate of the porous body, the mold is severely worn. Therefore, the life of the mold may be shortened.
  • One aspect of the method for producing the electrode material of the present invention that achieves the above object is to temporarily sinter a mixed powder containing a heat-resistant element powder and a Cr powder to obtain a solid solution in which the heat-resistant element and Cr are in solid solution.
  • Another aspect of the method for producing an electrode material of the present invention that achieves the above object is that the molded body is sintered in the method for producing an electrode material, and the obtained sintered body is subjected to hot isostatic pressing. Subject to pressure treatment.
  • the mixing amount of the Cr with respect to the heat-resistant element is based on the heat-resistant element 1 in a weight ratio. 4 or less.
  • Another aspect of the method for producing an electrode material of the present invention that achieves the above object is the method for producing an electrode material, wherein in the hot isostatic pressing process, the hot isostatic pressing process is performed. Improve body filling rate by 10% or more.
  • One aspect of the electrode material of the present invention that achieves the above object is a hot isostatic pressing treatment of a solid solution powder containing a heat-resistant element and Cr or a molded body of the solid solution powder at a temperature lower than the melting point of the solid solution.
  • the sintered body obtained by infiltration is infiltrated with a metal having a melting point lower than that of the heat-resistant element.
  • the above invention can contribute to the improvement of withstand voltage performance and current interruption performance of the electrode material.
  • FIG. 10 is a flowchart of a method for manufacturing an electrode material according to Reference Examples 7 and 8.
  • the average particle diameter (median diameter d50 and the like) and the volume relative particle amount are values measured by a laser diffraction particle size distribution analyzer (Cirrus Corporation: Cirrus 1090L). Show.
  • the inventors examined the correlation between the occurrence of re-ignition and the distribution of heat-resistant elements (Mo, Cr, etc.) and Cu.
  • heat-resistant elements Mo, Cr, etc.
  • Cu heat-resistant elements
  • minute protrusions for example, minute protrusions of several tens to several hundreds of micrometers
  • a high electric field is generated at the tip of the protruding portion, it can be a factor of reducing the breaking performance and the withstand voltage performance.
  • the protrusions are formed because the electrodes are melted and welded by the input current, and the melted parts are peeled off when the current is interrupted thereafter.
  • the particle size of the heat-resistant element in the electrode is reduced and finely dispersed, and the Cu region in the electrode surface is made fine and uniform.
  • dispersion it was found that the generation of minute protrusions in the Cu region is suppressed and the probability of re-ignition is reduced.
  • the electrode contact is ruptured by repeatedly opening and closing the contact, whereby the heat-resistant element particles on the electrode surface are crushed and become fine particles that are detached from the electrode surface.
  • the particle size of the heat-resistant element in the electrode material is reduced and finely dispersed, and further, the Cu region is finely dispersed, thereby achieving heat resistance. It was found that the effect of suppressing the breakage of elemental particles can be obtained. Based on these findings, the inventors have intensively studied the particle size of the heat-resistant element, the dispersibility of Cu, the voltage resistance of the electrode of the vacuum interrupter, and the like, and as a result, the present invention has been completed.
  • the present invention relates to a composition control technology for metal (Cu, Ag, etc.)-Cr-heat-resistant element (Mo, W, V, etc.) electrode materials, and finely and uniformly disperse Cr-containing particles.
  • the metal (Cu, Ag, etc.) structure which is a high conductor component, is also finely and uniformly dispersed, and the content of the heat-resistant element is increased so that, for example, the withstand voltage performance and the current interruption performance of the electrode material for vacuum interrupter can be improved. It is to improve.
  • HIP process a hot isostatic pressing process
  • refractory elements examples include molybdenum (Mo), tungsten (W), tantalum (Ta), niobium (Nb), vanadium (V), zirconium (Zr), beryllium (Be), hafnium (Hf), and iridium (Ir).
  • Mo molybdenum
  • tungsten W
  • tantalum Ti
  • niobium Nb
  • vanadium V
  • zirconium zirconium
  • Be zirconium
  • Be zirconium
  • Be zirconium
  • Be hafnium
  • Hf iridium
  • Ir iridium
  • elements selected from elements such as platinum (Pt), titanium (Ti), silicon (Si), rhodium (Rh), and ruthenium (Ru) can be used alone or in combination.
  • Mo, W, Ta, Nb, V, or Zr which has a remarkable effect of refining Cr particles.
  • the average particle size of the heat-resistant element powder is, for example, 2 to 20 ⁇ m, more preferably 2 to 10 ⁇ m, so that the electrode material contains particles containing Cr (a solid solution of the heat-resistant element and Cr).
  • the electrode material contains particles containing Cr (a solid solution of the heat-resistant element and Cr).
  • 6 to 76% by weight, more preferably 32 to 68% by weight, of the heat-resistant element with respect to the electrode material the withstand voltage performance and current interruption performance of the electrode material are improved without impairing the mechanical strength and workability. Can be made.
  • Cr is contained in an amount of 1.5 to 64% by weight, more preferably 4 to 15% by weight with respect to the electrode material, so that the withstand voltage performance and current interruption performance of the electrode material can be reduced without impairing the mechanical strength and workability. Can be improved.
  • the particle size of Cr powder is, for example, ⁇ 48 mesh (particle size less than 300 ⁇ m), more preferably ⁇ 100 mesh (particle size less than 150 ⁇ m), and still more preferably ⁇ 325 mesh (particle size less than 45 ⁇ m). By doing so, an electrode material excellent in withstand voltage performance and current interruption performance can be obtained.
  • the particle size of the Cr powder By setting the particle size of the Cr powder to ⁇ 100 mesh, it is possible to reduce the amount of residual Cr that causes the particle size of Cu infiltrated into the electrode material to increase.
  • the oxygen content contained in the electrode material increases. As a result, the current interruption performance decreases.
  • the increase in the oxygen content of the electrode material by reducing the particle size of the Cr particles is considered to be caused by the oxidation of Cr when finely pulverizing Cr.
  • a Cr powder having a particle size of less than ⁇ 325 mesh may be used. It is preferable to use a Cr powder having a small particle diameter in order to disperse the particles containing modified Cr.
  • a highly conductive metal such as copper (Cu), silver (Ag), or an alloy of Cu and Ag is used.
  • these metals are contained in an amount of 20 to 70% by weight, more preferably 25 to 60% by weight, the contact resistance of the electrode material can be reduced without impairing the withstand voltage performance or the current interruption performance. it can.
  • the content of the highly conductive metal contained in the electrode material is determined by the infiltration process, the total of the heat-resistant element added to the electrode material, Cr, and the highly conductive metal is , Not exceeding 100% by weight.
  • heat-resistant element powder for example, Mo powder
  • Cr powder heat-resistant element powder
  • the average particle size of the Mo powder and the Cr powder is not particularly limited, but the average particle size of the Mo powder is 2 to 20 ⁇ m, and the average particle size of the Cr powder is ⁇ 100 mesh, so that the Cu phase has MoCr.
  • An electrode material in which a solid solution is uniformly dispersed can be formed.
  • the Mo powder and the Cr powder are mixed such that the weight ratio of Cr to Mo1 is 4 or less, more preferably, Cr is 1/3 or less to Mo1, so that withstand voltage performance and current interruption performance are achieved. It is possible to manufacture an electrode material excellent in the above.
  • the mixed powder of Mo powder and Cr powder (hereinafter referred to as mixed powder) obtained in the mixing step S1 is filled into a container (for example, an alumina container) that does not react with Mo and Cr, Temporary sintering is performed at a predetermined temperature (for example, 1250 ° C. to 1500 ° C.) in a non-oxidizing atmosphere (hydrogen atmosphere, vacuum atmosphere, or the like).
  • a predetermined temperature for example, 1250 ° C. to 1500 ° C.
  • a non-oxidizing atmosphere hydrogen atmosphere, vacuum atmosphere, or the like.
  • the sintering temperature and time in the preliminary sintering step S2 are selected so that at least the peak corresponding to the Mo element disappears in the X-ray diffraction measurement of the solid solution of MoCr. Is done.
  • the mixed powder may be pressure-formed (pressed) before pre-sintering.
  • pressure forming interdiffusion between Mo and Cr is promoted, so that the pre-sintering time can be shortened or the pre-sintering temperature can be reduced.
  • the pressure at the time of pressure molding is not particularly limited, but is preferably 0.1 ton / cm 2 or less.
  • the MoCr solid solution is pulverized using a pulverizer (for example, a planetary ball mill) to obtain a MoCr solid solution powder (hereinafter referred to as MoCr powder).
  • the pulverizing atmosphere in the pulverizing step S3 is preferably a non-oxidizing atmosphere, but may be pulverized in the air.
  • the pulverization conditions may be such that the particles (secondary particles) in which the MoCr solid solution particles are bonded to each other are pulverized.
  • the longer the pulverization time the smaller the average particle diameter of the MoCr solid solution particles.
  • the MoCr powder by setting the pulverization conditions such that the volume relative particle amount of particles having a particle size of 30 ⁇ m or less (more preferably, particles having a particle size of 20 ⁇ m or less) is 50% or more, MoCr particles ( Particles in which Mo and Cr are dissolved and dissolved in each other) and an electrode material in which the Cu structure is uniformly dispersed (that is, an electrode material excellent in withstand voltage performance) can be obtained.
  • MoCr powder is formed.
  • the MoCr powder is molded by, for example, pressure molding at a pressure of 2 ton / cm 2 .
  • sintering step S5 main sintering of the molded MoCr powder is performed to obtain a MoCr sintered body (hereinafter referred to as a sintered body).
  • the main sintering is performed, for example, by sintering a compact of MoCr powder in a vacuum atmosphere at 1150 ° C. for 2 hours.
  • Sintering step S5 is a step of obtaining a denser sintered body by deformation and bonding of the MoCr powder.
  • the sintering of the MoCr powder is desirably performed at the temperature condition of the infiltration step S7, for example, at a temperature of 1150 ° C. or higher.
  • the sintered compact which performed the HIP process can also be obtained by performing HIP process S6 directly, without performing sintering process S5.
  • the obtained sintered body (or a molded body of MoCr powder) is subjected to HIP processing.
