WO2022085498A1 - 成膜方法及び成膜装置 - Google Patents

成膜方法及び成膜装置 Download PDF

Info

Publication number
WO2022085498A1
WO2022085498A1 PCT/JP2021/037444 JP2021037444W WO2022085498A1 WO 2022085498 A1 WO2022085498 A1 WO 2022085498A1 JP 2021037444 W JP2021037444 W JP 2021037444W WO 2022085498 A1 WO2022085498 A1 WO 2022085498A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
film
silicon
gas supply
carbon
Prior art date
Application number
PCT/JP2021/037444
Other languages
English (en)
French (fr)
Inventor
順也 鈴木
良裕 加藤
晃司 下村
敏夫 長谷川
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2022085498A1 publication Critical patent/WO2022085498A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • Patent Document 1 discloses a method of forming a SiOCN film by alternately supplying a silicon-containing precursor gas, a carbon-containing gas, a nitrogen-containing gas, and an oxygen-containing gas. As a result, a SiOCN film having characteristics of low etching rate and high insulation is formed.
  • the present disclosure provides a technique capable of improving the controllability of the carbon concentration of a silicon-containing film.
  • controllability of the carbon concentration of the silicon-containing film can be improved.
  • FIG. 6 is a schematic cross-sectional view showing a second embodiment of a film forming apparatus that executes the film forming method according to the embodiment.
  • the flowchart which shows the 2nd Embodiment of the film formation method which concerns on embodiment.
  • a time chart showing a second embodiment of the film forming method according to the embodiment.
  • a step of forming a SiOCN film or a SiOC film (hereinafter, also referred to as "first step") is executed, and then a step of forming a SiC film (hereinafter, "" The second step ”) is executed.
  • the SiOCN film or SiOC film is an example of the first film containing the elements of silicon (Si), oxygen (O), and carbon (C) formed in the first step.
  • the SiC film is an example of a second film containing the elements of silicon (Si) and carbon (C) formed in the second step.
  • ALD atomic layer Deposition
  • CVD Chemical Vapor Deposition
  • the film forming apparatus of the present disclosure may be a thermal ALD apparatus, a plasma ALD apparatus, a thermal CVD apparatus, a plasma CVD apparatus, or the like.
  • a plasma ALD device is used as an example of the film forming device.
  • a SiOCN film and a SiC film, or a SiOC film and a SiC film are formed by using a plasma ALD device.
  • the film is not limited to this, and for example, the film formation of the SiOCN film or the SiOC film and the film formation of the SiC film may be performed by using separate devices.
  • the raw material gas as a silicon compound containing silicon, carbon, and halogen, for example, 1,1,3,3-tetrachloro-1,3-disilacyclobutane (C 2 H 4 Cl 4 Si 2 ) is used. Can be mentioned.
  • -1,3-Disilacyclobutane (C 2 H 4 Cl 4 Si 2 ), hereinafter referred to as “raw material gas A”) is used.
  • the raw material gas A is supplied into the chamber.
  • a layer containing elements of Si and C is formed on the surface of the substrate. That is, a silicon-containing film containing elements of Si and C of less than one atomic layer to several atomic layers is formed on the substrate.
  • H2O gas which is an example of an oxidizing gas
  • the H2O gas is an example of an oxygen-containing gas.
  • Plasma is not used in the oxidation process.
  • the silicon nitride-containing film is oxidized to form a SiOCN film.
  • the stability of the film can be improved.
  • This series of steps is set as one set, and is performed a preset number of times (X times, X ⁇ 1). This makes it possible to form a SiOCN film having a desired thickness.
  • a film reforming step using H 2 gas plasma may be included in the series of steps. By performing the reforming treatment with H2 plasma, the amount of degassing of C at the time of annealing can be reduced. Further, by performing the modification treatment with H 2 plasma, the bond in the film becomes stronger, so that the etching resistance and the ashing resistance of the SiOCN single film can be expected to be improved.
  • a precursor (1-dimethylamino-1,3,5,7-) containing elements of Si, C, and O shown in the chemical structural formula of FIG. 2B as a raw material gas used for forming a SiOC film is used.
  • Tetramethylcyclotetrasiloxane hereinafter referred to as "raw material gas B"
  • the raw material gas B is supplied into the chamber.
  • a layer containing elements of Si, C, and O is formed on the surface of the substrate. That is, a silicon-containing film containing elements of Si, C, and O of less than one atomic layer to several atomic layers is formed on the substrate.
  • silicon in a silicon compound has hydrogen, chlorine, an alkyl having 5 or less carbon atoms, an alkenyl having 5 or less carbon atoms (unsaturated double bond), and an alkynyl having 5 or less carbon atoms in the side chain. It may have a substituent such as (unsaturated triple bond) or amine.
  • the raw material gas may have a substituent such as an amine.
  • An example of a carbon-containing precursor gas is trimethylsilylacetylene (TMSA: C 5H 10 Si ) having an unsaturated triple bond.
  • TMSA shown in the chemical structural formula of FIG. 2C is used as the raw material gas used for forming the SiC film.
  • carbon-containing precursor gas TMSA
  • TMSA carbon-containing precursor gas
  • the purge gas is an inert gas (N 2 or the like) or a rare gas (Ar or the like).
  • disilane (Si 2 H 6 ) is supplied into the chamber as a gas for the silicon-containing precursor.
  • the residual gas of Si 2 H 6 gas is removed from the chamber by a purge gas.
  • This series of steps is set as one set, and is performed a preset number of times (Y times, Y ⁇ 1). As a result, a SiC film having a desired thickness is formed on the SiOCN film or the SiOC film having a desired thickness formed in the first step.
  • a SiC film is formed by a thermal reaction at a temperature of less than 800 ° C., preferably 500 ° C. or lower without using plasma. The mechanism by which a SiC film can be formed at a temperature lower than 1000 ° C. will be described using the reaction model of the SiC film shown in FIG. 7.
  • Si 2 H 6 is thermally decomposed by heating at around 400 ° C. to generate a SiH 2 radical having an unpaired electron in a Si atom, and this SiH 2 radical is polarized to ⁇ + and ⁇ ⁇ .
  • the positive polarization site ( ⁇ +) acts as an electrophile that attacks the ⁇ bond of the unsaturated bond of the electron-rich TMSA to decompose the TMSA, and the triple bond C and SiH 2 It is speculated that the radical Si reacts with the Si—C bond to form a Si—C bond.
  • the carbon-containing precursor may be a gas containing an organic compound having an unsaturated carbon bond such as a double bond or a triple bond.
  • the silicon-containing precursor is, for example, a gas that becomes an active species at a temperature of less than 800 ° C., and may be a gas that does not contain carbon.
  • TMSA is used as the carbon-containing precursor
  • Si 2 H6 is used as the silicon - containing precursor
  • a thermal reaction occurs at a substrate temperature in the range of 350 ° C to 400 ° C, and the reaction of the reaction model shown in FIG. 7 proceeds to perform SiC. It is presumed that a film is formed.
  • the carbon-containing precursor that can be used for forming a SiC film is not limited to TMSA, and may be, for example, bischloromethylacetylene (BCMA) or bistrimethylsilylacetylene (BTMSA). Further, not limited to TMSA, BCMA, and BTMSA, if the thermal reaction with the silicon-containing precursor proceeds at a temperature of less than 800 ° C. and it is possible to form a SiC film, another carbon-containing precursor can be used. May be good.
  • the silicon-containing precursor is not limited to disilane (Si 2 H 6 ). Any silicon-containing precursor that thermally decomposes at a temperature of less than 800 ° C., for example, a temperature of 500 ° C. or lower to generate SiH 2 radicals may be used. For example, in addition to Si 2 H 6 , monosilane (Si H 4 ), trisilane (Si 3 H 8 ), or the like may be used.
  • a SiC film can be formed between the SiOCN film or the SiOC film at a low temperature of less than 800 ° C. This makes it possible to improve the controllability of the C concentration in the SiOCN film or the SiOC film and improve the performance of the SiOCN film or the SiOC film. For example, by increasing the amount of carbon contained in the SiOCN film or the SiOC film, the etching resistance and the ashing resistance of the film can be enhanced.
  • the first step a raw material gas containing at least Si and C elements and a reaction gas containing N elements are alternately and repeatedly supplied to form the first film.
  • the first step may include an oxidation step of supplying an oxidizing gas containing an element of O to oxidize the first film.
  • the oxidation step may be carried out in the first step and / or the second step.
  • a raw material gas containing elements of Si, C, and O may be supplied to form the first film.
  • a reforming step of supplying a reforming gas containing an element of H and reforming the first film with the plasma of the reforming gas may be included.
  • the reforming step may be carried out in the first step and / or the second step.
  • the gas of the carbon-containing precursor and the gas of the silicon-containing precursor are alternately and repeatedly supplied to form the second film.
  • FIG. 8 is a schematic cross-sectional view showing a first embodiment of a film forming apparatus that executes the film forming method according to the embodiment.
  • the film forming apparatus 10 shown in FIG. 8 has a chamber 1, a substrate support portion 2, a shower head 3, an exhaust portion 4, and a gas supply portion 5. , And a control unit 6.
  • Chamber 1 is made of a metal such as aluminum and has a substantially cylindrical shape.
  • An carry-in outlet 11 for carrying in or out the substrate W is formed on the side wall of the chamber 1, and the carry-in outlet 11 can be opened and closed by a gate valve 12.
  • An annular exhaust duct 13 having a rectangular cross section is provided on the main body of the chamber 1.
  • a slit 13a is formed in the exhaust duct 13 along the inner peripheral surface.
  • an exhaust port 13b is formed on the outer wall of the exhaust duct 13.
  • a top wall 14 is provided on the upper surface of the exhaust duct 13 so as to close the upper opening of the chamber 1. The space between the top wall 14 and the exhaust duct 13 is airtightly sealed with a seal ring 15.
  • the board support portion 2 horizontally supports the board W in the chamber 1.
  • the substrate support portion 2 has a disk shape having a size corresponding to the substrate W and is supported by the support member 23.
  • the substrate support portion 2 is made of a ceramic material such as aluminum nitride (AlN) or a metal material such as aluminum or a nickel-based alloy, and a heater 21 for heating the substrate W is embedded therein.
  • the heater 21 is supplied with power from a heater power supply (not shown) to generate heat. Then, by controlling the output of the heater 21, the substrate W is controlled to a predetermined temperature.
  • the substrate support portion 2 is provided with a cover member 22 made of ceramics such as alumina so as to cover the outer peripheral region of the substrate mounting surface and the side surface of the substrate support portion 2.
  • the gas supply unit 5 is connected to the gas introduction hole 36, and introduces the raw material gas, the reaction gas, the inert gas, etc. into the shower head 3.
  • the control unit 6 has a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the CPU executes a desired process according to a recipe stored in a storage area such as RAM.
  • control information of the device for the process condition is set.
  • the control information may be, for example, gas flow rate, pressure, temperature, process time.
  • the recipe and the program used by the control unit 6 may be stored in, for example, a hard disk or a semiconductor memory. Further, the recipe or the like may be set in a predetermined position and read out in a state of being housed in a storage medium readable by a portable computer such as a CD-ROM or a DVD.
  • the gas supply line L5 extends from the NH 3 gas supply source G5, which is a supply source of nitride gas, for example, NH 3 gas, as a reaction gas, and is connected to the confluent gas supply line L9.
  • the gas supply line L5 is provided with a mass flow controller M5 and an on-off valve V5 in this order from the NH 3 supply source G5 side.
  • the mass flow controller M5 controls the flow rate of NH 3 gas flowing through the gas supply line L5.
  • the on-off valve V5 switches the supply / stop of NH3 gas during the ALD process.
  • the gas supply line L6 extends from the Si 2 H6 gas supply source G6, which is the gas supply source of the silicon-containing precursor, and is connected to the confluent gas supply line L9.
  • the gas supply line L6 is provided with a mass flow controller M6 and an on-off valve V6 in this order from the Si 2 H 6 gas supply source G6 side.
  • the mass flow controller M6 controls the flow rate of the Si 2 H 6 gas flowing through the gas supply line L6.
  • the on-off valve V6 switches the supply / stop of Si 2 H 6 gas during the ALD process.
  • the gas supply line L8 extends from the Ar gas supply source G8, which is a carrier gas supply source, and is connected to the merging gas supply line L9.
  • the gas supply line L8 constantly supplies Ar gas during film formation by the ALD method, functions as a carrier gas such as a raw material gas, and also has a function as a purge gas.
  • the gas supply line L8 is provided with a mass flow controller M8 and an on-off valve V8 in this order from the Ar gas supply source G8 side.
  • the mass flow controller M8 controls the flow rate of Ar gas flowing through the gas supply line L8.
