WO2020178973A1 - 半導体装置の製造方法、基板処理装置、およびプログラム - Google Patents

半導体装置の製造方法、基板処理装置、およびプログラム Download PDF

Info

Publication number
WO2020178973A1
WO2020178973A1 PCT/JP2019/008550 JP2019008550W WO2020178973A1 WO 2020178973 A1 WO2020178973 A1 WO 2020178973A1 JP 2019008550 W JP2019008550 W JP 2019008550W WO 2020178973 A1 WO2020178973 A1 WO 2020178973A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
film
temperature
substrate
processing chamber
Prior art date
Application number
PCT/JP2019/008550
Other languages
English (en)
French (fr)
Inventor
和宏 原田
南 政克
慎太郎 小倉
翔吾 大谷
良知 橋本
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to SG11202109666T priority Critical patent/SG11202109666TA/en
Priority to CN201980082049.7A priority patent/CN113243042B/zh
Priority to JP2021503305A priority patent/JP7149407B2/ja
Priority to PCT/JP2019/008550 priority patent/WO2020178973A1/ja
Priority to KR1020217028333A priority patent/KR102652234B1/ko
Publication of WO2020178973A1 publication Critical patent/WO2020178973A1/ja
Priority to US17/465,269 priority patent/US11823886B2/en
Priority to US18/473,625 priority patent/US20240014032A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/308Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45531Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making ternary or higher compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02301Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment in-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02323Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen
    • H01L21/02326Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of oxygen into a nitride layer, e.g. changing SiN to SiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction

Definitions

  • the present disclosure relates to a semiconductor device manufacturing method, a substrate processing apparatus, and a program.
  • a step of forming a low dielectric constant film on the substrate may be performed by supplying a processing gas containing an oxidation gas to the heated substrate (for example, a patent). References 1 to 4).
  • An object of the present disclosure is to provide a technique capable of suppressing oxidation of a film formed on a substrate while using a film having a low dielectric constant as a base film containing a metal element. ..
  • FIG. 3 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus that is preferably used in one aspect of the present disclosure, and is a diagram illustrating a vertical cross-sectional view of a processing furnace portion. It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus preferably used in one aspect of this disclosure, and is the figure which shows the processing furnace part in the cross-sectional view taken along line AA of FIG.
  • FIG. 3 is a schematic configuration diagram of a controller of a substrate processing apparatus that is preferably used in one aspect of the present disclosure, and is a block diagram of a control system of the controller. It is a figure which shows the substrate processing sequence in one aspect of this indication.
  • FIG. 3 is a schematic configuration diagram of a vertical processing furnace of a substrate processing apparatus that is preferably used in one aspect of the present disclosure, and is a diagram illustrating a vertical cross-sectional view of a processing furnace portion. It is a schematic block diagram of the vertical processing furnace of the substrate processing apparatus preferably used in
  • FIG. 4 is a diagram showing a gas supply sequence in a first film formation according to one aspect of the present disclosure.
  • FIG. 8 is a diagram showing a gas supply sequence in the second film formation according to one aspect of the present disclosure.
  • (A) is a cross-sectional enlarged view of the surface of the wafer to be processed W film on the surface is exposed, (b) from the surface of the W film is carried out ramp up + H 2 preflow after removal of the native oxide layer
  • FIG. 3C is an enlarged cross-sectional view on the surface of the wafer
  • FIG. 3C is an enlarged cross-sectional view on the surface of the wafer after the first film formation is carried out to form a SiN film on the W film
  • FIG. 7 is an enlarged cross-sectional view of the surface of the wafer after the film is formed to form the SiOCN film on the SiN film and the SiN film formed in the first film formation is modified into the SiON film. It is a figure which shows the evaluation result regarding the oxidation suppression effect of W film by performing 1st film formation before 2nd film formation.
  • the processing furnace 202 has a heater 207 as a heating mechanism (temperature adjusting unit).
  • the heater 207 has a cylindrical shape and is vertically installed by being supported by a holding plate.
  • the heater 207 also functions as an activation mechanism (excitation unit) that activates (excites) gas by heat.
  • a reaction tube 203 is arranged concentrically with the heater 207.
  • the reaction tube 203 is made of, for example, a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC), and has a cylindrical shape with an upper end closed and a lower end opened.
  • a manifold 209 is arranged concentrically with the reaction tube 203.
  • the manifold 209 is made of, for example, a metal material such as stainless steel (SUS), and has a cylindrical shape with an open upper end and a lower end. The upper end of the manifold 209 is engaged with the lower end of the reaction tube 203, and is configured to support the reaction tube 203.
  • An O-ring 220a as a seal member is provided between the manifold 209 and the reaction tube 203.
  • the reaction tube 203 is vertically installed like the heater 207.
  • a processing container (reaction container) is mainly configured by the reaction tube 203 and the manifold 209.
  • a processing chamber 201 is formed in the hollow cylindrical portion of the processing container.
  • the processing chamber 201 is configured to be able to accommodate the wafer 200 as a substrate.
  • the wafer 200 is processed in the processing chamber 201.
  • nozzles 249a and 249b as a first supply unit and a second supply unit are provided so as to penetrate the side wall of the manifold 209, respectively.
  • the nozzles 249a and 249b are also referred to as a first nozzle and a second nozzle, respectively.
  • the nozzles 249a and 249b are each made of a non-metal material which is a heat resistant material such as quartz or SiC.
  • the nozzles 249a and 249b are each configured as a common nozzle used for supplying a plurality of types of gas.
  • First and second gas supply pipes 232a and 232b are connected to the nozzles 249a and 249b, respectively.
  • Each of the gas supply pipes 232a and 232b is configured as a common pipe used for supplying a plurality of types of gas.
  • the gas supply pipes 232a and 232b are provided with mass flow controllers (MFC) 241a and 241b, which are flow rate controllers (flow rate control units), and valves 243a and 243b, which are open/close valves, in order from the upstream side of the gas flow. ..
  • Gas supply pipes 232e and 232g are connected to the gas supply pipe 232a on the downstream side of the valve 243a.
  • the gas supply pipes 232e and 232g are provided with MFCs 241e and 241g and valves 243e and 243g in this order from the upstream side of the gas flow.
  • Gas supply pipes 232c, 232d, 232f, and 232h are connected to the downstream side of the gas supply pipe 232b with respect to the valve 243b, respectively.
  • the gas supply pipes 232c, 232d, 232f, 232h are provided with MFCs 241c, 241d, 241f, 241h and valves 243c, 243d, 243f, 243h in order from the upstream side of the gas flow.
  • the gas supply pipes 232a to 232h are made of a metal material such as SUS.
  • the nozzles 249 a and 249 b are arranged in the annular space in a plan view between the inner wall of the reaction tube 203 and the wafer 200, along the upper part of the inner wall of the reaction tube 203 and above the wafer 200. They are provided so as to rise upward in the arrangement direction. That is, the nozzles 249a and 249b are respectively provided along the wafer arrangement region in a region horizontally surrounding the wafer arrangement region on the side of the wafer arrangement region in which the wafers 200 are arranged. Gas supply holes 250a and 250b for supplying gas are provided on the side surfaces of the nozzles 249a and 249b, respectively.
  • Each of the gas supply holes 250a and 250b opens toward the center of the wafer 200 in a plan view, and gas can be supplied toward the wafer 200.
  • a plurality of gas supply holes 250a and 250b are provided from the lower part to the upper part of the reaction tube 203.
  • a halosilane-based gas containing Si as a main element (predetermined element) that constitutes the film and a halogen element is supplied as a source gas into the processing chamber 201 through the MFC 241a, the valve 243a, and the nozzle 249a.
  • the raw material gas is a raw material in a gaseous state, for example, a gas obtained by vaporizing a raw material in a liquid state under normal temperature and pressure, a raw material in a gaseous state under normal temperature and pressure, and the like.
  • Halosilane is a silane having a halogeno group (halogen group).
  • the halogeno group includes a chloro group, a fluoro group, a bromo group, an iodo group and the like. That is, the halogeno group contains halogen elements such as chlorine (Cl), fluorine (F), bromine (Br), and iodine (I).
  • a raw material gas containing Si and Cl that is, a chlorosilane-based gas can be used.
  • HCDS hexachlorodisilane
  • the HCDS gas acts as a Si source.
  • nitrogen (N) and hydrogen (H) -containing gas as reaction gas is supplied into the processing chamber 201 via the MFC 241b, the valve 243b, and the nozzle 249b.
  • N- and H-containing gas for example, an ammonia (NH 3 ) gas that is a hydrogen nitride-based gas can be used.
  • NH 3 gas acts as a nitriding gas, that is, an N source.
  • a carbon (C)-containing gas is supplied as a reaction gas into the processing chamber 201 through the MFC 241c, the valve 243c, the gas supply pipe 232b, and the nozzle 249b.
  • the C-containing gas for example, propylene (C 3 H 6 ) gas, which is a hydrocarbon-based gas, can be used.
  • the C 3 H 6 gas acts as a C source.
  • an oxygen (O)-containing gas is supplied as a reaction gas into the processing chamber 201 via the MFC 241d, the valve 243d, the gas supply pipe 232b, and the nozzle 249b.
  • oxygen (O 2 ) gas can be used as the O-containing gas.
  • O 2 gas acts as an oxidizing gas, that is, an O source.
  • hydrogen (H 2 ) gas which is an H-containing gas
  • the reducing gas such as MFC241e, 241f, valve 243e, 243f, gas supply pipes 232a, 232b, nozzles 249a, 249b, respectively. It is supplied into the processing chamber 201 via.
  • nitrogen (N 2 ) gas is treated as an inert gas via MFC 241g, 241h, valves 243g, 243h, gas supply pipes 232a, 232b, nozzles 249a, 249b, respectively. It is supplied into the room 201.
  • the N 2 gas acts as a purge gas, a carrier gas, a diluent gas and the like.
  • a raw material gas supply system (Si source supply system) is mainly configured by the gas supply pipe 232a, the MFC 241a, and the valve 243a.
  • a reaction gas supply system (N source supply system, C source supply system, O source supply system) is mainly configured by the gas supply pipes 232b to 232d, the MFCs 241b to 241d, and the valves 243b to 243d.
  • the reducing gas supply system is mainly composed of gas supply pipes 232e and 232f, MFC241e and 241f, and valves 243e and 243f.
  • the inert gas supply system is mainly composed of gas supply pipes 232 g, 232 h, MFC 241 g, 241 h, and valves 243 g, 243 h.
  • the raw material gas and the reaction gas used in the first film formation which will be described later, are collectively referred to as the first processing gas.
  • the source gas supply system and the reaction gas supply system used in the first film formation are collectively referred to as a first process gas supply system.
  • the raw material gas and the reaction gas used in the second film formation described later are collectively referred to as a second processing gas.
  • the source gas supply system and the reaction gas supply system used in the second film formation are collectively referred to as a second process gas supply system.
  • any or all of the various supply systems described above may be configured as an integrated supply system 248 in which valves 243a to 243h and MFCs 241a to 241h are integrated.
  • the integrated supply system 248 is connected to each of the gas supply pipes 232a to 232h, and supplies various gases into the gas supply pipes 232a to 232h, that is, opens and closes the valves 243a to 243h and controls the MFCs 241a to 241h.
  • the flow rate adjusting operation and the like are configured to be controlled by the controller 121 described later.
  • the integrated type supply system 248 is configured as an integrated type or a divided type integrated unit, and can be attached to and detached from the gas supply pipes 232a to 232h in units of integrated units. It is configured so that maintenance, replacement, expansion, etc. can be performed in units of integrated units.
  • An exhaust port 231a for exhausting the atmosphere in the processing chamber 201 is provided below the side wall of the reaction tube 203.
  • the exhaust port 231a may be provided along the upper portion of the side wall of the reaction tube 203, that is, along the wafer arrangement region.
  • An exhaust pipe 231 is connected to the exhaust port 231a.
  • a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure regulator) are provided in the exhaust pipe 231.
  • a pressure sensor 245 as a pressure detector (pressure detection unit) for detecting the pressure in the processing chamber 201
  • an APC (Auto Pressure Controller) valve 244 as a pressure regulator (pressure regulator) are provided.
  • a vacuum pump 246 as a vacuum exhaust device is connected.
  • the APC valve 244 can perform vacuum exhaust and vacuum exhaust stop in the processing chamber 201 by opening and closing the valve in a state where the vacuum pump 246 is operated, and further, in a state where the vacuum pump 246 is operated, By adjusting the valve opening degree based on the pressure information detected by the pressure sensor 245, the pressure in the processing chamber 201 can be adjusted.
  • An exhaust system is mainly configured by the exhaust pipe 231, the APC valve 244, and the pressure sensor 245.
  • the vacuum pump 246 may be included in the exhaust system.
  • a seal cap 219 is installed as a furnace port cover capable of airtightly closing the lower end opening of the manifold 209.
  • the seal cap 219 is made of, for example, a metal material such as SUS and has a disc shape.
  • an O-ring 220b is provided as a seal member that contacts the lower end of the manifold 209.
  • a rotation mechanism 267 for rotating the boat 217 described later is installed below the seal cap 219.
  • the rotating shaft 255 of the rotating mechanism 267 penetrates the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be vertically moved by a boat elevator 115 as an elevating mechanism installed outside the reaction tube 203.
  • the boat elevator 115 is configured as a transport system (convey mechanism) for carrying in and out (transporting) the wafer 200 into and out of the processing chamber 201 by raising and lowering the seal cap 219.
  • a shutter 219s as a furnace port lid that can hermetically close the lower end opening of the manifold 209 in a state where the seal cap 219 is lowered and the boat 217 is carried out from the processing chamber 201.
  • the shutter 219s is made of a metal material such as SUS and has a disk shape.
  • an O-ring 220c is provided as a seal member that contacts the lower end of the manifold 209.
  • the opening/closing operation (elevating operation, rotating operation, etc.) of the shutter 219s is controlled by the shutter opening/closing mechanism 115s.
  • the boat 217 as the substrate support is configured to support a plurality of wafers 200, for example, 25 to 200 wafers in a horizontal posture and in a vertically aligned manner with the centers thereof aligned in a vertical direction, that is, It is configured to be arranged at intervals.
  • the boat 217 is made of, for example, a heat resistant material such as quartz or SiC.
  • a plurality of heat insulating plates 218 made of a heat resistant material such as quartz or SiC are supported in multiple stages.
  • a temperature sensor 263 as a temperature detector is installed in the reaction tube 203. By adjusting the degree of energization of the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature in the processing chamber 201 becomes a desired temperature distribution.
  • the temperature sensor 263 is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control means), is configured as a computer including a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I/O port 121d.
  • the RAM 121b, the storage device 121c, and the I / O port 121d are configured so that data can be exchanged with the CPU 121a via the internal bus 121e.
  • An input/output device 122 configured as, for example, a touch panel or the like is connected to the controller 121.
  • the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing device, a process recipe in which the procedures and conditions for substrate processing described later are described, and the like are readablely stored.
  • the process recipes are combined so that the controller 121 can execute each procedure in the substrate processing described later and obtain a predetermined result, and functions as a program.
  • control programs, process recipes, and the like are collectively referred to simply as programs.
  • the process recipe is also simply referred to as a recipe.
  • the word program is used in this specification, it may include only the recipe alone, may include only the control program alone, or may include both of them.
  • the RAM 121b is configured as a memory area (work area) in which programs and data read by the CPU 121a are temporarily stored.
  • the I/O port 121d includes the MFCs 241a to 241h, the valves 243a to 243h, the pressure sensor 245, the APC valve 244, the vacuum pump 246, the temperature sensor 263, the heater 207, the rotating mechanism 267, the boat elevator 115, the shutter opening/closing mechanism 115s, and the like. It is connected to the.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c, and read a recipe from the storage device 121c in response to input of an operation command from the input/output device 122.