  • the treatment temperature of the HIP treatment is not particularly limited as long as it is lower than the melting point of the sintered body (or MoCr powder). That is, the processing temperature and processing pressure of the HIP processing are appropriately determined according to the performance required for the electrode. For example, by performing HIP processing at a processing temperature of 700 to 1100 ° C., a processing pressure of 30 to 100 MPa, and a processing time of 1 to 5 hours, the filling rate of the sintered body after HIP processing is compared with that of the sintered body before HIP processing. Therefore, it can be controlled to improve by 10% or more.
  • Cu is infiltrated into the sintered body after the HIP treatment (hereinafter referred to as the HIP treated body).
  • the infiltration of Cu is performed, for example, by placing a Cu plate on the HIP-treated body and holding it in a non-oxidizing atmosphere at a temperature equal to or higher than the melting point of Cu for a predetermined time (for example, 1150 ° C.-2 hours).
  • a vacuum interrupter can be comprised using the electrode material which concerns on embodiment of this invention.
  • a vacuum interrupter 1 having an electrode material according to an embodiment of the present invention includes a vacuum vessel 2, a fixed electrode 3, a movable electrode 4, and a main shield 10.
  • the vacuum vessel 2 is configured by sealing both open end portions of the insulating cylinder 5 with a fixed side end plate 6 and a movable side end plate 7, respectively.
  • the fixed electrode 3 is fixed in a state of passing through the fixed side end plate 6.
  • One end of the fixed electrode 3 is fixed so as to face one end of the movable electrode 4 in the vacuum vessel 2, and the end of the fixed electrode 3 facing the movable electrode 4 is in accordance with the embodiment of the present invention.
  • An electrode contact material 8 which is an electrode material is provided.
  • the movable electrode 4 is provided on the movable side end plate 7.
  • the movable electrode 4 is provided coaxially with the fixed electrode 3.
  • the movable electrode 4 is moved in the axial direction by an opening / closing means (not shown), and the fixed electrode 3 and the movable electrode 4 are opened and closed.
  • An electrode contact material 8 is provided at the end of the movable electrode 4 facing the fixed electrode 3.
  • a bellows 9 is provided between the movable electrode 4 and the movable side end plate 7, and the movable electrode 4 is moved up and down while keeping the inside of the vacuum vessel 2 in a vacuum, so that the fixed electrode 3 and the movable electrode 4 can be opened and closed. Done.
  • the main shield 10 is provided so as to cover a contact portion between the electrode contact material 8 of the fixed electrode 3 and the electrode contact material 8 of the movable electrode 4, and is insulated from an arc generated between the fixed electrode 3 and the movable electrode 4.
  • Example 1 A specific example is given and the manufacturing method and electrode material of the electrode material which concern on embodiment of this invention are demonstrated still in detail.
  • the electrode material of Example 1 is an electrode material produced according to the flowchart shown in FIG.
  • Mo powder having a particle size of 0.8 to 6.0 ⁇ m was used.
  • the Cr powder -325 mesh (a sieve opening of 45 ⁇ m) was used.
  • the mixed powder of Mo powder and Cr powder was transferred into an alumina container, and the mixed powder was pre-sintered at 1250 ° C. for 3 hours in a vacuum heating furnace.
  • the degree of vacuum of the vacuum heating furnace after sintering at 1250 ° C. for 3 hours was 3.5 ⁇ 10 ⁇ 3 Pa. If the degree of vacuum after maintaining for a predetermined time at the presintering temperature is 5 ⁇ 10 ⁇ 3 Pa or less, the oxygen content in the electrode material produced using the obtained presintered body is reduced, The current interruption performance of the electrode material is not impaired.
  • the MoCr preliminary sintered body was taken out from the vacuum heating furnace and pulverized for 10 minutes using a planetary ball mill to obtain MoCr powder.
  • XRD X-ray diffraction
  • the lattice constant a (Mo) of the Mo powder was 0.3151 nm, and the lattice constant a (Cr) of the Cr powder was 0.2890 nm.
  • the average particle diameter (median diameter d50) of the MoCr powder was 15.1 ⁇ m.
  • the MoCr powder obtained in the pulverization step is pressure-molded with a press using a press pressure of 2.3 ton / cm 2 to form a compact (diameter: 60 mm—height: 10 mm).
  • a sintered body was obtained by performing main sintering in a vacuum atmosphere at a temperature of 1.5 ° C. for 1.5 hours.
  • the sintered body was placed in a stainless steel cylindrical container (cylinder height 11 mm, inner diameter ⁇ 62 mm, wall thickness 5 mm), vacuum sealed, and then 1050 ° C.-70 MPa (0.714 ton / cm 2 ) in the HIP processing apparatus. ) -2 hours of HIP treatment.
  • a carbon sheet (diameter: 62 mm, thickness: 0.4 mm) was laid on the bottom surface of the cylindrical container, and a sintered body was placed thereon. A carbon sheet was also provided between the sintered body and the inner wall of the cylindrical container. Further, a carbon sheet was placed on the sintered body, and an upper lid (thickness 5 mm) was put on the upper opening of the cylindrical container. A step is formed in advance in the upper inner diameter portion of the cylindrical container, and the upper lid is loosely fitted on the step.
  • the cylindrical container in which the sintered compact was put was put in the vacuum apparatus, and evacuation was performed to 1.0x10 ⁇ -3 > Pa.
  • the inside of the cylindrical container (the space in which the sintered body was disposed) was also evacuated to 1.0 ⁇ 10 ⁇ 3 Pa through the gap between the upper opening of the cylindrical container and the upper lid.
  • the upper opening of the cylindrical container and the upper lid were welded with an electron beam in a vacuum apparatus, and the cylindrical container was vacuum-sealed.
  • the vacuum-sealed cylindrical container was subjected to HIP treatment (1050 ° C.-70 MPa-2 hours), and after the HIP treatment, the portion welded with an electron beam was lathe cut. Since the carbon sheet is not bonded to the cylindrical container and the sintered body at a heat treatment temperature of 1050 ° C., the HIP processed body can be obtained by simply removing the carbon sheets attached to the top, bottom, and side surfaces of the HIP processed body. I was able to. When the filling rate of the HIP processing body was measured by measuring the external shape and thickness of the HIP processing body, the filling rate was 66.8%. After this HIP-treated body was ultrasonically cleaned with acetone, a Cu plate was placed on the HIP-treated body, and Cu was infiltrated in a vacuum atmosphere (non-oxidizing atmosphere) at 1150 ° C. for 2 hours.
  • a vacuum atmosphere non-oxidizing atmosphere
  • the electrode material of Reference Example 1 is an electrode material produced by the same method as Example 1 except that the HIP process is not performed.
  • the electrode material of Reference Example 1 is an electrode material manufactured according to the flowchart shown in FIG. In the flowchart of FIG. 3, the same steps as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the mixed powder was pre-sintered, and the resulting MoCr solid solution was pulverized.
  • the powder obtained by pulverizing the MoCr solid solution was press-molded at a press pressure of 2.3 ton / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 50.7%.
  • Cu was infiltrated into this sintered body to obtain an electrode material of Reference Example 1.
  • Example 2 The electrode material of Example 2 is an electrode material produced by the same method as Example 1 except that the pressure in the pressure molding step S4 is different.
  • the mixed powder was pre-sintered, and the resulting MoCr solid solution was pulverized.
  • the powder obtained by pulverizing the MoCr solid solution was pressure-molded at a press pressure of 3.5 ton / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 54.9%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 68.6%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 2.
  • Example 3 The electrode material of Example 3 is an electrode material produced by the same method as Example 1 except that the pressure in the pressure molding step S4 is different.
  • the mixed powder was pre-sintered, and the resulting MoCr solid solution was pulverized.
  • the powder obtained by pulverizing the MoCr solid solution was press-molded at a press pressure of 4.1 ton / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 57.0%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 69.9%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 3.
  • Example 4 The electrode material of Example 4 is an electrode material manufactured by the same method as Example 1 except that the mixing ratio of Mo and Cr in the mixing step S1 is different.
  • the mixed powder was pre-sintered, and the resulting MoCr solid solution was pulverized.
  • the lattice constant a was 0.3107 nm.
  • This powder was press-molded at a press pressure of 2.3 ton / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 51.2%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 66.7%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 4.
  • Example 5 The electrode material of Example 5 is an electrode material manufactured by the same method as Example 4 except that the pressure in the pressure molding step S4 is different.
  • the mixed powder was pre-sintered, and the resulting MoCr solid solution was pulverized.
  • the powder obtained by pulverizing the MoCr solid solution was pressure-molded at a press pressure of 3.5 ton / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 55.1%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 68.0%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 5.
  • Example 6 The electrode material of Example 6 is an electrode material manufactured by the same method as Example 4 except that the pressure in the pressure molding step S4 is different.
  • the mixed powder was pre-sintered, and the resulting MoCr solid solution was pulverized.
  • the powder obtained by pulverizing the MoCr solid solution was press-molded at a press pressure of 4.1 ton / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat-treated in vacuum at 1150 ° C. for 1.5 hours to obtain a sintered body.
  • the filling factor of the sintered body was 56.9%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 69.7%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Example 6.
  • Reference Examples 2 to 6 As Reference Examples 2 to 6 corresponding to the electrode materials of Examples 2 to 6, electrode materials were produced in the same manner as in Examples 2 to 6, except that the HIP treatment was not performed.
  • Table 1 shows the measurement results of micro Vickers hardness and impulse withstand voltage of the electrode materials of Examples 1 to 6 and Reference Examples 1 to 6. Table 1 also shows the measurement results of the packing ratio of the sintered bodies before and after the HIP treatment process of Examples 1 to 6 and the packing ratio of the sintered bodies after the sintering process of Reference Examples 1 to 6.
  • impulsee withstand voltage measurement was performed by processing each electrode material into a disk electrode having a diameter of 25 mm as an electrode of a vacuum circuit breaker and measuring a 50% flashover voltage (the same applies to other examples (comparative examples and reference examples)). is there). Since the samples subjected to the HIP treatment (Examples 1 to 6) use the carbon sheet at the time of the HIP treatment, carbides of Mo and Cr were formed over a depth of about 100 ⁇ m from the surface of the HIP treatment body. The carbides of Mo and Cr were completely removed by lathe processing during electrode processing.