  • the on-off valve V8 switches between supplying and stopping Ar gas during the ALD process.
  • step S1 of FIG. 9 the substrate W is placed on the substrate support portion 2 and prepared.
  • the substrate W is conveyed into the chamber 1 by a transfer device (not shown) by opening and closing the gate valve 12, and is placed on the substrate support portion 2.
  • step S2 the substrate W mounted by the heater 21 of the substrate support portion 2 is controlled to have a set temperature of less than 800 ° C. (for example, 350 ° C. to 500 ° C.).
  • the substrate support portion 2 is raised to the processing position, and the inside of the chamber 1 is depressurized to a predetermined degree of vacuum.
  • the gas supply unit 5 opens the valves V3 and V8 in FIG. 8, and allows Ar gas to pass from the Ar gas supply sources G3 and G8 through the gas supply lines L3 and L8 and into the chamber 1 via the combined gas supply line L9. It is supplied to increase the pressure and stabilize the temperature of the substrate W on the substrate support 2.
  • step S6 When a predetermined time has elapsed since the valve V5 was opened, the residual gas of the nitride gas is removed in step S6. At this time, the valve V5 in FIG. 8 is closed, and the supply of NH 3 gas from the NH 3 gas supply source G5 is stopped. As shown in FIG. 10, the valves V3 and V8 continue to open even after the supply of NH 3 gas is stopped, and Ar gas is supplied into the chamber 1. As a result, the NH 3 gas is exhausted from the chamber 1 by the Ar gas, and the residual gas of the NH 3 gas is removed.
  • step B the reaction gas supply step for forming the SiOCN film.
  • step S7 the gas supply unit 5 supplies H2O gas as an oxidation gas.
  • the valve V4 of FIG. 8 is opened, and a predetermined flow rate of H 2 O gas is supplied into the chamber 1 from the H 2 O gas supply source G4 through the gas supply line L4 and through the confluent gas supply line L9. do.
  • the valves V1, V2, and V5 to V7 are closed.
  • the supply of the H 2 O gas, which is the oxidation gas in the first cycle of the first step is started, the silicon-containing film is oxidized by the H 2 O gas, and Si, C, and N are added. A silicon-containing film containing the element O is formed.
  • step S8 When a predetermined time has elapsed since the valve V4 was opened, the residual gas of the oxidizing gas is removed in step S8.
  • the valve V4 in FIG. 8 is closed, and the supply of H 2 O gas from the H 2 O gas supply source G4 is stopped. Even after the supply of H2O gas is stopped, the valves V3 and V8 continue to open, and Ar gas is supplied into the chamber 1. As a result, the H 2 O gas is exhausted from the chamber 1 by the Ar gas, and the residual gas of the H 2 O gas is removed.
  • step C The above is the step of supplying the oxidizing gas for forming the SiOCN film
  • step S9 it is determined whether steps A to C have been repeatedly executed X times preset.
  • X is an integer of 1 or more.
  • steps A to C are repeated until it is determined that the execution has been performed X times. If it is determined in step S9 that the execution has been performed X times, the process proceeds to step S10, H2 gas is supplied as the reforming gas, and RF power is applied.
  • Step A, step B, step C, and step D described above are included in the first step of forming the SiOCN film.
  • step D modification step
  • step D may be executed between steps S8 and S9. Further, step D does not have to be executed in the first step.
  • step S12 the gas supply unit 5 supplies the gas of the carbon-containing precursor.
  • TMSA gas having a triple bond which is an unsaturated carbon bond is supplied.
  • the valve V2 of FIG. 8 is opened, and a predetermined flow rate of TMSA gas is supplied from the TMSA gas supply source G2 through the gas supply line L2 and through the merging gas supply line L9 into the chamber 1.
  • the valves V1 and V4 to V7 are closed.
  • the supply of the carbon-containing precursor (TMSA) gas in the first cycle of the second step is started, and a silicon-containing film containing elements of Si and C is formed on the surface of the substrate.
  • step F the gas supply step of the silicon-containing precursor for forming the SiC film.
  • step S16 it is determined whether steps E to F have been repeatedly executed Y times preset.
  • Y is an integer of 1 or more.
  • steps E to F are repeated until it is determined that the execution has been performed Y times. If it is determined in step S16 that the execution has been performed Y times, the process proceeds to step S17.
  • Steps E and F described above are included in the second step of forming the SiC film.
  • step D modification step may be executed between steps S15 and S16. That is, step D can be performed in the first step and / or the second step.
  • step C (oxidation step) may be executed between steps S15 and S16. That is, step C can be performed in the first step and / or the second step.
  • step S17 it is determined whether steps A to F (first step and second step) have been repeatedly executed Z times preset.
  • Z is an integer of 1 or more.
  • steps A to F are repeated until it is determined that the execution has been performed Z times. If it is determined in step S17 that the execution has been performed Z times, the process proceeds to step S18, the substrate is carried out, and this process is completed.
  • X indicating the number of repetitions of the first step
  • Y indicating the number of repetitions of the second step
  • the first step and the second step are performed X times for the first step in this order.
  • At least one of the number of times Z of the series of steps repeated Y times for the two steps Z is controlled.
  • at least any thickness of the SiOCN film and the SiC film can be adjusted. This makes it possible to accurately control the C concentration in the SiOCN film.
  • at least any of the number of repetitions X, Y, and Z may be controlled so that the SiOCN film is thicker than the SiC film. This also makes it possible to control the C concentration in the SiOCN film.
  • a step of forming a SiOCN film containing elements of silicon (Si), oxygen (O), and carbon (C) on a substrate, and a step of forming a SiOCN film containing elements of silicon and carbon on the substrate are included.
  • a step of forming a SiC film and a film forming method including the process are provided. This makes it possible to increase the carbon concentration of the SiOCN film. This makes it possible to improve the etching resistance and ashing resistance of the SiOCN film.
  • the film forming apparatus 10 used in the second embodiment of the film forming method will be described with reference to FIG.
  • the film forming apparatus 10 of FIG. 11 differs from the film forming apparatus 10 of FIG. 8 used in the first embodiment of the film forming method only in the configuration of the gas supply unit 5, and therefore, other than the gas supply unit 5 here.
  • the description of the configuration of is omitted.
  • the gas supply line L3 extends from the Ar gas supply source G3, which is a carrier gas supply source, and is connected to the combined gas supply line L9. As a result, Ar gas is supplied to the combined gas supply line L9 side via the gas supply line L3.
  • the gas supply line L3 constantly supplies Ar gas during film formation by the ALD method, functions as a carrier gas for the raw material gas B, and also has a function as a purge gas.
  • the gas supply line L3 is provided with a mass flow controller M3 and an on-off valve V3 in this order from the Ar gas supply source G3 side.
  • the mass flow controller M3 controls the flow rate of Ar gas flowing through the gas supply line L3.
  • the on-off valve V3 switches between supplying and stopping Ar gas during the ALD process.
  • the gas supply line L6 extends from the Si 2 H6 gas supply source G6, which is the gas supply source of the silicon-containing precursor, and is connected to the confluent gas supply line L9.
  • the gas supply line L6 is provided with a mass flow controller M6 and an on-off valve V6 in this order from the Si 2 H 6 gas supply source G6 side.
  • the mass flow controller M6 controls the flow rate of the Si 2 H 6 gas flowing through the gas supply line L6.
  • the on-off valve V6 switches the supply / stop of Si 2 H 6 gas during the ALD process.
  • the gas supply line L7 extends from the H2 gas supply source G7, which is a supply source of the reforming gas, and is connected to the combined gas supply line L9.
  • the gas supply line L7 is provided with a mass flow controller M7 and an on-off valve V7 in this order from the H2 gas supply source G7 side .
  • the mass flow controller M7 controls the flow rate of the H 2 gas flowing through the gas supply line L7.
  • the on-off valve V7 switches between supply and stop of H 2 gas during the ALD process.
  • the gas supply line L8 extends from the Ar gas supply source G8, which is a carrier gas supply source, and is connected to the merging gas supply line L9.
  • the gas supply line L8 constantly supplies Ar gas during film formation by the ALD method, functions as a carrier gas such as a raw material gas, and also has a function as a purge gas.
  • the gas supply line L8 is provided with a mass flow controller M8 and an on-off valve V8 in this order from the Ar gas supply source G8 side.
  • the mass flow controller M8 controls the flow rate of Ar gas flowing through the gas supply line L8.
  • the on-off valve V8 switches between supplying and stopping Ar gas during the ALD process.
  • FIG. 12 is a flowchart showing a second embodiment of the film forming method according to the embodiment.
  • FIG. 13 is a time chart showing a second embodiment of the film forming method according to the embodiment.
  • a laminated film of a SiOC film and a SiC film is formed.
  • step S1 of FIG. 12 the substrate W is placed and prepared on the substrate support portion 2, and in step S2, the substrate W is controlled to have a set temperature of less than 800 ° C.
  • the valves V3 and V8 of FIG. 11 are opened to supply Ar gas into the chamber 1 to increase the pressure and stabilize the temperature of the substrate W on the substrate support portion 2.
  • step S3' the gas supply unit 5 supplies the raw material gas B.
  • the valve V1 of FIG. 11 is opened, and the raw material gas B having a predetermined flow rate is supplied from the raw material gas supply source G1 through the gas supply line L1 and through the merging gas supply line L9 into the chamber 1.
  • Ar gas having a predetermined flow rate is supplied into the chamber 1 from the Ar gas supply sources G3 and G8 through the gas supply lines L3 and L8 and via the combined gas supply line L9.
  • the valves V2, V6, and V7 are closed.
  • the supply of the raw material gas B and Ar gas in the first cycle of the first step is started, and a silicon-containing film containing elements of Si and C is formed on the surface of the substrate.
  • step S4' When a predetermined time has elapsed since the valve V1 was opened, the residual gas of the raw material gas B is removed in step S4'. At this time, the valve V1 of FIG. 11 is closed, and the supply of the raw material gas B from the raw material gas supply source G1 is stopped. Even after the supply of the raw material gas B is stopped, the valves V3 and V8 continue to open, and Ar gas is supplied into the chamber 1 as shown in FIG. As a result, the raw material gas B is exhausted from the chamber 1 by the Ar gas, and the residual gas of the raw material gas B is removed.
  • step A' the supply step of the raw material gas for forming the SiOC film
  • step S10 H 2 gas is supplied as the reforming gas and RF power is applied.
  • the valve V7 of FIG. 11 is opened, and a predetermined flow rate of H 2 gas is supplied into the chamber 1 from the H 2 gas supply source G7 through the gas supply line L7 and through the merging gas supply line L9. Further, a predetermined high frequency RF power is applied from the high frequency power supply 61 to the shower head 3.
  • the valves V1, V2, and V6 are closed.
  • the supply of H 2 gas which is the reforming gas in the first cycle of the first step, and the application of RF power are started, and the surface of the silicon-containing film is activated by the plasma of H 2 gas.
  • step S11 the valve V7 is closed, the supply of H 2 gas is stopped, the application of RF power is stopped, and the residual gas of H 2 gas is removed by Ar gas. ..
  • step D the supply step of the reforming gas for forming the SiOC film.
  • step S9 it is determined whether step A'and step D have been repeatedly executed X times preset.
  • X is an integer of 1 or more.
  • steps A'and D are repeated until it is determined that the execution has been performed X times, and when it is determined that the execution has been performed X times, the process proceeds to step S12. Steps A'and D described above are included in the first step of forming the SiOC film.
  • step E the same steps S12 and S13 (step E), steps S14 and S15 (step F), and steps S16 and S17 as in the first embodiment are performed.
  • a film forming method including a second step of forming a SiC film containing the above is provided. This makes it possible to increase the carbon concentration of the SiOC film. This makes it possible to improve the etching resistance and ashing resistance of the SiOC film.
  • a step of preparing a substrate and (b) a step of forming a first film containing elements of silicon, oxygen, and carbon on the substrate.
  • C It is possible to provide a film forming method including a step of forming a second film containing silicon and carbon elements on a substrate.
  • a step of preparing a substrate, a step of forming a first film containing elements of silicon and oxygen on the substrate, and a step of forming a second film containing elements of silicon and carbon on the substrate can provide a film forming method including. This makes it possible to improve the controllability of the carbon concentration of the silicon-containing film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

シリコン含有膜の炭素濃度の制御性を向上させることができる技術を提供する。 【解決手段】(a)基板を準備する工程と、(b)基板上にケイ素(Si)と酸素(O)と炭素(C)との元素を含む第1の膜を形成する工程と、(c)基板上にケイ素と炭素との元素を含む第2の膜を形成する工程と、を含む成膜方法が提供される。

Description

成膜方法及び成膜装置
 本開示は、成膜方法及び成膜装置に関する。
 半導体デバイスの微細化に伴い、エッチング耐性の高いシリコン含有膜が求められている。例えば、特許文献1は、シリコン含有前駆体ガス、炭素含有ガス、窒素含有ガス、酸素含有ガスを交互に供給してSiOCN膜を成膜する方法を開示する。これにより、低エッチングレート及び高絶縁性の特性を備えるSiOCN膜を成膜する。
特開2011-238894号公報
 シリコン含有膜中の炭素濃度が低くなると、膜のエッチング耐性が低下する。よって、成膜工程において、膜中の炭素濃度の制御が重要となる。
 本開示は、シリコン含有膜の炭素濃度の制御性を向上させることができる技術を提供する。
 本開示の一の態様によれば、(a)基板を準備する工程と、(b)基板上にケイ素(Si)と酸素(O)と炭素(C)との元素を含む第1の膜を形成する工程と、(c)基板上にケイ素と炭素との元素を含む第2の膜を形成する工程と、を含む成膜方法が提供される。
 一の側面によれば、シリコン含有膜の炭素濃度の制御性を向上させることができる。
実施形態に係るSiOCN膜の成膜を説明するための図。 実施形態に係る原料ガスに用いられる各種ガスの化学構造式。 実施形態に係るSiOC膜の成膜を説明するための図。 実施形態に係るSiC膜の成膜を説明するための図。 実施形態に係る成膜方法を説明するための図。 実施形態に係る成膜方法により形成された膜構造を示す図。 実施形態に係るSiC膜の反応モデルの一例を示す図。 実施形態に係る成膜方法を実行する成膜装置の第1実施例を示す断面模式図。 実施形態に係る成膜方法の第1実施例を示すフローチャート。 実施形態に係る成膜方法の第1実施例を示すタイムチャート。 実施形態に係る成膜方法を実行する成膜装置の第2実施例を示す断面模式図。 実施形態に係る成膜方法の第2実施例を示すフローチャート。 実施形態に係る成膜方法の第2実施例を示すタイムチャート。
 以下、図面を参照して本開示を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
 [膜中の炭素濃度]
 半導体デバイスの微細化に伴い、ゲートやコンタクトのスペーサー等に使用される、エッチング耐性の良いSiOCN膜、SiOC膜等のシリコン含有膜をカバレッジ良く成膜する技術が求められている。これらの膜中の炭素濃度が低くなると、膜のエッチング耐性が低下する。よって、膜中の炭素濃度の制御が重要となる。SiOCN膜、SiOC膜等のシリコン含有膜の単膜では、成膜条件を調整しても、膜中の炭素濃度の制御は困難である。
 そこで、本実施形態に係る成膜方法では、SiOCN膜又はSiOC膜を成膜する工程(以下、「第1工程」ともいう。)を実行した後、SiC膜を成膜する工程(以下、「第2工程」ともいう。)を実行する。SiOCN膜又はSiOC膜は、第1工程において形成するケイ素(Si)と酸素(O)と炭素(C)との元素を含む第1の膜の一例である。SiC膜は、第2工程において形成するケイ素(Si)と炭素(C)の元素を含む第2の膜の一例である。
 第1工程及び第2工程を一層ずつ形成してもよい。第1工程及び第2工程を交互に予め設定された回数繰り返し、SiOCN膜とSiC膜との積層膜、又はSiOC膜とSiC膜との積層膜を形成してもよい。これにより、本実施形態に係る成膜方法では、膜中の炭素濃度の制御性を向上させることができる。この結果、エッチング耐性の高い膜を成膜できる。
 SiOCN膜、SiOC膜及びSiC膜を成膜する技術としては、ALD(Atomic Layer Deposition)を用いる。ただし、SiOCN膜、SiOC膜及びSiC膜の成膜は、これに限られず、CVD(Chemical Vapor Deposition)を用いてもよい。例えば、本開示の成膜装置は、熱ALD装置、プラズマALD装置、熱CVD装置、プラズマCVD装置等であってもよい。
 本実施形態では、成膜装置の一例としてプラズマALD装置を使用する。また、成膜方法の一例として、プラズマALD装置を用いてSiOCN膜とSiC膜、又はSiOC膜とSiC膜を成膜する。なお、これに限ることはなく、例えば、SiOCN膜又はSiOC膜の成膜とSiC膜の成膜とを別々の装置を用いて行ってもよい。
 [SiOCN膜の成膜]
 まず、第1工程において成膜するSiOCN膜について、図1を参照しながら説明する。図1は、実施形態に係るSiOCN膜の成膜を説明するための図である。SiOCN膜は、第1の膜の一例である。SiOCN膜の成膜では、原料ガスとしてケイ素-炭素(Si-C)結合を有するケイ素化合物を使用する。ケイ素化合物は、直鎖、環状のいずれでもよい。例えば、原料ガスとして炭素数が2以上の環状炭化ケイ素化合物(Si-C骨格)を使用してもよい。原料ガスは、アミン、ハロゲン等の置換基を有していてもよい。原料ガスの一例としては、珪素、炭素、及びハロゲンを含むケイ素化合物として、例えば、1,1,3,3-テトラクロロ-1,3-ジシラシクロブタン(CClSi)が挙げられる。
 以下では、SiOCN膜の成膜に使用する原料ガスとして図2(a)の化学構造式に示すSi、C、及び塩素(Cl)の元素を含むプリカーサ(1,1,3,3-テトラクロロ-1,3-ジシラシクロブタン(CClSi)、以下、「原料ガスA」とする。)を使用する。ALDを用いたSiOCN膜の成膜では、原料ガスAをチャンバ内に供給する。これにより、基板の表面にSiとCの元素を含む層が形成される。すなわち、基板上に1原子層未満から数原子層のSiとCの元素を含むシリコン含有膜が形成される。
 次に、原料ガスAの残留ガスをパージガスによりチャンバから除去する。パージガスは、不活性ガス(N等)や希ガス(Ar等)である。次に、反応ガスとして窒化ガスの一例であるアンモニア(NH)ガスをチャンバ内に供給する。NHガスは、窒素含有ガスの一例である。これにより、図1に示すように基板上に形成されたシリコン含有膜中のClがNに置換し、シリコン含有膜が窒化される。
 次に、NHガスの残留ガスをパージガスによりチャンバから除去する。次に、反応ガスとして酸化ガスの一例であるHOガスをチャンバ内に供給する。HOガスは、酸素含有ガスの一例である。酸化工程ではプラズマは用いない。これにより、窒化シリコン含有膜が酸化され、SiOCN膜が形成される。窒化シリコン含有膜の酸化工程では膜の安定性を高めることができる。
 この一連の工程を一セットとして、予め設定された回数(X回、X≧1)行う。これにより、所望の厚さのSiOCN膜を形成することができる。なお、一連の工程中にHガスのプラズマを用いた膜の改質工程を含めてもよい。Hプラズマによる改質処理を行うことにより、アニールをした際のCの脱ガス量を減らすことができる。また、Hプラズマによる改質処理を行うことにより、膜中の結合がより強固となるため、SiOCN単膜でのエッチング耐性やアッシング耐性の向上が期待できる。
 [SiOC膜の成膜]
 次に、第1工程において成膜するSiOC膜について、図3を参照しながら説明する。図3は、実施形態に係るSiOC膜の成膜を説明するための図である。SiOC膜は、第1の膜の他の例である。SiOC膜の成膜では、原料ガスとしてケイ素-炭素(Si-O)結合を有するケイ素化合物を使用する。ケイ素化合物は、直鎖、環状のいずれでもよい。例えば、原料ガスとして環状シロキサン(Si-O骨格)を使用してもよい。原料ガスは、アミン等の置換基を有していてもよい。原料ガスの一例としては、1-ジメチルアミノ-1,3,5,7-テトラメチルシクロテトラシロキサンが挙げられる。
 以下では、SiOC膜の成膜に使用する原料ガスとして図2(b)の化学構造式に示すSi、C、及びOの元素を含むプリカーサ(1-ジメチルアミノ-1,3,5,7-テトラメチルシクロテトラシロキサン、以下、「原料ガスB」とする。)を使用する。ALDを用いたSiOC膜の成膜では、原料ガスBをチャンバ内に供給する。これにより、基板の表面にSiとCとOの元素を含む層が形成される。すなわち、基板上に1原子層未満から数原子層のSiとCとOの元素を含むシリコン含有膜が形成される。
 次に、原料ガスBの残留ガスをパージガスによりチャンバから除去する。パージガスは、不活性ガス(N等)や希ガス(Ar等)である。次に、改質ガスの一例である水素(H)ガスをチャンバ内に供給する。Hガスは、水素含有ガスの一例である。また、後述する高周波電源から高周波電力(以下、「RF電力」ともいう。)を印加する。これにより、Hガスのプラズマ(図3のp-H)により基板上に形成されたシリコン含有膜が改質され、膜特性を向上させることができる。次に、Hガスの残留ガスをパージガスによりチャンバから除去する。
 この一連の工程を一セットとして、予め設定された回数(X回、X≧1)行う。これにより、所望の厚さのSiOC膜を形成することができる。
 [SiC膜の成膜]
 本実施形態に係る成膜方法では、以上に説明した方法により第1工程においてSiOCN膜又はSiOC膜を成膜した後、第2工程においてSiC膜を成膜する。SiC膜は、ケイ素と炭素との元素を含む第2の膜の一例である。
 第2工程におけるSiC膜の成膜について、図4を参照しながら説明する。図4は、実施形態に係る成膜方法を説明するための図である。SiC膜は、炭素含有プリカーサとケイ素含有プリカーサを使用して成膜する。第2工程では、基板の温度を約800℃未満に制御し、SiC膜を成膜する。炭素含有プリカーサのガスとして不飽和シラン(不飽和結合を有する有機シラン化合物)を使用する。ケイ素化合物は、直鎖、環状のいずれでもよい。例えば、原料ガスとして、ケイ素化合物中のケイ素は、側鎖に水素、塩素、炭素数が5以下のアルキル、炭素数が5以下のアルケニル(不飽和二重結合)、炭素数が5以下のアルキニル(不飽和三重結合)、アミン等の置換基を有していてもよい。原料ガスは、アミン等の置換基を有していてもよい。炭素含有プリカーサのガスの一例としては、不飽和三重結合を有するトリメチルシリルアセチレン(TMSA:C10Si)が挙げられる。
 以下では、SiC膜の成膜に使用する原料ガスとして図2(c)の化学構造式に示すTMSAを使用する。ALDを用いたSiC膜の成膜では、炭素含有プリカーサのガス(TMSA)をチャンバ内に供給する。これにより、基板の表面にSiとCの元素を含む層が形成される。すなわち、基板上に1原子層未満から数原子層のSiとCの元素を含む層が形成される。
 次に、TMSAの残留ガスをパージガスによりチャンバから除去する。パージガスは、不活性ガス(N等)や希ガス(Ar等)である。次に、ケイ素含有プリカーサのガスとしてジシラン(Si)をチャンバ内に供給する。
 次に、Siガスの残留ガスをパージガスによりチャンバから除去する。この一連の工程を一セットとして、予め設定された回数(Y回、Y≧1)行う。これにより、第1工程にて形成された所望の厚さのSiOCN膜又はSiOC膜の上に所望の厚さのSiC膜が形成される。