  • the CPU 121a adjusts the flow rates of various gases by the MFCs 241a to 241h, opens/closes the valves 243a to 243h, opens/closes the APC valve 244, and adjusts the pressure by the APC valve 244 based on the pressure sensor 245 so as to follow the contents of the read recipe.
  • the controller 121 can be configured by installing the above program stored in the external storage device 123 into a computer.
  • the external storage device 123 includes, for example, a magnetic disk such as an HDD, an optical disk such as a CD, a magneto-optical disk such as an MO, and a semiconductor memory such as a USB memory.
  • the storage device 121c and the external storage device 123 are configured as a computer-readable recording medium. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium When the term “recording medium” is used in this specification, it may include only the storage device 121c alone, may include only the external storage device 123 alone, or may include both of them.
  • the program may be provided to the computer by using communication means such as the Internet or a dedicated line without using the external storage device 123.
  • Substrate processing step As one step in the manufacturing process of the semiconductor device using the above-mentioned substrate processing apparatus, a conductive metal element-containing film exposed on the wafer 200 as a substrate (hereinafter, also simply referred to as a metal-containing film).
  • a substrate treatment sequence example in which a natural oxide film formed on the surface of the metal-containing film is removed and then a low dielectric constant film is formed on the metal-containing film while suppressing oxidation of the metal-containing film is mainly shown in FIGS. This will be described using 7.
  • the operation of each part of the substrate processing apparatus is controlled by the controller 121.
  • H 2 gas as a reducing gas to the wafer 200 while increasing the temperature of the wafer 200 to a second temperature higher than the first temperature in the processing chamber 201 (ramp-up+H 2 preflow)
  • the processing chamber 201 by supplying the HCDS gas and the NH 3 gas as the first processing gas containing no oxidizing gas to the wafer 200 at the second temperature, Si, N, and Forming a silicon nitride film (SiN film) as a first film containing at least one of C and not containing O (first film formation);
  • SiN film silicon nitrid
  • the cycle of supplying the HCDS gas and the NH 3 gas to the wafer 200 is performed a predetermined number of times.
  • the cycle of supplying the HCDS gas, the O 2 gas, the C 3 H 6 gas, and the NH 3 gas to the wafer 200 is performed a predetermined number of times.
  • the gas supply sequence shown in FIG. 6 involves n cycles of intermittently and non-simultaneously supplying HCDS gas, O 2 gas, C 3 H 6 gas, and NH 3 gas to the wafer 200 in the second film formation. (N is an integer of 1 or more) An example of the sequence to be performed is shown.
  • gas supply sequence for the first film formation shown in FIG. 5 and the gas supply sequence for the second film formation shown in FIG. 6 may be shown as follows for convenience. The same notation will be used in the description of other aspects below.
  • wafer When the word “wafer” is used in this specification, it may mean the wafer itself or a laminate of the wafer and a predetermined layer or film formed on the surface thereof.
  • surface of a wafer When the term “surface of a wafer” is used in this specification, it may mean the surface of the wafer itself or the surface of a predetermined layer or the like formed on the wafer.
  • the description of “forming a predetermined layer on a wafer” means directly forming a predetermined layer on the surface of the wafer itself, a layer formed on the wafer, etc. It may mean that a predetermined layer is formed on.
  • substrate is also synonymous with the term “wafer”.
  • the shutter opening/closing mechanism 115s moves the shutter 219s to open the lower end opening of the manifold 209 (shutter open). Thereafter, as shown in FIG. 1, the boat 217 supporting the plurality of wafers 200 is lifted by the boat elevator 115 and loaded into the processing chamber 201 (boat loading). In this state, the seal cap 219 seals the lower end of the manifold 209 via the O-ring 220b.
  • a Si substrate composed of single crystal Si or a substrate having a single crystal Si film formed on the surface can be used as the wafer 200.
  • a W film which is a conductive metal element-containing film is provided on at least a part of the surface of the wafer 200, and at least a part thereof is exposed.
  • a natural oxide layer may be formed on the exposed surface of the W film.
  • the thickness of the W layer which is the part of the W film where the natural oxide layer is not formed (not oxidized), and the composition of WO x , which is the part where the natural oxide layer is formed (oxidized),
  • the ratio (%) of the thickness of the layer (hereinafter, also simply referred to as a WO layer) to the layer is about 70:30.
  • the temperature in the processing chamber 201 be a predetermined first temperature, that is, a predetermined temperature in the range of room temperature (25° C.) or higher and 200° C. or lower, preferably room temperature or higher and 150° C. or lower.
  • a predetermined first temperature that is, a predetermined temperature in the range of room temperature (25° C.) or higher and 200° C. or lower, preferably room temperature or higher and 150° C. or lower.
  • the temperature in the processing chamber 201 By setting the temperature in the processing chamber 201 to be 200° C. or lower, it is less likely to be affected by moisture that has entered the processing chamber 201, moisture remaining in the processing chamber 201, or the like, and the W film is oxidized. It is possible to avoid. By setting the temperature in the processing chamber 201 to 150° C. or lower, it becomes possible to reliably avoid the oxidation of the W film when boat loading is performed.
  • the temperature inside the processing chamber 201 When the temperature inside the processing chamber 201 is set below room temperature, a cooling device for cooling the inside of the processing chamber 201 is required, and the temperature rising time after that becomes long. As a result, the device cost may increase and the productivity may decrease.
  • a cooling device for cooling the inside of the processing chamber 201 becomes unnecessary, and the subsequent heating time can be shortened. As a result, it is possible to reduce the cost of the device and improve the productivity.
  • the valves 243g and 243h are opened, N 2 gas is supplied into the processing chamber 201 through the nozzles 249a and 249b, and the inside of the processing chamber 201 is purged with N 2 gas. This makes it possible to prevent water and the like from entering the processing chamber 201 and promote discharge of residual water and the like from the processing chamber 201.
  • the supply flow rate of N 2 gas (for each gas supply pipe) is, for example, within a range of 0.5 to 20 slm.
  • a rare gas such as Ar gas, He gas, Ne gas, or Xe gas can be used in addition to N 2 gas. This point is the same in each step described later.
  • the inside of the processing chamber 201 is evacuated (decompressed exhaust) by the vacuum pump 246 (pressure adjustment) so as to have a desired pressure. Further, the wafer 200 in the processing chamber 201 is heated by the heater 207 and heated to a desired second temperature higher than the first temperature (ramp up). Further, the rotation of the wafer 200 by the rotation mechanism 267 is started (rotation). Exhaust in the processing chamber 201, heating and rotation of the wafer 200 are all continuously performed at least until the processing of the wafer 200 is completed.
  • H 2 preflow is performed. That is, the valves 243e and 243f are opened and the H 2 gas is flown into the gas supply pipes 232e and 232f.
  • the flow rate of the H 2 gas is adjusted by the MFCs 241e and 241f, is supplied into the processing chamber 201 through the nozzles 249a and 249b, and is exhausted from the exhaust port 231a.
  • H 2 gas is supplied to the wafer 200 (H 2 preflow).
  • the valve 243 g, open the 243 h, nozzles 249a may be supplied to the N 2 gas into the via 249b processing chamber 201.
  • the processing conditions in this step are: H 2 gas supply flow rate (per gas supply pipe): 1 to 10 slm N 2 gas supply flow rate (per gas supply pipe): 1 to 10 slm Each gas supply time: 1 to 120 minutes, preferably 1 to 60 minutes Temperature rise start temperature (first temperature): Room temperature to 200 ° C., preferably room temperature to 150 ° C. Temperature raising target temperature (second temperature): 500 to 800°C, preferably 600 to 700°C Rate of temperature rise: 1 to 30°C/min, preferably 1 to 20°C/min Processing pressure: 20 to 10000 Pa, preferably 1000 to 5000 Pa Is exemplified.
  • the target temperature increase temperature is also the processing temperature in the first film formation described below.
  • the wafer 200 By supplying H 2 gas to the wafer 200 while raising the temperature of the wafer 200 under the above conditions, that is, by raising the temperature of the wafer 200 in the H 2 gas atmosphere, the wafer 200 is exposed on the surface of the wafer 200. It is possible to reduce a part of the W film and remove the WO layer formed on the surface of the W film as shown in FIG. 7 (b).
  • the O component contained in the WO layer constitutes a gaseous substance containing at least O in the course of the reaction that occurs when the WO layer is removed, and is discharged from the processing chamber 201. Further, in this step, it is possible to prevent oxidation of the surface of the W film after removing the WO layer by raising the temperature of the wafer 200 in an H 2 gas atmosphere.
  • the second temperature is lower than 500° C., the effect of removing the WO layer by the above-described reduction reaction and the effect of preventing the oxidation of the surface of the W film after removing the WO layer may be insufficient.
  • the second temperature is set to 500° C. or higher, these effects can be sufficiently obtained.
  • the second temperature is set to 600° C. or higher, these effects can be reliably obtained.
  • the second temperature exceeds 800° C.
  • an excessive gas phase reaction may occur in the processing chamber 201 during the first film formation described later, and the film thickness uniformity of the film formed on the wafer 200 deteriorates.
  • the quality may be deteriorated.
  • deuterium (D 2 ) gas can be used in addition to H 2 gas.
  • the valves 243e and 243f are closed and the supply of H 2 gas into the processing chamber 201 is stopped. Then, the inside of the processing chamber 201 is evacuated to remove gas and the like remaining in the processing chamber 201 from the inside of the processing chamber 201 (purge). At this time, the valves 243g and 243h are opened and N 2 gas is supplied into the processing chamber 201. The N 2 gas acts as a purge gas. Even after the removal of the WO layer from the surface of the W film is completed, the supply of H 2 gas into the processing chamber 201 should be continued (maintained) for a predetermined period until the first film formation is started.
  • the supply of the H 2 gas into the process chamber 201 may be continued for a predetermined period until the first film formation is started.
  • the antioxidant effect on the surface of the W film after the WO layer is removed can be continued for a predetermined period until the first film formation is started.
  • Step C1 In this step, HCDS gas is supplied to the wafer 200 in the processing chamber 201 (HCDS gas supply). Specifically, the valve 243a is opened to flow the HCDS gas into the gas supply pipe 232a. The flow rate of the HCDS gas is adjusted by the MFC 241a, is supplied into the processing chamber 201 via the nozzle 249a, and is exhausted from the exhaust port 231a. At this time, HCDS gas is supplied to the wafer 200. At this time, the valve 243 g, open the 243 h, nozzles 249a, may be supplied to the N 2 gas into the via 249b processing chamber 201.
  • the processing conditions in this step are: HCDS gas supply flow rate: 0.01 to 2 slm, preferably 0.1 to 1 slm N 2 gas supply flow rate (for each gas supply pipe): 0 to 10 slm
  • Each gas supply time 1 to 120 seconds, preferably 1 to 60 seconds
  • Processing pressure 1 to 2666 Pa, preferably 67 to 1333 Pa Is exemplified.
  • a Si-containing layer containing Cl is formed on the outermost surface of the wafer 200.
  • the Si-containing layer containing Cl is formed by physically adsorbing HCDS on the outermost surface of the wafer 200, chemically adsorbing a substance in which a part of HCDS is decomposed (hereinafter referred to as Si x Cl y ), or thermally decomposing HCDS. It is formed by deposition or the like.
  • the Si-containing layer containing Cl may be an HCDS or Si x Cl y adsorption layer (physical adsorption layer or chemical adsorption layer), or may be a Cl-containing Si deposition layer. In the present specification, the Si-containing layer containing Cl is also simply referred to as a Si-containing layer.
  • the valve 243a is closed and the supply of HCDS gas into the processing chamber 201 is stopped. Then, the inside of the processing chamber 201 is evacuated to remove gas and the like remaining in the processing chamber 201 from the inside of the processing chamber 201 (purge). At this time, the valves 243g and 243h are opened and N 2 gas is supplied into the processing chamber 201. The N 2 gas acts as a purge gas.
  • the raw material gas includes monochlorosilane (SiH 3 Cl, abbreviated as MCS) gas, dichlorosilane (SiH 2 Cl 2 , abbreviated as DCS) gas, trichlorosilane (SiHCl 3 , abbreviation: TCS) gas, and tetra.
  • MCS monochlorosilane
  • DCS dichlorosilane
  • TCS trichlorosilane
  • Chlorosilane-based gases such as chlorosilane (SiCl 4 , abbreviated as STC) gas and octachlorotrisilane (Si 3 Cl 8 , abbreviated as OCTS) gas can be used. This point is the same in step D1 described later.
  • Step C2 After step C1 is completed, NH 3 gas is supplied to the wafer 200 in the processing chamber 201, that is, the Si-containing layer formed on the wafer 200 (NH 3 gas supply). Specifically, the valve 243b is opened, and NH 3 gas is flown into the gas supply pipe 232b. The flow rate of the NH 3 gas is adjusted by the MFC 241b, is supplied into the processing chamber 201 via the nozzle 249b, and is exhausted from the exhaust port 231a. At this time, NH 3 gas is supplied to the wafer 200. At this time, the valve 243 g, open the 243 h, nozzles 249a, may be supplied to the N 2 gas into the via 249b processing chamber 201.
  • the processing conditions in this step are: NH 3 gas supply flow rate: 0.1 to 10 slm NH 3 gas supply time: 1 to 120 seconds, preferably 1 to 60 seconds Processing pressure: 1 to 4000 Pa, preferably 1 to 3000 Pa Is exemplified.
  • the other processing conditions are the same as the processing conditions in step C1.
  • SiN layer silicon nitride layer
  • impurities such as Cl contained in the Si-containing layer in the course of the reforming reaction of the Si-containing layer by the NH 3 gas constitutes a gaseous material containing at least Cl, the process chamber 201 It is discharged from inside.
  • the SiN layer has less impurities such as Cl than the Si-containing layer formed in step C1.
  • the valve 243b is closed and the supply of NH 3 gas into the processing chamber 201 is stopped. Then, the gas and the like remaining in the processing chamber 201 are removed from the processing chamber 201 by the same processing procedure as the purging in step C1 (purge).
  • reaction gas gas containing N and H
  • hydrogen nitride gas such as diazene (N 2 H 2 ) gas, hydrazine (N 2 H 4 ) gas, and N 3 H 8 gas is used. Can be used. This also applies to step D4 described later.
  • the wafer 200 is formed by performing the above-mentioned steps 1 and 2 non-simultaneously, that is, by performing a predetermined number of cycles (m times, m is an integer of 1 or more and 3 or less) without synchronization. It is possible to form an SiN film having a predetermined composition and a predetermined film thickness on the W film from which the WO layer has been removed by heating the wafer 200 in the H 2 gas atmosphere.
  • the thickness of the SiN film is, for example, 0.16 nm or more and 1 nm or less, preferably 0.16 nm or more and 0.48 nm or less, and more preferably 0.16 nm or more and 0.32 nm or less.
  • the oxidation blocking effect described later becomes insufficient, and a part of the W film may be oxidized in the second film formation described later.
  • the oxidation blocking effect can be sufficiently obtained, and the oxidation of the W film can be avoided in the second film formation described later.