  • the withstand voltage is shown as a relative value to the electrode material produced under the same conditions except for the presence or absence of the HIP treatment. That is, the withstand voltage indicates a relative value based on the electrode material that has not been subjected to the HIP process (reference value 1.0).
  • the Vickers hardness after Cu infiltration was improved, and the withstand voltage was improved by 15 to 20% as compared with the electrode material not subjected to the HIP treatment.
  • the electrode material of Comparative Example 1 is an electrode material manufactured by the same method as the electrode material of Example 3 except that the preliminary sintering step S2, the pulverizing step S3, and the HIP processing step S6 are not performed.
  • the electrode material of Comparative Example 1 was produced according to the flowchart shown in FIG. In the flowchart of FIG. 4, the same steps as those in the flowchart of FIG.
  • This mixed powder was press-molded at a press pressure of 4.1 ton / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat treated in a vacuum at 1200 ° C. for 2 hours to obtain a sintered body.
  • the filling factor of the sintered body was 61.0%.
  • Cu was infiltrated into this sintered body to obtain an electrode material of Comparative Example 1.
  • Comparative Example 2 The electrode material of Comparative Example 2 is an electrode material produced by the same method as Comparative Example 1 except that the mixing ratio of Mo and Cr in the mixing step S1 is different.
  • This mixed powder was press-molded at a press pressure of 4.1 ton / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat treated in a vacuum at 1200 ° C. for 2 hours to obtain a sintered body.
  • the filling factor of the sintered body was 65.1%.
  • Cu was infiltrated into this sintered body to obtain an electrode material of Comparative Example 2.
  • the electrode material of Reference Example 7 is an electrode material produced by the same method as the electrode material of Example 3 except that the temporary sintering step S2 and the pulverization step S3 are not performed.
  • the electrode material of Reference Example 7 was produced according to the flowchart shown in FIG. In the flowchart of FIG. 5, the same steps as those in the flowchart of FIG.
  • This mixed powder was press-molded at a press pressure of 4.1 ton / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat treated in a vacuum at 1200 ° C. for 2 hours to obtain a sintered body.
  • the filling factor of the sintered body was 60.6%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 76.1%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Reference Example 7.
  • Reference Example 8 The electrode material of Reference Example 8 is an electrode material manufactured by the same method as Reference Example 7 except that the mixing ratio of Mo and Cr in the mixing step S1 is different.
  • This mixed powder was press-molded at a press pressure of 4.1 ton / cm 2 to obtain a molded body having a diameter of 60 mm and a height of 10 mm.
  • This molded body was heat treated in a vacuum at 1200 ° C. for 2 hours to obtain a sintered body.
  • the filling factor of the sintered body was 65.1%.
  • the sintered body was subjected to HIP treatment at 1050 ° C.-70 MPa-2 hours.
  • the filling factor after HIP processing was 75.3%.
  • Cu was infiltrated into this HIP-treated body to obtain an electrode material of Reference Example 8.
  • Table 2 shows the measurement results of micro Vickers hardness and impulse withstand voltage of the electrode materials of Comparative Examples 1 and 2 and Reference Examples 7 and 8.
  • Table 2 also shows the measurement results of the packing ratio of the sintered bodies after the sintering process of Comparative Examples 1 and 2 and the packing ratio of the sintered bodies before and after the HIP treatment process of Reference Examples 7 and 8.
  • the withstand voltage in Table 2 is based on the electrode material (Reference Example 3 or Reference Example 6 in Table 1) that was not subjected to HIP treatment under the same mixing ratio of Mo powder and Cr powder and press molding pressure ( Relative value with reference value 1.0) is shown.
  • the MoCr solid solution powder has low compressibility (low filling rate), so that the moldability may be reduced.
  • the moldability is improved, and an electrode material having excellent withstand voltage performance can be obtained even when compared with the electrode materials of Reference Examples 7 and 8.
  • solid solution powder obtained by pre-sintering Mo powder and Cr powder is molded, and the molded solid solution powder is subjected to HIP treatment. After that, by infiltrating Cu into the HIP-treated body, an electrode material excellent in withstand voltage performance and current interruption performance can be obtained.
  • the structure of the electrode material is densified and hardened, thereby improving the withstand voltage performance of the electrode material.
  • the insulation recovery time between the electrodes formed of the electrode material is accelerated, and the current interruption performance of the electrode (electrode material) is improved.
  • a solid solution in which Mo and Cr are solid-phase diffused in advance is formed, and after the solid solution powder is formed, Cu is infiltrated, whereby fine particles in which the heat-resistant element and Cr are mutually solid-solution-diffused (heat-resistant element and Cr Solid solution particles) can be uniformly dispersed in Cu. Further, the Cu structure is not unevenly distributed and can be uniformly dispersed. As a result, the withstand voltage performance and current interruption performance of the electrode material are improved.
  • the ratio of the heat-resistant element and the Cr element in the solid solution powder is such that the weight ratio of Cr is 4 or less with respect to the heat-resistant element 1, more preferably, Cr is 1/3 or less with respect to the heat-resistant element 1. An electrode material excellent in performance can be obtained.
  • the filling rate of the sintered body (porous body) after the HIP process is controlled by controlling the temperature, pressure, and time conditions of the HIP process.
  • the filling rate of the sintered body after the HIP treatment is improved by 10% or more than the filling rate of the sintered body before the HIP treatment.
  • the voltage performance and the current interruption performance can be improved.
  • a pressing machine having a pressing performance of 15.7 to 353 ton is required. That is, in order to obtain a molded body having a large diameter (for example, a diameter of 100 mm or more), a large press machine of about 400 tons is required. If a large press is introduced, the cost is high and it is extremely uneconomical. Also, the higher the press pressure, the more severe the mold wear and the shorter the mold life. In particular, the MoCr solid solution powder has higher powder hardness than the Mo powder and Cr powder, the compressibility during molding is inferior, and the moldability may be deteriorated. Therefore, when molding a MoCr solid solution powder, a higher molding pressure may be required to obtain an electrode material having the same filling rate compared to molding a mixed powder of Mo powder and Cr powder. Conceivable.
  • the filling rate of the sintered body (or molded body) can be improved by performing the HIP treatment step before infiltrating the highly conductive metal. it can. That is, by performing the HIP process in a high temperature and high pressure atmosphere, the filling rate of the Mo—Cr molded body can be improved by the synergistic effect of pressure and temperature. As a result, the molding pressure in the pressure molding process can be reduced, and the manufacturing cost of the electrode material can be reduced.
  • the average particle size of the heat-resistant element can be one factor that determines the particle size of the solid solution powder of the heat-resistant element and Cr. That is, Cr particles are refined by heat-resistant element particles, Cr diffuses into the heat-resistant element particles by the diffusion mechanism, and the heat-resistant element and Cr form a solid solution structure. growing. Further, the degree of increase by pre-sintering also depends on the mixing ratio of Cr. Therefore, by setting the average particle diameter of the heat-resistant element powder to, for example, 2 to 20 ⁇ m, more preferably 2 to 10 ⁇ m, the heat-resistant element and Cr for forming an electrode material having excellent withstand voltage performance and current interruption performance The solid solution powder can be obtained.
  • the electrode material manufacturing method manufactures the electrode material by the infiltration method
  • the filling rate of the electrode material after Cu infiltration is 95% or more, and the current is interrupted or the current is interrupted. It is possible to manufacture an electrode material with less surface roughness of the contact surface due to an arc during opening and closing. That is, there can be produced an electrode material that is free from fine irregularities on the surface of the electrode material due to the presence of pores and has excellent withstand voltage performance. Also, by filling the voids of the porous body with Cu, it has excellent mechanical strength and higher hardness than the electrode material manufactured by the sintering method, so it manufactures an electrode material with excellent withstand voltage performance can do.
  • the withstand voltage performance of the electrode contact of the vacuum interrupter is improved.
  • the gap length between the fixed electrode and the movable electrode can be made shorter than the conventional vacuum interrupter, and the gap between the fixed electrode and the movable electrode and the main shield can be narrowed. Therefore, the structure of the vacuum interrupter can be reduced. As a result, the vacuum interrupter can be reduced in size.
  • the manufacturing cost of the vacuum interrupter is reduced by downsizing the vacuum interrupter.
  • the pre-sintering temperature is 1250 ° C. or higher and not higher than the melting point of Cr, more preferably 1250 ° C. to 1500 ° C., so that the interdiffusion of Mo and Cr sufficiently proceeds, and a subsequent pulverizer is used.
  • the used MoCr solid solution can be pulverized relatively easily.
  • an electrode material excellent in withstand voltage performance and current interruption performance can be manufactured at low cost.
  • the sintering time of the pre-sintering is 1250 ° C. for 30 minutes or longer, more preferably 1250 ° C. for 3 hours, so that the interdiffusion of Mo and Cr sufficiently proceeds and Cr is sufficiently refined. .
  • This pre-sintering time varies depending on the pre-sintering temperature. For example, pre-sintering for 3 hours is preferable at 1250 ° C., but pre-sintering for 0.5 hour is sufficient at 1500 ° C.
  • the MoCr solid solution powder is not limited to those manufactured by the manufacturing method described in the embodiment, and the MoCr solid solution powder manufactured by a known manufacturing method (for example, a jet mill method or an atomizing method) is used. Also good.
  • the pressure molding process is not limited to pressure molding using a press, but is performed by a molding method such as cold isostatic pressing (CIP), cast molding, injection molding, or extrusion molding. You can also.
  • CIP cold isostatic pressing
  • the electrode material produced by the method for producing an electrode material of the present invention is not limited to those having only heat-resistant elements, Cr and Cu as constituent elements, but contains elements that improve the characteristics of the electrode material. It may be.
  • the welding resistance of the electrode material is improved by adding Te to the electrode material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