 以上に説明した第1工程と第2工程とを第1工程についてX回、第2工程についてY回繰り返す一連の工程を予め設定された回数(Z回、Z≧1)だけ繰り返し実行する(図5、図9、図12参照)。これにより、図6に示すように、Xの回数に応じた厚さのSiOCN膜又はSiOC膜と、Yの回数に応じた厚さのSiC膜とが、Z回積層される。これにより、SiOCN膜又はSiOC膜の間にSiC膜を設けることで、SiOCN膜又はSiOC膜に含有するCの量を制御できる。
 [SiC膜の低温成膜]
 従来、SiC膜の成膜は、炭素を含むガスと有機シランとを1000℃以上の高温下で反応させるか、これらのガスをプラズマ化して1000℃よりも低温で反応させることが必要と考えられていた。これに対して、本開示の成膜方法は、プラズマを用いずに800℃未満、好ましくは500℃以下の温度の熱反応でSiC膜を成膜する。このような1000℃よりも低温でSiC膜を成膜できるメカニズムについて、図7に示すSiC膜の反応モデルを用いて説明する。
 Siは、400℃付近の加熱により熱分解して、Si原子に不対電子を持つSiHラジカルを生成するが、このSiHラジカルはσ+とσ-に分極する。図7に示す反応モデルでは、正の分極部位(σ+)が、電子の豊富なTMSAの不飽和結合のπ結合をアタックする求電子剤となってTMSAを分解し、三重結合のCとSiHラジカルのSiとが反応してSi-C結合を形成すると推察している。TMSAの三重結合のπ結合はσ結合よりも結合力が小さいため、このπ結合にSiHラジカルがアタックすると、800℃未満の基板温度(例えば400℃以下の基板温度)であっても十分に熱反応が進行し、Si-C結合が生成される。
 炭素含有プリカーサは、二重結合、三重結合等の不飽和炭素結合を有する有機化合物を含むガスであってもよい。ケイ素含有プリカーサは、例えば800℃未満の温度で活性種となるガスであり、炭素を含有しないガスであってもよい。炭素含有プリカーサとしてTMSAを用い、ケイ素含有プリカーサとしてSiを用いる場合には、350℃~400℃の範囲内の基板温度で熱反応し、図7の反応モデルの反応が進行してSiC膜が形成されると推察される。なお、反応モデルは、従来、困難と考えられていた低温でのSiC膜の成膜が可能となる理由を推察したものであり、実際の反応経路を限定するものではない。プラズマを用いずに、800℃未満でSiC膜を成膜することができれば、他の反応経路を経由してSiC膜を形成してもよい。
 SiC膜の成膜に利用可能な炭素含有プリカーサは、TMSAに限られず、例えば、ビスクロロメチルアセチレン(BCMA)、ビストリメチルシリルアセチレン(BTMSA)であってもよい。また、TMSA、BCMA、BTMSAに限定されず、800℃未満の温度でケイ素含有プリカーサとの熱反応が進行し、SiC膜を形成することが可能であれば、他の炭素含有プリカーサを利用してもよい。
 ケイ素含有プリカーサとしては、ジシラン(Si)に限るものではない。800℃未満の温度例えば500℃以下の温度で熱分解し、SiHラジカルを生成するケイ素含有プリカーサであればよい。例えば、Siの他、モノシラン(SiH)やトリシラン(Si)などであってもよい。
 また、炭素含有プリカーサとして、例えばTMSA、BCMA、BTMSAの選択や、炭素含有プリカーサの流量に対するケイ素含有プリカーサの流量の比の調節により、得られるSiC膜の組成を調整することができる。このため、用途に応じた膜質のSiC膜を成膜することができ、応用範囲が大きい。
 本開示の成膜方法を実行することで、図6に示すように、SiOCN膜又はSiOC膜の間に、800℃未満の低温にてSiC膜を形成できる。これにより、SiOCN膜又はSiOC膜中のC濃度の制御性を高め、SiOCN膜又はSiOC膜の性能を向上させることができる。例えば、SiOCN膜又はSiOC膜に含まれる炭素の量を増やすことで、膜のエッチング耐性及びアッシング耐性を高めることができる。
 以上に説明した成膜方法において、第1工程については、少なくともSiとCの元素を含む原料ガスと、Nの元素を含む反応ガスと、を交互に繰り返し供給し、第1の膜を形成する。更に、第1工程は、さらにOの元素を含む酸化ガスを供給し、第1の膜を酸化させる酸化工程を含んでもよい。酸化工程は、第1工程及び/又は第2工程で実行してもよい。また、第1工程は、Si、C、Oの元素を含む原料ガスを供給し、第1の膜を形成してもよい。さらにHの元素を含む改質ガスを供給し、改質ガスのプラズマにより第1の膜を改質する改質工程を含んでもよい。改質工程は、第1工程及び/又は第2工程で実行してもよい。また、第2工程については、炭素含有プリカーサのガスとケイ素含有プリカーサのガスとを交互に繰り返し供給し、第2の膜を形成する。
<第1実施例>
 以上に説明した成膜方法の第1実施例について、図8を参照しながら説明する。図8は、実施形態に係る成膜方法を実行する成膜装置の第1実施例を示す断面模式図である。
 [成膜装置]
 実施形態に係る成膜方法を実行する成膜装置の第1実施例として、図8に示す成膜装置10は、チャンバ1、基板支持部2、シャワーヘッド3、排気部4、ガス供給部5、及び制御部6を有する。
 チャンバ1は、アルミニウム等の金属により構成され、略円筒状を有する。チャンバ1の側壁には基板Wを搬入又は搬出するための搬入出口11が形成され、搬入出口11はゲートバルブ12で開閉可能となっている。チャンバ1の本体の上には、断面が矩形状をなす円環状の排気ダクト13が設けられている。排気ダクト13には、内周面に沿ってスリット13aが形成されている。また、排気ダクト13の外壁には排気口13bが形成されている。排気ダクト13の上面にはチャンバ1の上部開口を塞ぐように天壁14が設けられている。天壁14と排気ダクト13の間はシールリング15で気密にシールされている。
 基板支持部2は、チャンバ1内で基板Wを水平に支持する。基板支持部2は、基板Wに対応した大きさの円板状をなし、支持部材23に支持されている。基板支持部2は、窒化アルミニウム(AlN)等のセラミックス材料や、アルミニウムやニッケル基合金等の金属材料で構成されており、内部に基板Wを加熱するためのヒータ21が埋め込まれている。ヒータ21は、ヒータ電源(図示せず)から給電されて発熱する。そして、ヒータ21の出力を制御することにより、基板Wを所定の温度に制御するようになっている。基板支持部2には、基板載置面の外周領域、及び基板支持部2の側面を覆うようにアルミナ等のセラミックスからなるカバー部材22が設けられている。
 支持部材23は、基板支持部2の底面中央からチャンバ1の底壁に形成された孔部を貫通してチャンバ1の下方に延び、その下端が昇降機構24に接続されている。昇降機構24により基板支持部2が支持部材23を介して、図8で示す処理位置と、その下方の二点鎖線で示す基板の搬送が可能な搬送位置との間で昇降可能となっている。また、支持部材23のチャンバ1の下方には、鍔部25が取り付けられており、チャンバ1の底面と鍔部25の間には、チャンバ1内の雰囲気を外気と区画し、基板支持部2の昇降動作にともなって伸縮するベローズ26が設けられている。
 チャンバ1の底面近傍には、昇降板27aから上方に突出するように3本(2本のみ図示)の支持ピン27が設けられている。支持ピン27は、チャンバ1の下方に設けられた昇降機構28により昇降板27aを介して昇降可能になっており、搬送位置にある基板支持部2に設けられた貫通孔2aに挿通されて基板支持部2の上面に対して突没可能となっている。このように支持ピン27を昇降させることにより、搬送機構(図示せず)と基板支持部2との間で基板Wの受け渡しが行われる。
 シャワーヘッド3は、チャンバ1内に処理ガスをシャワー状に供給する。シャワーヘッド3は金属製であり、基板支持部2に対向するように設けられており、基板支持部2とほぼ同じ直径を有する。シャワーヘッド3は、チャンバ1の天壁14に固定された本体部31と、本体部31の下に接続されたシャワープレート32とを有する。本体部31とシャワープレート32との間にはガス拡散空間33が形成されており、ガス拡散空間33には、本体部31及びチャンバ1の天壁14の中央を貫通するようにガス導入孔36が設けられている。シャワープレート32の周縁部には下方に突出する環状突起部34が形成され、シャワープレート32の環状突起部34の内側の平坦面にはガス吐出孔35が形成されている。
 基板支持部2が処理位置に存在した状態では、シャワープレート32と基板支持部2との間に処理空間37が形成され、環状突起部34と基板支持部2のカバー部材22の上面が近接して環状隙間38が形成される。
 排気部4は、チャンバ1の内部を排気する。排気部4は、排気ダクト13の排気口13bに接続された排気配管41と、排気配管41に接続された、真空ポンプや圧力制御バルブ等を有する排気機構42とを備えている。処理に際しては、チャンバ1内のガスはスリット13aを介して排気ダクト13に至り、排気ダクト13から排気配管41を通って排気部4の排気機構42により排気される。
 ガス供給部5は、ガス導入孔36に接続され、シャワーヘッド3内に原料ガス,反応ガス、不活性ガス等を導入する。
 高周波電源61は、整合器62を介してシャワーヘッド3に所定の高周波のRF電力を印加する。整合器62は、高周波のRF電力に対するインピーダンス制御を行う。制御部6は、成膜装置10の各部の動作を制御する。
 制御部6は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)を有する。CPUは、RAM等の記憶領域に格納されたレシピに従って、所望の処理を実行する。レシピには、プロセス条件に対する装置の制御情報が設定されている。制御情報は、例えばガス流量、圧力、温度、プロセス時間であってよい。なお、レシピ及び制御部6が使用するプログラムは、例えばハードディスク、半導体メモリに記憶されてもよい。また、レシピ等は、CD-ROM、DVD等の可搬性のコンピュータにより読み取り可能な記憶媒体に収容された状態で所定の位置にセットされ、読み出されるようにしてもよい。
 ガス供給部5は、ガス供給ラインL1~L9を有する。ガス供給ラインL1は、原料ガスAの供給源である原料ガス供給源G1から延び、合流ガス供給ラインL9に接続されている。合流ガス供給ラインL9は、ガス導入孔36に接続されている。ガス供給ラインL1には、原料ガス供給源G1側から順に、マスフローコントローラM1及び開閉弁V1が設けられている。マスフローコントローラM1は、ガス供給ラインL1を流れる原料ガスAの流量を制御する。開閉弁V1は、ALDプロセスの際に原料ガスAの供給・停止を切り替える。
 ガス供給ラインL2は、炭素含有プリカーサのガスの供給源であるTMSA供給源G2から延び、合流ガス供給ラインL9に接続されている。ガス供給ラインL2には、TMSA供給源G2側から順に、マスフローコントローラM2及び開閉弁V2が設けられている。マスフローコントローラM2は、ガス供給ラインL2を流れるTMSAの流量を制御する。開閉弁V2は、ALDプロセスの際にTMSAの供給・停止を切り替える。
 ガス供給ラインL3は、キャリアガスの供給源であるArガス供給源G3から延び、合流ガス供給ラインL9に接続されている。ガス供給ラインL3は、ALD法による成膜中にArガスを常時供給し、原料ガス等のキャリアガスとして機能するとともに、パージガスとしての機能も有する。ガス供給ラインL3には、Arガス供給源G3側から順に、マスフローコントローラM3及び開閉弁V3が設けられている。マスフローコントローラM3は、ガス供給ラインL3を流れるArガスの流量を制御する。開閉弁V3は、ALDプロセスの際にArガスの供給・停止を切り替える。
 ガス供給ラインL4は、反応ガスとして酸化ガス、例えば、HOガスの供給源であるHOガス供給源G4から延び、合流ガス供給ラインL9に接続されている。ガス供給ラインL4には、HOガス供給源G4側から順に、マスフローコントローラM4及び開閉弁V4が設けられている。マスフローコントローラM4は、ガス供給ラインL4を流れるHOガスの流量を制御する。開閉弁V4は、ALDプロセスの際にHOガスの供給・停止を切り替える。
 ガス供給ラインL5は、反応ガスとして窒化ガス、例えば、NHガスの供給源であるNHガス供給源G5から延び、合流ガス供給ラインL9に接続されている。ガス供給ラインL5には、NH供給源G5側から順に、マスフローコントローラM5及び開閉弁V5が設けられている。マスフローコントローラM5は、ガス供給ラインL5を流れるNHガスの流量を制御する。開閉弁V5は、ALDプロセスの際にNHガスの供給・停止を切り替える。
 ガス供給ラインL6は、ケイ素含有プリカーサのガスの供給源であるSiガス供給源G6から延び、合流ガス供給ラインL9に接続されている。ガス供給ラインL6には、Siガス供給源G6側から順に、マスフローコントローラM6及び開閉弁V6が設けられている。マスフローコントローラM6は、ガス供給ラインL6を流れるSiガスの流量を制御する。開閉弁V6は、ALDプロセスの際にSiガスの供給・停止を切り替える。
 ガス供給ラインL7は、改質ガスの供給源であるHガス供給源G7から延び、合流ガス供給ラインL9に接続されている。ガス供給ラインL7には、Hガス供給源G7側から順に、マスフローコントローラM7及び開閉弁V7が設けられている。マスフローコントローラM7は、ガス供給ラインL7を流れるHガスの流量を制御する。開閉弁V7は、ALDプロセスの際にHガスの供給・停止を切り替える。
 ガス供給ラインL8は、キャリアガスの供給源であるArガス供給源G8から延び、合流ガス供給ラインL9に接続されている。ガス供給ラインL8は、ALD法による成膜中にArガスを常時供給し、原料ガス等のキャリアガスとして機能するとともに、パージガスとしての機能も有する。ガス供給ラインL8には、Arガス供給源G8側から順に、マスフローコントローラM8及び開閉弁V8が設けられている。マスフローコントローラM8は、ガス供給ラインL8を流れるArガスの流量を制御する。開閉弁V8は、ALDプロセスの際にArガスの供給・停止を切り替える。
 [成膜方法]
 次に、図9の及び図10を用いて、図8の成膜装置10にて実行する成膜方法の第1実施例について説明する。図9は、実施形態に係る成膜方法の第1実施例を示すフローチャートである。図10は、実施形態に係る成膜方法の第1実施例を示すタイムチャートである。成膜方法の第1実施例では、SiOCN膜とSiC膜との積層膜を形成する。
 まず、図9のステップS1において、基板Wを基板支持部2に載置して準備する。基板Wは、例えば、ゲートバルブ12の開閉によりチャンバ1内に図示しない搬送装置で搬送され、基板支持部2に載置される。次に、ステップS2において、基板支持部2のヒータ21により載置された基板Wが800℃未満(例えば、350℃~500℃)の設定温度になるように制御する。また、基板支持部2を処理位置まで上昇させ、チャンバ1内を所定の真空度まで減圧する。次に、ガス供給部5は図8のバルブV3、V8を開き、ArガスをArガス供給源G3、G8からガス供給ラインL3、L8を通り、合流ガス供給ラインL9を介してチャンバ1内に供給して圧力を上昇させ、基板支持部2上の基板Wの温度を安定させる。
 続いて、ステップS3において、ガス供給部5は、原料ガスAを供給する。具体的には、図8のバルブV1を開き、原料ガス供給源G1からガス供給ラインL1を通り、合流ガス供給ラインL9を介してチャンバ1内に所定の流量の原料ガスAを供給する。また、引き続きArガス供給源G3、G8からチャンバ1内に所定の流量のArガスを供給する。バルブV2、V4~V7は閉じられている。これにより、図10に示すように、第1工程の1サイクル目の原料ガスA及びArガスの供給が開始され、基板の表面にSiとCとClの元素を含むシリコン含有膜が形成される。
 バルブV1を開いてから所定時間が経過すると、ステップS4において、原料ガスAの残留ガスを除去する。このとき、図8のバルブV1を閉じ、原料ガス供給源G1からの原料ガスAの供給を停止する。原料ガスAの供給を停止した後も引き続きバルブV3、V8は開き、図10に示すようにArガスはチャンバ1内に供給されている。これにより、Arガスによって原料ガスAがチャンバ1から排気され、原料ガスAの残留ガスが除去される。以上が、SiOCN膜を成膜するための原料ガスの供給ステップ(以下、「ステップA」とする。)である。
 次に、ステップS5において、ガス供給部5は、窒化ガスとしてNHガスを供給する。また、このとき、図8のバルブV5を開き、NHガス供給源G5からガス供給ラインL5を通り、合流ガス供給ラインL9を介してチャンバ1内に所定の流量のNHガスを供給する。また、このとき、バルブV1、V2、V4、V6、V7は閉じられている。これにより、図10に示すように、第1工程の1サイクル目の窒化ガスであるNHガスの供給が開始され、NHガスによりシリコン含有膜が窒化され、SiとCとNの元素を含むシリコン含有膜が形成される。
 バルブV5を開いてから所定時間が経過すると、ステップS6において、窒化ガスの残留ガスを除去する。このとき、図8のバルブV5を閉じ、NHガス供給源G5からのNHガスの供給を停止する。図10に示すように、NHガスの供給を停止した後も引き続きバルブV3、V8は開き、Arガスはチャンバ1内に供給されている。これにより、ArガスによってNHガスがチャンバ1から排気され、NHガスの残留ガスが除去される。以上が、SiOCN膜を成膜するための反応ガスの供給ステップ(以下、「ステップB」とする。)である。
 次に、ステップS7において、ガス供給部5は、酸化ガスとしてHOガスを供給する。また、このとき、図8のバルブV4を開き、HOガス供給源G4からガス供給ラインL4を通り、合流ガス供給ラインL9を介してチャンバ1内に所定の流量のHOガスを供給する。また、このとき、バルブV1、V2、V5~V7は閉じられている。これにより、図10に示すように、第1工程の1サイクル目の酸化ガスであるHOガスの供給が開始され、HOガスによりシリコン含有膜が酸化され、SiとCとNとOの元素を含むシリコン含有膜が形成される。
 バルブV4を開いてから所定時間が経過すると、ステップS8において、酸化ガスの残留ガスを除去する。このとき、図8のバルブV4を閉じ、HOガス供給源G4からのHOガスの供給を停止する。HOガスの供給を停止した後も引き続きバルブV3、V8は開き、Arガスはチャンバ1内に供給されている。これにより、ArガスによってHOガスがチャンバ1から排気され、HOガスの残留ガスが除去される。以上が、SiOCN膜を成膜するための酸化ガスの供給ステップ(以下、「ステップC」とする。)である。
 次に、ステップS9において、ステップA~Cが予め設定されたX回繰り返し実行されたかを判定する。Xは1以上の整数である。ステップS9において、X回実行したと判定されるまでステップA~Cが繰り返される。ステップS9において、X回実行したと判定されるとステップS10に進み、改質ガスとしてHガスを供給し、RF電力を印加する。
 このとき、図8のバルブV7を開き、Hガス供給源G7からガス供給ラインL7を通り、合流ガス供給ラインL9を介してチャンバ1内に所定の流量のHガスを供給する。また、高周波電源61からシャワーヘッド3に所定の高周波のRF電力を印加する。このとき、バルブV1、V2、V4~V6は閉じられている。これにより、図10に示すように、Xサイクル目の改質ガスであるHガスの供給及びRF電力の印加が開始され、Hガスのプラズマによりシリコン含有膜の表面が活性化されてSiとCとNとOの元素を含むシリコン含有膜が改質される。バルブV7を開いてから所定時間が経過すると、ステップS11において、バルブV7を閉じてHガスの供給を停止し、RF電力の印加を停止し、ArガスによってHガスの残留ガスを除去する。以上が、SiOCN膜を成膜するための改質ガスの供給ステップ(以下、「ステップD」とする。)である。
 以上に説明したステップA、ステップB、ステップC、ステップDは、SiOCN膜を形成する第1工程に含まれる。なお、第1工程においてステップD(改質工程)は、ステップS8とステップS9の間で実行してもよい。また、第1工程においてステップDは実行しなくてもよい。
 次に、SiC膜を形成する第2工程について説明する。ステップS12において、ガス供給部5は、炭素含有プリカーサのガスを供給する。ここでは、炭素含有プリカーサのガスの一例として、不飽和炭素結合である三重結合を有するTMSAガスが供給される。具体的には、図8のバルブV2を開き、TMSAガス供給源G2からガス供給ラインL2を通り、合流ガス供給ラインL9を介してチャンバ1内に所定の流量のTMSAガスを供給する。また、このとき、バルブV1、V4~V7は閉じられている。これにより、図10に示すように、第2工程の1サイクル目の炭素含有プリカーサ(TMSA)ガスの供給が開始され、基板の表面にSiとCの元素を含むシリコン含有膜が形成される。
 バルブV2を開いてから所定時間が経過すると、ステップS13において、TMSAガスの残留ガスを除去する。このとき、図8のバルブV2を閉じ、TMSAガス供給源G2からのTMSAガスの供給を停止する。TMSAガスの供給を停止した後も図10に示すように、引き続きバルブV3、V8は開き、Arガスはチャンバ1内に供給されている。これにより、ArガスによってTMSAガスがチャンバ1から排気され、TMSAガスの残留ガスが除去される。以上が、SiC膜を成膜するためのTMSAガスの供給ステップ(以下、「ステップE」とする。)である。
 次に、ステップS14において、ガス供給部5は、ケイ素含有プリカーサのガスとしてSiガスを供給する。また、このとき、図8のバルブV6を開き、Siガス供給源G6からガス供給ラインL6を通り、合流ガス供給ラインL9を介してチャンバ1内に所定の流量のSiガスを供給する。これにより、図10に示すように、第2工程の1サイクル目のケイ素含有プリカーサのガスであるSiガスの供給が開始され、SiガスによりTMSAを分解し、三重結合のCとSiH2ラジカルのSiとが反応してSiC結合が形成される。これにより、プラズマを用いずに、800℃未満の基板温度でSiC膜を成膜できる。
 バルブV6を開いてから所定時間が経過すると、ステップS15において、ケイ素含有プリカーサのガスの残留ガスを除去する。このとき、図8のバルブV6を閉じ、Siガス供給源G6からのSiガスの供給を停止する。Siガスの供給を停止した後も引き続きバルブV3、V8は開き、Arガスはチャンバ1内に供給されている。これにより、ArガスによってSiガスがチャンバ1から排気され、Siガスの残留ガスが除去される。以上が、SiC膜を成膜するためのケイ素含有プリカーサのガスの供給ステップ(以下、「ステップF」とする。)である。
 次に、ステップS16において、ステップE~Fが予め設定されたY回繰り返し実行されたかを判定する。Yは1以上の整数である。ステップS16において、Y回実行したと判定されるまでステップE~Fが繰り返される。ステップS16において、Y回実行したと判定されるとステップS17に進む。
 以上に説明したステップE、ステップFは、SiC膜を形成する第2工程に含まれる。なお、第2工程においても、ステップD(改質工程)を、ステップS15とステップS16の間で実行してもよい。つまり、ステップDは、第1工程及び/又は第2工程で行うことができる。
 また、ステップC(酸化工程)を、ステップS15とステップS16の間で実行してもよい。つまり、ステップCは、第1工程及び/又は第2工程で行うことができる。
 次に、ステップS17において、ステップA~F(第1工程及び第2工程)が予め設定されたZ回繰り返し実行されたかを判定する。Zは1以上の整数である。ステップS17において、Z回実行したと判定されるまでステップA~Fが繰り返される。ステップS17において、Z回実行したと判定されるとステップS18に進み、基板を搬出し、本処理を終了する。
 本開示の成膜方法では、第1工程の繰り返し回数を示すXと、第2工程の繰り返し回数を示すYと、第1工程と第2工程とをこの順で第1工程についてX回、第2工程についてY回繰り返す一連の工程の繰り返し回数Zと、の少なくともいずれを制御する。これにより、SiOCN膜とSiC膜との少なくともいずれの厚さを調整することができる。これにより、SiOCN膜中のC濃度を精度よく制御することができる。例えば、SiOCN膜は、SiC膜よりも厚くなるように、繰り返し回数X,Y,Zの少なくともいずれを制御してもよい。これによっても、SiOCN膜中のC濃度を制御することができる。
 以上に説明した第1実施例では、基板上にケイ素(Si)と酸素(O)と炭素(C)との元素を含むSiOCN膜を形成する工程と、基板上にケイ素と炭素の元素を含むSiC膜を形成する工程と、を含む成膜方法が提供される。これにより、SiOCN膜の炭素濃度を上げることができる。これにより、SiOCN膜のエッチング耐性及びアッシング耐性を向上させることができる。
<第2実施例>
 [成膜装置]
 次に、図11を用いて、成膜方法の第2実施例において使用する成膜装置10について説明する。図11の成膜装置10が、成膜方法の第1実施例において使用した図8の成膜装置10と異なる点は、ガス供給部5の構成のみであるため、ここではガス供給部5以外の構成の説明を省略する。
 図11のガス供給部5は、ガス供給ラインL1~L3、L6~L8及び合流ガス供給ラインL9を有する。ガス供給ラインL1は、原料ガスBの供給源である原料ガス供給源G1から延び、合流ガス供給ラインL9に接続されている。ガス供給ラインL1には、原料ガス供給源G1側から順に、マスフローコントローラM1及び開閉弁V1が設けられている。マスフローコントローラM1は、ガス供給ラインL1を流れる原料ガスBの流量を制御する。開閉弁V1は、ALDプロセスの際に原料ガスBの供給・停止を切り替える。
 ガス供給ラインL2は、炭素含有プリカーサのガスの供給源であるTMSA供給源G2から延び、合流ガス供給ラインL9に接続されている。ガス供給ラインL2には、TMSA供給源G2側から順に、マスフローコントローラM2及び開閉弁V2が設けられている。マスフローコントローラM2は、ガス供給ラインL2を流れるTMSAの流量を制御する。開閉弁V2は、ALDプロセスの際にTMSAの供給・停止を切り替える。
 ガス供給ラインL3は、キャリアガスの供給源であるArガス供給源G3から延び、合流ガス供給ラインL9に接続されている。これにより、ガス供給ラインL3を介して合流ガス供給ラインL9側にArガスが供給される。ガス供給ラインL3は、ALD法による成膜中にArガスを常時供給し、原料ガスBのキャリアガスとして機能するとともに、パージガスとしての機能も有する。ガス供給ラインL3には、Arガス供給源G3側から順に、マスフローコントローラM3及び開閉弁V3が設けられている。マスフローコントローラM3は、ガス供給ラインL3を流れるArガスの流量を制御する。開閉弁V3は、ALDプロセスの際にArガスの供給・停止を切り替える。
 ガス供給ラインL6は、ケイ素含有プリカーサのガスの供給源であるSiガス供給源G6から延び、合流ガス供給ラインL9に接続されている。ガス供給ラインL6には、Siガス供給源G6側から順に、マスフローコントローラM6及び開閉弁V6が設けられている。マスフローコントローラM6は、ガス供給ラインL6を流れるSiガスの流量を制御する。開閉弁V6は、ALDプロセスの際にSiガスの供給・停止を切り替える。
 ガス供給ラインL7は、改質ガスの供給源であるHガス供給源G7から延び、合流ガス供給ラインL9に接続されている。ガス供給ラインL7には、Hガス供給源G7側から順に、マスフローコントローラM7及び開閉弁V7が設けられている。マスフローコントローラM7は、ガス供給ラインL7を流れるHガスの流量を制御する。開閉弁V7は、ALDプロセスの際にHガスの供給・停止を切り替える。
 ガス供給ラインL8は、キャリアガスの供給源であるArガス供給源G8から延び、合流ガス供給ラインL9に接続されている。ガス供給ラインL8は、ALD法による成膜中にArガスを常時供給し、原料ガス等のキャリアガスとして機能するとともに、パージガスとしての機能も有する。ガス供給ラインL8には、Arガス供給源G8側から順に、マスフローコントローラM8及び開閉弁V8が設けられている。マスフローコントローラM8は、ガス供給ラインL8を流れるArガスの流量を制御する。開閉弁V8は、ALDプロセスの際にArガスの供給・停止を切り替える。
 [成膜方法]
 次に、図12及び図13を用いて、図11の成膜装置10にて実行する成膜方法の第2実施例について説明する。図12は、実施形態に係る成膜方法の第2実施例を示すフローチャートである。図13は、実施形態に係る成膜方法の第2実施例を示すタイムチャートである。成膜方法の第2実施例では、SiOC膜とSiC膜との積層膜を形成する。
 まず、図12のステップS1において、基板Wを基板支持部2に載置して準備し、ステップS2において、基板Wが800℃未満の設定温度になるように制御する。図11のバルブV3、V8を開き、Arガスをチャンバ1内に供給して圧力を上昇させ、基板支持部2上の基板Wの温度を安定させる。
 続いて、ステップS3’において、ガス供給部5は、原料ガスBを供給する。具体的には、図11のバルブV1を開き、原料ガス供給源G1からガス供給ラインL1を通り、合流ガス供給ラインL9を介してチャンバ1内に所定の流量の原料ガスBを供給する。また、Arガス供給源G3、G8からガス供給ラインL3、L8を通り、合流ガス供給ラインL9を介してチャンバ1内に所定の流量のArガスを供給する。また、このとき、バルブV2、V6、V7は閉じられている。これにより、図13に示すように、第1工程の1サイクル目の原料ガスB及びArガスの供給が開始され、基板の表面にSiとCの元素を含むシリコン含有膜が形成される。
 バルブV1を開いてから所定時間が経過すると、ステップS4’において、原料ガスBの残留ガスを除去する。このとき、図11のバルブV1を閉じ、原料ガス供給源G1からの原料ガスBの供給を停止する。原料ガスBの供給を停止した後も引き続きバルブV3、V8は開き、図13に示すようにArガスはチャンバ1内に供給されている。これにより、Arガスによって原料ガスBがチャンバ1から排気され、原料ガスBの残留ガスが除去される。以上が、SiOC膜を成膜するための原料ガスの供給ステップ(以下、「ステップA’」とする。)である。
 次に、ステップS10において、改質ガスとしてHガスを供給し、RF電力を印加する。このとき、図11のバルブV7を開き、Hガス供給源G7からガス供給ラインL7を通り、合流ガス供給ラインL9を介してチャンバ1内に所定の流量のHガスを供給する。また、高周波電源61からシャワーヘッド3に所定の高周波のRF電力を印加する。このとき、バルブV1、V2、V6は閉じられている。これにより、図13に示すように、第1工程の1サイクル目の改質ガスであるHガスの供給及びRF電力の印加が開始され、Hガスのプラズマによりシリコン含有膜の表面が活性化されてSiとCとOの元素を含むシリコン含有膜が改質される。バルブV7を開いてから所定時間が経過すると、ステップS11において、バルブV7を閉じてHガスの供給を停止し、RF電力の印加を停止し、ArガスによってHガスの残留ガスを除去する。以上が、SiOC膜を成膜するための改質ガスの供給ステップ(「ステップD」)である。
 次に、ステップS9において、ステップA’及びステップDが予め設定されたX回繰り返し実行されたかを判定する。Xは1以上の整数である。ステップS9において、X回実行したと判定されるまでステップA’及びステップDが繰り返され、X回実行したと判定されるとステップS12に進む。以上に説明したステップA’及びステップDは、SiOC膜を形成する第1工程に含まれる。
 次に、SiC膜を形成する第2工程については、第1実施例と同じステップS12及びS13(ステップE)、ステップS14及びS15(ステップF)、ステップS16及びS17を行う。
 以上に説明した第2実施例では、基板上にケイ素(Si)と酸素(O)と炭素(C)との元素を含むSiOC膜を形成する第1工程と、基板上にケイ素と炭素の元素を含むSiC膜を形成する第2工程とを含む成膜方法が提供される。これにより、SiOC膜の炭素濃度を上げることができる。これにより、SiOC膜のエッチング耐性及びアッシング耐性を向上させることができる。
 以上に説明したように、本実施形態によれば、(a)基板を準備する工程と、(b)基板上にケイ素と酸素と炭素との元素を含む第1の膜を形成する工程と、(c)基板上にケイ素と炭素の元素を含む第2の膜を形成する工程と、を含む成膜方法を提供できる。
 また、基板を準備する工程と、基板上にケイ素と酸素との元素を含む第1の膜を形成する工程と、基板上にケイ素と炭素の元素を含む第2の膜を形成する工程と、を含む成膜方法を提供できる。これにより、シリコン含有膜の炭素濃度の制御性を向上させることができる。
 今回開示された実施形態に係る成膜方法及び成膜装置は、すべての点において例示であって制限的なものではないと考えられるべきである。実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で変形及び改良が可能である。上記複数の実施形態に記載された事項は、矛盾しない範囲で他の構成も取り得ることができ、また、矛盾しない範囲で組み合わせることができる。
 本願は、日本特許庁に2020年10月20日に出願された基礎出願2020-176314号の優先権を主張するものであり、その全内容を参照によりここに援用する。
10    成膜装置
1     チャンバ
2     基板支持部
3     シャワーヘッド
4     排気部
5     ガス供給部
6     制御部
L1-L8 ガス供給ライン
L9    合流ガス供給ライン
G1    原料ガス供給源
G2    TMSA供給源
G3、G8 Arガス供給源
G4    HOガス供給源
G5    NHガス供給源
G6    Siガス供給源
G7    Hガス供給源

Claims (13)

  1.  (a)基板を準備する工程と、
     (b)基板上にケイ素(Si)と酸素(O)と炭素(C)との元素を含む第1の膜を形成する工程と、
     (c)基板上にケイ素と炭素との元素を含む第2の膜を形成する工程と、
     を含む成膜方法。
  2.  前記(b)の工程は、少なくともケイ素と炭素との元素を含む原料ガスと、窒素(N)の元素を含む反応ガスと、を交互に繰り返し供給し、前記第1の膜を形成することを含む、
     請求項1に記載の成膜方法。
  3.  前記(b)の工程は、(d)さらに酸素(O)の元素を含む酸化ガスを供給し、前記第1の膜を酸化させる工程を含む、
     請求項1又は2に記載の成膜方法。
  4.  前記(d)の工程は、前記(b)の工程及び/又は前記(c)の工程で実行する、
     請求項3に記載の成膜方法。
  5.  前記(b)の工程は、ケイ素、炭素、及び酸素との元素を含む原料ガスを供給し、前記第1の膜を形成することを含む、
     請求項1に記載の成膜方法。
  6.  (e)さらに水素(H)の元素を含む改質ガスを供給し、前記改質ガスのプラズマにより前記第1の膜を改質する工程を含む、
     請求項1~5のいずれか一項に記載の成膜方法。
  7.  前記(e)の工程は、前記(b)の工程及び/又は前記(c)の工程で実行する、
     請求項6に記載の成膜方法。
  8.  前記(c)の工程は、炭素含有プリカーサのガスとケイ素含有プリカーサのガスとを交互に繰り返し供給し、前記第2の膜を形成することを含む、
     請求項1~7のいずれか一項に記載の成膜方法。
  9.  前記炭素含有プリカーサのガスは、不飽和炭素結合を有する有機化合物を含むガスである、
     請求項8に記載の成膜方法。
  10.  前記ケイ素含有プリカーサのガスは、炭素を含有しないガスである、
     請求項8又は9に記載の成膜方法。
  11.  前記(b)の工程の繰り返し回数Xと、前記(c)の工程の繰り返し回数Yと、前記(b)の工程と前記(c)の工程とを前記(b)の工程についてX回、前記(c)の工程についてY回繰り返す一連の工程の繰り返し回数Zと、の少なくともいずれを制御し、前記第1の膜と前記第2の膜との少なくともいずれの厚さを調整する、
     請求項1~10のいずれか一項に記載の成膜方法。
  12.  前記第1の膜は、前記第2の膜よりも厚い、
     請求項1~11のいずれか一項に記載の成膜方法。
  13.  基板を処理する処理室を有するチャンバと、
     前記チャンバ内にガスを供給するガス供給部と、
     制御部と、を有し、
     前記制御部は、
     (a)基板を準備する工程と、
     (b)前記ガス供給部から前記チャンバ内にケイ素と酸素と炭素との元素を含むガスを供給し、基板上にケイ素と酸素と炭素との元素を含む第1の膜を形成する工程と、
     (c)前記ガス供給部から前記チャンバ内にケイ素と炭素との元素を含むガスを供給し、基板上にケイ素と炭素との元素を含む第2の膜を形成する工程と、
     を実行する、成膜装置。
PCT/JP2021/037444 2020-10-20 2021-10-08 成膜方法及び成膜装置 WO2022085498A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020176314A JP2022067559A (ja) 2020-10-20 2020-10-20 成膜方法及び成膜装置
JP2020-176314 2020-10-20

Publications (1)

Publication Number Publication Date
WO2022085498A1 true WO2022085498A1 (ja) 2022-04-28

Family

ID=81290373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037444 WO2022085498A1 (ja) 2020-10-20 2021-10-08 成膜方法及び成膜装置

Country Status (2)

Country Link
JP (1) JP2022067559A (ja)
WO (1) WO2022085498A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024025270A (ja) 2022-08-12 2024-02-26 東京エレクトロン株式会社 成膜方法および成膜装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544533A (ja) * 2005-06-21 2008-12-04 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 誘電体膜の形成方法及び該方法を実施するための新規な前駆体
JP2013538288A (ja) * 2010-07-21 2013-10-10 ダウ コーニング フランス 基板のプラズマ処理
JP2014514454A (ja) * 2011-04-27 2014-06-19 ダウ コーニング フランス 基板のプラズマ処理
JP2020136387A (ja) * 2019-02-15 2020-08-31 東京エレクトロン株式会社 成膜方法、成膜処理用の処理容器のクリーニング方法及び成膜装置
WO2020178973A1 (ja) * 2019-03-05 2020-09-10 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP2020150206A (ja) * 2019-03-15 2020-09-17 東京エレクトロン株式会社 成膜方法及び成膜装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544533A (ja) * 2005-06-21 2008-12-04 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 誘電体膜の形成方法及び該方法を実施するための新規な前駆体
JP2013538288A (ja) * 2010-07-21 2013-10-10 ダウ コーニング フランス 基板のプラズマ処理
JP2014514454A (ja) * 2011-04-27 2014-06-19 ダウ コーニング フランス 基板のプラズマ処理
JP2020136387A (ja) * 2019-02-15 2020-08-31 東京エレクトロン株式会社 成膜方法、成膜処理用の処理容器のクリーニング方法及び成膜装置
WO2020178973A1 (ja) * 2019-03-05 2020-09-10 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
JP2020150206A (ja) * 2019-03-15 2020-09-17 東京エレクトロン株式会社 成膜方法及び成膜装置

Also Published As

Publication number Publication date
JP2022067559A (ja) 2022-05-06

Similar Documents

Publication Publication Date Title
US7651730B2 (en) Method and apparatus for forming silicon oxide film
KR100841866B1 (ko) 반도체 디바이스의 제조 방법 및 기판 처리 장치
US7462571B2 (en) Film formation method and apparatus for semiconductor process for forming a silicon nitride film
US7825039B2 (en) Vertical plasma processing method for forming silicon containing film
US7300885B2 (en) Film formation apparatus and method for semiconductor process
US7351668B2 (en) Film formation method and apparatus for semiconductor process
US20120064733A1 (en) Method of manufacturing semiconductor device and substrate processing apparatus
JP2011097017A (ja) 半導体装置の製造方法および基板処理装置
US9234277B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US7427572B2 (en) Method and apparatus for forming silicon nitride film
CN110896023A (zh) 半导体装置的制造方法、基板处理装置及记录介质
KR20200097646A (ko) 기판 처리 방법 및 성막 시스템
JP2007035740A (ja) 成膜方法、成膜装置及び記憶媒体
WO2020184284A1 (ja) 成膜方法および成膜装置
JP6902958B2 (ja) シリコン膜の形成方法および形成装置
WO2022085498A1 (ja) 成膜方法及び成膜装置
JP2019062074A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
KR20190065129A (ko) 반도체 장치의 제조 방법 및 성막 장치
JP2014116626A (ja) 半導体装置の製造方法、基板処理方法および基板処理装置
WO2022080192A1 (ja) 基板処理方法及び基板処理装置
US20220301851A1 (en) Method of manufacturing semiconductor device, substrate processing method, recording medium, and substrate processing apparatus
JP2024047208A (ja) 基板処理方法、半導体装置の製造方法、基板処理システム、およびプログラム
JPWO2019012797A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP2019102780A (ja) 半導体装置の製造方法及び成膜装置
TWI785510B (zh) 基板處理裝置、半導體裝置之製造方法及記錄媒體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882639

Country of ref document: EP

Kind code of ref document: A1