  • the thickness of the SiN film exceeds 1 nm, the total dielectric constant of the laminated film described below may increase.
  • the thickness of the SiN film By setting the thickness of the SiN film to 1 nm or less, it becomes possible to suppress an increase in the total dielectric constant of the laminated film described later.
  • the thickness of the SiN film By setting the thickness of the SiN film to 0.48 nm or less, this effect can be surely obtained, and by setting the thickness of the SiN film to 0.32 nm or less, this effect can be more surely obtained. Will be obtained.
  • the thickness of the SiN layer formed when the above-described cycle is performed once is made smaller than the desired film thickness, and the SiN film formed by stacking the SiN layers has the desired film thickness. Until then, it is preferable to repeat the above-mentioned cycle a plurality of times. By setting the number of times of performing the above-mentioned cycle to a predetermined number of times of 1 time or more and 3 times or less, the thickness of the SiN film can be set within the above-mentioned range.
  • Step D1 In this step, HCDS gas is supplied to the wafer 200 in the processing chamber 201 by the same processing procedure as the processing procedure in step C1 described above (HCDS gas supply).
  • the processing conditions in this step are: HCDS gas supply flow rate: 0.01 to 2 slm, preferably 0.1 to 1 slm N 2 gas supply flow rate (for each gas supply pipe): 0 to 10 slm
  • Each gas supply time 1 to 120 seconds, preferably 1 to 60 seconds
  • Processing pressure 1 to 2666 Pa, preferably 67 to 1333 Pa Is exemplified.
  • the third temperature is higher than the first temperature. Further, it is preferable that the third temperature is the same as the above-mentioned second temperature.
  • a Si-containing layer is formed on the wafer 200, that is, on the SiN film formed on the wafer 200.
  • Step D2 C 3 H 6 gas is supplied to the wafer 200 in the processing chamber 201, that is, the Si-containing layer formed on the SiN film on the wafer 200 (C 3 H 6 gas supply). .. Specifically, the valve 243c is opened and the C 3 H 6 gas is flown into the gas supply pipe 232c. The flow rate of the C 3 H 6 gas is adjusted by the MFC 241c, is supplied into the processing chamber 201 via the gas supply pipe 232b and the nozzle 249b, and is exhausted from the exhaust port 231a. At this time, the C 3 H 6 gas is supplied to the wafer 200. At this time, the valve 243 g, open the 243 h, nozzles 249a, may be supplied to the N 2 gas into the via 249b processing chamber 201.
  • the processing conditions in this step are C 3 H 6 gas supply flow rate: 0.1 to 10 slm C 3 H 6 Gas supply time: 1 to 120 seconds, preferably 1 to 60 seconds Processing pressure: 1 to 4000 Pa, preferably 1 to 3000 Pa Is exemplified.
  • the other processing conditions are the same as the processing conditions in step D1.
  • the C-containing layer is formed on the Si-containing layer.
  • a layer containing Si and C is formed by laminating a C containing layer on the Si containing layer.
  • the valve 243c is closed to stop the supply of C 3 H 6 gas into the processing chamber 201. Then, the gas and the like remaining in the processing chamber 201 are removed from the processing chamber 201 by the same processing procedure as the purging in step C1 (purge).
  • reaction gas (C-containing gas) a hydrocarbon-based gas such as acetylene (C 2 H 2 ) gas or ethylene (C 2 H 4 ) gas can be used in addition to C 3 H 6 gas.
  • acetylene (C 2 H 2 ) gas or ethylene (C 2 H 4 ) gas can be used in addition to C 3 H 6 gas.
  • Step D3 O 2 gas is supplied to the wafer 200 in the processing chamber 201, that is, the layer containing Si and C formed on the SiN film on the wafer 200 (O 2 gas supply).
  • the valve 243d is opened and O 2 gas is flown into the gas supply pipe 232d.
  • the flow rate of the O 2 gas is adjusted by the MFC 241d, is supplied into the processing chamber 201 via the gas supply pipe 232b and the nozzle 249b, and is exhausted from the exhaust port 231a.
  • O 2 gas is supplied to the wafer 200.
  • the valve 243 g, open the 243 h, nozzles 249a may be supplied to the N 2 gas into the via 249b processing chamber 201.
  • the processing conditions in this step are: O 2 gas supply flow rate: 0.1 to 10 slm O 2 gas supply time: 1 to 120 seconds, preferably 1 to 60 seconds Processing pressure: 1 to 4000 Pa, preferably 1 to 3000 Pa Is exemplified.
  • the other processing conditions are the same as the processing conditions in step D1.
  • the SiOC layer By supplying O 2 gas to the wafer 200 under the above-described conditions, at least a part of the layer containing Si and C formed on the SiN film on the wafer 200 is oxidized (modified).
  • a carbonized silicon acid layer SiOC layer
  • a gaseous material containing at least Cl It is configured and discharged from the processing chamber 201.
  • the SiOC layer has less impurities such as Cl than the Si-containing layer formed in step D1 and the layer containing Si and C formed in step D2.
  • the valve 243d is closed and the supply of O 2 gas into the processing chamber 201 is stopped. Then, the gas or the like remaining in the processing chamber 201 is removed from the processing chamber 201 (purge) by the same processing procedure as in the purging in step C1.
  • the reaction gas (O-containing gas), the other of the O 2 gas, for example, ozone (O 3) gas, water vapor (H 2 O gas), nitrogen monoxide (NO) gas, nitrous oxide (N 2 O) gas Etc. can be used.
  • Step D4 After step D3 is completed, NH 3 gas is supplied to the wafer 200 in the processing chamber 201 (NH 3 gas supply) by the same processing procedure as the above-described processing procedure in step C2.
  • the processing conditions in this step are: NH 3 gas supply flow rate: 0.1 to 10 slm NH 3 gas supply time: 1 to 120 seconds, preferably 1 to 60 seconds Processing pressure: 1 to 4000 Pa, preferably 1 to 3000 Pa Is exemplified.
  • the other processing conditions are the same as the processing conditions in step D1.
  • SiOCN layer silicon acid carbonitriding layer
  • impurities such as Cl contained in the SiOC layer form a gaseous substance containing at least Cl in the process of reforming the SiOC layer with NH 3 gas, and are removed from the inside of the processing chamber 201. Emitted.
  • the SiOCN layer has less impurities such as Cl than the SiOC layer formed in step D3.
  • the supply of NH 3 gas into the processing chamber 201 is stopped, and the gas and the like remaining in the processing chamber 201 are removed from the processing chamber 201 by the same processing procedure as the purging in step C1. Yes (Purge).
  • the wafer 200 that is, the first film formation is performed.
  • a SiOCN film having a predetermined composition and a predetermined film thickness can be formed on the SiN film formed on the wafer 200.
  • a part of the O component supplied to the wafer 200 and a part of the O component contained in the SiOCN layer formed on the wafer 200 are used in the process of forming the SiOCN film. It is also possible to supply it to the SiN film which is the base of the two film formations. As a result, the O component can be diffused and added into the SiN film which is the base of the second film formation, and this SiN film is modified (oxidized) into a SiON film having a dielectric constant lower than that of the SiN film. It becomes possible. As a result, as shown in FIG.
  • This laminated film is a so-called low dielectric constant film (Low-k film).
  • the O component that tends to diffuse below the SiN film, that is, toward the W film side that is the base for forming the laminated film, is generated by the SiN film, that is, the SiN film itself. Is trapped by being oxidized, and its diffusion to the W film side is blocked.
  • the diffusion blocking effect of the O component obtained by the SiN film on the W film, that is, the oxidation suppressing effect of the W film is also referred to as an oxidation blocking effect.
  • the thickness of the SiOCN film formed by the second film formation is preferably thicker than the thickness of the SiN film formed by the first film formation. That is, the thickness of the SiN film formed by the first film formation is preferably thinner than the thickness of the SiOCN film formed by the second film formation.
  • the thickness of the SiOCN film having a lower dielectric constant than that of the SiON film thicker than that of the SiON film, that is, the thickness of the SiON film having a higher dielectric constant than that of the SiOCN film is made thinner than that of the SiOCN film. By doing so, it is possible to reduce the average dielectric constant of the laminated film formed by laminating these.
  • the thickness of the SiOCN layer formed when the above-mentioned cycle is performed once is made thinner than the desired film thickness, and the film thickness of the SiOCN film formed by stacking the SiOCN layers becomes the desired film thickness. Until then, it is preferable to repeat the above-mentioned cycle a plurality of times.
  • N 2 gas as a purge gas is processed from each of the nozzles 249a and 249b.
  • the gas is supplied into the chamber 201 and exhausted from the exhaust port 231a.
  • the inside of the treatment chamber 201 is purged, and the gas and reaction by-products remaining in the treatment chamber 201 are removed from the inside of the treatment chamber 201 (after-purge).
  • the atmosphere in the treatment chamber 201 is replaced with the inert gas (replacement of the inert gas), and the pressure in the treatment chamber 201 is restored to normal pressure (return to atmospheric pressure).
  • the boat elevator 115 lowers the seal cap 219 to open the lower end of the manifold 209. Then, the processed wafer 200 is carried out (boat unloading) from the lower end of the manifold 209 to the outside of the reaction tube 203 while being supported by the boat 217. After the boat is unloaded, the shutter 219s is moved, and the lower end opening of the manifold 209 is sealed by the shutter 219s via the O-ring 220c (shutter close). The processed wafer 200 is carried out of the reaction tube 203 and then taken out from the boat 217 (wafer discharge).
  • the SiOCN film having a low dielectric constant can be formed on the wafer 200 by using the second treatment gas containing an oxidation gas.
  • the SiN film formed by the first film formation can be oxidized to form a SiON film.
  • the laminated film formed by laminating the first film and the second film can be a low dielectric constant film.
  • the oxide film (laminated film of the first film and the second film) formed on the W film is a low dielectric constant film, but it is the base of the film. It becomes possible to suppress the oxidation of the W film.
  • the laminated film formed by the method of this embodiment can be suitably applied to, for example, a side wall spacer, a hard mask, an etch stopper or the like in a logic device such as MPU or a memory device such as DRAM or 3D NAND.
  • the W film which is a simple metal film is exemplified as the conductive metal-containing film exposed on the surface of the substrate, but the present disclosure is not limited to such an aspect.
  • the conductive metal-containing film exposed on the surface of the substrate may be a metal nitride film such as a titanium nitride film (TiN film) or a tungsten nitride film (WN film), or an aluminum film (Al film). ), Cobalt film (Co film), nickel film (Ni film), platinum film (Pt film), copper film (Cu film), or the like.
  • a conductive metal-containing film such as a TiN film or a W film is also simply referred to as a metal film.
  • 1,1,2,2-tetrachloro-1,2-dimethyldisilane (CH 3 ) 2 Si 2 Cl 4 , an alkylhalosilane-based gas such as an abbreviation: TCDMDS gas, an alkylsilane such as hexamethyldisilane ((CH 3 ) 3 -Si—Si—(CH 3 ) 3 , an abbreviation: HMDS) gas
  • TCDMDS an alkylsilane such as hexamethyldisilane
  • HMDS an abbreviation: HMDS
  • a base gas or an alkylenesilane-based gas such as 1,4-disilabutane (Si 2 C 2 H 10 , abbreviation: DSB) gas may be used.
  • the raw material gas as a gas to promote its degradation, eg, H 2 gas and trichloroborane (BCl 3) may be added to the gas.
  • an amine-based gas such as triethylamine ((C 2 H 5 ) 3 N, abbreviation: TEA) gas may be used in addition to the various reaction gases described above.
  • TEA triethylamine
  • SiN film, silicon carbide film (SiC film), silicon carbonitride film (SiCN film) may be formed.
  • the alkylhalosilane-based gas, the alkylsilane-based gas, and the alkylenesilane-based gas are gases that act as a Si source and a C source, respectively, and the amine-based gas is a gas that acts as an N source and a C source, respectively. ..
  • the SiC film or the SiCN film formed in the first film formation is oxidized by performing the second film formation, respectively.
  • the SiOC film or the SiOCN film can be modified.
  • the SiOC film or the SiOCN film since the SiOC film or the SiOCN film has a lower dielectric constant than the SiON film, it becomes possible to further lower the dielectric constant of the laminated film in which the first film and the second film are laminated.
  • the second processing gas in addition to the above-mentioned various halosilane-based gases such as HCDS gas, alkylhalosilane-based gas such as TCDMDS gas, alkylsilane-based gas such as HMDS gas, An alkylene silane-based gas such as DSB gas may be used.
  • the second processing gas reaction gas
  • amine-based gas such as TEA gas may be used in addition to the various reaction gases described above.
  • a SiOCN film may be formed as the second film on the wafer 200, that is, on the first film by the gas supply sequence described below.
  • the type of the second processing gas may be appropriately selected, and a silicon oxide film (SiO film), a silicon oxynitride film (SiON film), or a silicon oxycarbide film (SiOC film) may be formed as the second film. Good. Also in these cases, the same effect as the above-mentioned aspect can be obtained.
  • the recipes used for each process are individually prepared according to the processing content and stored in the storage device 121c via a telecommunication line or an external storage device 123. Then, when starting each process, it is preferable that the CPU 121a appropriately selects an appropriate recipe from a plurality of recipes stored in the storage device 121c according to the processing content. As a result, it becomes possible to form films of various film types, composition ratios, film qualities, and film thicknesses with good reproducibility with one substrate processing apparatus. In addition, the burden on the operator can be reduced, and each processing can be started quickly while avoiding an operation error.
  • the above recipe is not limited to the case of newly creating, for example, it may be prepared by changing an existing recipe already installed in the board processing apparatus.
  • the changed recipe may be installed in the substrate processing apparatus via an electric communication line or a recording medium in which the recipe is recorded.
  • the input/output device 122 included in the existing substrate processing apparatus may be operated to directly change the existing recipe already installed in the substrate processing apparatus.
  • an example of forming a film using a batch type substrate processing apparatus that processes a plurality of substrates at once has been described.
  • the present disclosure is not limited to the above-described embodiment, and can be suitably applied to, for example, when a film is formed by using a single-wafer type substrate processing apparatus that processes one or several substrates at a time.
  • the example of forming the film by using the substrate processing apparatus having the hot wall type processing furnace has been described.
  • the present disclosure is not limited to the above embodiment, and can be suitably applied to the case where a film is formed using a substrate processing apparatus having a cold wall type processing furnace.
  • each processing can be performed under the same processing procedure and processing conditions as those in the above-described embodiment, and the same effects as those in the above-described embodiment can be obtained.
  • the processing procedure and the processing condition at this time can be the same as the processing procedure and the processing condition of the above-described aspect, for example.
  • the SiOCN film was formed on the wafer in which the W film was exposed on the surface by the gas supply sequence shown in FIG. 6 using the above-mentioned substrate processing apparatus.
  • the composition of the wafers of Samples 1 to 5 in the thickness direction in the initial state was measured by XPS.
  • the ratio (%) of the thickness of the layer to the thickness of the WO layer which is the oxidized portion was 70:30.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