耐熱元素とCrとを含有する焼結体に高導電性の金属を溶浸させた電極材料である。予め耐熱元素粉末とCr粉末との混合粉末を仮焼結して、耐熱元素とCrとを固相拡散させる。仮焼結して得られたMoCr固溶体を粉砕後、粉砕したMoCr固溶体の粉末を成形し、焼結する。焼結して得られた焼結体に対してHIP処理を行う。HIP処理後の焼結体に高導電性の金属を載せ、所定の温度で加熱して焼結体に高導電性の金属を溶浸する。HIP処理を行うことで、電極材料の耐電圧性能及び電流遮断性能が向上する。

Description

電極材料の製造方法及び電極材料
 本発明は、電極材料の組成制御技術に関する。
 真空インタラプタ(VI)等の電極に用いられる電極材料には、(1)遮断容量が大きいこと、(2)耐電圧性能が高いこと、(3)接触抵抗が低いこと、(4)耐溶着性が高いこと、(5)接点消耗量が低いこと、(6)裁断電流が低いこと、(7)加工性に優れること、(8)機械強度が高いこと、等の特性を満たすことが求められる。
 銅(Cu)-クロム(Cr)電極は、遮断容量が大きく、耐電圧性能が高く、耐溶着性が高い等の特性を有し、真空インタラプタの接点材料として広く用いられている。Cu-Cr電極では、Cr粒子の粒径が細かい方が、遮断電流や接触抵抗の面において良好であるとの報告がある(例えば、非特許文献1)。
 Cu-Cr電極材料の製造方法として、一般に焼結法(固相焼結法)と溶浸法の2通りの方法が良く知られている。焼結法は、導電性の良好なCuと耐アーク性に優れるCrとを一定の割合で混合し、その混合粉末を加圧成形してから、真空中等の非酸化雰囲気で焼結して焼結体を製造する。焼結法は、CuとCrの組成を自由に選ぶことができる長所があるが、溶浸法と比較してガス含有量が高く、機械強度が低くなるおそれがある。
 一方の溶浸法は、Cr粉末を加圧成形して(若しくは、成形せずに)、容器に充填し、真空中等の非酸化雰囲気でCuの融点以上に加熱することによりCr粒子間の空隙にCuを溶浸して電極を製造する。溶浸法は、CuとCrの組成比を自由に選ぶことができないが、焼結法よりもガス・空隙の少ない素材が得られ、機械強度が高いという長所がある。
 近年、真空インタラプタの使用条件が厳しくなるとともにコンデンサ回路への真空インタラプタの適用拡大が進んでいる。コンデンサ回路では、通常の2~3倍の電圧が電極間に印加されるため、電流遮断時や電流開閉時のアークによって接点表面が著しく損傷し再点弧が発生しやすくなると考えられる。例えば、回路電圧を印加した状態で電極を閉じていくと、可動電極と固定電極との間の電界が強くなり、電極が閉じる前に絶縁破壊が生じる。この時にアークが発生し、アークの熱によって電極の接点表面に溶融が生じる。そして、電極が閉じると、溶融した部位は熱拡散により温度が低下し、溶着することとなる。電極が開くときには、この溶融した部位が引き剥がされるので、接点表面に損傷が生じることとなる。そのため、従来のCu-Cr電極より優れた耐電圧性能及び電流遮断性能を有する電極材料が求められている。
 耐電圧性能や電流遮断性能等の電気的特性の良好なCu-Cr系電極材料の製造方法として、基材であるCu粉末に、電気的特性を向上させるCr粉末と、Cr粒子を微細にする耐熱元素(モリブデン(Mo)、タングステン(W)、ニオブ(Nb)、タンタル(Ta)、バナジウム(V)、ジルコニウム(Zr)等)粉末とを混合した後、混合粉末を型に挿入して加圧成形し焼結体とする電極の製造方法がある(例えば、特許文献1,2)。
 具体的には、200~300μmの粒子サイズを有するCrを原料としたCu-Cr系電極材料に耐熱元素を添加し、微細組織技術を通してCrを微細化する。つまり、Crと耐熱元素の合金化を促進させ、Cu基材組織内部に微細なCr-X(Xは耐熱元素)粒子の析出を増加させている。その結果、直径20~60μmのCr粒子が、その内部に耐熱元素を有する形態で、Cu基材組織内に均一に分散されることとなる。
 電極材料において、電流遮断性能や耐電圧性能等の電気的特性を向上させるには、Cu基材中のCrや耐熱元素の含有量を多くし、且つCr及びCrと耐熱元素が固溶した粒子の粒径を微細化してCu基材中に均一に分散させることが求められる。
特開2002-180150号公報 特開2012-7203号公報 特開2004-211173号公報 特開昭63-62122号公報 特開平5-287320号公報
RIEDER, F. u.a.、"The Influence of Composition and Cr Particle Size of Cu/Cr Contacts on Chopping Current, Contact Resistance, and Breakdown Voltage in Vacuum Interrupters"、IEEE Transactions on Components, Hybrids, and Manufacturing Technology、Vol. 12、1989、273-283
 本発明は、従来のCu-Cr電極より優れた耐電圧性能及び電流遮断性能を有する電極材料を提供することを目的とし、特に、溶浸法により製造される電極材料において、Cuや銀等の高導電性金属を溶浸させる多孔質体の充填率を向上させることを目的とする。
 溶浸法では、例えば、金型成形等の方法により多孔質体の成形が行われているが、多孔質体の充填率を向上させるために成形圧力を向上させると、金型の摩耗が激しくなり、金型の寿命が短くなるおそれがある。
 上記目的を達成する本発明の電極材料の製造方法の一態様は、耐熱元素の粉末とCr粉末とを含有する混合粉末を焼結して、耐熱元素とCrとが固溶した固溶体を得る仮焼結工程と、前記固溶体を粉砕して粉末とする粉砕工程と、前記固溶体の粉末または前記固溶体の粉末を成形した成形体を熱間等方圧加圧処理に供する熱間等方圧加圧処理工程と、当該熱間等方圧加圧処理後、被熱間等方圧加圧処理体に高導電性の金属を溶浸する溶浸工程と、を有する。
 また、上記目的を達成する本発明の電極材料の製造方法の他の態様は、上記電極材料の製造方法において、前記成形体を焼結し、得られた焼結体を熱間等方圧加圧処理に供する。
 また、上記目的を達成する本発明の電極材料の製造方法の他の態様は、上記電極材料の製造方法において、前記耐熱元素に対する前記Crの混合量は、重量比で前記耐熱元素1に対して4以下である。
 また、上記目的を達成する本発明の電極材料の製造方法の他の態様は、上記電極材料の製造方法において、前記熱間等方圧加圧処理工程では、被熱間等方圧加圧処理体の充填率を10%以上向上させる。
 上記目的を達成する本発明の電極材料の一態様は、耐熱元素とCrとを含有する固溶体粉末または前記固溶体粉末の成形体を、前記固溶体の融点より低い温度で熱間等方圧加圧処理して得られる焼結体に、前記耐熱元素の融点より低い融点を有する金属を溶浸してなる。
 以上の発明によれば、電極材料の耐電圧性能及び電流遮断性能の向上に寄与することができる。
本発明の実施形態に係る電極材料の製造方法のフローチャートである。 本発明の実施形態に係る電極材料の製造方法により製造された電極材料を有する真空インタラプタの概略断面図である。 参考例1乃至6に係る電極材料の製造方法のフローチャートである。 比較例1,2に係る電極材料の製造方法のフローチャートである。 参考例7,8に係る電極材料の製造方法のフローチャートである。
 本発明の実施形態に係る電極材料の製造方法及び電極材料について、図面を参照して詳細に説明する。なお、実施形態の説明において、特に断りがない限り、平均粒子径(メディアン径d50等)や体積相対粒子量は、レーザー回折式粒度分布測定装置(シーラス社:シーラス1090L)により測定された値を示す。
 まず、本発明に先立って、発明者らは再点弧発生と、耐熱元素(Mo,Cr等)やCuの分布と、の相関性について検討を行った。その結果、再点弧を発生した電極表面を観察することで、耐熱元素よりも融点が低いCu領域において微小な突起部(例えば、数十μm~数百μmの微小な突起)が多いことを見出した。この突起部の先端には高電界が生じるため、遮断性能や耐電圧性能を低下させる要因となり得る。突起部の形成は、投入電流により電極が溶融・溶着し、その後の電流遮断時に溶融部が引き剥がされることによって形成されるためと推定される。この推定に基づいて電極材料の遮断性能及び耐電圧性能の検討を行った結果、電極中の耐熱元素の粒径を小さくし、微細分散させること、及び、電極表面中のCu領域を微細に均一分散させることで、Cu領域における微小な突起部の発生が抑制され、且つ再点弧の発生確率が低減されるという知見を得た。また、電極接点は、接点の開閉の繰り返しによって、電極表面の耐熱元素の粒子が砕かれ、微細な粒子となって電極表面から離脱し、絶縁破壊が起こることが考えられる。この考察に基づいて、耐電圧性能に優れる電極材料の検討を行った結果、電極材料中の耐熱元素の粒径を小さくし、微細分散させること、さらに、Cu領域を微細分散させることで、耐熱元素の粒子が砕かれることを抑制する効果が得られるとの知見を得た。これらの知見に基づいて、発明者らは、耐熱元素の粒径、Cuの分散性、真空インタラプタの電極の耐電圧性等について鋭意検討した結果、本発明の完成に至ったものである。
 本発明は、金属(Cu,Ag等)-Cr-耐熱元素(Mo,W,V等)電極材料の組成制御技術に係る発明であって、Crを含有する粒子を微細化して均一に分散させ、高導電体成分である金属(Cu,Ag等)組織も微細均一分散させること、また耐熱元素の含有量を多くすることで、例えば、真空インタラプタ用電極材料の耐電圧性能及び電流遮断性能を向上させるものである。特に、Crと耐熱元素とを仮焼結し、得られた固溶体を粉砕した後成形し、得られた成形体にCuを溶浸させること、及び、Cu溶浸を行う前に、成形体を熱間等方圧加圧処理(以後、HIP処理と称する)に供することを特徴とするものである。
 耐熱元素は、例えば、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、ニオブ(Nb)、バナジウム(V)、ジルコニウム(Zr)、ベリリウム(Be)、ハフニウム(Hf)、イリジウム(Ir)、白金(Pt)、チタン(Ti)、ケイ素(Si)、ロジウム(Rh)及びルテニウム(Ru)等の元素から選択される元素を単独若しくは組み合わせて用いることができる。特に、Cr粒子を微細化する効果が顕著であるMo、W、Ta、Nb、V、Zrを用いることが好ましい。耐熱元素を粉末として用いる場合、耐熱元素粉末の平均粒子径を、例えば、2~20μm、より好ましくは2~10μmにすることで、電極材料にCrを含有する粒子(耐熱元素とCrの固溶体を含む)を微細化して均一に分散させることができる。耐熱元素は、電極材料に対して6~76重量%、より好ましくは32~68重量%含有させることで、機械強度や加工性を損なうことなく、電極材料の耐電圧性能及び電流遮断性能を向上させることができる。
