WO2020183841A1 - Ti含有極低炭素鋼の製造方法 - Google Patents
Ti含有極低炭素鋼の製造方法 Download PDFInfo
- Publication number
- WO2020183841A1 WO2020183841A1 PCT/JP2019/049447 JP2019049447W WO2020183841A1 WO 2020183841 A1 WO2020183841 A1 WO 2020183841A1 JP 2019049447 W JP2019049447 W JP 2019049447W WO 2020183841 A1 WO2020183841 A1 WO 2020183841A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molten steel
- flux
- added
- vacuum
- steel
- Prior art date
Links
- 229910001209 Low-carbon steel Inorganic materials 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 229910052719 titanium Inorganic materials 0.000 title abstract description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title abstract 4
- 239000010936 titanium Substances 0.000 title abstract 4
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 163
- 239000010959 steel Substances 0.000 claims abstract description 163
- 230000004907 flux Effects 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000002347 injection Methods 0.000 claims abstract description 14
- 239000007924 injection Substances 0.000 claims abstract description 14
- 238000002844 melting Methods 0.000 claims abstract description 12
- 230000008018 melting Effects 0.000 claims abstract description 12
- 238000005261 decarburization Methods 0.000 claims abstract description 8
- 238000009749 continuous casting Methods 0.000 claims abstract description 6
- 238000007670 refining Methods 0.000 claims abstract description 6
- 238000009849 vacuum degassing Methods 0.000 claims description 32
- 239000002245 particle Substances 0.000 claims description 11
- 230000000630 rising effect Effects 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 2
- 238000010992 reflux Methods 0.000 abstract 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract 1
- 239000002893 slag Substances 0.000 description 62
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 17
- 230000007423 decrease Effects 0.000 description 14
- 239000000395 magnesium oxide Substances 0.000 description 13
- 230000009467 reduction Effects 0.000 description 13
- 238000010405 reoxidation reaction Methods 0.000 description 12
- 238000007654 immersion Methods 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 230000000903 blocking effect Effects 0.000 description 7
- 230000001174 ascending effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical class [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 229940069428 antacid Drugs 0.000 description 1
- 239000003159 antacid agent Substances 0.000 description 1
- 230000001458 anti-acid effect Effects 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0006—Adding metallic additives
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/068—Decarburising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/06—Deoxidising, e.g. killing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/076—Use of slags or fluxes as treating agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/10—Handling in a vacuum
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method for producing Ti-containing ultra-low carbon steel with a high Ti yield in an RH vacuum degassing apparatus.
- extremely low carbon steel containing Ti is roughly decarburized in a primary smelting furnace such as a converter, and after being discharged to a ladle, it is evacuated to an extremely low carbon level by an RH vacuum degassing device. Charcoal is performed, and a Ti source is added to the molten steel that has undergone deoxidation treatment by adding Al to melt it.
- Ti is an element with strong oxidizing power like Al, and the Ti source is generally more expensive than the Al source. Therefore, when melting Ti-containing steel, add Al to the molten steel in the ladle. By adding a Ti source after the deoxidation treatment with, the reaction between dissolved oxygen and Ti is suppressed, and the yield of Ti is ensured.
- Patent Document 1 suppresses the reoxidation of Al. Therefore, a method is disclosed in which a deoxidizing agent is added to the slag floating on the undeoxidized molten steel immediately after the steel is discharged from the smelting furnace to the ladle to reduce FeO in the slag.
- Patent Document 2 an antacid is added on the slag in order to suppress the reoxidation of Al, and in order to reduce the reactivity between the molten steel component and the slag, an MgO source is subsequently added to the slag.
- a method of controlling the MgO concentration to 13% or more, increasing the solid phase ratio in the slag, and reducing the fluidity of the slag is disclosed.
- Patent Document 3 discloses a method of controlling the TiO 2 concentration in the slag to 5% or more by adding a TiO 2 source to the slag in order to suppress the reaction between SiO 2 in the slag and Ti in the molten steel. There is.
- the composition and amount of the slag are unknown, so that the amount of the raw material added cannot be determined, or the composition of the slag after the addition is in a desired range. It may come off from.
- a deoxidizing agent is added to the slag to reduce lower oxides as in Patent Documents 1 and 2
- the slag is balanced with the oxygen potential in the molten steel when the molten steel is treated in the undeoxidized state.
- the oxygen potential of the slag increases, that is, the lower oxide increases and becomes a reoxidation source after deoxidation of molten steel, or an excessive deoxidizing material needs to be added to prevent it.
- Patent Document 3 uses VOD as equipment, and it is said that lower oxides in slag are reduced to an equilibrium concentration by Al deoxidation of molten steel, but in RH vacuum degassing treatment, The slag-metal reaction is slow, and in reality, there is a problem that a lower oxide that affects the Ti yield remains, and in order to prevent it, an excess of Al must be added.
- the present invention has been made in view of such circumstances, and prevents reoxidation of Ti in molten steel in a ladle due to slag, and stably produces Ti-containing ultra-low carbon steel with a high Ti yield.
- the purpose is to propose a method.
- the inventors have found that reoxidation after the addition of Ti can be suppressed by putting a flux having a higher melting point and a lower density than molten steel into the vacuum chamber of the RH vacuum degassing device and shielding the space between the molten steel and slag.
- a flux having a higher melting point and a lower density than molten steel into the vacuum chamber of the RH vacuum degassing device and shielding the space between the molten steel and slag.
- vacuum decarburization treatment is followed by deoxidation treatment of the molten steel with Al.
- a flux having a melting point higher than that of the molten steel is added into the vacuum chamber of the RH vacuum degassing device, and then a Ti source is added.
- the method for producing Ti-containing ultra-low carbon steel according to the present invention is as follows.
- Time t 2 is the following equation (1) ((1), t 1 : circulation time (s) after addition of Ti source in RH vacuum degassing device, G: addition of Ti source in RH vacuum degassing device.
- the slag and molten steel are blocked by a flux, and the reoxidation of Ti in the molten steel by the slag is suppressed by controlling the molten steel recirculation time and the transport time from the end of the RH treatment to the start of injection in the tundish.
- by securing the floating time of the flux reoxidation of Ti in molten steel due to slag can be further suppressed.
- the reoxidation reaction of Ti in molten steel with slag is the reaction of lower oxides in slag and deoxidizing elements in molten steel. Therefore, it was thought that the reaction would not proceed if the slag and molten steel were physically cut off. Therefore, it was decided to use a flux having a lower density than that of molten steel as a shield, instead of melting at the molten steel temperature.
- the flux was charged into the molten steel in the vacuum chamber of the RH vacuum degassing device. The flux rides on the circulating molten steel flow and is dispersed in the molten steel in the ladle through the immersion pipe of the RH vacuum degassing device.
- the flux Since the flux has a lower density than the molten steel, it floats in the molten steel, covers the side of the slag on the hot water surface of the ladle in contact with the molten steel, and blocks the molten steel and the slag.
- the flux charging time when the molten steel is not deoxidized, lower oxides are generated in the flux layer charged so as to equilibrate with the oxygen potential in the molten steel, so the molten steel is deoxidized with Al. I thought that it should be added after acidification.
- the Ti concentration behavior after adding Ti to the molten steel during melting of ultra-low carbon steel was investigated with an RH vacuum degassing device.
- slag deoxidation deoxidizing the molten steel and slag (hereinafter referred to as slag deoxidation) at the time of steel ejection from the converter, that is, Ti during molten steel recirculation in the RH vacuum degassing device with a small amount of lower oxides in the slag.
- the Ti concentration behavior after the addition of slag was also investigated.
- the amount of reduction in Ti concentration may be suppressed in the same manner as in the case of slag deoxidation treatment, or the amount of decrease in Ti concentration may not be so small, resulting in large variations. I had.
- This variation may appear as a decrease in Ti concentration at the end of the RH treatment, and even if it is equivalent to the case where the slag deoxidization treatment is performed at the end of the RH treatment, the ladle holding the molten steel is transported onto the tundish after the completion of the RH treatment.
- the Ti concentration decreased by the molten steel in the tundish into which the molten steel was injected. This was considered to be the effect of recirculation treatment, transport, and retention time from the addition of Ti in RH to the injection of tundish, and the amount of decrease in Ti concentration R Ti with the passage of time after the addition of Ti was investigated.
- the Ti concentration decrease index R Ti shall be expressed by the following equation (2).
- R Ti k 1 t 1 + k 2 t 2 ... (2) here, k 1 : Reaction rate constant of Ti oxidation reaction during molten steel recirculation, k 2 : Reaction rate constant of Ti oxidation reaction during transportation from RH treatment to tundish injection, Represents.
- Equation (4) is generally used for the molten steel ring flow rate Q (kg / s).
- Q Circulation gas flow rate (Nm 3 / s) after addition of Ti source in RH vacuum degassing device
- P Vacuum degree (Pa) in the tank after adding the Ti source in the RH vacuum degassing device
- P 0 Atmospheric pressure (101325 Pa)
- d RH immersion tube inner diameter (m) Represents.
- the molten steel flow velocity U (m / s) in the descending immersion pipe of the RH vacuum degassing device is represented by equation (5) below.
- U Q / (( ⁇ / 4) ⁇ d 2 ⁇ ⁇ M) ⁇ (5)
- ⁇ M molten steel density (kg / m 3 ) Represents.
- Equation (3) ⁇ G ⁇ ln (P 0 / P ) / W M ⁇ (6)
- the reaction rate constant k 1 can be obtained from the above equation (6) to the following equation (7). k 1 ⁇ 1/3 ⁇ (G ⁇ ln (P 0 / P) / W M) 1/3 ⁇ (7)
- the inside of the vacuum chamber of the RH vacuum degassing device is used.
- a flux having a melting point higher than the molten steel temperature is added to the steel and then adding a Ti source, the oxidative loss of Ti can be reduced and a Ti-containing ultra-low carbon steel can be produced.
- the molten steel recirculation time t 1 in RH after adding Ti and the tundish for continuous casting from the end of RH treatment so as to satisfy the equation (1).
- the oxidative loss of Ti can be made equivalent to that of the slag deoxidation treatment, which is preferable.
- the molten steel recirculation time t 1 and the transport time t 2 are determined in advance and an amount of flux W f satisfying the equation (1) is added, the amount of flux used can be minimized, which is more preferable.
- the recirculation time t 1 of molten steel is usually about 180 to 480 s for a 300 ton ladle, and the transport time t 2 is about 1200 to 3600 s, depending on the arrangement of equipment and operating conditions. is there.
- the amount of flux is preferably a minimum thickness of 3 mm so that the blocking layer is not destroyed even by stirring during molten steel recirculation, and even if it is added in excess of 30 mm, the blocking effect of Ti oxidation is saturated, so that the flux used as the blocking layer is used.
- the thickness L is preferably in the range of 3 to 30 mm, more preferably in the range of 5 to 10 mm. Therefore, the amount of flux added is preferably in the range of 0.3 to 3.0 kg per ton of molten steel, and more preferably in the range of 0.4 to 1.0 kg, although it depends on the diameter of the ladle.
- ⁇ p flux density (kg / m 3 )
- ⁇ M Molten steel density (kg / m 3 )
- d p Flux average particle size (m) Represents.
- C D is called the drag coefficient depends on the Reynolds (Re) number.
- a Reynolds number Re d p ⁇ u p ⁇ ⁇ M / ⁇ M.
- terminal velocity u P particles becomes below formula (B).
- u p (4 ⁇ ( ⁇ p - ⁇ M) 2 ⁇ g 2 / (225 ⁇ M ⁇ ⁇ M)) 1/3 ⁇ d p ⁇ (B)
- g gravitational acceleration (9.8 m / s 2 )
- ⁇ M Molten steel viscosity (Pa ⁇ s) Represents.
- t 3 depends on the amount of flux to be added and the size of the apparatus, but is preferably about 60 s.
- FIG. 1 is a schematic view of a preferred embodiment of the present invention.
- Decarburization and refining are performed in a converter, and the obtained molten steel 1 and slag 2 are taken out to a ladle 3.
- the molten steel 1 is in an undeoxidized state, it is desirable to add an Al-containing slag modifier on the slag 2 covering the molten steel 1 in the ladle 3. If the Al-containing slag modifier can be dispersed and added on the slag 2, it is not necessary to use a dedicated addition facility.
- the ladle 3 which was conveyed to the RH vacuum degassing device was raised by an elevating device (not shown), and the ascending side immersion pipe 4 and the descending side immersion pipe 5 were attached to the molten steel 1 in the pan 3. Soak.
- Ar gas is blown from the Ar gas blowing pipe 6 into the ascending side immersion pipe 4, and the inside of the vacuum tank 7 is exhausted by an exhaust device (not shown) to reduce the pressure inside the vacuum tank 7.
- the inside of the vacuum chamber 7 is depressurized, the molten steel 1 in the ladle 2 rises along with the Ar blown from the Ar blowing pipe 6 and flows into the vacuum tank 7, and then is immersed in the descending side.
- the decarburization reaction proceeds by this RH vacuum degassing refining.
- the dissolved oxygen concentration in the molten steel is measured, and the amount of metal Al required for deoxidizing the oxygen and the required composition of metal Al are added to the molten steel in the vacuum chamber 7 from the charging chute 9 to melt the steel.
- Deoxidize 1 After that, flux is added to the molten steel in the vacuum chamber 7 from the charging chute 9, and a blocking layer 8 due to the flux is formed between the molten steel 1 and the slag 2. This flux is used to block slag and molten steel and suppress the oxidation of Ti and Al in the steel.
- Al 2 O 3 and MgO, CaO and the like can also be used such as these are mainly bauxite and calcined lime, magnesia brick scrap, or compounds such as dolomite.
- a predetermined amount of Ti source is added from the charging chute 9 to the molten steel in the vacuum chamber 7, and the RH recirculation treatment time t is preferably satisfied so as to satisfy the formula (1). 1, to adjust the transport time t 2 until the injection into the tundish.
- the recirculation treatment time t 1 of RH should be short, but it is desirable to measure in advance the time until the added Ti is uniformly mixed in the molten steel to secure a longer time.
- Table 1 shows the processing conditions and results.
- the Ti concentration reduction ratio of treatment conditions 1 to 25 ⁇ Ti is the ratio to the average Ti concentration reduction amount of treatment conditions 26 to 30 in which Ti was added without adding MgO to the molten steel in the vacuum chamber as a comparative example. evaluated.
- the treatment conditions 1 to 25 are the cases where MgO is added to the molten steel in the vacuum chamber, and the Ti concentration is reduced as compared with the treatment conditions 26 to 30 in which MgO is not added to the molten steel in the vacuum chamber. Can be seen to be suppressed. Under the treatment conditions 11 to 25 in which MgO was added to the molten steel in the vacuum chamber and the treatment was performed with the molten steel recirculation time, the transport time, and the amount of flux added satisfying the equation (1), the decrease in Ti concentration could be further suppressed.
- the horizontal axis is the Ti concentration reduction index R Ti calculated on the left side of equation (1), and the vertical axis is the Ti concentration reduction ratio ⁇ Ti in actual operation.
- R Ti and ⁇ Ti have a good correlation.
- (A) expression in the ⁇ mark the conditions of the time t 3 to satisfy the plot of the conditions is not satisfied with ⁇ . Even with the same Ti concentration reduction index R Ti , it can be seen that the condition satisfying the equation (A) makes the Ti concentration reduction amount ratio ⁇ Ti smaller.
- the oxidative loss of Ti due to slag can be suppressed by forming a barrier layer between the molten steel and the slag.
- This technique can be applied to steel types that need to suppress the slag-metal reaction in addition to the production of Ti-containing steel.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
また、特許文献1や2のようにスラグに脱酸剤を添加して低級酸化物を低減したとしても、溶鋼が未脱酸状態で処理を行うと溶鋼中の酸素ポテンシャルと平衡するようにスラグの酸素ポテンシャルが増加する、即ち、低級酸化物が増加し、溶鋼脱酸後の再酸化源となる、あるいはそれを防ぐために過剰な脱酸材の添加が必要となる、という問題点がある。
(a)上記フラックスを所定量添加し、RH真空脱ガス装置でTi源を添加した後の溶鋼環流時間t1と、RH処理終了から連続鋳造のためのタンディッシュへの溶鋼注入開始までの搬送時間t2が、下記(1)式((1)式中、t1:RH真空脱ガス装置でのTi源添加後の環流時間(s)、G:RH真空脱ガス装置でのTi源添加後の環流用ガス流量(Nm3/s)、 P:RH真空脱ガス装置でのTi源添加後の槽内真空度(Pa)、P0:大気圧(101325Pa)、WM:溶鋼重量(kg)、t2:RH処理終了からタンディッシュへの溶鋼注入開始までの搬送時間(s)、D:取鍋内溶鋼湯面部直径(m)、Wf:溶鋼温度より融点の高いフラックスの添加量(kg)を表す。)を満足するように調整すること、
190(G・ln(P0/P)/WM)1/3・t1+11.8(D2/Wf)・t2≦1800 ・・・(1)
(b)上記溶鋼環流時間t1および上記搬送時間t2を事前に決定し、上記フラックスの添加量Wfが、前記(1)式を満足するように計算して添加すること、
(c)上記フラックスを所定量添加した後、上記Ti源の添加を開始するまでの時間t3が下記(A)~(C)式((A)~(C)式中、t3:RH真空脱ガス装置でのフラックス添加からTi源添加までの環流時間(s)、H:取鍋内溶鋼深さ(m)、 uP:溶鋼中のフラックス粒子の終端速度(m/s)、Uu:取鍋内溶鋼平均上昇流速(m/s)、ρp:フラックス密度(kg/m3)、ρM:溶鋼密度(kg/m3)、g:重力加速度(9.8m/s2)、μM:溶鋼粘度(Pa・s)、dp:フラックス平均粒子径(m)、Q:溶鋼環流量(kg/s)、S:取鍋湯面位置面積(m2)、di:浸漬管径(m)を表す。)を満足すること、
がより好ましい解決手段になり得るものと考えられる。
t3>H/(up+Uu) ・・・(A)
up=(4・(ρp-ρM)2・g2/(225ρM・μM))1/3・dp ・・・(B)
Uu=Q/ρM/(S-π/4・di 2) ・・・(C)
溶鋼中のTiのスラグによる再酸化反応は、スラグ中の低級酸化物と溶鋼中の脱酸元素の反応である。そこで、スラグと溶鋼の間を物理的に遮断すれば反応は進まないと考えた。そこで、遮蔽物として単体では溶鋼温度で溶融せず、溶鋼より低密度のフラックスを投入することとした。方法としては、RH真空脱ガス装置の真空槽内溶鋼へフラックスを投入させた。そのフラックスが環流している溶鋼流に乗ってRH真空脱ガス装置の浸漬管を通って取鍋内溶鋼中に分散する。フラックスは溶鋼より低密度のため、溶鋼中を浮上し、取鍋湯面上のスラグの溶鋼と接している側を被覆し、溶鋼とスラグを遮断することとなる。また、フラックスの投入時期としては、溶鋼の未脱酸処理中の場合、溶鋼中の酸素ポテンシャルと平衡するように投入したフラックス層中に低級酸化物が生成してしまうため、溶鋼をAlで脱酸した後に添加すればよいと考えた。
RTi=k1t1+k2t2 ・・・(2)
ここで、
k1:溶鋼環流時のTi酸化反応の反応速度定数、
k2:RH処理終了後、タンディッシュ注入までの搬送時のTi酸化反応の反応速度定数、
を表す。
ここで、RHでの溶鋼環流処理中の溶鋼中のTiとスラグの反応については溶鋼に付与されている撹拌力と相関があると考えられる。RHでの溶鋼環流処理中の取鍋内溶鋼の撹拌動力密度ε(W/t)は下記(3)式で表される。
ε∝U2・Q/WM ・・・(3)
ここで、
U:RH真空脱ガス装置の下降側浸漬管内の溶鋼流速(m/s)、
Q:溶鋼環流量(kg/s)、
WM:取鍋内溶鋼重量(kg)、
を表す。
Q∝G1/3・d4/3・(ln(P0/P))1/3 ・・・(4)
ここで、
G:RH真空脱ガス装置でのTi源添加後の環流用ガス流量(Nm3/s)、
P:RH真空脱ガス装置でのTi源添加後の槽内真空度(Pa)、
P0:大気圧(101325Pa)、
d:RH浸漬管内径(m)
を表す。
U=Q/((π/4)・d2・ρM) ・・・(5)
ここで
ρM:溶鋼密度(kg/m3)
を表す。
ε∝G・ln(P0/P)/WM ・・・(6)
また、溶鋼環流時の物質移動速度は撹拌動力密度の1/3に比例すると言われているため、反応速度定数k1は上記(6)式から下記(7)式が求められる。
k1∝ε1/3∝(G・ln(P0/P)/WM)1/3 ・・・(7)
一方、RH処理終了からタンディッシュ注入までの搬送時間t2中の溶鋼中Tiとスラグの反応については、その反応速度は溶鋼-スラグ間の遮断層の厚みに反比例すると考え、搬送中の反応速度定数k2は下記(8)式で表される。
k2∝1/L ・・・(8)
ここで、
L:溶鋼より融点の高いフラックスによる遮断層厚み(m)
を表す。
遮断層厚みLは下記(9)式で表される。
L=Wf/ρf/(π/4・D2) ・・・(9)
ここで、
ρf:遮断層見かけ密度(kg/m3)
を表す。
k2∝D2/Wf ・・・(10)
上記(7)および(10)式を(2)式に加えて、Ti濃度減少指数RTiを下記(11)式で表す。
RTi=A(G・ln(P0/P)/WM)1/3・t1+B(D2/Wf)・t2・・・(11)
ここで、
A、B:定数
を表す。
190(G・ln(P0/P)/WM)1/3・t1+11.8(D2/Wf)・t2≦1800 ・・・(1)
また、フラックスを所定量添加した後、直ちにTi源を添加すると、フラックスが取鍋内溶鋼を浮上してスラグ―溶鋼界面を遮断する前に、添加して溶鋼中に溶解したTiとスラグ中の低級酸化物が反応してしまう懸念がある。そこで、Ti源を添加する前にフラックスの浮上する時間を確保することを考えた。
液体中の液体より密度の小さい粒子の浮上速度は、液体の上下方向の流速Uu(m/s)と静止浴での粒子の終端速度uP(m/s)の和となる。粒子の終端速度uPは一般的に下記(D)式で表される。
uP=(4/3・dp/CD・|ρP-ρM|/ρM)1/2 ・・・(D)
式中、ρp:フラックス密度(kg/m3)、
ρM:溶鋼密度(kg/m3)、
dp:フラックス平均粒子径(m)
を表す。
up=(4・(ρp-ρM)2・g2/(225ρM・μM))1/3・dp ・・・(B)
式中、g:重力加速度(9.8m/s2)、
μM:溶鋼粘度(Pa・s)
を表す。
Uu=Q/ρM/(S-π/4・di 2) ・・・(C)
式中、Q:溶鋼環流量(kg/s)、
S:取鍋湯面位置面積(m2)、
di:浸漬管径(m)
を表す。
tU=H/(uP+Uu) ・・・(E)
この上昇時間tU後にはスラグ―溶鋼界面がフラックスで十分に遮断されることとなるため、フラックス添加後、tU以上経過後にTi源を添加すれば、Tiとスラグ中低級酸化物の反応をより抑制できると考えられるため、フラックス添加後、Ti源を添加開始するまでの時間t3は下記(A)式を満たすことが好ましい。
t3>H/(up+Uu) ・・・(A)
転炉にて脱炭精錬を行い、得られた溶鋼1とスラグ2を取鍋3に出鋼する。溶鋼1は未脱酸状態とするが、取鍋3内の溶鋼1を覆っているスラグ2上にはAl含有スラグ改質剤を添加することが望ましい。尚、Al含有スラグ改質剤はスラグ2上に分散して添加できれば、特に専用の添加設備を用いる必要はない。
2 スラグ
3 取鍋
4 上昇側浸漬管
5 下降側浸漬管
6 Arガス吹き込み管
7 真空槽
8 遮断層
9 投入シュート
Claims (4)
- RH真空脱ガス装置を用いて溶鋼を精錬する方法において、真空脱炭処理に続けてAlによる溶鋼の脱酸処理を施した後に、前記RH真空脱ガス装置の真空槽内に溶鋼温度より融点の高いフラックスを添加し、続いて、Ti源を添加することを特徴とするTi含有極低炭素鋼の製造方法。
- 前記フラックスを所定量添加し、RH真空脱ガス装置でTi源を添加した後の溶鋼環流時間t1と、RH処理終了から連続鋳造のためのタンディッシュへの溶鋼注入開始までの搬送時間t2が、下記(1)式を満足するように調整することを特徴とする請求項1に記載のTi含有極低炭素鋼の製造方法。
190(G・ln(P0/P)/WM)1/3・t1+11.8(D2/Wf)・t2≦1800 ・・・(1)
ここで、
t1:RH真空脱ガス装置でのTi源添加後の環流時間(s)、
G:RH真空脱ガス装置でのTi源添加後の環流用ガス流量(Nm3/s)、
P:RH真空脱ガス装置でのTi源添加後の槽内真空度(Pa)、
P0:大気圧(101325Pa)、
WM:溶鋼重量(kg)、
t2:RH処理終了からタンディッシュへの溶鋼注入開始までの搬送時間(s)、
D:取鍋内溶鋼湯面部直径(m)、
Wf:溶鋼温度より融点の高いフラックスの添加量(kg)
を表す。 - 前記溶鋼環流時間t1および前記搬送時間t2を事前に決定し、前記フラックスの添加量Wfが、前記(1)式を満足するように計算して添加することを特徴とする請求項2に記載のTi含有極低炭素鋼の製造方法。
- 前記フラックスを所定量添加した後、前記Ti源の添加を開始するまでの時間t3が下記(A)~(C)式を満足することを特徴とする請求項1~3のいずれか1項に記載のTi含有極低炭素鋼の製造方法。
t3>H/(up+Uu) ・・・(A)
up=(4・(ρp-ρM)2・g2/(225ρM・μM))1/3・dp ・・・(B)
Uu=Q/ρM/(S-π/4・di 2) ・・・(C)
ここで、
t3:RH真空脱ガス装置でのフラックス添加からTi源添加までの環流時間(s)、
H:取鍋内溶鋼深さ(m)、
uP:溶鋼中のフラックス粒子の終端速度(m/s)、
Uu:取鍋内溶鋼平均上昇流速(m/s)、
ρp:フラックス密度(kg/m3)、
ρM:溶鋼密度(kg/m3)、
g:重力加速度(9.8m/s2)、
μM:溶鋼粘度(Pa・s)、
dp:フラックス平均粒子径(m)、
Q:溶鋼環流量(kg/s)、
S:取鍋湯面位置面積(m2)、
di:浸漬管径(m)
を表す。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980092922.0A CN113490755A (zh) | 2019-03-13 | 2019-12-17 | 含Ti超低碳钢的制造方法 |
EP19919173.5A EP3940088B1 (en) | 2019-03-13 | 2019-12-17 | Method for producing ti-containing ultralow-carbon steel |
JP2020516929A JP6744600B1 (ja) | 2019-03-13 | 2019-12-17 | Ti含有極低炭素鋼の製造方法 |
KR1020217024334A KR102454518B1 (ko) | 2019-03-13 | 2019-12-17 | Ti 함유 극저탄소강의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019045879 | 2019-03-13 | ||
JP2019-045879 | 2019-03-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020183841A1 true WO2020183841A1 (ja) | 2020-09-17 |
Family
ID=72426380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/049447 WO2020183841A1 (ja) | 2019-03-13 | 2019-12-17 | Ti含有極低炭素鋼の製造方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3940088B1 (ja) |
KR (1) | KR102454518B1 (ja) |
CN (1) | CN113490755A (ja) |
WO (1) | WO2020183841A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022270346A1 (ja) * | 2021-06-22 | 2022-12-29 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0230711A (ja) | 1988-07-18 | 1990-02-01 | Kawasaki Steel Corp | 清浄度に優れた極低炭素鋼の製造方法 |
JPH05222431A (ja) * | 1992-02-10 | 1993-08-31 | Sumitomo Metal Ind Ltd | Ti添加極低炭素鋼の製造方法 |
JPH06116625A (ja) * | 1992-10-07 | 1994-04-26 | Kawasaki Steel Corp | ステンレス溶鋼の脱ガス, 脱炭処理法 |
JP2000239729A (ja) * | 1999-02-16 | 2000-09-05 | Sumitomo Metal Ind Ltd | 清浄性に優れた極低炭素鋼の製造方法 |
JP2001355018A (ja) | 2000-06-14 | 2001-12-25 | Kawasaki Steel Corp | Ti含有鋼の溶製方法 |
JP2007239062A (ja) * | 2006-03-10 | 2007-09-20 | Jfe Steel Kk | Ti含有極低炭素鋼スラブの製造方法 |
JP2009113086A (ja) * | 2007-11-07 | 2009-05-28 | Nippon Steel Corp | 極低炭素鋼の連続鋳造方法 |
JP2009114491A (ja) * | 2007-11-05 | 2009-05-28 | Jfe Steel Corp | Rh真空脱ガス装置による溶鋼の精錬方法 |
JP2014111809A (ja) * | 2012-12-05 | 2014-06-19 | Nippon Steel & Sumitomo Metal | チタン含有極低炭素鋼の製造方法 |
JP2015183259A (ja) | 2014-03-25 | 2015-10-22 | 新日鐵住金株式会社 | 高清浄鋼の溶製方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100328031B1 (ko) * | 1997-09-11 | 2002-06-27 | 이구택 | 극저탄소강용용강의청정도향상을위한정련방법 |
JP2003073726A (ja) * | 2001-08-29 | 2003-03-12 | Daido Steel Co Ltd | 低Ti鋼の製造方法 |
KR101159928B1 (ko) * | 2009-11-27 | 2012-06-25 | 현대제철 주식회사 | 극저탄소강의 진공정련방법 |
CN102031453A (zh) * | 2010-10-26 | 2011-04-27 | 攀钢集团钢铁钒钛股份有限公司 | 含钛合金钢及其制造方法 |
CN102031452B (zh) * | 2010-10-26 | 2012-06-06 | 攀钢集团钢铁钒钛股份有限公司 | 合金钢及其制造方法 |
CN102409133B (zh) * | 2011-12-05 | 2013-03-27 | 攀钢集团攀枝花钢铁研究院有限公司 | 真空法生产23MnB钢的方法 |
TWI593803B (zh) * | 2012-01-27 | 2017-08-01 | 杰富意鋼鐵股份有限公司 | 高清淨度鋼的熔製方法 |
CN102676742A (zh) * | 2012-03-27 | 2012-09-19 | 马钢(集团)控股有限公司 | 一种降低超低碳钢rh真空脱碳终点氧含量的工艺方法 |
-
2019
- 2019-12-17 CN CN201980092922.0A patent/CN113490755A/zh active Pending
- 2019-12-17 WO PCT/JP2019/049447 patent/WO2020183841A1/ja unknown
- 2019-12-17 EP EP19919173.5A patent/EP3940088B1/en active Active
- 2019-12-17 KR KR1020217024334A patent/KR102454518B1/ko active IP Right Grant
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0230711A (ja) | 1988-07-18 | 1990-02-01 | Kawasaki Steel Corp | 清浄度に優れた極低炭素鋼の製造方法 |
JPH05222431A (ja) * | 1992-02-10 | 1993-08-31 | Sumitomo Metal Ind Ltd | Ti添加極低炭素鋼の製造方法 |
JPH06116625A (ja) * | 1992-10-07 | 1994-04-26 | Kawasaki Steel Corp | ステンレス溶鋼の脱ガス, 脱炭処理法 |
JP2000239729A (ja) * | 1999-02-16 | 2000-09-05 | Sumitomo Metal Ind Ltd | 清浄性に優れた極低炭素鋼の製造方法 |
JP2001355018A (ja) | 2000-06-14 | 2001-12-25 | Kawasaki Steel Corp | Ti含有鋼の溶製方法 |
JP2007239062A (ja) * | 2006-03-10 | 2007-09-20 | Jfe Steel Kk | Ti含有極低炭素鋼スラブの製造方法 |
JP2009114491A (ja) * | 2007-11-05 | 2009-05-28 | Jfe Steel Corp | Rh真空脱ガス装置による溶鋼の精錬方法 |
JP2009113086A (ja) * | 2007-11-07 | 2009-05-28 | Nippon Steel Corp | 極低炭素鋼の連続鋳造方法 |
JP2014111809A (ja) * | 2012-12-05 | 2014-06-19 | Nippon Steel & Sumitomo Metal | チタン含有極低炭素鋼の製造方法 |
JP2015183259A (ja) | 2014-03-25 | 2015-10-22 | 新日鐵住金株式会社 | 高清浄鋼の溶製方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3940088A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2022270346A1 (ja) * | 2021-06-22 | 2022-12-29 | ||
WO2022270346A1 (ja) * | 2021-06-22 | 2022-12-29 | Jfeスチール株式会社 | 溶鋼の処理方法および鋼の製造方法 |
JP7318822B2 (ja) | 2021-06-22 | 2023-08-01 | Jfeスチール株式会社 | 溶鋼の処理方法および鋼の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3940088B1 (en) | 2023-11-22 |
EP3940088A1 (en) | 2022-01-19 |
KR20210109597A (ko) | 2021-09-06 |
EP3940088A4 (en) | 2022-04-13 |
CN113490755A (zh) | 2021-10-08 |
KR102454518B1 (ko) | 2022-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6686837B2 (ja) | 高清浄鋼の製造方法 | |
JP6838419B2 (ja) | 高窒素低酸素鋼の溶製方法 | |
JP5904237B2 (ja) | 高窒素鋼の溶製方法 | |
WO2020183841A1 (ja) | Ti含有極低炭素鋼の製造方法 | |
JP5891826B2 (ja) | 溶鋼の脱硫方法 | |
JP2018100427A (ja) | 低硫鋼の製造方法 | |
JP3915386B2 (ja) | 清浄鋼の製造方法 | |
JP6744600B1 (ja) | Ti含有極低炭素鋼の製造方法 | |
JP5200380B2 (ja) | 溶鋼の脱硫方法 | |
JP6323688B2 (ja) | 溶鋼の脱硫方法 | |
JP2006183103A (ja) | 低炭素アルミキルド鋼の溶製方法 | |
JP6414098B2 (ja) | 高Si高Al極低炭素鋼の溶製方法 | |
JP2019014944A (ja) | 鋼の溶製方法 | |
JP5292853B2 (ja) | 溶鋼の真空脱ガス処理装置及び真空脱ガス精錬方法 | |
JP6443192B2 (ja) | FeSi合金粒を用いたスラグの改質方法 | |
JPH0987730A (ja) | 溶鋼の昇熱精錬方法 | |
JP7318822B2 (ja) | 溶鋼の処理方法および鋼の製造方法 | |
JP6337681B2 (ja) | 溶鋼の減圧精錬方法 | |
JP2019000903A (ja) | 鋼の溶製方法及び連続鋳造方法 | |
KR100328035B1 (ko) | 진공순환탈가스설비의용강승온방법및그장치 | |
JP4035904B2 (ja) | 清浄性に優れた極低炭素鋼の製造方法 | |
JP3277763B2 (ja) | 高清浄性極低炭素鋼の精錬方法 | |
JPH11293329A (ja) | 清浄性に優れた極低炭素Siキルド鋼の製造方法 | |
JP3465801B2 (ja) | Fe−Ni系合金溶湯の精錬方法 | |
JPH11158536A (ja) | 清浄性に優れた極低炭素鋼の溶製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020516929 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19919173 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20217024334 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019919173 Country of ref document: EP Effective date: 20211013 |