(a)表面に導電性の金属元素含有膜が露出した基板を、第1温度下で処理室内へ搬入する工程と、(b)処理室内において、基板を第1温度よりも高い第2温度まで昇温させつつ、基板に対して還元ガスを供給する工程と、(c)処理室内において、第2温度下で、基板に対して酸化ガス非含有の第1処理ガスを供給することで、金属元素含有膜上に、シリコンと、窒素および炭素のうち少なくともいずれかと、を含み酸素非含有の第1膜を形成する工程と、(d)処理室内において、第1温度よりも高い第3温度下で、基板に対して酸化ガスを含む第2処理ガスを供給することで、第1膜上に、シリコン、酸素、炭素、および窒素を含む第2膜を第1膜よりも厚く形成する工程と、を有する。

Description

半導体装置の製造方法、基板処理装置、およびプログラム
 本開示は、半導体装置の製造方法、基板処理装置、およびプログラムに関する。
 半導体装置の製造工程の一工程として、加熱された基板に対して酸化ガスを含む処理ガスを供給することで、基板上に、低誘電率膜を形成する工程が行われることがある(例えば特許文献1~4参照)。
特開2011-238894号公報 特開2014-38923号公報 特開2014-60302号公報 特開2013-140944号公報
 本開示は、基板上に形成される膜を低誘電率膜としつつ、この膜の下地が金属元素含有膜である場合にその酸化を抑制することが可能な技術を提供することを目的とする。
 本開示の一態様によれば、
 (a)表面に導電性の金属元素含有膜が露出した基板を、第1温度下で処理室内へ搬入する工程と、
 (b)前記処理室内において、前記基板を前記第1温度よりも高い第2温度まで昇温させつつ、前記基板に対して還元ガスを供給する工程と、
 (c)前記処理室内において、前記第2温度下で、前記基板に対して酸化ガス非含有の第1処理ガスを供給することで、前記金属元素含有膜上に、シリコンと、窒素および炭素のうち少なくともいずれかと、を含み酸素非含有の第1膜を形成する工程と、
 (d)前記処理室内において、前記第1温度よりも高い第3温度下で、前記基板に対して酸化ガスを含む第2処理ガスを供給することで、前記第1膜上に、シリコン、酸素、炭素、および窒素を含む第2膜を前記第1膜よりも厚く形成する工程と、
 を有する技術が提供される。
 本開示によれば、基板上に形成される膜を低誘電率膜としつつ、この膜の下地が金属元素含有膜である場合にその酸化を抑制することが可能な技術を提供することが可能となる。
本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を縦断面図で示す図である。 本開示の一態様で好適に用いられる基板処理装置の縦型処理炉の概略構成図であり、処理炉部分を図1のA-A線断面図で示す図である。 本開示の一態様で好適に用いられる基板処理装置のコントローラの概略構成図であり、コントローラの制御系をブロック図で示す図である。 本開示の一態様における基板処理シーケンスを示す図である。 本開示の一態様における第1成膜でのガス供給シーケンスを示す図である。 本開示の一態様における第2成膜でのガス供給シーケンスを示す図である。 (a)は表面にW膜が露出した処理対象のウエハの表面における断面拡大図であり、(b)はランプアップ+Hプリフローを実施してW膜の表面から自然酸化層を除去した後のウエハの表面における断面拡大図であり、(c)は第1成膜を実施してW膜上にSiN膜を形成した後のウエハの表面における断面拡大図であり、(d)は第2成膜を実施してSiN膜上にSiOCN膜を形成すると共に、第1成膜で形成したSiN膜をSiON膜へ改質させた後のウエハの表面における断面拡大図である。 第2成膜の前に第1成膜を行うことによるW膜の酸化抑制効果に関する評価結果を示す図である。
<本開示の一態様>
 以下、本開示の一態様について、主に、図1~図7を用いて説明する。
(1)基板処理装置の構成
 図1に示すように、処理炉202は加熱機構(温度調整部)としてのヒータ207を有する。ヒータ207は円筒形状であり、保持板に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化(励起)させる活性化機構(励起部)としても機能する。
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば石英(SiO)または炭化シリコン(SiC)等の耐熱性材料により構成され、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、例えばステンレス鋼(SUS)等の金属材料により構成され、上端および下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。反応管203はヒータ207と同様に垂直に据え付けられている。主に、反応管203とマニホールド209とにより処理容器(反応容器)が構成される。処理容器の筒中空部には処理室201が形成される。処理室201は、基板としてのウエハ200を収容可能に構成されている。この処理室201内でウエハ200に対する処理が行われる。
 処理室201内には、第1供給部、第2供給部としてのノズル249a,249bが、マニホールド209の側壁を貫通するようにそれぞれ設けられている。ノズル249a,249bを、それぞれ第1ノズル、第2ノズルとも称する。ノズル249a,249bは、それぞれ、石英またはSiC等の耐熱性材料である非金属材料により構成されている。ノズル249a,249bは、それぞれ、複数種のガスの供給に用いられる共用ノズルとして構成されている。
 ノズル249a,249bには、第1配管、第2配管としてのガス供給管232a,232bがそれぞれ接続されている。ガス供給管232a,232bは、それぞれ、複数種のガスの供給に用いられる共用配管として構成されている。ガス供給管232a,232bには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241bおよび開閉弁であるバルブ243a,243bがそれぞれ設けられている。ガス供給管232aのバルブ243aよりも下流側には、ガス供給管232e,232gがそれぞれ接続されている。ガス供給管232e,232gには、ガス流の上流側から順に、MFC241e,241g、バルブ243e,243gがそれぞれ設けられている。ガス供給管232bのバルブ243bよりも下流側には、ガス供給管232c,232d,232f,232hがそれぞれ接続されている。ガス供給管232c,232d,232f,232hには、ガス流の上流側から順に、MFC241c,241d,241f,241h、バルブ243c,243d,243f,243hがそれぞれ設けられている。ガス供給管232a~232hは、例えばSUS等の金属材料により構成されている。
 図2に示すように、ノズル249a,249bは、反応管203の内壁とウエハ200との間における平面視において円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の配列方向上方に向かって立ち上がるようにそれぞれ設けられている。すなわち、ノズル249a,249bは、ウエハ200が配列されるウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に、ウエハ配列領域に沿うようにそれぞれ設けられている。ノズル249a,249bの側面には、ガスを供給するガス供給孔250a,250bがそれぞれ設けられている。ガス供給孔250a,250bは、それぞれが、平面視においてウエハ200の中心に向かって開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250a,250bは、反応管203の下部から上部にわたって複数設けられている。
 ガス供給管232aからは、原料ガスとして、例えば、膜を構成する主元素(所定元素)としてのSiおよびハロゲン元素を含むハロシラン系ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201内へ供給される。原料ガスとは、気体状態の原料、例えば、常温常圧下で液体状態である原料を気化することで得られるガスや、常温常圧下で気体状態である原料等のことである。ハロシランとは、ハロゲノ基(ハロゲン基)を有するシランのことである。ハロゲノ基には、クロロ基、フルオロ基、ブロモ基、ヨード基等が含まれる。すなわち、ハロゲノ基には、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等のハロゲン元素が含まれる。ハロシラン系ガスとしては、例えば、SiおよびClを含む原料ガス、すなわち、クロロシラン系ガスを用いることができる。クロロシラン系ガスとしては、例えば、ヘキサクロロジシラン(SiCl、略称:HCDS)ガスを用いることができる。HCDSガスは、Si源として作用する。
 ガス供給管232bからは、反応ガスとして、窒素(N)及び水素(H)含有ガスが、MFC241b、バルブ243b、ノズル249bを介して処理室201内へ供給される。N及びH含有ガスとしては、例えば、窒化水素系ガスであるアンモニア(NH)ガスを用いることができる。NHガスは、窒化ガス、すなわち、N源として作用する。
 ガス供給管232cからは、反応ガスとして、炭素(C)含有ガスが、MFC241c、バルブ243c、ガス供給管232b、ノズル249bを介して処理室201内へ供給される。C含有ガスとしては、例えば、炭化水素系ガスであるプロピレン(C)ガスを用いることができる。Cガスは、C源として作用する。
 ガス供給管232dからは、反応ガスとして、酸素(O)含有ガスが、MFC241d、バルブ243d、ガス供給管232b、ノズル249bを介して処理室201内へ供給される。O含有ガスとしては、例えば、酸素(O)ガスを用いることができる。Oガスは、酸化ガス、すなわち、O源として作用する。
 ガス供給管232e,232fからは、還元ガスとして、例えば、H含有ガスである水素(H)ガスが、それぞれ、MFC241e,241f、バルブ243e,243f、ガス供給管232a,232b、ノズル249a,249bを介して処理室201内へ供給される。
 ガス供給管232g,232hからは、不活性ガスとして、例えば、窒素(N)ガスが、それぞれ、MFC241g,241h、バルブ243g,243h、ガス供給管232a,232b、ノズル249a,249bを介して処理室201内へ供給される。Nガスは、パージガス、キャリアガス、希釈ガス等として作用する。
 主に、ガス供給管232a、MFC241a、バルブ243aにより、原料ガス供給系(Si源供給系)が構成される。主に、ガス供給管232b~232d、MFC241b~241d、バルブ243b~243dにより、反応ガス供給系(N源供給系、C源供給系、O源供給系)が構成される。主に、ガス供給管232e,232f、MFC241e,241f、バルブ243e,243fにより、還元ガス供給系が構成される。主に、ガス供給管232g,232h、MFC241g,241h、バルブ243g,243hにより、不活性ガス供給系が構成される。
 後述する第1成膜で用いる原料ガスおよび反応ガスを総称して、第1処理ガスとも称する。また、第1成膜で用いる原料ガス供給系および反応ガス供給系を総称して、第1処理ガス供給系とも称する。また、後述する第2成膜で用いる原料ガスおよび反応ガスを総称して、第2処理ガスとも称する。また、第2成膜で用いる原料ガス供給系および反応ガス供給系を総称して、第2処理ガス供給系とも称する。
 上述の各種供給系のうち、いずれか、或いは、全ての供給系は、バルブ243a~243hやMFC241a~241h等が集積されてなる集積型供給システム248として構成されていてもよい。集積型供給システム248は、ガス供給管232a~232hのそれぞれに対して接続され、ガス供給管232a~232h内への各種ガスの供給動作、すなわち、バルブ243a~243hの開閉動作やMFC241a~241hによる流量調整動作等が、後述するコントローラ121によって制御されるように構成されている。集積型供給システム248は、一体型、或いは、分割型の集積ユニットとして構成されており、ガス供給管232a~232h等に対して集積ユニット単位で着脱を行うことができ、集積型供給システム248のメンテナンス、交換、増設等を、集積ユニット単位で行うことが可能なように構成されている。
 反応管203の側壁下方には、処理室201内の雰囲気を排気する排気口231aが設けられている。排気口231aは、反応管203の側壁の下部より上部に沿って、すなわち、ウエハ配列領域に沿って設けられていてもよい。排気口231aには排気管231が接続されている。排気管231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧力センサ245および圧力調整器(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201内の真空排気および真空排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201内の圧力を調整することができるように構成されている。主に、排気管231、APCバルブ244、圧力センサ245により、排気系が構成される。真空ポンプ246を排気系に含めて考えてもよい。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、例えばSUS等の金属材料により構成され、円盤状に形成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の下方には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ウエハ200を処理室201内外に搬入および搬出(搬送)する搬送系(搬送機構)として構成されている。マニホールド209の下方には、シールキャップ219を降下させボート217を処理室201内から搬出した状態で、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、例えばSUS等の金属材料により構成され、円盤状に形成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成される。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が多段に支持されている。
 反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、反応管203の内壁に沿って設けられている。
 図3に示すように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理における各手順をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、制御プログラム、プロセスレシピ等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC241a~241h、バルブ243a~243h、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115、シャッタ開閉機構115s等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241a~241hによる各種ガスの流量調整動作、バルブ243a~243hの開閉動作、APCバルブ244の開閉動作および圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、シャッタ開閉機構115sによるシャッタ219sの開閉動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。外部記憶装置123は、例えば、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ等を含む。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(2)基板処理工程
 上述の基板処理装置を用い、半導体装置の製造工程の一工程として、基板としてのウエハ200上に露出した導電性の金属元素含有膜(以下、単に金属含有膜ともいう)の表面に形成された自然酸化膜を除去し、その後、金属含有膜上に、金属含有膜の酸化を抑制しつつ低誘電率膜を形成する基板処理シーケンス例について、主に、図4~図7を用いて説明する。以下の説明において、基板処理装置を構成する各部の動作はコントローラ121により制御される。
 図4に示す基板処理シーケンスでは、
 表面に導電性の金属元素含有膜としてのタングステン(W)膜が露出したウエハ200を、第1温度下で処理室201内へ搬入するステップ(ウエハチャージ、ボートロード)と、
 処理室201内において、ウエハ200を第1温度よりも高い第2温度まで昇温させつつ、ウエハ200に対して還元ガスとしてHガスを供給するステップ(ランプアップ+Hプリフロー)と、
 処理室201内において、第2温度下で、ウエハ200に対して酸化ガス非含有の第1処理ガスとして、HCDSガスおよびNHガスを供給することで、W膜上に、Siと、NおよびCのうち少なくともいずれかと、を含みO非含有の第1膜として、シリコン窒化膜(SiN膜)を形成するステップ(第1成膜)と、
 処理室201内において、第1温度よりも高い第3温度下で、ウエハ200に対して酸化ガスを含む第2処理ガスとして、HCDSガス、Oガス、Cガス、およびNHガスを供給することで、SiN膜上に、Si、O、C、およびNを含む第2膜として、シリコン酸炭窒化膜(SiOCN膜)をSiN膜よりも厚く形成するステップ(第2成膜)と、
 を行う。
 なお、上述の第1成膜では、ウエハ200に対してHCDSガスおよびNHガスを供給するサイクルを所定回数行う。図5に示すガス供給シーケンスは、第1成膜において、ウエハ200に対してHCDSガスおよびNHガスを間欠的かつ非同時に供給するサイクルを、m回(mは1以上3以下の整数)行うシーケンス例を示している。
 また、上述の第2成膜では、ウエハ200に対してHCDSガス、Oガス、Cガス、およびNHガスを供給するサイクルを所定回数行う。図6に示すガス供給シーケンスは、第2成膜において、ウエハ200に対してHCDSガス、Oガス、Cガス、およびNHガスを間欠的かつ非同時に供給するサイクルを、n回(nは1以上の整数)行うシーケンス例を示している。
 本明細書では、図5に示す第1成膜のガス供給シーケンス、および、図6に示す第2成膜のガス供給シーケンスを、それぞれ便宜上、以下のように示すこともある。以下の他の態様の説明においても同様の表記を用いることとする。
 (HCDS→NH)×m ⇒ SiN
 (HCDS→C→O→NH)×n ⇒ SiOCN
 本明細書において「ウエハ」という言葉を用いた場合は、ウエハそのものを意味する場合や、ウエハとその表面に形成された所定の層や膜との積層体を意味する場合がある。本明細書において「ウエハの表面」という言葉を用いた場合は、ウエハそのものの表面を意味する場合や、ウエハ上に形成された所定の層等の表面を意味する場合がある。本明細書において「ウエハ上に所定の層を形成する」と記載した場合は、ウエハそのものの表面上に所定の層を直接形成することを意味する場合や、ウエハ上に形成されている層等の上に所定の層を形成することを意味する場合がある。本明細書において「基板」という言葉を用いた場合も、「ウエハ」という言葉を用いた場合と同義である。
(ウエハチャージ、ボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される(シャッタオープン)。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201内へ搬入(ボートロード)される。この状態で、シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
 ウエハ200としては、例えば、単結晶Siにより構成されたSi基板、或いは、表面に単結晶Si膜が形成された基板を用いることができる。図7(a)に示すように、ウエハ200の表面の少なくとも一部には、導電性の金属元素含有膜であるW膜が設けられており、少なくともその一部が露出している。W膜の露出面には、自然酸化層が形成されている場合がある。W膜のうち、自然酸化層が形成されていない(酸化されていない)部分であるW層の厚さと、自然酸化層が形成されている(酸化されている)部分であるWOの組成を有する層(以下、単にWO層ともいう)の厚さと、の比率(%)は、例えば70:30程度である。
 なお、ボートロードを行う際は、W膜の酸化を抑制するため、すなわち、W膜の表面におけるさらなるWO層の形成や、既に形成されているWO層の厚さの増加等を抑制するため、処理室201内の温度を、所定の第1温度、すなわち、室温(25℃)以上200℃以下、好ましくは、室温以上150℃以下の範囲内の所定の温度とすることが望ましい。処理室201内の温度が200℃超となると、ボートロードを行う際に処理室201内に侵入した水分や、ボートロードを行う前から処理室201内に残留していた水分等の影響により、W膜の酸化が進行する場合がある。処理室201内の温度を200℃以下の温度とすることで、処理室201内に侵入した水分、あるいは、処理室201内に残留していた水分等の影響を受けにくくなり、W膜の酸化を回避することが可能となる。処理室201内の温度を150℃以下の温度とすることで、ボートロードを行った際におけるW膜の酸化を確実に回避することが可能となる。なお、処理室201内の温度を室温未満とする場合、処理室201内を冷却する冷却装置が必要となり、また、その後の昇温時間が長くなる。これらにより、装置コストが増加し、また、生産性が低下する場合がある。処理室201内の温度を室温以上とすることで、処理室201内を冷却する冷却装置が不要となり、また、その後の昇温時間を短くすることができる。これらにより、装置コストを低減させ、また、生産性を向上させることが可能となる。
 また、ボートロードを行う際は、バルブ243g,243hを開き、ノズル249a,249bを介して処理室201内へNガスを供給し、処理室201内をNガスでパージする。これにより、処理室201内への水分等の侵入防止や、処理室201内からの残留水分等の排出促進等が可能となる。Nガスの供給流量(ガス供給管毎)は、例えば0.5~20slmの範囲内の流量とする。
 不活性ガスとしては、Nガスの他、Arガス、Heガス、Neガス、Xeガス等の希ガスを用いることができる。この点は、後述する各ステップにおいても同様である。
(ランプアップ+Hプリフロー)
 ボートロードが終了した後、処理室201内が所望の圧力となるように、真空ポンプ246によって真空排気(減圧排気)される(圧力調整)。また、処理室201内のウエハ200が、第1温度よりも高い所望の第2温度となるように、ヒータ207によって加熱されて昇温される(ランプアップ)。また、回転機構267によるウエハ200の回転を開始する(回転)。処理室201内の排気、ウエハ200の加熱および回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
 そして、ウエハ200のランプアップ(昇温)と並行して、Hプリフローを行う。すなわち、バルブ243e,243fを開き、ガス供給管232e,232f内へHガスを流す。Hガスは、MFC241e,241fにより流量調整され、ノズル249a,249bを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対してHガスが供給される(Hプリフロー)。このとき、バルブ243g,243hを開き、ノズル249a,249bを介して処理室201内へNガスを供給するようにしてもよい。
 本ステップにおける処理条件としては、
 Hガス供給流量(ガス供給管毎):1~10slm
 Nガス供給流量(ガス供給管毎):1~10slm
 各ガス供給時間:1~120分、好ましくは1~60分
 昇温開始温度(第1温度):室温~200℃、好ましくは室温~150℃
 昇温目標温度(第2温度):500~800℃、好ましくは600~700℃
 昇温レート:1~30℃/min、好ましくは1~20℃/min
 処理圧力:20~10000Pa、好ましくは1000~5000Pa
 が例示される。なお、昇温目標温度は、後述する第1成膜における処理温度でもある。
 上述の条件下でウエハ200を昇温させつつウエハ200に対してHガスを供給することにより、すなわち、Hガス雰囲気下でのウエハ200の昇温により、ウエハ200の表面に露出しているW膜の一部を還元させ、図7(b)に示すように、W膜の表面に形成されていたWO層を除去することが可能となる。WO層に含まれていたO成分は、WO層が除去される際に生じる反応の過程において、少なくともOを含むガス状物質を構成し、処理室201内から排出される。また、本ステップでは、Hガス雰囲気下でのウエハ200の昇温により、WO層を除去した後のW膜の表面の酸化を防止することが可能となる。
 なお、第2温度が500℃未満となると、上述した還元反応によるWO層の除去効果や、WO層を除去した後のW膜の表面の酸化防止効果が不充分となる場合がある。第2温度を500℃以上の温度とすることで、これらの効果が充分に得られるようになる。第2温度を600℃以上の温度とすることで、これらの効果が確実に得られるようになる。
 第2温度が800℃超となると、後述する第1成膜において、処理室201内で過剰な気相反応が生じる可能性があり、ウエハ200上に形成される膜の膜厚均一性が悪化する等し、その品質を低下させてしまう場合がある。第2温度を800℃以下の温度とすることで、この課題を解消することが可能となる。第2温度を700℃以下の温度とすることで、この課題を確実に解消することが可能となる。
 還元ガスとしては、Hガスの他、重水素(D)ガスを用いることができる。
 W膜の表面からのWO層の除去が終了した後、バルブ243e,243fを閉じ、処理室201内へのHガスの供給を停止する。そして、処理室201内を真空排気し、処理室201内に残留するガス等を処理室201内から排除する(パージ)。このとき、バルブ243g,243hを開き、処理室201内へNガスを供給する。Nガスはパージガスとして作用する。なお、W膜の表面からのWO層の除去が終了した後も、引き続き、処理室201内へのHガスの供給を、第1成膜を開始するまでの所定期間継続(維持)するようにしてもよい。例えば、ウエハ200の第2温度への昇温が終了した後も、引き続き、処理室201内へのHガスの供給を、第1成膜を開始するまでの所定期間継続するようにしてもよい。この場合、WO層を除去した後のW膜の表面の酸化防止効果を、第1成膜を開始するまでの所定期間継続することが可能となる。
(第1成膜)
 その後、次のステップC1,C2を順次実行する。
 [ステップC1]
 このステップでは、処理室201内のウエハ200に対してHCDSガスを供給する(HCDSガス供給)。具体的には、バルブ243aを開き、ガス供給管232a内へHCDSガスを流す。HCDSガスは、MFC241aにより流量調整され、ノズル249aを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対してHCDSガスが供給される。このとき、バルブ243g,243hを開き、ノズル249a,249bを介して処理室201内へNガスを供給するようにしてもよい。
 本ステップにおける処理条件としては、
 HCDSガス供給流量:0.01~2slm、好ましくは0.1~1slm
 Nガス供給流量(ガス供給管毎):0~10slm
 各ガス供給時間:1~120秒、好ましくは1~60秒
 処理温度(第2温度):500~800℃、好ましくは600~700℃
 処理圧力:1~2666Pa、好ましくは67~1333Pa
 が例示される。
 上述の条件下でウエハ200に対してHCDSガスを供給することにより、ウエハ200の最表面上に、Clを含むSi含有層が形成される。Clを含むSi含有層は、ウエハ200の最表面への、HCDSの物理吸着や、HCDSの一部が分解した物質(以下、SiCl)の化学吸着や、HCDSの熱分解によるSiの堆積等により形成される。Clを含むSi含有層は、HCDSやSiClの吸着層(物理吸着層や化学吸着層)であってもよく、Clを含むSiの堆積層であってもよい。本明細書では、Clを含むSi含有層を、単に、Si含有層とも称する。
 Si含有層が形成された後、バルブ243aを閉じ、処理室201内へのHCDSガスの供給を停止する。そして、処理室201内を真空排気し、処理室201内に残留するガス等を処理室201内から排除する(パージ)。このとき、バルブ243g,243hを開き、処理室201内へNガスを供給する。Nガスはパージガスとして作用する。
 原料ガスとしては、HCDSガスの他、モノクロロシラン(SiHCl、略称:MCS)ガス、ジクロロシラン(SiHCl、略称:DCS)ガス、トリクロロシラン(SiHCl、略称:TCS)ガス、テトラクロロシラン(SiCl、略称:STC)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等のクロロシラン系ガスを用いることができる。この点は、後述するステップD1においても同様である。
 [ステップC2]
 ステップC1が終了した後、処理室201内のウエハ200、すなわち、ウエハ200上に形成されたSi含有層に対してNHガスを供給する(NHガス供給)。具体的には、バルブ243bを開き、ガス供給管232b内へNHガスを流す。NHガスは、MFC241bにより流量調整され、ノズル249bを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対してNHガスが供給される。このとき、バルブ243g,243hを開き、ノズル249a,249bを介して処理室201内へNガスを供給するようにしてもよい。
 本ステップにおける処理条件としては、
 NHガス供給流量:0.1~10slm
 NHガス供給時間:1~120秒、好ましくは1~60秒
 処理圧力:1~4000Pa、好ましくは1~3000Pa
 が例示される。他の処理条件は、ステップC1における処理条件と同様な処理条件とする。
 上述の条件下でウエハ200に対してNHガスを供給することにより、ウエハ200上に形成されたSi含有層の少なくとも一部が窒化(改質)される。Si含有層が改質されることで、ウエハ200上に、SiおよびNを含む層、すなわち、シリコン窒化層(SiN層)が形成される。SiN層を形成する際、Si含有層に含まれていたCl等の不純物は、NHガスによるSi含有層の改質反応の過程において、少なくともClを含むガス状物質を構成し、処理室201内から排出される。これにより、SiN層は、ステップC1で形成されたSi含有層に比べてCl等の不純物が少ない層となる。
 SiN層が形成された後、バルブ243bを閉じ、処理室201内へのNHガスの供給を停止する。そして、ステップC1におけるパージと同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。
 反応ガス(N及びH含有ガス)としては、NHガスの他、例えば、ジアゼン(N)ガス、ヒドラジン(N)ガス、Nガス等の窒化水素系ガスを用いることができる。この点は、後述するステップD4においても同様である。
 [所定回数実施]
 上述したステップ1,2を非同時に、すなわち、同期させることなく行うサイクルを所定回数(m回、mは1以上3以下の整数)行うことにより、図7(c)に示すように、ウエハ200上、すなわち、Hガス雰囲気下でのウエハ200の昇温によりWO層が除去されたW膜上に、所定組成および所定膜厚のSiN膜を形成することが可能となる。
 SiN膜の厚さは、例えば、0.16nm以上1nm以下、好ましくは0.16nm以上0.48nm以下、より好ましくは0.16nm以上0.32nm以下の範囲内の厚さとする。
 SiN膜の厚さが0.16nm未満となると、後述する酸化ブロック効果が不充分となり、後述する第2成膜においてW膜の一部が酸化されてしまう場合がある。SiN膜の厚さを0.16nm以上の厚さとすることで、酸化ブロック効果が充分に得られるようになり、後述する第2成膜においてW膜の酸化を回避することが可能となる。
 SiN膜の厚さが1nm超となると、後述する積層膜のトータルでの誘電率が増加してしまう場合がある。SiN膜の厚さを1nm以下の厚さとすることで、後述する積層膜のトータルでの誘電率の増加を抑制することが可能となる。SiN膜の厚さを0.48nm以下の厚さとすることで、この効果が確実に得られるようになり、SiN膜の厚さを0.32nm以下の厚さとすることで、この効果がより確実に得られるようになる。
 上述のサイクルは、複数回繰り返すのが好ましい。すなわち、上述のサイクルを1回行う際に形成されるSiN層の厚さを所望の膜厚よりも薄くし、SiN層を積層することで形成されるSiN膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すのが好ましい。上述のサイクルの実施回数を1回以上3回以下の所定の回数とすることで、SiN膜の厚さを、上述の範囲内の厚さとすることが可能となる。
(第2成膜)
 その後、次のステップD1~D4を順次実行する。
 [ステップD1]
 このステップでは、上述のステップC1における処理手順と同様の処理手順により、処理室201内のウエハ200に対してHCDSガスを供給する(HCDSガス供給)。
 本ステップにおける処理条件としては、
 HCDSガス供給流量:0.01~2slm、好ましくは0.1~1slm
 Nガス供給流量(ガス供給管毎):0~10slm
 各ガス供給時間:1~120秒、好ましくは1~60秒
 処理温度(第3温度):250~800℃、好ましくは400~700℃
 処理圧力:1~2666Pa、好ましくは67~1333Pa
 が例示される。なお、第3温度を、上述の第1温度よりも高い温度とするのが好ましい。また、第3温度を、上述の第2温度と同一の温度とするのが好ましい。
 上述の条件下でウエハ200に対してHCDSガスを供給することにより、ウエハ200上、すなわち、ウエハ200上に形成されたSiN膜上に、Si含有層が形成される。
 Si含有層が形成された後、処理室201内へのHCDSガスの供給を停止し、ステップC1におけるパージと同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。
 [ステップD2]
 ステップD1が終了した後、処理室201内のウエハ200、すなわち、ウエハ200上のSiN膜上に形成されたSi含有層に対してCガスを供給する(Cガス供給)。具体的には、バルブ243cを開き、ガス供給管232c内へCガスを流す。Cガスは、MFC241cにより流量調整され、ガス供給管232b、ノズル249bを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対してCガスが供給される。このとき、バルブ243g,243hを開き、ノズル249a,249bを介して処理室201内へNガスを供給するようにしてもよい。
 本ステップにおける処理条件としては、
 Cガス供給流量:0.1~10slm
 Cガス供給時間:1~120秒、好ましくは1~60秒
 処理圧力:1~4000Pa、好ましくは1~3000Pa
 が例示される。他の処理条件は、ステップD1における処理条件と同様な処理条件とする。
 上述の条件下でウエハ200に対してCガスを供給することにより、Si含有層上にC含有層が形成される。これにより、ウエハ200上、すなわち、ウエハ200上のSiN膜上に、Si含有層上にC含有層が積層されてなるSiおよびCを含む層が形成されることとなる。
 SiおよびCを含む層が形成された後、バルブ243cを閉じ、処理室201内へのCガスの供給を停止する。そして、ステップC1におけるパージと同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。
 反応ガス(C含有ガス)としては、Cガスの他、アセチレン(C)ガスやエチレン(C)ガス等の炭化水素系ガスを用いることができる。
 [ステップD3]
 ステップD2が終了した後、処理室201内のウエハ200、すなわち、ウエハ200上のSiN膜上に形成されたSiおよびCを含む層に対してOガスを供給する(Oガス供給)。具体的には、バルブ243dを開き、ガス供給管232d内へOガスを流す。Oガスは、MFC241dにより流量調整され、ガス供給管232b、ノズル249bを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対してOガスが供給される。このとき、バルブ243g,243hを開き、ノズル249a,249bを介して処理室201内へNガスを供給するようにしてもよい。
 本ステップにおける処理条件としては、
 Oガス供給流量:0.1~10slm
 Oガス供給時間:1~120秒、好ましくは1~60秒
 処理圧力:1~4000Pa、好ましくは1~3000Pa
 が例示される。他の処理条件は、ステップD1における処理条件と同様な処理条件とする。
 上述の条件下でウエハ200に対してOガスを供給することにより、ウエハ200上のSiN膜上に形成されたSiおよびCを含む層の少なくとも一部が酸化(改質)される。SiおよびCを含む層が改質されることで、ウエハ200上、すなわち、ウエハ200上のSiN膜上に、Si、O、およびCを含む層として、シリコン酸炭化層(SiOC層)が形成される。SiOC層を形成する際、SiおよびCを含む層に含まれていたCl等の不純物は、OガスによるSiおよびCを含む層の改質反応の過程において、少なくともClを含むガス状物質を構成し、処理室201内から排出される。これにより、SiOC層は、ステップD1で形成されたSi含有層やステップD2で形成されたSiおよびCを含む層に比べて、Cl等の不純物が少ない層となる。
 SiOC層が形成された後、バルブ243dを閉じ、処理室201内へのOガスの供給を停止する。そして、ステップC1におけるパージと同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。
 反応ガス(O含有ガス)としては、Oガスの他、例えば、オゾン(O)ガス、水蒸気(HOガス)、一酸化窒素(NO)ガス、亜酸化窒素(NO)ガス等を用いることができる。
 [ステップD4]
 ステップD3が終了した後、上述のステップC2における処理手順と同様の処理手順により、処理室201内のウエハ200に対してNHガスを供給する(NHガス供給)。
 本ステップにおける処理条件としては、
 NHガス供給流量:0.1~10slm
 NHガス供給時間:1~120秒、好ましくは1~60秒
 処理圧力:1~4000Pa、好ましくは1~3000Pa
 が例示される。他の処理条件は、ステップD1における処理条件と同様な処理条件とする。
 上述の条件下でウエハ200に対してNHガスを供給することにより、ウエハ200上のSiN膜上に形成されたSiOC層の少なくとも一部が窒化(改質)される。SiOC層が改質されることで、ウエハ200上、すなわち、ウエハ200上のSiN膜上に、Si、O、C、およびNを含む層として、シリコン酸炭窒化層(SiOCN層)が形成される。SiOCN層を形成する際、SiOC層に含まれていたCl等の不純物は、NHガスによるSiOC層の改質反応の過程において、少なくともClを含むガス状物質を構成し、処理室201内から排出される。これにより、SiOCN層は、ステップD3で形成されたSiOC層に比べてCl等の不純物が少ない層となる。
 SiOCN層が形成された後、処理室201内へのNHガスの供給を停止し、ステップC1におけるパージと同様の処理手順により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。
 [所定回数実施]
 上述したステップD1~D4を非同時に、すなわち、同期させることなく行うサイクルを所定回数(n回、nは1以上の整数)行うことにより、ウエハ200上、すなわち、第1成膜を行うことでウエハ200上に形成されたSiN膜上に、所定組成および所定膜厚のSiOCN膜を形成することが可能となる。
 なお、第2成膜では、SiOCN膜を形成する過程において、ウエハ200に対して供給するO成分の一部や、ウエハ200上に形成されるSiOCN層に含まれるO成分の一部を、第2成膜の下地となるSiN膜に対しても供給することが可能となる。これにより、第2成膜の下地となるSiN膜中にO成分を拡散させて添加することができ、このSiN膜を、SiN膜よりも誘電率の低いSiON膜へと改質(酸化)させることが可能となる。この結果、図7(d)に示すように、ウエハ200上、すなわち、ウエハ200上に露出したW膜上に、誘電率がそれぞれ低いSiON膜とSiOCN膜とがこの順に積層されてなる積層膜を形成することが可能となる。この積層膜は、いわゆる低誘電率膜(Low-k膜)となる。
 なお、第2成膜を行う際、SiN膜よりも下方、すなわち、積層膜を形成する際の下地となるW膜側へと拡散しようとするO成分は、SiN膜によって、すなわち、SiN膜自体が酸化されることによってトラップされ、そのW膜側への拡散がブロックされる。このように、W膜へのO成分の拡散をSiN膜によって制限することにより、Hガス雰囲気下でのウエハ200の昇温によりWO層が除去されたW膜の再酸化を抑制することが可能となる。本明細書では、SiN膜によって得られるこのO成分のW膜への拡散ブロック効果、すなわち、W膜の酸化抑制効果を、酸化ブロック効果とも称する。
 なお、第2成膜で形成するSiOCN膜の厚さは、第1成膜で形成されたSiN膜の厚さよりも厚くするのが好ましい。すなわち、第1成膜で形成するSiN膜の厚さは、第2成膜で形成するSiOCN膜の厚さよりも薄くするのが好ましい。このようにすることで、第2成膜を行う際に、第1成膜で形成されたSiN膜の全体を酸化させてSiON膜へ改質させることが可能となり、第1成膜で形成されたSiN膜の全体を低誘電率膜に改質させることが可能となる。結果として、第1膜と第2膜とが積層されてなる積層膜のトータルでの誘電率を低下させることが可能となる。また、SiON膜よりも誘電率の低いSiOCN膜の厚さをSiON膜の厚さよりも厚くすることで、すなわち、SiOCN膜よりも誘電率の高いSiON膜の厚さをSiOCN膜の厚さよりも薄くすることで、これらが積層されてなる積層膜の平均的な誘電率を低下させることも可能となる。
 上述のサイクルは、複数回繰り返すのが好ましい。すなわち、上述のサイクルを1回行う際に形成されるSiOCN層の厚さを所望の膜厚よりも薄くし、SiOCN層を積層することで形成されるSiOCN膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すのが好ましい。
(アフターパージおよび大気圧復帰)
 第2膜としてのSiOCN膜の形成、および、第1膜として形成されたSiN膜のSiON膜への改質がそれぞれ終了した後、ノズル249a,249bのそれぞれから、パージガスとしてのNガスを処理室201内へ供給し、排気口231aから排気する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロード、ウエハディスチャージ)
 ボートエレベータ115によりシールキャップ219が下降され、マニホールド209の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出される(ウエハディスチャージ)。
(3)本態様による効果
 本態様によれば、以下に示す一つ又は複数の効果が得られる。
(a)ボートロードを第1温度下で行うことにより、ウエハ200の表面に露出しているW膜の酸化を抑制することが可能となる。これによりW膜の表面におけるさらなるWO層の形成や、既に形成されているWO層の厚さの増加等を抑制することが可能となる。
(b)ランプアップ+Hプリフローを上述の第1温度よりも高い第2温度まで昇温させつつ行うことにより、W膜の表面に形成されていたWO層を除去することが可能となる。また、WO層を除去した後のW膜の表面の再酸化を防止することも可能となる。
(c)第2成膜を行う前に第1成膜を行うことにより、第2成膜を行う際に、SiN膜よりも下方へと拡散しようとするO成分、すなわち、W膜へ到達しようとするO成分をブロックすることが可能となる。このSiN膜によるO成分の拡散ブロック作用により、ランプアップ+HプリフローによってWO層が除去されたW膜の再酸化を防止することが可能となる。
(d)第2成膜では、酸化ガスを含む第2処理ガスを用いることにより、ウエハ200上に、誘電率の低いSiOCN膜を形成することが可能となる。
(e)第2成膜を行うことにより、第1成膜で形成されたSiN膜を酸化させてSiON膜とすることが可能となる。これにより、第1膜と第2膜とが積層されてなる積層膜を、低誘電率膜とすることが可能となる。
(f)第2成膜で形成するSiOCN膜の厚さを第1成膜で形成するSiN膜の厚さよりも厚くすることで、すなわち、第1成膜で形成するSiN層の厚さを第2成膜で形成するSiOCN膜の厚さよりも薄くすることで、SiN膜の酸化を促すことができ、第1膜と第2膜とが積層されてなる積層膜の誘電率をより低下させることが可能となる。また、積層膜のトータルでの膜厚のうち、誘電率が特に低い第2膜が占める厚さの割合を大きくすることにより、すなわち、誘電率が第2膜よりも高い第1膜が占める厚さの割合を小さくすることにより、積層膜の平均的な誘電率をより低下させることが可能となる。
(g)以上述べたように、本態様によれば、W膜上に形成される酸化膜(第1膜と第2膜との積層膜)を低誘電率膜としながらも、その下地であるW膜の酸化を抑制することが可能となる。本態様の手法により形成した積層膜は、例えば、MPU等のロジックデバイスや、DRAMや3DNAND等のメモリデバイスにおけるサイドウォールスペーサやハードマスクやエッチストッパ等に好適に適用することができる。
(h)第2温度と第3温度とを同一温度とすることにより、第1成膜と第2成膜との間にウエハ200の温度を変更する工程(昇温工程または降温工程)を設ける必要がなくなり、基板処理のスループットを向上させることが可能となる。
(i)本態様の効果は、HCDSガス以外の原料ガスを用いる場合や、Cガス以外のC含有ガスを用いる場合や、Oガス以外のO含有ガスを用いる場合や、NHガス以外のN及びH含有ガスを用いる場合や、Hガス以外の還元ガスを用いる場合や、Nガス以外の不活性ガスを用いる場合にも、同様に得ることができる。
<本開示の他の態様>
 以上、本開示の態様を具体的に説明した。しかしながら、本開示は上述の態様に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の態様では、基板の表面に露出している導電性の金属含有膜として金属単体膜であるW膜を例示したが、本開示はこのような態様に限定されない。例えば、基板の表面に露出している導電性の金属含有膜は、チタン窒化膜(TiN膜)、タングステン窒化膜(WN膜)等の金属窒化膜であってもよいし、アルミニウム膜(Al膜)、コバルト膜(Co膜)、ニッケル膜(Ni膜)、プラチナ膜(Pt膜)、カッパー膜(Cu膜)等の金属単体膜であってもよい。これらの場合においても、上述の態様と同様の効果が得られる。なお、本明細書では、TiN膜やW膜等の導電性の金属含有膜のことを、単に、金属膜とも称する。
 第1成膜では、第1処理ガス(原料ガス)として、HCDSガス等の上述の各種ハロシラン系ガスの他、1,1,2,2-テトラクロロ-1,2-ジメチルジシラン((CHSiCl、略称:TCDMDS)ガス等のアルキルハロシラン系ガスや、ヘキサメチルジシラン((CH-Si-Si-(CH、略称:HMDS)ガス等のアルキルシラン系ガスや、1,4-ジシラブタン(Si10、略称:DSB)ガス等のアルキレンシラン系ガスを用いてもよい。原料ガスには、その分解を促すガスとして、例えば、Hガスやトリクロロボラン(BCl)ガス等を添加してもよい。また、第1処理ガス(反応ガス)として、上述の各種反応ガスの他、トリエチルアミン((CN、略称:TEA)ガス等のアミン系ガスを用いてもよい。そして、以下に示すガス供給シーケンスにより、ウエハ200上、すなわち、ウエハ200の表面に露出しており還元処理がなされることで自然酸化膜が除去された金属元素含有膜上に、第1膜として、SiN膜、シリコン炭化膜(SiC膜)、シリコン炭窒化膜(SiCN膜)を形成するようにしてもよい。これらの場合においても、上述の態様と同様の効果が得られる。なお、アルキルハロシラン系ガス、アルキルシラン系ガス、およびアルキレンシラン系ガスは、それぞれ、Si源およびC源として作用するガスであり、アミン系ガスは、N源およびC源として作用するガスである。
 (DCS→NH)×m ⇒ SiN
 (HCDS→C→NH)×m ⇒ SiCN
 (HCDS→TEA)×m ⇒ SiCN
 (TCDMDS→NH)×m ⇒ SiCN
 (DSB+H)×m ⇒ SiC
 (DSB+BCl)×m ⇒ SiC
 なお、第1成膜で第1膜としてSiC膜またはSiCN膜を形成する場合、第2成膜を行うことより、第1成膜で形成されたSiC膜またはSiCN膜を酸化させて、それぞれ、SiOC膜またはSiOCN膜へと改質させることが可能となる。この場合、SiOC膜やSiOCN膜はSiON膜よりも誘電率が低いことから、第1膜と第2膜とが積層されてなる積層膜の誘電率をより低くすることが可能となる。
 第2成膜では、第2処理ガス(原料ガス)として、HCDSガス等の上述の各種ハロシラン系ガスの他、TCDMDSガス等のアルキルハロシラン系ガスや、HMDSガス等のアルキルシラン系ガスや、DSBガス等のアルキレンシラン系ガスを用いてもよい。また、第2処理ガス(反応ガス)として、上述の各種反応ガスの他、TEAガス等のアミン系ガスを用いてもよい。そして、以下に示すガス供給シーケンスにより、ウエハ200上、すなわち、第1膜上に、第2膜として、SiOCN膜を形成するようにしてもよい。また、第2処理ガスの種類を適宜選択し、第2膜として、シリコン酸化膜(SiO膜)、シリコン酸窒化膜(SiON膜)、シリコン酸炭化膜(SiOC膜)を形成するようにしてもよい。これらの場合においても、上述の態様と同様の効果が得られる。
 (HCDS→C→NH→O)×n ⇒ SiOCN
 (HCDS→TEA→O)×n ⇒ SiOCN
 (TCDMDS→NH→O)×n ⇒ SiOCN
 各処理に用いられるレシピは、処理内容に応じて個別に用意し、電気通信回線や外部記憶装置123を介して記憶装置121c内に格納しておくことが好ましい。そして、各処理を開始する際、CPU121aが、記憶装置121c内に格納された複数のレシピの中から、処理内容に応じて適正なレシピを適宜選択することが好ましい。これにより、1台の基板処理装置で様々な膜種、組成比、膜質、膜厚の膜を、再現性よく形成することができるようになる。また、オペレータの負担を低減でき、操作ミスを回避しつつ、各処理を迅速に開始できるようになる。
 上述のレシピは、新たに作成する場合に限らず、例えば、基板処理装置に既にインストールされていた既存のレシピを変更することで用意してもよい。レシピを変更する場合は、変更後のレシピを、電気通信回線や当該レシピを記録した記録媒体を介して、基板処理装置にインストールしてもよい。また、既存の基板処理装置が備える入出力装置122を操作し、基板処理装置に既にインストールされていた既存のレシピを直接変更してもよい。
 上述の態様では、一度に複数枚の基板を処理するバッチ式の基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、例えば、一度に1枚または数枚の基板を処理する枚葉式の基板処理装置を用いて膜を形成する場合にも、好適に適用できる。また、上述の態様では、ホットウォール型の処理炉を有する基板処理装置を用いて膜を形成する例について説明した。本開示は上述の態様に限定されず、コールドウォール型の処理炉を有する基板処理装置を用いて膜を形成する場合にも、好適に適用できる。
 これらの基板処理装置を用いる場合においても、上述の態様と同様な処理手順、処理条件にて各処理を行うことができ、上述の態様と同様の効果が得られる。
 また、上述の態様は、適宜組み合わせて用いることができる。このときの処理手順、処理条件は、例えば、上述の態様の処理手順、処理条件と同様とすることができる。
 サンプル1~5として、上述の基板処理装置を用い、図6に示すガス供給シーケンスにより、表面にW膜が露出しているウエハ上にSiOCN膜を形成した。ウエハチャージ、ボートロードを実施する前に、サンプル1~5のウエハにおける初期状態のW膜の厚さ方向の組成をXPSによりそれぞれ測定したところ、W膜のうち、酸化されていない部分であるW層の厚さと、酸化されている部分であるWO層の厚さと、の比率(%)は、70:30であった。
 サンプル1を作製する際は、第1温度下でのボートロード、ランプアップ+Hプリフローをこの順に実施し、その後、第1成膜を行うことなく第2成膜を行うことで、W膜上にSiN膜を形成することなく、SiOCN膜を直接形成した。サンプル2~5を作製する際は、第1温度下でのボートロード、ランプアップ+Hプリフローをこの順に実施し、その後、第1成膜、第2成膜をこの順に実施することで、W膜上にSiN膜、SiOCN膜をこの順に形成した。すなわち、サンプル2~5は、図4に示す基板処理シーケンスにより作製した。各サンプルを作製する際の各ステップにおける処理条件は、上述の態様に記載した処理条件範囲内の所定の条件とした。なお、第2成膜を行う際の処理条件は、各サンプルで共通の条件とした。各サンプルにおけるSiN膜、および、SiOCN膜の厚さは、それぞれ、図8に示す厚さとした。
 サンプル1~5を作製した後、サンプル1~5におけるW膜の組成をXPSによりそれぞれ測定した。その結果を図8に示す。図8に示すように、SiOCN膜を形成する前にSiN膜を形成したサンプル2~5では、W膜中にWO層の存在は確認できなかった。これは、ランプアップ+Hプリフローにより、初期状態でW膜の表面に形成されていたWO膜が除去され、SiN膜により、SiOCN膜を形成する際におけるW膜の再酸化を回避できたことが原因と考えられる。これに対し、SiOCN膜を形成する前にSiN膜を形成しなかったサンプル1では、W膜中にWO層の存在が確認された。これは、ランプアップ+Hプリフローにより、初期状態でW膜の表面に形成されていたWO膜が除去されたものの、SiOCN膜を形成する際にW膜の一部が再酸化されてしまったことが原因と考えられる。
200  ウエハ(基板)
201  処理室

Claims (20)

  1.  (a)表面に導電性の金属元素含有膜が露出した基板を、第1温度下で処理室内へ搬入する工程と、
     (b)前記処理室内において、前記基板を前記第1温度よりも高い第2温度まで昇温させつつ、前記基板に対して還元ガスを供給する工程と、
     (c)前記処理室内において、前記第2温度下で、前記基板に対して酸化ガス非含有の第1処理ガスを供給することで、前記金属元素含有膜上に、シリコンと、窒素および炭素のうち少なくともいずれかと、を含み酸素非含有の第1膜を形成する工程と、
     (d)前記処理室内において、前記第1温度よりも高い第3温度下で、前記基板に対して酸化ガスを含む第2処理ガスを供給することで、前記第1膜上に、シリコン、酸素、炭素、および窒素を含む第2膜を前記第1膜よりも厚く形成する工程と、
     を有する半導体装置の製造方法。
  2.  前記第1温度を室温以上200℃以下とする請求項1に記載の半導体装置の製造方法。
  3.  前記第1温度を室温以上150℃以下とする請求項1に記載の半導体装置の製造方法。
  4.  前記還元ガスとして、水素ガスおよび重水素ガスのうち少なくともいずれかを用いる請求項1に記載の半導体装置の製造方法。
  5.  (b)では、前記還元ガス雰囲気下での前記昇温により前記金属元素含有膜の表面に形成された自然酸化膜を除去する請求項1に記載の半導体装置の製造方法。
  6.  (b)では、自然酸化膜を除去した後の前記金属元素含有膜の表面の酸化を防止する請求項5に記載の半導体装置の製造方法。
  7.  前記第2温度を500℃以上800℃以下とする請求項6に記載の半導体装置の製造方法。
  8.  前記第2温度を600℃以上700℃以下とする請求項6に記載の半導体装置の製造方法。
  9.  前記第1膜は、シリコン窒化膜、シリコン炭化膜、およびシリコン炭窒化膜のうち少なくともいずれかを含む請求項1に記載の半導体装置の製造方法。
  10.  前記第1膜の厚さを0.16nm以上1nm以下とする請求項1に記載の半導体装置の製造方法。
  11.  前記第1膜の厚さを0.16nm以上0.48nm以下とする請求項1に記載の半導体装置の製造方法。
  12.  前記第1膜の厚さを0.16nm以上0.32nm以下とする請求項1に記載の半導体装置の製造方法。
  13.  前記第1処理ガスは、シリコン源となるガスまたはシリコン源および炭素源となるガスと、窒素源および炭素源のうち少なくともいずれかとなるガスと、を含み、(c)では、それぞれのガスを供給するサイクルを1回以上3回以下行う請求項1に記載の半導体装置の製造方法。
  14.  前記第1処理ガスは、シリコン源となるガスまたはシリコン源および炭素源となるガスと、窒素源および炭素源のうち少なくともいずれかとなるガスと、を含み、(c)では、それぞれのガスを前記基板に対して間欠的に供給し、
     前記第2処理ガスは、シリコン源となるガスまたはシリコン源および炭素源となるガスと、窒素源および炭素源のうち少なくともいずれかとなるガスと、酸素源となるガスと、を含み、(d)では、それぞれのガスを前記基板に対して間欠的かつ非同時に供給する請求項1に記載の半導体装置の製造方法。
  15.  (d)では、(c)において形成した前記第1膜を、(d)を行う前の前記第1膜よりも誘電率が低い膜に改質させる請求項1に記載の半導体装置の製造方法。
  16.  (c)では、前記第1膜としてシリコン炭窒化膜を形成し、
     (d)では、前記第2膜としてシリコン酸炭窒化膜を形成すると共に、前記第1膜をシリコン炭窒化膜からシリコン酸炭窒化膜へ改質させる請求項1に記載の半導体装置の製造方法。
  17.  前記第1処理ガスは、シリコン源となるガスと、炭素源となるガスと、窒素源となるガスと、を含み、(c)では、それぞれのガスを前記基板に対して間欠的に供給し、
     前記第2処理ガスは、前記シリコン源となるガスと、前記炭素源となるガスと、前記窒素源となるガスと、酸素源となるガスと、を含み、(d)では、それぞれのガスを前記基板に対して間欠的かつ非同時に供給する請求項16に記載の半導体装置の製造方法。
  18.  前記第2温度と前記第3温度とを同一温度とする請求項1に記載の半導体装置の製造方法。
  19.  基板が処理される処理室と、
     前記処理室内の基板を加熱するヒータと、
     前記処理室内の前記基板に対して還元ガスを供給する還元ガス供給系と、
     前記処理室内の前記基板に対して酸化ガス非含有の第1処理ガスを供給する第1処理ガス供給系と、
     前記処理室内の前記基板に対して酸化ガスを含む第2処理ガスを供給する第2処理ガス供給系と、
     前記基板を前記処理室内へ搬送する搬送系と、
     (a)表面に導電性の金属元素含有膜が露出した基板を、第1温度下で前記処理室内へ搬入する処理と、(b)前記処理室内において、前記基板を前記第1温度よりも高い第2温度まで昇温させつつ、前記基板に対して前記還元ガスを供給する処理と、(c)前記処理室内において、前記第2温度下で、前記基板に対して前記第1処理ガスを供給することで、前記金属元素含有膜上に、シリコンと、窒素および炭素のうち少なくともいずれかと、を含み酸素非含有の第1膜を形成する処理と、(d)前記処理室内において、前記第1温度よりも高い第3温度下で、前記基板に対して前記第2処理ガスを供給することで、前記第1膜上に、シリコン、酸素、炭素、および窒素を含む第2膜を前記第1膜よりも厚く形成する処理と、を行わせるように、前記ヒータ、前記還元ガス供給系、前記第1処理ガス供給系、前記第2処理ガス供給系、および前記搬送系を制御することが可能なよう構成される制御部と、
     を有する基板処理装置。
  20.  (a)表面に導電性の金属元素含有膜が露出した基板を、第1温度下で基板処理装置の処理室内へ搬入する手順と、
     (b)前記処理室内において、前記基板を前記第1温度よりも高い第2温度まで昇温させつつ、前記基板に対して還元ガスを供給する手順と、
     (c)前記処理室内において、前記第2温度下で、前記基板に対して酸化ガス非含有の第1処理ガスを供給することで、前記金属元素含有膜上に、シリコンと、窒素および炭素のうち少なくともいずれかと、を含み酸素非含有の第1膜を形成する手順と、
     (d)前記処理室内において、前記第1温度よりも高い第3温度下で、前記基板に対して酸化ガスを含む第2処理ガスを供給することで、前記第1膜上に、シリコン、酸素、炭素、および窒素を含む第2膜を前記第1膜よりも厚く形成する手順と、
     をコンピュータによって前記基板処理装置に実行させるプログラム。
PCT/JP2019/008550 2019-03-05 2019-03-05 半導体装置の製造方法、基板処理装置、およびプログラム WO2020178973A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11202109666T SG11202109666TA (en) 2019-03-05 2019-03-05 Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus, and program
CN201980082049.7A CN113243042B (zh) 2019-03-05 2019-03-05 半导体器件的制造方法、衬底处理方法、衬底处理装置及记录介质
JP2021503305A JP7149407B2 (ja) 2019-03-05 2019-03-05 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
PCT/JP2019/008550 WO2020178973A1 (ja) 2019-03-05 2019-03-05 半導体装置の製造方法、基板処理装置、およびプログラム
KR1020217028333A KR102652234B1 (ko) 2019-03-05 2019-03-05 반도체 장치의 제조 방법, 기판 처리 방법, 기판 처리 장치 및 프로그램
US17/465,269 US11823886B2 (en) 2019-03-05 2021-09-02 Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus, and recording medium
US18/473,625 US20240014032A1 (en) 2019-03-05 2023-09-25 Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/008550 WO2020178973A1 (ja) 2019-03-05 2019-03-05 半導体装置の製造方法、基板処理装置、およびプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/465,269 Continuation US11823886B2 (en) 2019-03-05 2021-09-02 Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus, and recording medium

Publications (1)

Publication Number Publication Date
WO2020178973A1 true WO2020178973A1 (ja) 2020-09-10

Family

ID=72338435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008550 WO2020178973A1 (ja) 2019-03-05 2019-03-05 半導体装置の製造方法、基板処理装置、およびプログラム

Country Status (6)

Country Link
US (2) US11823886B2 (ja)
JP (1) JP7149407B2 (ja)
KR (1) KR102652234B1 (ja)
CN (1) CN113243042B (ja)
SG (1) SG11202109666TA (ja)
WO (1) WO2020178973A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022085498A1 (ja) * 2020-10-20 2022-04-28 東京エレクトロン株式会社 成膜方法及び成膜装置
US11515143B2 (en) 2019-06-20 2022-11-29 Kokusai Electric Corporation Method of manufacturing semiconductor device, substrate processing apparatus, recording medium, and method of processing substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023142285A (ja) * 2022-03-24 2023-10-05 株式会社ニューフレアテクノロジー 成膜方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153066A (ja) * 2002-10-31 2004-05-27 Fujitsu Ltd 半導体装置の製造方法
WO2007083651A1 (ja) * 2006-01-17 2007-07-26 Hitachi Kokusai Electric Inc. 半導体装置の製造方法
JP2014154652A (ja) * 2013-02-07 2014-08-25 Hitachi Kokusai Electric Inc 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
WO2017158848A1 (ja) * 2016-03-18 2017-09-21 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、および記録媒体
JP2019029582A (ja) * 2017-08-02 2019-02-21 東京エレクトロン株式会社 タングステン膜上へシリコン酸化膜を形成する方法および装置

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271084B1 (en) * 2001-01-16 2001-08-07 Taiwan Semiconductor Manufacturing Company Method of fabricating a metal-insulator-metal (MIM), capacitor structure using a damascene process
ATE480873T1 (de) * 2005-12-20 2010-09-15 Nxp Bv Vertikale phasenwechsel-speicherzelle und herstellungsverfahren dafür
US7910907B2 (en) * 2006-03-15 2011-03-22 Macronix International Co., Ltd. Manufacturing method for pipe-shaped electrode phase change memory
US20070232015A1 (en) * 2006-04-04 2007-10-04 Jun Liu Contact for memory cell
JP4267013B2 (ja) * 2006-09-12 2009-05-27 エルピーダメモリ株式会社 半導体装置の製造方法
KR100873890B1 (ko) * 2006-11-17 2008-12-15 삼성전자주식회사 상변화 메모리 유닛, 이의 제조 방법 및 이를 포함하는상변화 메모리 장치 및 그 제조 방법
TWI324823B (en) * 2007-02-16 2010-05-11 Ind Tech Res Inst Memory device and fabrications thereof
KR100883412B1 (ko) * 2007-05-09 2009-02-11 삼성전자주식회사 자기 정렬된 전극을 갖는 상전이 메모리소자의 제조방법,관련된 소자 및 전자시스템
JP5247619B2 (ja) * 2009-07-28 2013-07-24 キヤノンアネルバ株式会社 誘電体膜、誘電体膜を用いた半導体装置の製造方法及び半導体製造装置
TWI449170B (zh) * 2009-12-29 2014-08-11 Ind Tech Res Inst 相變化記憶體裝置及其製造方法
JP5654862B2 (ja) 2010-04-12 2015-01-14 株式会社日立国際電気 半導体装置の製造方法、基板処理方法及び基板処理装置
JP2012084847A (ja) * 2010-09-17 2012-04-26 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置
US8227785B2 (en) * 2010-11-11 2012-07-24 Micron Technology, Inc. Chalcogenide containing semiconductors with chalcogenide gradient
KR101817158B1 (ko) * 2011-06-02 2018-01-11 삼성전자 주식회사 적층형 캐패시터를 포함하는 상변화 메모리 장치
JP6039996B2 (ja) 2011-12-09 2016-12-07 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6030378B2 (ja) 2012-08-14 2016-11-24 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
JP6022274B2 (ja) * 2012-09-18 2016-11-09 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
US9627611B2 (en) * 2012-11-21 2017-04-18 Micron Technology, Inc. Methods for forming narrow vertical pillars and integrated circuit devices having the same
JP6024484B2 (ja) * 2013-01-29 2016-11-16 東京エレクトロン株式会社 成膜方法及び成膜装置
US11549181B2 (en) * 2013-11-22 2023-01-10 Applied Materials, Inc. Methods for atomic layer deposition of SiCO(N) using halogenated silylamides
JP6342670B2 (ja) * 2014-02-17 2018-06-13 株式会社日立国際電気 クリーニング方法、半導体装置の製造方法、基板処理装置及びプログラム
US9548266B2 (en) * 2014-08-27 2017-01-17 Nxp Usa, Inc. Semiconductor package with embedded capacitor and methods of manufacturing same
US10727122B2 (en) * 2014-12-08 2020-07-28 International Business Machines Corporation Self-aligned via interconnect structures
JP5957128B2 (ja) * 2015-07-29 2016-07-27 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
US20170062714A1 (en) * 2015-08-31 2017-03-02 Intel Corporation Thermally regulated electronic devices, systems, and associated methods
US9659998B1 (en) * 2016-06-07 2017-05-23 Macronix International Co., Ltd. Memory having an interlayer insulating structure with different thermal resistance
US9824884B1 (en) * 2016-10-06 2017-11-21 Lam Research Corporation Method for depositing metals free ald silicon nitride films using halide-based precursors
US9899372B1 (en) * 2016-10-31 2018-02-20 International Business Machines Corporation Forming on-chip metal-insulator-semiconductor capacitor
US11177127B2 (en) * 2017-05-24 2021-11-16 Versum Materials Us, Llc Functionalized cyclosilazanes as precursors for high growth rate silicon-containing films
US11049714B2 (en) * 2017-09-19 2021-06-29 Versum Materials Us, Llc Silyl substituted organoamines as precursors for high growth rate silicon-containing films
US10381411B2 (en) * 2017-12-15 2019-08-13 Sandisk Technologies Llc Three-dimensional memory device containing conformal wrap around phase change material and method of manufacturing the same
US20220044929A1 (en) * 2018-05-22 2022-02-10 Versum Patents Us, Llc Functionalized cyclosilazanes as precursors for high growth rate silicon-containing films
US10505111B1 (en) * 2018-07-20 2019-12-10 International Business Machines Corporation Confined phase change memory with double air gap
US10510951B1 (en) * 2018-10-24 2019-12-17 Taiwan Semicondutor Manufacturing Co., Ltd. Low temperature film for PCRAM sidewall protection
US11362277B2 (en) * 2018-11-14 2022-06-14 Taiwan Semiconductor Manufacturing Co., Ltd. Sidewall protection for PCRAM device
US10763432B2 (en) * 2018-12-13 2020-09-01 Intel Corporation Chalcogenide-based memory architecture
US10903273B2 (en) * 2019-01-04 2021-01-26 International Business Machines Corporation Phase change memory with gradual conductance change
US11145690B2 (en) * 2019-09-26 2021-10-12 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004153066A (ja) * 2002-10-31 2004-05-27 Fujitsu Ltd 半導体装置の製造方法
WO2007083651A1 (ja) * 2006-01-17 2007-07-26 Hitachi Kokusai Electric Inc. 半導体装置の製造方法
JP2014154652A (ja) * 2013-02-07 2014-08-25 Hitachi Kokusai Electric Inc 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
WO2017158848A1 (ja) * 2016-03-18 2017-09-21 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、および記録媒体
JP2019029582A (ja) * 2017-08-02 2019-02-21 東京エレクトロン株式会社 タングステン膜上へシリコン酸化膜を形成する方法および装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11515143B2 (en) 2019-06-20 2022-11-29 Kokusai Electric Corporation Method of manufacturing semiconductor device, substrate processing apparatus, recording medium, and method of processing substrate
US11967499B2 (en) 2019-06-20 2024-04-23 Kokusai Electric Corporation Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
WO2022085498A1 (ja) * 2020-10-20 2022-04-28 東京エレクトロン株式会社 成膜方法及び成膜装置

Also Published As

Publication number Publication date
US20210398794A1 (en) 2021-12-23
US11823886B2 (en) 2023-11-21
SG11202109666TA (en) 2021-10-28
KR20210124375A (ko) 2021-10-14
JPWO2020178973A1 (ja) 2020-09-10
US20240014032A1 (en) 2024-01-11
CN113243042A (zh) 2021-08-10
JP7149407B2 (ja) 2022-10-06
KR102652234B1 (ko) 2024-04-01
CN113243042B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
JP6946374B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP2020155607A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
US11823886B2 (en) Method of manufacturing semiconductor device, method of processing substrate, substrate processing apparatus, and recording medium
JP6999616B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
US20210407774A1 (en) Method of manufacturing semiconductor device, substrate processing method, substrate processing apparatus, and recording medium
JP6559618B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
KR102660213B1 (ko) 반도체 장치의 제조 방법, 프로그램, 기판 처리 장치 및 기판 처리 방법
JP2018101687A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
WO2018193538A1 (ja) 半導体装置の製造方法、基板処理装置および記録媒体
US10714336B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
JP7138130B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置およびプログラム
JPWO2019039127A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP7273168B2 (ja) 基板処理方法、半導体装置の製造方法、プログラム及び基板処理装置
WO2022201217A1 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置、およびプログラム
JP2021111679A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP2021150627A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
CN116114050A (zh) 半导体器件的制造方法、衬底处理装置及程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503305

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217028333

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917767

Country of ref document: EP

Kind code of ref document: A1