 Crは、電極材料に対して1.5~64重量%、より好ましくは4~15重量%含有させることで、機械強度や加工性を損なうことなく、電極材料の耐電圧性能及び電流遮断性能を向上させることができる。Cr粉末を用いる場合、Cr粉末の粒径を、例えば、-48メッシュ(粒径300μm未満)、より好ましくは-100メッシュ(粒径150μm未満)、さらに好ましくは-325メッシュ(粒径45μm未満)とすることで、耐電圧性能及び電流遮断性能に優れた電極材料を得ることができる。Cr粉末の粒径を-100メッシュとすることで、電極材料に溶浸されたCuの粒子径を大きくする要因となる残存Crの量を低減することができる。また、電極材料中に微細化したCrを含有する粒子を分散させる点では、粒径が小さいCr粉末を用いることが好ましいが、Cr粒子を細かくするほど電極材料に含有される酸素含有量が増加して電流遮断性能が低下する。Cr粒子の粒径を小さくすることによる電極材料の酸素含有量の増加は、Crを微細に粉砕する際にCrが酸化することにより生じるものと考えられる。そこで、Crが酸化しない条件、例えば、不活性ガス中でCrを微細な粉末とすることができるのであれば、粒径が-325メッシュ未満のCr粉末を用いてもよく、電極材料中に微細化したCrを含有する粒子を分散させる点では、粒径が小さいCr粉末を用いることが好ましい。
 溶浸させる金属としては、銅(Cu)、銀(Ag)またはCuとAgの合金等の高導電性の金属が用いられる。これら金属は、電極材料に対して20~70重量%、より好ましくは25~60重量%含有させることで、耐電圧性能や電流遮断性能を損なうことなく、電極材料の接触抵抗を低減することができる。なお、電極材料に含有される高導電性の金属の含有量は、溶浸工程により定められることとなるので、電極材料に対して添加される耐熱元素、Cr及び高導電性の金属の合計は、100重量%を超えることはない。
 本発明の実施形態に係る電極材料の製造方法について、図1のフローチャートを参照して詳細に説明する。なお、以下の説明では、耐熱元素としてMo、高導電性の金属としてCuを例示して説明するが、他の耐熱元素の粉末や他の高導電性の金属を用いた場合も同様である。
 混合工程S1では、耐熱元素粉末(例えば、Mo粉末)とCr粉末を混合する。Mo粉末及びCr粉末の平均粒子径は、特に限定するものではないが、Mo粉末の平均粒子径は2~20μm、Cr粉末の平均粒子径は、-100メッシュとすることで、Cu相にMoCr固溶体が均一に分散した電極材料を形成することができる。また、Mo粉末とCr粉末は、重量比率でMo1に対してCrが4以下、より好ましくはMo1に対してCrが1/3以下となるように混合することで、耐電圧性能及び電流遮断性能に優れた電極材料を製造することができる。
 仮焼結工程S2では、混合工程S1で得られたMo粉末とCr粉末の混合粉末(以下、混合粉末と称する)を、Mo及びCrと反応しない容器(例えば、アルミナ容器)に充填して、非酸化性雰囲気(水素雰囲気や真空雰囲気等)にて所定の温度(例えば、1250℃~1500℃)で仮焼結を行う。仮焼結を行うことで、MoとCrが相互に固溶拡散したMoCr固溶体が得られる。仮焼結工程S2では、必ずしもすべてのMoとCrがMoCr固溶体を形成するまで仮焼結を行う必要はない。ただし、X線回折測定によって観察されるMo元素に対応するピーク及びCr元素に対応するピークのいずれか若しくは両方が完全に消失した仮焼結体(すなわち、MoとCrのどちらかがもう一方に完全に固溶した仮焼結体)を用いることで、より耐電圧性能の高い電極材料を得ることができる。よって、例えば、Mo粉末の混合量が多い場合には、MoCrの固溶体のX線回折測定で、少なくともCr元素に対応するピークが消失するように、仮焼結工程S2の焼結温度と時間が選択され、Cr粉末の混合量が多い場合には、MoCrの固溶体のX線回折測定で、少なくともMo元素に対応するピークが消失するように、仮焼結工程S2の焼結温度と時間が選択される。
 また、仮焼結工程S2では、仮焼結を行う前に混合粉末を加圧成形(プレス処理)しても良い。加圧成形することで、MoとCrとの相互拡散が促進され仮焼結時間を短くしたり、仮焼結温度を低減したりすることができる。加圧成形時の圧力は、特に限定するものではないが、0.1ton/cm2以下とすることが好ましい。混合粉体の加圧成形時の圧力が非常に大きい場合、仮焼結体が硬くなり、後の粉砕工程S3での粉砕作業が困難となるおそれがある。
 粉砕工程S3では、粉砕機(例えば、遊星ボールミル)を用いてMoCr固溶体の粉砕を行い、MoCr固溶体の粉末(以下、MoCr粉末と称する)を得る。粉砕工程S3の粉砕雰囲気は、非酸化性雰囲気が望ましいが、大気中において粉砕してもかまわない。粉砕条件は、MoCr固溶体粒子が相互に結合している粒子(2次粒子)を粉砕する程度の粉砕条件でよい。なお、MoCr固溶体の粉砕は、粉砕時間を長くすればするほど、MoCr固溶体粒子の平均粒子径が小さくなる。したがって、例えば、MoCr粉末において、粒径30μm以下の粒子(より好ましくは、粒径20μm以下の粒子)の体積相対粒子量が50%以上となるような粉砕条件を設定することで、MoCr粒子(MoとCrが相互に固溶拡散した粒子)及びCu組織が均一に分散した電極材料(すなわち、耐電圧性能に優れた電極材料)を得ることができる。
 加圧成形工程S4では、MoCr粉末の成形を行う。MoCr粉末の成形は、例えば、2ton/cm2の圧力で加圧成形することにより行う。
 焼結工程S5では、成形されたMoCr粉末の本焼結を行い、MoCr焼結体(以後、焼結体という)を得る。本焼結は、例えば、MoCr粉末の成形体を、1150℃-2時間、真空雰囲気中で焼結することにより行う。焼結工程S5は、MoCr粉末の変形と接合によってより緻密な焼結体を得る工程である。MoCr粉末の焼結は、溶浸工程S7の温度条件、例えば1150℃以上の温度で実施することが望ましい。溶浸温度よりも低い温度で焼結を行うと、Cu溶浸時に焼結体に含有されているガスが新たに発生してCu溶浸体に残留し、耐電圧性能や電流遮断性能を損なう要因となるからである。本発明の焼結温度は、Cu溶浸時の温度よりも高く、且つCrの融点以下の温度、好ましくは1150~1500℃の範囲で行うことで、MoCr粒子の緻密化が進み、且つMoCr粒子の脱ガスが十分に進行する。なお、焼結工程S5を行わずに、直接HIP処理工程S6を行うことで、HIP処理を行った焼結体を得ることもできる。
 HIP処理工程S6では、得られた焼結体(若しくは、MoCr粉末の成形体)のHIP処理を行う。HIP処理の処理温度は、焼結体(若しくは、MoCr粉末)の融点未満であれば特に限定されるものではない。つまり、HIP処理の処理温度や処理圧力は、電極として要求される性能に応じて適宜決定されることとなる。例えば、処理温度700~1100℃、処理圧力30~100MPa、処理時間1~5時間にてHIP処理を行うことで、HIP処理後の焼結体の充填率がHIP処理前の焼結体と比較して10%以上向上するように制御することができる。
 Cu溶浸工程S7では、HIP処理後の焼結体(以後、HIP処理体という)にCuを溶浸させる。Cuの溶浸は、例えば、HIP処理体上にCu板材を乗せ、非酸化性雰囲気にて、Cuの融点以上の温度で所定時間(例えば、1150℃-2時間)保持することにより行う。
 なお、本発明の実施形態に係る電極材料を用いて真空インタラプタを構成することができる。図2に示すように、本発明の実施形態に係る電極材料を有する真空インタラプタ1は、真空容器2と、固定電極3と、可動電極4と、主シールド10と、を有する。
 真空容器2は、絶縁筒5の両開口端部が、固定側端板6及び可動側端板7でそれぞれ封止されることで構成される。
 固定電極3は、固定側端板6を貫通した状態で固定される。固定電極3の一端は、真空容器2内で、可動電極4の一端と対向するように固定されており、固定電極3の可動電極4と対向する端部には、本発明の実施形態に係る電極材料である電極接点材8が設けられる。
 可動電極4は、可動側端板7に設けられる。可動電極4は、固定電極3と同軸上に設けられる。可動電極4は、図示省略の開閉手段により軸方向に移動させられ、固定電極3と可動電極4の開閉が行われる。可動電極4の固定電極3と対向する端部には、電極接点材8が設けられる。なお、可動電極4と可動側端板7との間には、ベローズ9が設けられ、真空容器2内を真空に保ったまま可動電極4を上下させ、固定電極3と可動電極4の開閉が行われる。
 主シールド10は、固定電極3の電極接点材8と可動電極4の電極接点材8との接触部を覆うように設けられ、固定電極3と可動電極4との間で発生するアークから絶縁筒5を保護する。
 [実施例1]
 具体的な実施例を挙げて、本発明の実施形態に係る電極材料の製造方法及び電極材料についてさらに詳細に説明する。実施例1の電極材料は、図1に示すフローチャートにしたがって作製した電極材料である。
 Mo粉末とCr粉末の混合比率を重量比率で、Mo:Cr=9:1として、V型混合器を用いて均一となるように十分に混合した。
 Mo粉末は、粒度0.8~6.0μmのものを用いた。このMo粉末をレーザー回折式粒度分布測定装置を用いて粒度分布を測定したところメディアン径d50は5.1μm(d10=3.1μm、d90=8.8μm)であった。Cr粉末は、-325メッシュ(ふるい目開き45μm)を用いた。
 混合終了後、Mo粉末とCr粉末の混合粉末をアルミナ容器内に移し、真空加熱炉にて1250℃で3時間混合粉末の仮焼結を行った。1250℃で3時間焼結後の真空加熱炉の真空度は、3.5×10-3Paであった。なお、仮焼結温度で所定時間維持した後の真空度が5×10-3Pa以下であれば、得られた仮焼結体を用いて作製した電極材料中の酸素含有量が少なくなり、電極材料の電流遮断性能を損なうことがない。
 冷却後、真空加熱炉からMoCr仮焼結体を取り出し、遊星ボールミルを用いて10分間粉砕を行い、MoCr粉末を得た。粉砕後、MoCr粉末のX線回折(XRD)測定を行い、MoCr粉末の結晶定数を求めた。MoCr粉末(Mo:Cr=9:1)の格子定数aは、0.3118nmであった。なお、Mo粉末の格子定数a(Mo)は0.3151nmであり、Cr粉末の格子定数a(Cr)は、0.2890nmであった。
 MoCr粉末(Mo:Cr=9:1)のX線回折(XRD)の測定結果において、0.3151nmと0.2890nmのピークは消失していた。このことより、仮焼結を行うことによりMo元素とCr元素が相互に固相拡散し、MoとCrが固溶化したことがわかる。
 MoCr粉末を電子顕微鏡にて観察したところ、粒子径が45μm程度の比較的大きな粉末は確認できず、Crは原料そのままの状態(サイズ)では存在していないことが確認された。また、MoCr粉末の平均粒子径(メディアン径d50)は15.1μmであった。
 X線回折(XRD)測定の結果と電子顕微鏡写真より、MoとCrを混合した後、1250℃-3時間焼成することでCrが微細化され、MoとCrが相互に拡散してMoとCrの固溶体が形成されたと考えられる。
 次に、粉砕工程で得られたMoCr粉末をプレス機を用いてプレス圧2.3ton/cm2で加圧成形して成形体(直径φ60mm-高さ10mm)を形成し、この成形体を1150℃-1.5時間真空雰囲気中で本焼結して焼結体を得た。
 この焼結体をステンレス製の円筒容器(円筒内高さ11mm、内径φ62mm、肉厚5mm)内に入れ、真空密封した後、HIP処理装置内で、1050℃-70MPa(0.714ton/cm2)-2時間のHIP処理を行った。
 具体的に説明すると、円筒容器の底面にカーボンシート(直径φ62mm、厚さ0.4mm)を敷き、その上に焼結体を載せた。また、焼結体と円筒容器の内側壁との間にもカーボンシートを設けた。さらに、焼結体上にカーボンシートを載せ、円筒容器の上部開口に上蓋(厚さ5mm)を被せた。円筒容器の上部内径部分には、予め段差が形成されており、この段差部に上蓋が緩く嵌設される。焼結体と円筒容器の内壁との間にカーボンシートを挿入することで、HIP処理による焼結体と円筒容器との焼き付きが防止される。
 そして、焼結体が入れられた円筒容器を真空装置内に入れ、1.0×10-3Paまで真空排気を行った。この排気工程により円筒容器の上部開口と上蓋との隙間を通して、円筒容器内部(焼結体が配置されている空間)も1.0×10-3Paまで真空排気した。その後、真空装置中において円筒容器上部開口部と上蓋とを電子ビームで溶接し、円筒容器を真空密封した。
 真空密封した円筒容器をHIP処理(1050℃-70MPa-2時間)に供し、HIP処理後、電子ビームで溶接された箇所を旋盤切削した。カーボンシートは、1050℃の熱処理温度では、円筒容器及び焼結体と接合することがないので、HIP処理体の上下・側面に張り付いたカーボンシートを除去するのみで、HIP処理体を得ることができた。HIP処理体の外形及び厚みを測定することにより、HIP処理体の充填率を測定したところ、充填率は66.8%であった。このHIP処理体をアセトン超音波洗浄した後、HIP処理体上にCu板を載せ、1150℃-2時間真空雰囲気(非酸化性雰囲気)中でCuを溶浸させた。
 [参考例1]
 参考例1の電極材料は、HIP処理を行わないことを除いて実施例1と同じ方法で作製された電極材料である。参考例1の電極材料は、図3に示すフローチャートにしたがって作製された電極材料である。なお、図3のフローチャートでは、実施例1と同じ工程については、同じ符号を付し、詳細な説明は省略する。
 Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。混合粉末を仮焼結し、得られたMoCr固溶体を粉砕した。MoCr固溶体を粉砕した粉末を、プレス圧2.3ton/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、50.7%であった。この焼結体にCuを溶浸させ、参考例1の電極材料とした。
 [実施例2]
 実施例2の電極材料は、加圧成形工程S4における圧力が異なることを除いて実施例1と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。混合粉末を仮焼結し、得られたMoCr固溶体を粉砕した。MoCr固溶体を粉砕した粉末を、プレス圧3.5ton/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、54.9%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、68.6%であった。このHIP処理体にCuを溶浸させ、実施例2の電極材料とした。
 [実施例3]
 実施例3の電極材料は、加圧成形工程S4における圧力が異なることを除いて実施例1と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。混合粉末を仮焼結し、得られたMoCr固溶体を粉砕した。MoCr固溶体を粉砕した粉末を、プレス圧4.1ton/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、57.0%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、69.9%であった。このHIP処理体にCuを溶浸させ、実施例3の電極材料とした。
 [実施例4]
 実施例4の電極材料は、混合工程S1におけるMoとCrの混合比率が異なることを除いて実施例1と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=7:1の重量比率で混合した。混合粉末を仮焼結し、得られたMoCr固溶体を粉砕した。MoCr固溶体を粉砕した粉末に対してXRD測定を行い、結晶定数を求めたところ、格子定数aは、0.3107nmであった。この粉末を、プレス圧2.3ton/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、51.2%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、66.7%であった。このHIP処理体にCuを溶浸させ、実施例4の電極材料とした。
 [実施例5]
 実施例5の電極材料は、加圧成形工程S4における圧力が異なることを除いて実施例4と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=7:1の重量比率で混合した。混合粉末を仮焼結し、得られたMoCr固溶体を粉砕した。MoCr固溶体を粉砕した粉末を、プレス圧3.5ton/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、55.1%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、68.0%であった。このHIP処理体にCuを溶浸させ、実施例5の電極材料とした。
 [実施例6]
 実施例6の電極材料は、加圧成形工程S4における圧力が異なることを除いて実施例4と同じ方法で作製された電極材料である。
 図1に示すように、Mo粉末とCr粉末を、Mo:Cr=7:1の重量比率で混合した。混合粉末を仮焼結し、得られたMoCr固溶体を粉砕した。MoCr固溶体を粉砕した粉末を、プレス圧4.1ton/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1150℃-1.5時間熱処理して焼結体を得た。焼結体の充填率は、56.9%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、69.7%であった。このHIP処理体にCuを溶浸させ、実施例6の電極材料とした。
 [参考例2乃至6]
 実施例2乃至6の各電極材料と対応する参考例2乃至6として、HIP処理を行わないことを除いて各実施例2乃至6と同じ方法で電極材料を作製した。
 実施例1乃至6及び参考例1乃至6の電極材料のマイクロビッカース硬度及びインパルス耐電圧測定結果を表1に示す。表1には、実施例1乃至6のHIP処理工程前後の焼結体の充填率及び参考例1乃至6の焼結工程後の焼結体の充填率の測定結果を併せて示す。
 インパルス耐電圧測定は、各電極材料を真空遮断器の電極として直径φ25mmディスク電極に加工し、50%フラッシオーバ電圧を計測して行った(他の実施例(比較例、参考例)も同じである)。HIP処理を行った試料(実施例1乃至6)は、HIP処理時にカーボンシートを用いているため、HIP処理体の表面から100μm程度の深さにわたってMo及びCrの炭化物が形成されていたが、電極加工時の旋盤加工によりMo及びCrの炭化物は完全に除去されていた。また、表1において、耐電圧は、HIP処理の有無以外は同じ条件で作製した電極材料との相対値で示している。つまり、耐電圧は、HIP処理を行わなかった電極材料を基準(基準値1.0)とした相対値を示している。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、HIP処理を施すことにより、Cu溶浸後のビッカース硬度が向上し、HIP処理を行わない電極材料と比較して耐電圧が15乃至20%向上した。
 [電極材料の断面観察]
 実施例1の電極材料の断面を電子顕微鏡により観察したところ、1~10μmの微細な合金組織が均一に微細化して分散していた。また、Cu組織も偏在せずに均一に分散していた。
 [比較例1]
 比較例1の電極材料は、仮焼結工程S2及び粉砕工程S3並びにHIP処理工程S6を行わないことを除いて実施例3の電極材料と同じ方法で作製された電極材料である。比較例1の電極材料を、図4に示すフローチャートにしたがって作製した。なお、図4のフローチャートにおいて、図1のフローチャートと同じ工程には同じ符号を付し、詳細な説明を省略する。
 図4に示すように、Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。この混合粉末を、プレス圧4.1ton/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1200℃-2時間熱処理して焼結体を得た。焼結体の充填率は、61.0%であった。この焼結体にCuを溶浸させ、比較例1の電極材料とした。
 [比較例2]
 比較例2の電極材料は、混合工程S1におけるMoとCrの混合比率が異なることを除いて比較例1と同じ方法で作製された電極材料である。
 図4に示すように、Mo粉末とCr粉末を、Mo:Cr=7:1の重量比率で混合した。この混合粉末を、プレス圧4.1ton/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1200℃-2時間熱処理して焼結体を得た。焼結体の充填率は、65.1%であった。この焼結体にCuを溶浸させ、比較例2の電極材料とした。
 [参考例7]
 参考例7の電極材料は、仮焼結工程S2及び粉砕工程S3を行わないことを除いて実施例3の電極材料と同じ方法で作製された電極材料である。参考例7の電極材料を、図5に示すフローチャートにしたがって作製した。なお、図5のフローチャートにおいて、図1のフローチャートと同じ工程には同じ符号を付し、詳細な説明を省略する。
 図5に示すように、Mo粉末とCr粉末を、Mo:Cr=9:1の重量比率で混合した。この混合粉末を、プレス圧4.1ton/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1200℃-2時間熱処理して焼結体を得た。焼結体の充填率は、60.6%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、76.1%であった。このHIP処理体にCuを溶浸させ、参考例7の電極材料とした。
 [参考例8]
 参考例8の電極材料は、混合工程S1におけるMoとCrの混合比率が異なることを除いて参考例7と同じ方法で作製された電極材料である。
 図5に示すように、Mo粉末とCr粉末を、Mo:Cr=7:1の重量比率で混合した。この混合粉末を、プレス圧4.1ton/cm2で加圧成形して直径φ60mm-高さ10mmの成形体を得た。この成形体を真空中で1200℃-2時間熱処理して焼結体を得た。焼結体の充填率は、65.1%であった。この焼結体に対して1050℃-70MPa-2時間のHIP処理を行った。HIP処理後の充填率は、75.3%であった。このHIP処理体にCuを溶浸させ、参考例8の電極材料とした。
 比較例1,2及び参考例7,8の電極材料のマイクロビッカース硬度及びインパルス耐電圧測定結果を表2に示す。表2には、比較例1,2の焼結工程後の焼結体の充填率及び参考例7,8のHIP処理工程前後の焼結体の充填率の測定結果を併せて示す。なお、表2の耐電圧は、Mo粉末とCr粉末の混合比率、及びプレス成形圧力が同じ条件で、HIP処理を行わなかった電極材料(表1の参考例3または参考例6)を基準(基準値1.0)とした相対値を示している。
Figure JPOXMLDOC01-appb-T000002
 比較例1,2の電極材料のビッカース硬度及び耐電圧測定結果より、Mo粉末とCr粉末とを仮焼結しない場合、ビッカース硬度は同程度であり、耐電圧性能が低下した。この結果は、予めMo粉末(耐熱性元素)とCr粉末とを仮焼結して固相拡散させることで、電極材料の耐電圧性能が向上することを示唆している。
 また、参考例7,8の電極材料のビッカース硬度及び耐電圧測定結果より、HIP処理を行った場合、ビッカース硬度が向上し、耐電圧性能も向上した。この結果は、HIP処理を行うことで、予めMo粉末とCr粉末とを仮焼結して固相拡散させない場合でも、耐電圧性能及び電流遮断性能が向上することを示唆している。
 なお、表1の実施例3,6の電極材料のビッカース硬度及び耐電圧測定結果より、予めMo粉末とCr粉末とを仮焼結する工程と、HIP処理を行う工程とを両方行うことで、より一層耐電圧性能及び電流遮断性能に優れた電極材料を得ることができる。
 特に、実施例3,6の電極材料と参考例7,8の電極材料とを比較すると、MoCr固溶体粉末は、圧縮性が低い(充填率が低い)ので、成形性が低下するおそれがあるが、HIP処理を行うことで成形性が改善され、参考例7,8の電極材料と比較しても耐電圧性能に優れた電極材料を得ることができる。
 以上のような本発明の実施形態に係る電極材料の製造方法及び電極材料によれば、Mo粉末とCr粉末とを仮焼結して得られる固溶体粉末を成形し、成形した固溶体粉末をHIP処理した後に、HIP処理体にCuを溶浸することで、耐電圧性能及び電流遮断性能に優れた電極材料を得ることができる。
 すなわち、HIP処理を行うことで、電極材料の組織が緻密化及び高硬度化し、それにより電極材料の耐電圧性能が向上する。その結果、電極材料により形成された電極間での絶縁回復時間が早くなり、電極(電極材料)の電流遮断性能が向上する。
 また、予めMoとCrとが固相拡散した固溶体を形成し、この固溶体粉末を成形した後Cuを溶浸させることで、耐熱元素とCrが相互に固溶拡散した微細粒子(耐熱元素とCrの固溶体粒子)をCu中に均一に分散させることができる。さらに、Cu組織も偏在せず均一に分散させることができる。その結果、電極材料の耐電圧性能及び電流遮断性能が向上する。
 また、電極材料に対する耐熱元素の含有量を多くすることで、Crが十分に微細化されたMoCr粉末を得ることができるので、耐電圧性能及び電流遮断性能に優れた電極材料を得ることができる。このように、電極材料における耐熱元素の含有量を多くすればするほど、電極材料の耐電圧性能が向上する傾向があるが、電極材料に耐熱元素のみ含有させた場合(電極材料にCrを含有させない場合)には、Cuの溶浸が困難となるおそれがある。よって、固溶体粉末における耐熱元素とCr元素の割合は、重量比率で耐熱元素1に対してCrが4以下、より好ましくは耐熱元素1に対してCrが1/3以下とすることで、耐電圧性能に優れた電極材料を得ることができる。
 本発明の実施形態に係る電極材料の製造方法及び電極材料では、HIP処理の温度、圧力、時間条件を制御することで、HIP処理後の焼結体(多孔質体)の充填率を制御する。例えば、HIP処理後の焼結体の充填率がHIP処理前の焼結体の充填率より10%以上向上するような温度、圧力、時間条件にてHIP処理を行うことで、電極材料の耐電圧性能及び電流遮断性能を向上することができる。
 一般的に、溶浸法にて電極材料を製造する場合、Crや耐熱元素等の耐熱成分を増量させるためには、成形時の圧力を高める必要がある。しかし、高い成形圧力を加えるためには、大型のプレス機が必要となる。例えば、0.2~4.5ton/cm2のプレス圧で加圧して直径φ25mmの成形体を得る場合、必要となるプレス圧は、1.0~22.1tonとなり、25tonの加圧性能を有するプレス機で加圧することができる。しかしながら、0.2~4.5ton/cm2のプレス圧で加圧して直径φ100mmの成形体を得るためには、15.7~353tonの加圧性能を有するプレス機が必要となる。すなわち、直径の大きな(例えば、直径φ100mm以上)の成形体を得るためには、約400tonの大型プレス機が必要となる。大型のプレス機を導入すると、コストも高く極めて不経済となる。また、プレス圧を高くすればするほど、金型の摩耗が激しくなり、金型の寿命が短くなる。特に、MoCr固溶体粉末は、Mo粉末及びCr粉末と比較して粉末の硬度が高く、成形時の圧縮性が劣り、成形性が悪くなるおそれがある。そのため、MoCr固溶体粉末を成形する場合、Mo粉末とCr粉末の混合粉末を成形する場合と比較して、同じ充填率を有する電極材料を得るためには、より高い成形圧力が必要となることが考えられる。
 これに対して、本発明の電極材料の製造方法では、高導電性の金属を溶浸する前にHIP処理工程を行うことで、焼結体(または成形体)の充填率を向上させることができる。つまり、高温、高圧の雰囲気下でHIP処理を行うことで、圧力と温度の相乗効果でMo-Cr成形体の充填率を向上させることができる。その結果、加圧成形工程における成形圧力を低減することができ、電極材料の製造コストを低減することができる。
 また、耐熱元素(Mo等)の平均粒子径の大きさは、耐熱元素とCrの固溶体粉末の粒子径の大きさを決定する一つの要因となり得る。すなわち、Cr粒子が耐熱元素粒子によって微細化され、拡散機構によって耐熱元素粒子にCrが拡散して耐熱元素とCrとが固溶体組織を形成することから、耐熱元素の粒径は、仮焼結によって大きくなる。また、仮焼結によって大きくなる度合いは、Crの混合割合にも依存する。そのため、耐熱元素粉末の平均粒子径を、例えば、2~20μm、より好ましくは、2~10μmとすることで、耐電圧性能及び電流遮断性能に優れた電極材料を形成するための耐熱元素とCrの固溶体粉末を得ることができる。
 また、本発明の実施形態に係る電極材料の製造方法は、電極材料を溶浸法で製造しているので、Cu溶浸後の電極材料の充填率が95%以上となり、電流遮断時や電流開閉時のアークによる接点表面の表面荒れが少ない電極材料を製造することができる。すなわち、空孔の存在による電極材料表面の微細な凹凸がなく、耐電圧性能に優れた電極材料を製造することができる。また、多孔質体の空隙部にCuが充填されることにより、機械的強度に優れ、焼結法により製造される電極材料よりも高硬度であることから、耐電圧性能に優れる電極材料を製造することができる。
 また、本発明の実施形態に係る電極材料を、例えば、真空インタラプタ(VI)の固定電極及び可動電極の少なくとも一方に設けることで、真空インタラプタの電極接点の耐電圧性能が向上する。電極接点の耐電圧性能が向上すると、従来の真空インタラプタよりも固定電極と可動電極との間のギャップ長を短くでき、且つ固定電極並びに可動電極と主シールドとの間のギャップを狭めることができるため、真空インタラプタの構造を小さくすることが可能となる。その結果、真空インタラプタを小型化することができる。また、真空インタラプタを小型化することで、真空インタラプタの製造コストが低減する。
 なお、本発明の実施形態の説明は、特定の望ましい実施例を例として説明したが、本発明は、実施例に限定されるものではなく、発明の特徴を損なわない範囲で、適宜設計変更が可能であり、設計変更された形態も本発明の技術範囲に属する。
 例えば、仮焼結温度は、1250℃以上且つCrの融点以下、より好ましくは1250℃~1500℃の範囲で行うことで、MoとCrの相互拡散が充分に進行し、且つその後の粉砕機を用いたMoCr固溶体の粉砕が比較的容易に行うことができる。その結果、耐電圧性能及び電流遮断性能に優れた電極材料を安価に製造することができる。また、仮焼結の焼結時間は、1250℃‐30分以上、より好ましくは1250℃-3時間行うことで、MoとCrの相互拡散が十分に進行し、Crが十分に微細化される。この仮焼結時間は、仮焼結温度によって異なるものであり、例えば、1250℃では、3時間の仮焼結が好ましいが、1500℃では、0.5時間の仮焼結で十分である。
 また、MoCr固溶体粉末は、実施形態に記載されている製造方法により製造されたものに限定されず、公知の製造方法(例えば、ジェットミル法、アトマイズ法)で製造されたMoCr固溶体粉末を用いてもよい。
 また、加圧成形工程はプレス機を用いた加圧成形に限定されるものではなく、冷間等方圧加圧法(CIP)、鋳込成形、射出成形、押出成形等の成形方法により行うこともできる。
 また、本発明の電極材料の製造方法により製造される電極材料は、耐熱元素、Cr、Cuのみを構成要素としたものに限定されるものではなく、電極材料の特性を向上させる元素を含有していてもよい。例えば、電極材料にTeを添加することにより電極材料の耐溶着性が向上する。

Claims (5)

  1.  耐熱元素の粉末とCr粉末とを含有する混合粉末を焼結して、耐熱元素とCrとが固溶した固溶体を得る仮焼結工程と、
     前記固溶体を粉砕して粉末とする粉砕工程と、
     前記固溶体の粉末または前記固溶体の粉末を成形した成形体を熱間等方圧加圧処理に供する熱間等方圧加圧処理工程と、
     当該熱間等方圧加圧処理後、被熱間等方圧加圧処理体に高導電性の金属を溶浸する溶浸工程と、を有する電極材料の製造方法。
  2.  前記成形体を焼結し、得られた焼結体を熱間等方圧加圧処理に供する、請求項1に記載の電極材料の製造方法。
  3.  前記耐熱元素に対する前記Crの混合量は、重量比で前記耐熱元素1に対して4以下である、請求項1または請求項2に記載の電極材料の製造方法。
  4.  前記熱間等方圧加圧処理工程では、被熱間等方圧加圧処理体の充填率を10%以上向上させる、請求項1から請求項3のいずれか1項に記載の電極材料の製造方法。
  5.  耐熱元素とCrとを含有する固溶体粉末または前記固溶体粉末の成形体を、前記固溶体の融点より低い温度で熱間等方圧加圧処理して得られる焼結体に、前記耐熱元素の融点より低い融点を有する金属を溶浸してなる電極材料。
PCT/JP2015/074160 2014-09-11 2015-08-27 電極材料の製造方法及び電極材料 WO2016039154A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15839469.2A EP3187287B1 (en) 2014-09-11 2015-08-27 Method for manufacturing electrode material
US15/508,256 US10058923B2 (en) 2014-09-11 2015-08-27 Method for manufacturing electrode material and electrode material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014184792A JP6015725B2 (ja) 2014-09-11 2014-09-11 電極材料の製造方法
JP2014-184792 2014-09-11

Publications (1)

Publication Number Publication Date
WO2016039154A1 true WO2016039154A1 (ja) 2016-03-17

Family

ID=55458908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074160 WO2016039154A1 (ja) 2014-09-11 2015-08-27 電極材料の製造方法及び電極材料

Country Status (4)

Country Link
US (1) US10058923B2 (ja)
EP (1) EP3187287B1 (ja)
JP (1) JP6015725B2 (ja)
WO (1) WO2016039154A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5861807B1 (ja) * 2014-03-04 2016-02-16 株式会社明電舎 電極材料の製造方法
DE102018220928A1 (de) * 2018-12-04 2020-06-04 Siemens Aktiengesellschaft Verbesserung der Oberflächeneigenschaften von Kontaktwerkstoffen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180150A (ja) * 2000-12-06 2002-06-26 Korea Inst Of Science & Technology 真空開閉器用銅−クロム系接点素材の組織制御方法及びその方法により製造された接点素材
JP2006169547A (ja) * 2004-12-13 2006-06-29 Hitachi Metals Ltd 加圧焼結用のMo合金粉末の製造方法およびスパッタリング用ターゲット材の製造方法
JP2012007203A (ja) * 2010-06-24 2012-01-12 Japan Ae Power Systems Corp 真空遮断器用電極材料の製造方法及び真空遮断器用電極材料
WO2015133263A1 (ja) * 2014-03-04 2015-09-11 株式会社明電舎 電極材料の製造方法
WO2015133264A1 (ja) * 2014-03-04 2015-09-11 株式会社明電舎 合金

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362122A (ja) * 1986-09-03 1988-03-18 株式会社日立製作所 真空遮断器用電極の製造法
US5330702A (en) 1989-05-31 1994-07-19 Siemens Aktiengesellschaft Process for producing CuCr contact pieces for vacuum switches as well as an appropriate contact piece
DE4110600C2 (de) * 1990-04-04 1996-09-05 Hitachi Ltd Elektrode für einen Vakuum-Leistungsschalter
JP2580100B2 (ja) 1992-04-07 1997-02-12 新日本製鐵株式会社 熱間静水圧プレス方法
JPH09194906A (ja) 1996-01-19 1997-07-29 Kubota Corp 多孔質金属焼結体の製造方法
JP2004211173A (ja) 2003-01-07 2004-07-29 Toshiba Corp 真空バルブ用接点材料の製造方法
WO2011162398A1 (ja) * 2010-06-24 2011-12-29 株式会社日本Aeパワーシステムズ 真空遮断器用電極材料の製造方法、真空遮断器用電極材料及び真空遮断器用電極
WO2015133262A1 (ja) * 2014-03-04 2015-09-11 株式会社明電舎 電極材料
JP5920408B2 (ja) * 2014-06-16 2016-05-18 株式会社明電舎 電極材料の製造方法
JP2016184792A (ja) * 2015-03-25 2016-10-20 エスアイアイ・セミコンダクタ株式会社 Δς変調器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180150A (ja) * 2000-12-06 2002-06-26 Korea Inst Of Science & Technology 真空開閉器用銅−クロム系接点素材の組織制御方法及びその方法により製造された接点素材
JP2006169547A (ja) * 2004-12-13 2006-06-29 Hitachi Metals Ltd 加圧焼結用のMo合金粉末の製造方法およびスパッタリング用ターゲット材の製造方法
JP2012007203A (ja) * 2010-06-24 2012-01-12 Japan Ae Power Systems Corp 真空遮断器用電極材料の製造方法及び真空遮断器用電極材料
WO2015133263A1 (ja) * 2014-03-04 2015-09-11 株式会社明電舎 電極材料の製造方法
WO2015133264A1 (ja) * 2014-03-04 2015-09-11 株式会社明電舎 合金

Also Published As

Publication number Publication date
EP3187287B1 (en) 2019-05-15
US20170282249A1 (en) 2017-10-05
EP3187287A1 (en) 2017-07-05
JP6015725B2 (ja) 2016-10-26
EP3187287A4 (en) 2018-04-18
US10058923B2 (en) 2018-08-28
JP2016056420A (ja) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5880789B1 (ja) 固溶体粒子を成形した成形体にCuを溶浸した複合金属
JP5904308B2 (ja) 電極材料の製造方法
JP5861807B1 (ja) 電極材料の製造方法
EP3098829B1 (en) Method for producing electrode material
JP6075423B1 (ja) 真空遮断器
WO2018142709A1 (ja) 電極材料の製造方法及び電極材料
JP6015725B2 (ja) 電極材料の製造方法
JP6311325B2 (ja) 電極材料及び電極材料の製造方法
JP5920408B2 (ja) 電極材料の製造方法
JP6398415B2 (ja) 電極材料の製造方法
JP6497491B1 (ja) 電気接点およびそれを用いた真空バルブ
CN111670261B (zh) 电触点及使用该电触点的真空阀
JP5506873B2 (ja) 接点材料およびその製造方法
JP6398530B2 (ja) 電極材料の製造方法
WO2017026509A1 (ja) 電極材料及び電極材料の製造方法
JP6507830B2 (ja) 電極材料の製造方法及び電極材料
JP7062504B2 (ja) 真空バルブ用接点材料および真空バルブ用接点材料の製造方法
JP2017039967A (ja) 電極材料及び電極材料の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839469

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15508256

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015839469

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015839469

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE