WO2020162533A1 - ポリカーボネート樹脂組成物及びそれを用いた光学レンズ - Google Patents

ポリカーボネート樹脂組成物及びそれを用いた光学レンズ Download PDF

Info

Publication number
WO2020162533A1
WO2020162533A1 PCT/JP2020/004522 JP2020004522W WO2020162533A1 WO 2020162533 A1 WO2020162533 A1 WO 2020162533A1 JP 2020004522 W JP2020004522 W JP 2020004522W WO 2020162533 A1 WO2020162533 A1 WO 2020162533A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
resin composition
represented
formula
composition according
Prior art date
Application number
PCT/JP2020/004522
Other languages
English (en)
French (fr)
Inventor
健太朗 石原
克吏 西森
加藤 宣之
章子 鈴木
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020217019372A priority Critical patent/KR20210124193A/ko
Priority to JP2020571254A priority patent/JPWO2020162533A1/ja
Priority to CN202080012710.XA priority patent/CN113439099B/zh
Priority to EP20752110.5A priority patent/EP3922658B1/en
Priority to US17/428,388 priority patent/US20220135738A1/en
Publication of WO2020162533A1 publication Critical patent/WO2020162533A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to a polycarbonate resin composition having a well-balanced refractive index and Abbe number, and an optical lens using the same.
  • PC Polycarbonate resin
  • bisphenol A 2,2-bis(4-hydroxyphenyl)propane
  • the polycarbonate resin obtained from the above is used in many fields because it has excellent transparency, heat resistance, and mechanical properties such as impact resistance. In optical fields such as various lenses and optical discs, their properties such as impact resistance, transparency, and low water absorption have attracted attention and occupy an important position as materials for optical applications.
  • thermosetting resin represented by CR-39 diethylene glycol bisallyl carbonate
  • the polycarbonate resin obtained by reacting bisphenol A with a carbonate precursor substance such as phosgene or diphenyl carbonate has a high refractive index, but has a low Abbe number, so that the problem of chromatic aberration easily occurs, and the balance between the refractive index and the Abbe number is high. Has the drawback of being bad. Further, it has a drawback that the photoelastic constant is large and the birefringence of the molded product becomes large.
  • Patent Documents 1 to 5 Some copolymer polycarbonate resins of an aromatic dihydroxy compound and an aliphatic diol have been proposed (Patent Documents 1 to 5). With these techniques, the refractive index and Abbe number are still low, the photoelastic constant is large, the birefringence of the molded product is large, and the moldability and heat resistance are insufficient, and a satisfactory molded product cannot be obtained. There was a problem such as coloring.
  • JP-A-1-66234 Japanese Laid-Open Patent Publication No. 10-120777 Japanese Patent Laid-Open No. 11-228683 Japanese Patent Laid-Open No. 11-349676 JP-A-2000-63506
  • the present invention has an object to solve at least one of the problems in the conventional art. Another object of the present invention is to provide a polycarbonate resin composition having a well-balanced refractive index and Abbe number, and an optical lens using the same. Further, it is an object of the present invention to provide a polycarbonate resin composition having excellent heat resistance and molding cycle property, and an optical lens using the same.
  • a polycarbonate resin composition comprising a constitutional unit represented by the following formula (1), a constitutional unit represented by the following formula (2), and a constitutional unit represented by the following general formula (3).
  • R 1 to R 4 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 6 carbon atoms, or an oxygen atom or nitrogen.
  • Atoms and sulfur atoms which may contain a heterocyclic atom selected from a sulfur atom, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 7 to 17 carbon atoms.
  • ⁇ 2> The polycarbonate resin composition according to ⁇ 1>, wherein the antioxidant is contained in the polycarbonate resin composition in an amount of 0.50% by mass or less.
  • the antioxidant is triethylene glycol-bis[3-(3-tert-butyl-5-methyl-4-hydroxyphenyl)propionate], 1,6-hexanediol-bis[3-(3, 5-di-tert-butyl-4-hydroxyphenyl)propionate], pentaerythritol-tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3,5 -Di-tert-butyl-4-hydroxyphenyl)propionate, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, N,N -Hexamethylene bis(3,5-
  • ⁇ 5> The polycarbonate resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the polycarbonate resin contained in the polycarbonate resin composition has a phenol content of 0.1 to 3000 ppm.
  • ⁇ 6> The polycarbonate resin composition according to any one of ⁇ 1> to ⁇ 5>, wherein the content of carbonic acid diester in the polycarbonate resin contained in the polycarbonate resin composition is 0.1 to 1000 ppm.
  • Tg glass transition temperature
  • ⁇ 12> The polycarbonate resin according to any one of ⁇ 1> to ⁇ 11>, which has a refractive index (nD) of 1.565 to 1.600 and an Abbe's number (v) of 26 to 32. It is a composition.
  • Tg glass transition temperature
  • nD refractive index
  • v Abbe's number
  • ⁇ 14> The polycarbonate resin composition according to any one of ⁇ 1> to ⁇ 13>, which has a weight average molecular weight (Mw) of 10,000 to 70,000.
  • Mw weight average molecular weight
  • ⁇ 16> The optical lens according to ⁇ 15>, which has a thickness of 0.01 to 30 mm.
  • a polycarbonate resin composition having a well-balanced refractive index and Abbe number can be obtained, and particularly at a specific copolymerization ratio, a polycarbonate resin composition having good heat resistance and molding cycle property can be obtained.
  • the polycarbonate resin composition of the present invention is most suitable for optical lenses.
  • FIG. 1 is a graph showing the relationship between Abbe number and refractive index in the polycarbonate resin compositions obtained in Examples and Comparative Examples.
  • the polycarbonate resin composition of the present invention is a polycarbonate resin containing a constitutional unit represented by the above formula (1), a constitutional unit represented by the above formula (2), and a constitutional unit represented by the above general formula (3). Including at least. These constituent units are derived from a diol compound represented by the following formula (1′), a diol compound represented by the following formula (2′), and a diol compound represented by the following general formula (3′), respectively. It is a thing.
  • the diol compound represented by the above formula (1′) is SPG (spiroglycol: 3,9-bis(1,1-dimethyl-2-hydroxyethyl)-2,4,8,10-tetraoxa It is a diol compound called spiro[5.5]undecane), and in the present invention, a commercially available product or a synthesized product may be used.
  • the diol compound represented by the above formula (2′) is a diol compound called Bis-TMC (1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane).
  • a commercially available product or a synthesized product may be used.
  • R 1 to R 4 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group having 1 to 6 carbon atoms, or an oxygen atom or nitrogen.
  • Atoms and sulfur atoms which may contain a heterocyclic atom selected from a sulfur atom, an aryl group having 6 to 20 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 7 to 17 carbon atoms. Represents an aralkyl group of.
  • R 1 and R 2 each independently represent a hydrogen atom, a methyl group, an ethyl group, or a phenyl group
  • R 3 and R 4 each independently represent a hydrogen atom or a phenyl group.
  • .. p, q, r and s each independently represent an integer of 0 to 4, preferably p and q represent 1 and r and s represent 0.
  • i represents an integer of 1 to 10, preferably an integer of 1 to 4, and more preferably 2.
  • ii represents an integer of 0 to 10, preferably an integer of 1 to 3, and more preferably 1.
  • the structural unit represented by the general formula (3) is When used as an optical lens, it is preferable that the refractive index and the Abbe number are well balanced.
  • BPEF 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene
  • BPPEF 9,9-bis[9 4-(2-hydroxyethoxy)-3-phenylphenyl]fluorene
  • constitutional unit represented by the formula (1) (constitutional unit (mole) represented by the formula (1))/(represented by the formula (1)
  • the structural unit (mol)+the structural unit (mol) represented by the formula (2)+the structural unit (mol) represented by the general formula (3)) ⁇ 100 is preferably 8 to 32 mol %. It is more preferably ⁇ 30 mol %, particularly preferably 15 ⁇ 25 mol %.
  • the structural unit (mol) represented by the formula (2)+the structural unit (mol) represented by the general formula (3)) ⁇ 100 is preferably 28 to 52 mol %, more preferably 30 to 48 mol %. It is preferably 33 to 42 mol% and particularly preferably.
  • constitutional unit represented by the general formula (3) (constitutional unit represented by the general formula (3) (mol))/(constitutional unit represented by the formula (1) (mole) )+structural unit (mol) represented by the formula (2)+structural unit (mol) represented by the general formula (3)) ⁇ 100 is preferably 28 to 52 mol %, and 32 to 50 mol %. Is more preferable, and 38 to 48 mol% is particularly preferable.
  • the polycarbonate resin used in the polycarbonate resin composition of the present invention includes, as a monomer, a diol compound represented by the above formula (1′), a diol compound represented by the above formula (2′), and the above general formula (3′). ) A ternary resin produced by using the diol compound represented by the formula (1) or a diol compound other than these diol compounds may be contained.
  • diol compounds include, for example, 4,4'-biphenyldiol, bis(4-hydroxyphenyl)methane, bis(2-hydroxyphenyl)methane, 2,4'-dihydroxydiphenylmethane, bis(4-hydroxyphenyl)ether, bis(4-hydroxyphenyl) Sulfone, 2,4'-dihydroxydiphenyl sulfone, bis(2-hydroxyphenyl) sulfone, bis(4-hydroxy-3-methylphenyl) sulfone, bis(4-hydroxyphenyl) sulfoxide, bis(4-hydroxyphenyl) sulfide , Bis(4-hydroxyphenyl)ketone, 1,1-bis(4-hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, bis(4-hydroxyphenyl)diphenylmethane, 2 ,2-bis(4-hydroxyphenyl)propane, 2,
  • the polycarbonate resin composition may include any of a random copolymer structure, a block copolymer structure, and an alternating copolymer structure.
  • the polystyrene equivalent weight average molecular weight (Mw) of the polycarbonate resin composition may be preferably 10,000 to 70,000.
  • the polystyrene reduced weight average molecular weight (Mw) of the polycarbonate resin composition is more preferably 20,000 to 50,000, and particularly preferably 30,000 to 45,000.
  • Mw weight average molecular weight
  • the polystyrene-reduced weight average molecular weight (Mw) of the polycarbonate resin composition is within the above range, it is possible to prevent the molded body from becoming brittle, and to take out the resin after production so that the melt viscosity does not become excessively high. In addition, the fluidity can be improved, and injection molding in a molten state can be facilitated.
  • the polycarbonate resin/fat composition may be blended with the above-mentioned polycarbonate resin and other resin to be used for manufacturing an optical lens.
  • other resins include, but are not limited to, polyester carbonate, polyamide, polyacetal, modified polyphenylene ether, polyester (eg, polyethylene terephthalate, polybutylene terephthalate), and the like.
  • the polycarbonate resin composition may include an antioxidant and a release agent as additives.
  • Antioxidants include triethylene glycol-bis[3-(3-tert-butyl-5-methyl-4-hydroxyphenyl)propionate] and 1,6-hexanediol-bis[3-(3,5-di -Tert-butyl-4-hydroxyphenyl)propionate], pentaerythritol-tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3,5-di- tert-butyl-4-hydroxyphenyl)propionate, 1,3,5-trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, N,N-hexamethylene Bis(3,5-di-tert-butyl-4-hydroxy-hydrocinnamide), 3,5-di-tert-butyl-4-hydroxy-benzylphosphonate-diethyl este
  • the content of the antioxidant is preferably 0.50% by mass or less in the polycarbonate resin composition, more preferably 0.05 to 0.40% by mass, and 0.05 to 0.20. %, or 0.10 to 0.40% by mass is more preferable, and 0.20 to 0.40% by mass is particularly preferable.
  • esters of alcohols and fatty acids include esters of monohydric alcohols and fatty acids, and partial or total esters of polyhydric alcohols and fatty acids.
  • the ester of monohydric alcohol and fatty acid is preferably ester of monohydric alcohol having 1 to 20 carbon atoms and saturated fatty acid having 10 to 30 carbon atoms.
  • partial ester or total ester of polyhydric alcohol and fatty acid partial ester or total ester of polyhydric alcohol having 1 to 25 carbon atoms and saturated fatty acid having 10 to 30 carbon atoms is preferable.
  • ester of monohydric alcohol and saturated fatty acid examples include stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate, isopropyl palmitate and the like.
  • a partial ester or a full ester of a polyhydric alcohol and a saturated fatty acid examples include stearic acid monoglyceride, stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid monosorbitate, behenic acid monoglyceride, capric acid monoglyceride, lauric acid monoglyceride, Diesters such as pentaerythritol monostearate, pentaerythritol tetrastearate, pentaerythritol tetrapelargonate, propylene glycol monostearate, biphenyl biphenate, sorbitan monostearate, 2-ethylhexy
  • the content of the releasing agent in the polycarbonate resin composition is preferably 0.50% by mass or less, more preferably 0.01 to 0.10% by mass, and 0.02 to 0.05% by mass.
  • the content is more preferably the mass%, and particularly preferably 0.03 to 0.05 mass%.
  • the polycarbonate resin composition of the present invention contains, as other additives, a processing stabilizer, an ultraviolet absorber, a fluidity modifier, a crystal nucleating agent, a reinforcing agent, a dye, an antistatic agent, a bluing agent, an antibacterial agent. Etc. may be added.
  • phenol produced during the production, diol and carbonic acid diester, which are the monomers remaining without reaction, may be present as impurities.
  • the content of phenol in the polycarbonate resin is preferably 0.1 to 3000 ppm, more preferably 0.1 to 2000 ppm, and more preferably 1 to 1000 ppm, 1 to 800 ppm, 1 to 500 ppm, or 1 to 300 ppm. Is particularly preferable.
  • the diol content in the polycarbonate resin is preferably 0.1 to 5000 ppm, more preferably 1 to 3000 ppm, even more preferably 1 to 1000 ppm, and particularly preferably 1 to 500 ppm.
  • the content of carbonic acid diester in the polycarbonate resin is preferably 0.1 to 1000 ppm, more preferably 0.1 to 500 ppm, and particularly preferably 1 to 100 ppm.
  • a resin having physical properties according to the purpose can be obtained.
  • the contents of phenol and carbonic acid diester can be adjusted appropriately by changing the polycondensation conditions and equipment. It can also be adjusted depending on the conditions of the extrusion process after polycondensation.
  • the polycarbonate resin can be produced according to the method described in WO2018/016516. Specifically, a diol compound represented by the formula (1′), a diol compound represented by the formula (2′), a diol compound represented by the general formula (3′), and a carbonic acid diester, etc. And a carbonate precursor of (1) are reacted by a melt polycondensation method in the presence of a basic compound catalyst and/or a transesterification catalyst or in the absence of a catalyst under heating and further under normal pressure or reduced pressure. be able to.
  • the method for producing the polycarbonate resin composition of the present invention is not limited to the above production method.
  • the polycarbonate resin composition preferably has a wavelength of 587.6 nm and a refractive index at 23° C. of 1.565 to 1.600, more preferably 1.585 to 1.600. The range of 1.585 to 1.590 is particularly preferable.
  • the polycarbonate resin composition of the present invention has a high refractive index and is suitable as an optical lens material. The refractive index can be measured using an Abbe refractometer according to JIS-K-7142:2014.
  • the polycarbonate resin composition preferably has an Abbe number at 23° C. of 26 to 32, more preferably 27 to 31, and particularly preferably 28 to 30.
  • the Abbe number can be calculated by an Abbe refractometer and measured by the method described in Examples below.
  • the refractive index (nD) and the Abbe number (v) in the polycarbonate resin composition satisfy the following relational expressions. -0.0130v +1.9480 ⁇ nD ⁇ -0.0130v +1.9900 More preferably, the refractive index (nD) and the Abbe number (v) satisfy the following relational expressions. -0.0130v +1.9480 ⁇ nD ⁇ -0.0065v +1.7785 By satisfying such a relational expression, a well-balanced relationship between the refractive index and the Abbe number is obtained, which is preferable.
  • the glass transition temperature (Tg) of the polycarbonate resin composition is preferably 140 to 200°C, more preferably 145 to 160°C, and particularly preferably 150 to 160°C.
  • Tg glass transition temperature
  • the glass transition temperature (Tg) of the polycarbonate resin composition is within the above range, it is convenient for injection molding.
  • Tg is lower than 140° C., the operating temperature range becomes narrow, which is not preferable.
  • the temperature exceeds 200° C., the melting temperature of the resin becomes high, and decomposition or coloring of the resin easily occurs, which is not preferable.
  • the difference between the mold temperature and the resin glass transition temperature becomes large in a general-purpose mold temperature controller. Therefore, in applications where strict surface accuracy is required for products, it is difficult to use a resin having a glass transition temperature that is too high, which is not preferable.
  • the polycarbonate resin composition of the present invention has high resistance to moist heat.
  • the moist heat resistance is evaluated by performing a "PCT test" (pressure cooker test) on an optical molded body obtained using the polycarbonate resin composition and measuring the total light transmittance of the optical molded body after the test. be able to.
  • the PCT test is carried out by holding an injection-molded article having a diameter of 50 mm and a thickness of 3 mm obtained by the method described in the following examples under the conditions of 120° C., 0.2 MPa, 100% RH, and 20 hours.
  • the polycarbonate resin composition of the present invention preferably has a total light transmittance after the PCT test of 60% or more, more preferably 70% or more, even more preferably 75% or more, and 80%.
  • the above is particularly preferable.
  • the total light transmittance is 60% or more, it can be said that the polycarbonate resin has high resistance to moist heat.
  • the total light transmittance can be measured by the method described in the following examples.
  • the b value of the polycarbonate resin composition of the present invention is preferably 5 or less.
  • the b value can be measured by the method described in the examples below.
  • the amount of residual phenol contained in the polycarbonate resin composition of the present invention is preferably 500 ppm or less, more preferably 300 ppm or less, further preferably 150 ppm or less, and particularly preferably 50 ppm or less. It is considered that residual phenol is contained in a small amount, which has the advantages of increasing thermoplasticity and providing an antibacterial action.
  • the amount of residual diphenyl carbonate (DPC) contained in the polycarbonate resin composition of the present invention is preferably 200 ppm or less, more preferably 150 ppm or less, further preferably 100 ppm or less, and 50 ppm or less. Is particularly preferable.
  • residual diphenyl carbonate (DPC) is considered to have an advantage that hydrolysis during melt molding can be prevented by containing a small amount of diphenyl carbonate (DPC).
  • the optical lens of the present invention can be obtained by injection molding the above-mentioned polycarbonate resin composition of the present invention into a lens shape by an injection molding machine or an injection compression molding machine.
  • the optical lens can be manufactured according to the method described in WO2018/016516.
  • the molding conditions for injection molding are not particularly limited, but the molding temperature is preferably 180 to 300°C, more preferably 180 to 290°C.
  • the injection pressure is preferably 50 to 1700 kg/cm 2 .
  • the molding environment In order to avoid foreign matter from entering the optical lens as much as possible, the molding environment must also be a low dust environment, and is preferably class 1000 or less, more preferably class 100 or less.
  • the optical lens of the present invention is preferably used in the form of an aspherical lens, if necessary. Since it is possible to reduce the spherical aberration to substantially zero with a single lens, it is not necessary to remove the spherical aberration by combining a plurality of spherical lenses, and it is possible to reduce the weight and the production cost. It will be possible. Therefore, the aspherical lens is particularly useful as a camera lens among optical lenses.
  • the astigmatism of the aspherical lens is preferably 0 to 15 m ⁇ , more preferably 0 to 10 m ⁇ .
  • the thickness of the optical lens of the present invention can be set in a wide range according to the application and is not particularly limited, but is preferably 0.01 to 30 mm, more preferably 0.1 to 15 mm.
  • a coating layer such as an antireflection layer or a hard coat layer may be provided on the surface of the optical lens of the present invention.
  • the antireflection layer may be a single layer or a multilayer, and may be an organic substance or an inorganic substance, but is preferably an inorganic substance. Specific examples include oxides or fluorides of silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, cerium oxide, magnesium oxide, magnesium fluoride, and the like.
  • the antireflection layer is not particularly limited in terms of the combination of single layer/multilayer and the combination of components and thickness thereof, but preferably has a two-layer structure or a three-layer structure, particularly preferably a three-layer structure.
  • the antireflection layer as a whole is preferably formed to a thickness of 0.00017 to 3.3% of the thickness of the optical lens, specifically 0.05 to 3 ⁇ m, particularly preferably 1 to 2 ⁇ m.
  • ⁇ Refractive index (nD)> The 0.1 mm-thick film made of the polycarbonate resin obtained below was measured for the refractive index (nD) at 23° C. at a wavelength of 587.6 nm by an Abbe refractometer according to the method of JIS-K-7142:2014. The 0.1 mm film was obtained by press molding.
  • ⁇ Abbe number ( ⁇ )> For a 0.1 mm thick film made of the polycarbonate resin obtained below, the refractive index at wavelengths of 486 nm, 587.6 nm and 656 nm at 23° C. was measured using an Abbe refractometer, and the Abbe refractometer was used to calculate the Abbe's refractive index. The number ( ⁇ ) was calculated.
  • Tg Glass transition temperature
  • DSC differential scanning calorimeter
  • Mw Weight average molecular weight
  • Mw ⁇ (Wi ⁇ Mi) ⁇ (Wi)
  • i is the i-th division point when dividing the molecular weight M
  • Wi is the i-th weight
  • Mi is the i-th molecular weight.
  • the molecular weight M represents the polystyrene molecular weight value at the same elution time of the calibration curve.
  • HLC-8320GPC manufactured by Tosoh Corporation was used as the GPC device, one TSKguardcolumn SuperMPHZ-M was used as the guard column, and three TSKgel SuperMultiporeHZ-M were connected in series as the analytical column. Other conditions are as follows.
  • ⁇ Heat resistance test> The polycarbonate resin obtained below was vacuum dried at 120° C. for 4 hours, and then injection-molded by a injection molding machine (FANUC ROBOSHOT ⁇ -S30iA) at a cylinder temperature of 270° C. and a mold temperature of Tg-10° C. to obtain a plate, Subsequently, the plate was heated at Tg-20° C. for 4 hours and allowed to stand at 25° C. for 24 hours to obtain a disc-shaped plate test piece having a diameter of 50.00 mm and a thickness of 3 mm. The disc-shaped plate test piece was allowed to stand under air at 125° C. for 1000 hours, and the diameter of the test piece was measured. The heat resistance was evaluated according to the following criteria. Heat resistance A: Disk plate diameter 49.9 mm or more and 50.00 mm or less Heat resistance B: Disk plate diameter 49.8 mm or more and less than 49.9 mm Heat resistance C: Disk plate diameter less than 49.8 mm
  • Molding cycle property A Molding cycle of 20 seconds is possible. No cracking of the molded product or sticking to the mold.
  • Molding cycle property B When the molding cycle is 20 seconds, cracking of the molded product and sticking to the mold occur during molding. Molding cycle of 30 seconds is possible.
  • Molding cycle property C Molding is not possible in a molding cycle of 20 seconds. Even if the molding cycle is 30 seconds, cracking of the molded product and sticking to the mold occur during molding.
  • a calibration curve for phenol and diphenyl carbonate was prepared from pure products obtained by distilling commercially available phenol and diphenyl carbonate, and 2 ⁇ L of sample solution was measured by LC-MS under the following measurement conditions. Was quantified by. The detection limit value under this measurement condition is 0.01 ppm (mass ratio).
  • LC-MS measurement conditions Measuring instrument (LC part): Agilent Infinity 1260 LC System Column: ZORBAX Eclipse XDB-18, and guard cartridge Mobile phase: A: 0.01 mol/L-ammonium acetate aqueous solution B: 0.01 mol/L-ammonium acetate methanol solution C: THF Mobile phase gradient program: As shown in Table 1 below, the mixture of A to C was used as the mobile phase, and the composition of the mobile phase was switched when the time shown in the time (minutes) column passed, and the mobile phase was flowed through the column for 30 minutes. did.
  • ⁇ Total light transmittance after PCT test> The polycarbonate resin obtained below was vacuum dried at 120°C for 4 hours, and then injection-molded by an injection molding machine (FANUC ROBOSHOT ⁇ -S30iA) at a cylinder temperature of 270°C and a mold temperature of Tg-10°C, a diameter of 50 mm, A disc-shaped test plate piece having a thickness of 3 mm was obtained.
  • the PCT test was performed by holding the obtained plate piece having a diameter of 50 mm and a thickness of 3 mm under the conditions of 120° C., 0.2 Mpa, 100% RH, and 20 hours.
  • the total light transmittance after the PCT test was measured by a turbidimeter (MODEL 1001DP, manufactured by Nippon Denshoku Industries Co., Ltd.) according to old JIS K7105.
  • ⁇ b value> The polycarbonate resin obtained below was vacuum dried at 120° C. for 4 hours, then injection-molded with an injection molding machine (FANUC ROBOSHOT ⁇ -S30iA) at a cylinder temperature of 270° C. and a mold temperature of Tg-10° C., and a diameter of 50 mm, A disc-shaped test plate piece having a thickness of 3 mm was obtained.
  • b value was measured using SE2000 type spectroscopic color difference meter manufactured by Nippon Denshoku Industries Co., Ltd. according to the old JIS K7105. The smaller the b value, the weaker the yellowness, and the better the hue.
  • SPG spikeroglycol: 3,9-bis(1,1-dimethyl-2-hydroxyethyl)-2,4,8,10-tetraoxaspiro[5.5]undecane
  • SPG spikeroglycol: 3,9-bis(1,1-dimethyl-2-hydroxyethyl)-2,4,8,10-tetraoxaspiro[5.5]undecane
  • BPEF 0.29 mol of 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene
  • DPC diphenyl carbonate
  • 1 ⁇ 10 ⁇ 5 mol of sodium hydrogen carbonate were added to 2 L of a stirrer and a distillation device.
  • Examples 2 to 7, Comparative Examples 1 to 4 A polycarbonate resin was obtained in the same manner as in Example 1 except that the raw material dihydroxy compound was changed to the dihydroxy compound (mol) shown in Table 3 below.
  • the physical properties of the obtained resin are summarized in Table 3 below.
  • the degree of pressure reduction was set to 1 mmHg over 1 hour while maintaining the temperature. Then, the temperature was raised to 245° C. at a rate of 60° C./hr, and stirring was further performed for 30 minutes. After completion of the reaction, nitrogen was introduced into the reactor to return it to normal pressure, and the produced polycarbonate resin was taken out while pelletizing.
  • the phenol (PhOH) content in the obtained polycarbonate resin was 300 ppm (mass ratio), the DPC content was 150 ppm (mass ratio), and the total light transmittance after the PCT test was 78%. Further, the obtained polycarbonate resin pellets were dried at 100° C. for 4 hours with a dryer.
  • Dried pellets, and pentaerythritol-tetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate] (ADEKA AO-60: antioxidant) 1000 ppm as an additive, stearic acid Monoglyceride (Riken Vitamin Co., Ltd. S-100A: mold release agent) 1500 ppm, and 3,9-bis(2,6-di-tert-butyl-4-methylphenoxy)-2,4,8,10-tetraoxa- 300 ppm of 3,9-diphosphaspiro [5.5] undecane (ADEP PEP-36: antioxidant) was mixed, and the dried pellets were impregnated with the additive.
  • the obtained polycarbonate resin composition had a refractive index of 1.583, an Abbe number of 29, a Tg of 154° C., an Mw of 30,000, ab value of 1.0, and both heat resistance and molding cycle property were A. ..
  • the phenol (PhOH) content in the composition was 120 ppm (mass ratio), and the DPC content was 100 ppm (mass ratio). Further, the total light transmittance of the composition after the PCT test was 89%, and the addition of the additive improved the total light transmittance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明によれば、下記式(1)で表される構成単位、下記式(2)で表される構成単位、及び下記一般式(3)で表される構成単位を含むポリカーボネート樹脂組成物を提供することができる。(一般式(3)中、R1~R4は、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、または、酸素原子、窒素原子及びイオウ原子から選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、又は炭素数7~17のアラルキル基を表し、 p、q、rおよびsは、それぞれ独立して0~4の整数を表し、iは1~10の整数を表し、iiは0~10の整数を表す。)

Description

ポリカーボネート樹脂組成物及びそれを用いた光学レンズ
 本発明は、バランスの良い屈折率とアッベ数を有するポリカーボネート樹脂組成物及びそれを用いた光学レンズに関する。
 ポリカーボネート樹脂(以下、「PC」と称することがある)は、2価フェノールを炭酸エステルにより連結させたポリマーであり、その中でも2,2-ビス(4-ヒドロキシフェニル)プロパン(通称、「ビスフェノールA」と言う)より得られるポリカーボネート樹脂は、透明性、耐熱性に優れ、また耐衝撃性等の機械特性に優れた性質を有することから多くの分野に用いられている。各種レンズ、光ディスク等の光学分野においては、その耐衝撃性、透明性、低吸水性等の特性が注目され、光学用途材料として重要な位置を占めている。
 特にレンズ分野において、熱可塑性樹脂であるPCはその生産性の良さから注目を浴びており、これまでプラスチックレンズの主流を占めてきたCR-39(ジエチレングリコールビスアリルカーボネート)に代表される熱硬化性樹脂の代替として、その需要が増大してきている。
 しかしながら、ビスフェノールAにホスゲンやジフェニルカーボネート等のカーボネート前駆体物質を反応させて得られるポリカーボネート樹脂は、屈折率は高いがアッベ数が低いため、色収差の問題が出やすく、屈折率とアッベ数のバランスが悪いという欠点を有する。また光弾性定数が大きく、成形品の複屈折が大きくなってしまう欠点を有する。
 このようなポリカーボネート樹脂の欠点を解決するために、芳香族ジヒドロキシ化合物と脂肪族ジオールとの共重合ポリカーボネート樹脂がいくつか提案されている(特許文献1~5)。これらの技術では、屈折率、アッベ数が未だ低かったり、光弾性定数が大きく、成形品の複屈折が大きくなったり、成形性、耐熱性等が不十分で満足する成形物が得られなかったり、着色する等の問題があった。
特開平1-66234号公報 特開平10-120777号公報 特開平11-228683号公報 特開平11-349676号公報 特開2000-63506号公報
 本発明は、上記従来における問題の少なくとも一つを解決することを課題とする。また、本発明は、バランスの良い屈折率とアッベ数を有するポリカーボネート樹脂組成物及びそれを用いた光学レンズを提供することを課題とする。更に、本発明は、耐熱性および成形サイクル性に優れたポリカーボネート樹脂組成物及びそれを用いた光学レンズを提供することを課題とする。
 本発明者らは鋭意検討した結果、特定の構造を有するジオール化合物を組み合わせて使用することにより、上記課題の少なくとも一つを解決することができることを見出した。
 即ち、本発明は、以下の通りである。
<1> 下記式(1)で表される構成単位、下記式(2)で表される構成単位、及び下記一般式(3)で表される構成単位を含むポリカーボネート樹脂組成物である。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
(一般式(3)中、R~Rは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、または、酸素原子、窒素原子及びイオウ原子から選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、又は炭素数7~17のアラルキル基を表し、
 p、q、rおよびsは、それぞれ独立して0~4の整数を表し、
 iは1~10の整数を表し、iiは0~10の整数を表す。)
<2> 前記酸化防止剤が、ポリカーボネート樹脂組成物中に0.50質量%以下の量で含まれる、上記<1>に記載のポリカーボネート樹脂組成物である。
<3> 前記酸化防止剤が、ポリカーボネート樹脂組成物中に0.10~0.40質量%の量で含まれる、上記<1>または<2>に記載のポリカーボネート樹脂組成物である。
<4> 前記酸化防止剤が、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート及び3,9-ビス{1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル}-2,4,8,10-テトラオキサスピロ(5,5)ウンデカンからなる群より選択される、上記<1>から<3>のいずれかに記載のポリカーボネート樹脂組成物である。
<5> 前記ポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂中のフェノール含量が、0.1~3000ppmである、上記<1>から<4>のいずれかに記載のポリカーボネート樹脂組成物である。
<6> 前記ポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂中の炭酸ジエステル含量が、0.1~1000ppmである、上記<1>から<5>のいずれかに記載のポリカーボネート樹脂組成物である。
<7> (前記式(1)で表される構成単位(モル))/(前記式(1)で表される構成単位(モル)+前記式(2)で表される構成単位(モル)+前記一般式(3)で表される構成単位(モル))×100が、8~32モル%である、上記<1>から<6>のいずれかに記載のポリカーボネート樹脂組成物である。
<8> (前記式(2)で表される構成単位(モル))/(前記式(1)で表される構成単位(モル)+前記式(2)で表される構成単位(モル)+前記一般式(3)で表される構成単位(モル))×100が、28~52モル%である、上記<1>から<7>のいずれかに記載のポリカーボネート樹脂組成物である。
<9> (前記一般式(3)で表される構成単位(モル))/(前記式(1)で表される構成単位(モル)+前記式(2)で表される構成単位(モル)+前記一般式(3)で表される構成単位(モル))×100が、28~52モル%である、上記<1>から<8>のいずれかに記載のポリカーボネート樹脂組成物である。
<10> 前記一般式(3)で表される構成単位が、
Figure JPOXMLDOC01-appb-C000008
である、上記<1>から<9>のいずれかに記載のポリカーボネート樹脂組成物である。
<11> ガラス転移温度(Tg)が、140℃~200℃である、上記<1>から<10>のいずれかに記載のポリカーボネート樹脂組成物である。
<12> 屈折率(nD)が、1.565~1.600であり、且つアッベ数(v)が、26~32である、上記<1>から<11>のいずれかに記載のポリカーボネート樹脂組成物である。
<13> 屈折率(nD)及びアッベ数(v)が以下の関係式を満たす、上記<1>から<12>のいずれかに記載のポリカーボネート樹脂組成物である。
 -0.0130v +1.9480<nD<-0.0130v +1.9900
<14> 重量平均分子量(Mw)が、10,000~70,000である、上記<1>から<13>のいずれかに記載のポリカーボネート樹脂組成物である。
<15> 上記<1>から<14>のいずれかに記載のポリカーボネート樹脂組成物を含む、光学レンズである。
<16> 厚みが0.01~30mmである、上記<15>に記載の光学レンズである。
 本発明により、バランスの良い屈折率とアッベ数を有するポリカーボネート樹脂組成物が得られ、特に特定の共重合比において、耐熱性および成形サイクル性の良いポリカーボネート樹脂組成物が得られる。本発明のポリカーボネート樹脂組成物は、光学レンズに最適である。
図1は、実施例及び比較例で得られたポリカーボネート樹脂組成物におけるアッベ数と屈折率の関係を示すグラフである。
 以下、本発明について詳細に説明する。
<ポリカーボネート樹脂組成物>
 本発明のポリカーボネート樹脂組成物は、上記式(1)で表される構成単位、上記式(2)で表される構成単位、及び上記一般式(3)で表される構成単位を含むポリカーボネート樹脂を少なくとも含む。これらの構成単位は、それぞれ下記式(1’)で表されるジオール化合物、下記式(2’)で表されるジオール化合物、及び下記一般式(3’)で表されるジオール化合物に由来するものである。
Figure JPOXMLDOC01-appb-C000009
 ここで、上記式(1’)で表されるジオール化合物は、SPG(スピログリコール:3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン)と呼ばれるジオール化合物であり、本発明では市販品を用いても合成した物を用いてもよい。
Figure JPOXMLDOC01-appb-C000010
 ここで、上記式(2’)で表されるジオール化合物は、Bis-TMC(1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン)と呼ばれるジオール化合物であり、本発明では市販品を用いても合成した物を用いてもよい。
Figure JPOXMLDOC01-appb-C000011
 一般式(3’)中、R~Rは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、または、酸素原子、窒素原子及びイオウ原子から選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、又は炭素数7~17のアラルキル基を表す。好ましくは、R及びRは、それぞれ独立して、水素原子、メチル基、エチル基、又はフェニル基を表し、R及びRは、それぞれ独立して、水素原子、又はフェニル基を表す。
 p、q、rおよびsは、それぞれ独立して0~4の整数を表し、好ましくは、pおよびqは1を表し、rおよびsは0を表す。
 iは1~10の整数を表し、好ましくは1~4の整数を表し、より好ましくは2を表す。
 iiは0~10の整数を表し、好ましくは1~3の整数を表し、より好ましくは1を表す。
 本発明の一実施形態において、前記一般式(3)で表される構成単位は、
Figure JPOXMLDOC01-appb-C000012
であることが、光学レンズとして使用した場合、屈折率とアッベ数のバランスが良いため好ましい。
 上記の構成単位は、それぞれ下記構造式で表されるBPEF(9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン)および下記構造式で表されるBPPEF(9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン)に由来するものであり、本発明では市販品を用いても合成した物を用いてもよい。
Figure JPOXMLDOC01-appb-C000013
 本発明の一実施形態において、前記式(1)で表される構成単位の割合に関し、(前記式(1)で表される構成単位(モル))/(前記式(1)で表される構成単位(モル)+前記式(2)で表される構成単位(モル)+前記一般式(3)で表される構成単位(モル))×100は、8~32モル%が好ましく、10~30モル%がより好ましく、15~25モル%が特に好ましい。
 また、前記式(2)で表される構成単位の割合に関し、(前記式(2)で表される構成単位(モル))/(前記式(1)で表される構成単位(モル)+前記式(2)で表される構成単位(モル)+前記一般式(3)で表される構成単位(モル))×100は、28~52モル%が好ましく、30~48モル%がより好ましく、33~42モル%が特に好ましい。
 更に、前記一般式(3)で表される構成単位の割合に関し、(前記一般式(3)で表される構成単位(モル))/(前記式(1)で表される構成単位(モル)+前記式(2)で表される構成単位(モル)+前記一般式(3)で表される構成単位(モル))×100は、28~52モル%が好ましく、32~50モル%がより好ましく、38~48モル%が特に好ましい。
 上記のような共重合比にすることによって、耐熱性および成形サイクル性の良いポリカーボネート樹脂組成物を得ることができる。
 本発明のポリカーボネート樹脂組成物に用いられるポリカーボネート樹脂は、モノマーとして、上記式(1’)で表されるジオール化合物、上記式(2’)で表されるジオール化合物、及び上記一般式(3’)で表されるジオール化合物を用いて作製される三元系樹脂であってもよいし、これらのジオール化合物以外の他のジオール化合物を含んでもよい。このような他のジオール化合物としては、例えば、
Figure JPOXMLDOC01-appb-C000014
4,4’-ビフェニルジオール、ビス(4-ヒドロキシフェニル)メタン、ビス(2-ヒドロキシフェニル)メタン、2,4’-ジヒドロキシジフェニルメタン、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)スルホン、2,4’-ジヒドロキシジフェニルスルホン、ビス(2-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシ-3-メチルフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-ヒドロキシフェニル)スルファイド、ビス(4-ヒドロキシフェニル)ケトン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)エタン、ビス(4-ヒドロキシ-3-メチルフェニル)メタン、2,2-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロウンデカン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、2,2-ビス(4-ヒドロキシ-3-アリルフェニル)プロパン、3,3,5-トリメチル-1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、α,ω-ビス[3-(o-ヒドロキシフェニル)プロピル]ポリジメチルジフェニルランダム共重合シロキサン、α,ω-ビス[3-(o-ヒドロキシフェニル)プロピル]ポリジメチルシロキサン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスフェノール、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、1,3-アダマンタンジオール、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-2-エチルヘキサン、1,1-ビス(4-ヒドロキシフェニル)-2-メチルプロパン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,3-ビス(4-ヒドロキシフェニル)-5,7-ジメチルアダマンタン、2,2-ビス(4-(2-ヒドロキシエトキシ)フェニル)プロパン、4、4-ビス(2-ヒドロキシエトキシ)ビフェニル、2,2’-(1,4-フェニレン)ビス(エタン-1-オール)、2,2’-(1,4-フェニレン)ビス(メタン-1-オール)、2,2’-(1,4フェニレンビス(オキシ))ビス(エタン-1-オール)、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-フェニルフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-t-ブチルフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-sec-ブチルフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-アリルフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-フルオロフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-クロロフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシ-3-ブロモフェニル)シクロドデカン、7-エチル-1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、5,6-ジメチル-1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、ペンタシクロペンタデカンジメタノール、1,4-シクロヘキサンジメタノール、1,3-アダマンタンジメタノール、デカリン-2,6-ジメタノール、トリシクロデカン、ジメタノールフルオレングリコール、フルオレンジエタノール、イソソルビドなどが挙げられるが、これらに限定されない。上記他のジオール化合物は、好ましくは、2,2-ビス(4-ヒドロキシフェニル)プロパンである。上記他のジオール化合物の添加量は、本発明の効果を損なわない範囲で適宜調整することができる。
 本発明の一実施形態において、ポリカーボネート樹脂組成物は、ランダム共重合構造、ブロック共重合構造、及び交互共重合構造のいずれを含んでもよい。
 本発明の一実施形態において、ポリカーボネート樹脂組成物のポリスチレン換算重量平均分子量(Mw)は、好ましくは10,000~70,000であってよい。ポリカーボネート樹脂組成物のポリスチレン換算重量平均分子量(Mw)は、より好ましくは、20,000~50,000であり、特に好ましくは30,000~45,000である。ポリカーボネート樹脂組成物のポリスチレン換算重量平均分子量(Mw)が上記範囲内であれば、成形体が脆くなることを防ぐことができ、溶融粘度が過度に高くならないようにして製造後の樹脂の取り出しを容易にし、更には流動性を改善し溶融状態で射出成形することを容易にすることができる。
 本発明の別の実施形態において、ポリカーボネート樹脂脂組成物は、上記ポリカーボネート樹脂に、他の樹脂をブレンドして、光学レンズの製造に供することができる。他の樹脂としては、例えば、ポリエステルカーボネート、ポリアミド、ポリアセタール、変性ポリフェニレンエーテル、ポリエステル(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート)等が挙げられるが、これらに限定されない。
(その他の成分)
 本発明の一実施形態において、ポリカーボネート樹脂組成物は、添加剤として酸化防止剤および離型剤を含むことができる。
 酸化防止剤としては、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート及び3,9-ビス{1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル}-2,4,8,10-テトラオキサスピロ(5,5)ウンデカンなどが挙げられる。
 前記酸化防止剤の含有量は、ポリカーボネート樹脂組成物中に0.50質量%以下であることが好ましく、0.05~0.40質量%であることがより好ましく、0.05~0.20質量%あるいは0.10~0.40質量%であることが更に好ましく、0.20~0.40質量%であることが特に好ましい。
 離型剤としては、その90重量%以上がアルコールと脂肪酸とのエステルからなるものが好ましい。アルコールと脂肪酸とのエステルとしては、具体的には一価アルコールと脂肪酸とのエステルや、多価アルコールと脂肪酸との部分エステルあるいは全エステルが挙げられる。上記一価アルコールと脂肪酸とのエステルとしては、炭素原子数1~20の一価アルコールと炭素原子数10~30の飽和脂肪酸とのエステルが好ましい。また、多価アルコールと脂肪酸との部分エステルあるいは全エステルとしては、炭素原子数1~25の多価アルコールと炭素原子数10~30の飽和脂肪酸との部分エステル又は全エステルが好ましい。
 具体的に、一価アルコールと飽和脂肪酸とのエステルとしては、ステアリルステアレート、パルミチルパルミテート、ブチルステアレート、メチルラウレート、イソプロピルパルミテート等が挙げられる。多価アルコールと飽和脂肪酸との部分エステル又は全エステルとしては、ステアリン酸モノグリセリド、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ベヘニン酸モノグリセリド、カプリン酸モノグリセリド、ラウリン酸モノグリセリド、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、ビフェニルビフェネ-ト、ソルビタンモノステアレート、2-エチルヘキシルステアレート、ジペンタエリスリトールヘキサステアレート等のジペンタエリスルトールの全エステル又は部分エステル等が挙げられる。
 前記離型剤の含有量は、ポリカーボネート樹脂組成物中に0.50質量%以下であることが好ましく、0.01~0.10質量%であることがより好ましく、0.02~0.05質量%であることが更に好ましく、0.03~0.05質量%であることが特に好ましい。
 さらに本発明のポリカーボネート樹脂組成物には、その他の添加剤として、加工安定剤、紫外線吸収剤、流動性改質剤、結晶核剤、強化剤、染料、帯電防止剤、ブルーイング剤、抗菌剤等を添加してもよい。
(不純物)
 本発明におけるポリカーボネート樹脂には、製造時に生成するフェノールや、反応せずに残存したモノマーであるジオールや炭酸ジエステルが不純物として存在していてもよい。ポリカーボネート樹脂中のフェノール含量は、0.1~3000ppmであることが好ましく、0.1~2000ppmであることがより好ましく、1~1000ppm、1~800ppm、1~500ppm、または1~300ppmであることが特に好ましい。ポリカーボネート樹脂中のジオール含量は、0.1~5000ppmであることが好ましく、1~3000ppmであることがより好ましく、1~1000ppmであることが更により好ましく、1~500ppmであることが特に好ましい。また、ポリカーボネート樹脂中の炭酸ジエステル含量は、0.1~1000ppmであることが好ましく、0.1~500ppmであることがより好ましく、1~100ppmであることが特に好ましい。ポリカーボネート樹脂中に含まれるフェノールおよび炭酸ジエステルの量を調節することにより、目的に応じた物性を有する樹脂を得ることができる。フェノールおよび炭酸ジエステルの含量の調節は、重縮合の条件や装置を変更することにより適宜行うことができる。また、重縮合後の押出工程の条件によっても調節可能である。
 フェノールまたは炭酸ジエステルの含量が上記範囲を上回ると、得られる樹脂成形体の強度が落ちたり、臭気が発生したりする等の問題が生じ得る。一方、フェノールまたは炭酸ジエステルの含量が上記範囲を下回ると、樹脂溶融時の可塑性が低下する虞がある。
<ポリカーボネート樹脂組成物の製造方法>
 本発明の一実施形態において、ポリカーボネート樹脂は、WO2018/016516に記載の方法に従って製造することができる。具体的には、前記式(1’)で表されるジオール化合物、前記式(2’)で表されるジオール化合物、及び前記一般式(3’)で表されるジオール化合物と、炭酸ジエステルなどのカーボネート前駆物質とを、塩基性化合物触媒及び/又はエステル交換触媒の存在下または触媒の非存在下において、加熱下で、さらに常圧又は減圧下で、溶融重縮合法により反応させて製造することができる。本発明のポリカーボネート樹脂組成物の製造方法は、上記の製造方法に限定されない。
<ポリカーボネート樹脂組成物の物性>
(A)屈折率(nD)
 本発明の一実施形態において、ポリカーボネート樹脂組成物は、波長587.6nm、23℃における屈折率が1.565~1.600であることが好ましく、1.585~1.600であることがより好ましく、1.585~1.590であることが特に好ましい。本発明のポリカーボネート樹脂組成物は、屈折率が高く、光学レンズ材料として適している。屈折率は、JIS-K-7142:2014に準拠して、アッベ屈折計を用いて測定することができる。
(B)アッベ数(ν)
 本発明の一実施形態において、ポリカーボネート樹脂組成物は、23℃におけるアッベ数が26~32であることが好ましく、27~31であることがより好ましく、28~30であることが特に好ましい。アッベ数は、アッベ屈折計を用いて測定し、後述する実施例に記載された方法によって算出することができる。
 本発明の一実施形態において、ポリカーボネート樹脂組成物における屈折率(nD)及びアッベ数(v)が以下の関係式を満たすことが好ましい。
 -0.0130v +1.9480<nD<-0.0130v +1.9900
 より好ましくは、屈折率(nD)及びアッベ数(v)が以下の関係式を満たすことである。
 -0.0130v +1.9480<nD<-0.0065v +1.7785
 このような関係式を満たすことにより、バランスの良い屈折率とアッベ数の関係となり好ましい。
(C)ガラス転移温度(Tg)
 本発明の一実施形態において、ポリカーボネート樹脂組成物のガラス転移温度(Tg)は、好ましくは140~200℃であり、より好ましくは145~160℃であり、特に好ましくは150~160℃である。ポリカーボネート樹脂組成物のガラス転移温度(Tg)が上記の範囲内であれば、射出成形するのに好都合である。Tgが140℃より低いと、使用温度範囲が狭くなるため好ましくない。また200℃を越えると、樹脂の溶融温度が高くなり、樹脂の分解や着色が発生しやすくなるため好ましくない。樹脂のガラス転移温度が高すぎると、汎用の金型温調機では、金型温度と樹脂ガラス転移温度の差が大きくなってしまう。そのため、製品に厳密な面精度が求められる用途においては、ガラス転移温度が高すぎる樹脂の使用は難しく、好ましくない。
(D)その他の特性
 本発明のポリカーボネート樹脂組成物は、高い耐湿熱性を有する。耐湿熱性は、ポリカーボネート樹脂組成物を用いて得られる光学成形体に対して、「PCT試験」(プレッシャークッカー試験)を行い、試験後の光学成形体の全光線透過率を測定することで評価することができる。PCT試験は、下記実施例に記載された方法により得られた直径50mm、厚さ3mmの射出成形物を、120℃、0.2Mpa、100%RH、20時間の条件で保持することで行うことができる。本発明のポリカーボネート樹脂組成物は、PCT試験後の全光線透過率が60%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることが更により好ましく、80%以上であることが特に好ましい。全光線透過率が60%以上であれば、従来のポリカーボネート樹脂に対して高い耐湿熱性を有すると言える。なお、全光線透過率は、下記実施例に記載された方法により測定することができる。
 本発明のポリカーボネート樹脂組成物のb値は、好ましくは5以下である。b値が小さいほど黄色味が弱いことを示し、色相が良好となる。なお、b値は、下記実施例に記載された方法により測定することができる。
 本発明のポリカーボネート樹脂組成物に含まれる残存フェノール量は、500ppm以下であることが好ましく、300ppm以下であることがより好ましく、150ppm以下であることが更に好ましく、50ppm以下であることが特に好ましい。なお、残存フェノールは、多少含まれることで、熱可塑性が増す、抗菌作用をもたらすといったメリットがあると考えられる。
 本発明のポリカーボネート樹脂組成物に含まれる残存ジフェニルカーボネート(DPC)量は、200ppm以下であることが好ましく、150ppm以下であることがより好ましく、100ppm以下であることが更に好ましく、50ppm以下であることが特に好ましい。なお、残存ジフェニルカーボネート(DPC)は、多少含まれることで、溶融成形時の加水分解を防止できるメリットがあると考えられる。
<光学レンズ>
 本発明の光学レンズは、上述した本発明のポリカーボネート樹脂組成物を射出成形機あるいは射出圧縮成形機によりレンズ形状に射出成形することによって得ることができる。本発明の一実施形態において、光学レンズは、WO2018/016516に記載の方法に従って製造することができる。射出成形の成形条件は特に限定されないが、成形温度は好ましくは180~300℃、より好ましくは180~290℃である。また、射出圧力は好ましくは50~1700kg/cmである。
 光学レンズへの異物の混入を極力避けるため、成形環境も当然低ダスト環境でなければならず、クラス1000以下であることが好ましく、より好ましくはクラス100以下である。
 本発明の光学レンズは、必要に応じて非球面レンズの形で用いることが好適に実施される。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせで球面収差を取り除く必要がなく、軽量化および生産コストの低減化が可能になる。従って、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。非球面レンズの非点収差は0~15mλであることが好ましく、より好ましくは0~10mλである。
 本発明の光学レンズの厚みは、用途に応じて広範囲に設定可能であり特に制限はないが、好ましくは0.01~30mm、より好ましくは0.1~15mmである。本発明の光学レンズの表面には、必要に応じ、反射防止層あるいはハードコート層といったコート層が設けられていてもよい。反射防止層は、単層であっても多層であってもよく、有機物であっても無機物であっても構わないが、無機物であることが好ましい。具体的には、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、酸化チタニウム、酸化セリウム、酸化マグネシウム、フッ化マグネシウム等の酸化物あるいはフッ化物が例示される。これらのうちでより好ましいものは酸化ケイ素、酸化ジルコニウムであり、更に好ましいものは酸化ケイ素と酸化ジルコニウムの組み合わせである。また、反射防止層に関しては、単層/多層の組み合わせ、またそれらの成分、厚みの組み合わせ等について特に限定はされないが、好ましくは2層構成又は3層構成、特に好ましくは3層構成である。また、該反射防止層全体として、光学レンズの厚みの0.00017~3.3%、具体的には0.05~3μm、特に好ましくは1~2μmとなる厚みで形成するのがよい。
 以下、実施例を用いて本発明を説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
<屈折率(nD)>
 下記で得られたポリカーボネート樹脂からなる厚さ0.1mmフィルムについて、アッベ屈折計を用い、JIS-K-7142:2014の方法で波長587.6nm、23℃における屈折率(nD)を測定した。0.1mmフィルムはプレス成形により得た。
<アッベ数(ν)>
 下記で得られたポリカーボネート樹脂からなる厚さ0.1mmフィルムについて、アッベ屈折計を用い、23℃下での波長486nm、587.6nm及び656nmの屈折率を測定し、さらに下記式を用いてアッベ数(ν)を算出した。0.1mmフィルムはプレス成形により得た。
 ν=(nD-1)/(nF-nC)
 nD:波長587.6nmでの屈折率
 nC:波長656nmでの屈折率
 nF:波長486nmでの屈折率
<ガラス転移温度(Tg)>
 示差熱走査熱量計(DSC)によりガラス転移温度(Tg)を測定した。特定条件は以下の通りである。
装置:株式会社日立ハイテクサイエンスDSC7000X
サンプル量:5mg
雰囲気:窒素ガス雰囲気下
昇温条件:10℃/分
<重量平均分子量(Mw)>
 予め作成した標準ポリスチレンの検量線からポリスチレン換算重量平均分子量(Mw)を求めた。即ち、分子量既知(分子量分布=1)の標準ポリスチレン(東ソー株式会社製、“PStQuick MP-M”)を用いて検量線を作成し、測定した標準ポリスチレンから各ピークの溶出時間と分子量値をプロットし、3次式による近似を行い、較正曲線とした。Mwは、以下の計算式より求めた。
 Mw=Σ(Wi×Mi)÷Σ(Wi)
 ここで、iは分子量Mを分割した際のi番目の分割点、Wiはi番目の重量、Miはi番目の分子量を表す。また分子量Mとは、較正曲線の同溶出時間でのポリスチレン分子量値を表す。GPC装置として、東ソー株式会社製、HLC-8320GPCを用い、ガードカラムとして、TSKguardcolumn SuperMPHZ-Mを1本、分析カラムとしてTSKgel SuperMultiporeHZ-Mを3本直列に連結したものを用いた。その他の条件は以下の通りである。
 溶媒:HPLCグレードテトラヒドロフラン
 注入量:10μL
 試料濃度:0.2w/v% HPLCグレードクロロホルム溶液
 溶媒流速:0.35ml/min
 測定温度:40℃
 検出器:RI
<耐熱性試験>
 下記で得られたポリカーボネート樹脂を120℃で4時間真空乾燥した後、射出成型機(FANUC ROBOSHOT α-S30iA)によりシリンダー温度270℃、金型温度Tg-10℃にて射出成形しプレートを得、引き続き、該プレートをTg-20℃で4時間加熱し、25℃で24時間静置した後、直径50.00mm、厚さ3mmの円盤状プレート試験片を得た。該円盤状プレート試験片をAir下、125℃で1000時間静置した試験片の直径を測定した。以下の基準により耐熱性を評価した。
 耐熱性A:円盤状プレートの直径49.9mm以上50.00mm以下
 耐熱性B:円盤状プレートの直径49.8mm以上49.9mm未満
 耐熱性C:円盤状プレートの直径49.8mm未満
<成形サイクル性試験>
 下記で得られたポリカーボネート樹脂を120℃で4時間真空乾燥した後、射出成型機(FANUC ROBOSHOT α-S30iA)によりシリンダー温度270℃、金型温度Tg-10℃で射出成形を行った。成形サイクルと得られた成形品の割れや金型への張り付きを目視にて確認した。以下の基準により成形サイクル性を評価した。
 成形サイクル性A:成形サイクル20秒可能。成形品の割れや金型への張り付きが発生しない。
 成形サイクル性B:成形サイクル20秒では成形時に成形品の割れや金型への張り付きが発生する。成形サイクル30秒可能。
 成形サイクル性C:成形サイクル20秒では成形不可。成形サイクル30秒でも成形時に成形品の割れや金型への張り付きが発生する。
<ポリカーボネート樹脂中のフェノール(PhOH)、ジフェニルカーボネート(DPC)量の測定>
 下記で得られたポリカーボネート樹脂0.5gをテトラヒドロフラン(THF)50mLに溶解し、試料溶液とした。フェノール、ジフェニルカーボネートの標品として、市販のフェノール、ジフェニルカーボネートを各々蒸留して得られた純品より、フェノール、ジフェニルカーボネートの検量線を作成し、試料溶液2μLをLC-MSにより以下の測定条件で定量した。なお、この測定条件での検出限界値は0.01ppm(質量比)である。
LC-MS測定条件:
 測定装置(LC部分):Agilent Infinity 1260 LC System
 カラム:ZORBAX Eclipse XDB-18、およびガードカートリッジ
 移動相:
  A: 0.01mol/L-酢酸アンモニウム水溶液
  B:0.01mol/L-酢酸アンモニウムのメタノール溶液
  C:THF
 移動相のグラジエントプログラム:
 下記表1に示すように、上記A~Cの混合物を移動相として使用し、移動相の組成を時間(分)欄に示す時間が経過したときに切り替えつつ、30分間カラムに移動相を流した。
Figure JPOXMLDOC01-appb-T000015
 流速:0.3mL/分
 カラム温度:45℃
 検出器:UV(225nm)
 測定装置(MS部分):Agilent 6120 single quad LCMS System
 イオン化ソース:ESI
 極性:Positive(DPC)&Negative(PhOH)
 フラグメンタ:70V
 ドライガス:10L/分、350℃
 ネブライザ:50psi
 キャピラリ電圧:3000V(Positive)、2500V(Negative)
 測定イオン:
Figure JPOXMLDOC01-appb-T000016
 試料注入量:2μL
<PCT試験後の全光線透過率>
 下記で得られたポリカーボネート樹脂を120℃で4時間真空乾燥した後、射出成型機(FANUC ROBOSHOT α-S30iA)によりシリンダー温度270℃、金型温度Tg-10℃にて射出成形し、直径50mm、厚さ3mmの円盤状試験プレート片を得た。PCT試験は、得られた直径50mm、厚さ3mmのプレート片を、120℃、0.2Mpa、100%RH、20時間の条件で保持することで行った。このPCT試験後の全光線透過率は、旧JIS K7105に準じ濁度計(MODEL 1001DP、日本電色工業社製)により測定した。
<b値>
 下記で得られたポリカーボネート樹脂を120℃で4時間真空乾燥した後、射出成型機(FANUC ROBOSHOT α-S30iA)によりシリンダー温度270℃、金型温度Tg-10℃にて射出成形し、直径50mm、厚さ3mmの円盤状試験プレート片を得た。得られたプレート片を用いて、旧JIS K7105に準じ日本電色工業(株)製  SE2000型分光式色差計を用いてb値を測定した。b値が小さいほど黄色味が弱いことを示し、色相が良好となる。
(実施例1)
 原料として、下記構造式で表されるSPG(スピログリコール:3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン)0.30mol、下記構造式で表されるBis-TMC(1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン)0.41mol、下記構造式で表されるBPEF(9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン)0.29mol、DPC(ジフェニルカーボネート)1.15mol、および炭酸水素ナトリウム1×10-5molを撹拌機および留出装置付きの2Lの反応器に入れ、窒素雰囲気760mmHgの下、180℃に加熱した。加熱開始10分後に原料の完全溶解を確認し、さらに同条件で110分間撹拌を行った。その後、減圧度を200mmHgに調整すると同時に、60℃/hrの速度で200℃まで昇温を行った。この際、副生したフェノールの留出開始を確認した。その後、20分間200℃に保持して反応を行った。さらに、75℃/hrの速度で230℃まで昇温し、昇温終了10分後、その温度で保持しながら、1時間かけて減圧度を1mmHg以下とした。その後、60℃/hrの速度で245℃まで昇温し、さらに30分間撹拌を行った。反応終了後、反応器内に窒素を導入して常圧に戻し、生成したポリカーボネート樹脂を取り出した。また、得られたポリカーボネート樹脂中のフェノール(PhOH)含有量は100ppm(質量比)、DPC含有量は100ppm(質量比)であった。得られた樹脂の物性を下記表3にまとめた。
Figure JPOXMLDOC01-appb-C000017
(実施例2~7、比較例1~4)
 原料のジヒドロキシ化合物を下記表3のジヒドロキシ化合物(mol)に替える以外は、実施例1と同様にしてポリカーボネート樹脂を得た。得られた樹脂の物性を下記表3にまとめた。
(実施例8)
 原料として、上記構造式で表されるSPG(スピログリコール:3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン)2.00mol、上記構造式で表されるBis-TMC(1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン)3.70mol、上記構造式で表されるBPEF(9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン)4.30mol、DPC(ジフェニルカーボネート)11.52mol、および炭酸水素ナトリウム1×10-4molを撹拌機および留出装置付きの25Lの反応器に入れ、窒素雰囲気760mmHgの下、180℃に加熱した。加熱開始20分後に原料の完全溶解を確認し、さらに同条件で110分間撹拌を行った。その後、減圧度を200mmHgに調整すると同時に、60℃/hrの速度で200℃まで昇温を行った。この際、副生したフェノールの留出開始を確認した。その後、20分間200℃に保持して反応を行った。さらに、75℃/hrの速度で230℃まで昇温し、昇温終了10分後、その温度で保持しながら、1時間かけて減圧度を1mmHgとした。その後、60℃/hrの速度で245℃まで昇温し、さらに30分間撹拌を行った。反応終了後、反応器内に窒素を導入して常圧に戻し、生成したポリカーボネート樹脂をペレタイズしながら取り出した。また、得られたポリカーボネート樹脂中のフェノール(PhOH)含有量は300ppm(質量比)、DPC含有量は150ppm(質量比)であり、PCT試験後の全光線透過率は78%であった。
 さらに、得られたポリカーボネート樹脂のペレットを100℃で4時間、乾燥機にて乾燥した。乾燥したペレットと、添加剤として、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート](ADEKA社製AO-60:酸化防止剤)1000ppm、ステアリン酸モノグリセリド(理研ビタミン株式会社性S-100A:離型剤)1500ppm、及び3,9-ビス(2,6-di-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5.5]ウンデカン(ADEKA社製PEP-36:酸化防止剤)300ppmとを混合し、乾燥したペレットに添加剤を添着させた。続いて、二軸押出機にて40mmHgで減圧しながら、溶融混練しペレット化した。得られたポリカーボネート樹脂組成物の屈折率は1.583、アッベ数は29、Tgは154℃、Mwは30,000、b値は1.0、耐熱性および成形サイクル性は共にAであった。また、該組成物中のフェノール(PhOH)含有量は120ppm(質量比)、DPC含有量は100ppm(質量比)であった。更に、該組成物に対するPCT試験後の全光線透過率は89%であり、添加剤を加えることにより全光線透過率が向上した。
Figure JPOXMLDOC01-appb-T000018
 
 

Claims (16)

  1.  下記式(1)で表される構成単位、下記式(2)で表される構成単位、及び下記一般式(3)で表される構成単位を含むポリカーボネート樹脂組成物であって、更に酸化防止剤を含有する、前記ポリカーボネート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    (一般式(3)中、R~Rは、それぞれ独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~6のアルキル基、または、酸素原子、窒素原子及びイオウ原子から選択されるヘテロ環原子を含んでいてもよい炭素数6~20のアリール基、炭素数2~6のアルケニル基、炭素数1~6のアルコキシ基、又は炭素数7~17のアラルキル基を表し、
     p、q、rおよびsは、それぞれ独立して0~4の整数を表し、
     iは1~10の整数を表し、iiは0~10の整数を表す。)
  2.  前記酸化防止剤が、ポリカーボネート樹脂組成物中に0.50質量%以下の量で含まれる、請求項1に記載のポリカーボネート樹脂組成物。
  3.  前記酸化防止剤が、ポリカーボネート樹脂組成物中に0.10~0.40質量%の量で含まれる、請求項1または2に記載のポリカーボネート樹脂組成物。
  4.  前記酸化防止剤が、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート及び3,9-ビス{1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル}-2,4,8,10-テトラオキサスピロ(5,5)ウンデカンからなる群より選択される、請求項1から3のいずれかに記載のポリカーボネート樹脂組成物。
  5.  前記ポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂中のフェノール含量が、0.1~3000ppmである、請求項1から4のいずれかに記載のポリカーボネート樹脂組成物。
  6.  前記ポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂中の炭酸ジエステル含量が、0.1~1000ppmである、請求項1から5のいずれかに記載のポリカーボネート樹脂組成物。
  7.  (前記式(1)で表される構成単位(モル))/(前記式(1)で表される構成単位(モル)+前記式(2)で表される構成単位(モル)+前記一般式(3)で表される構成単位(モル))×100が、8~32モル%である、請求項1から6のいずれかに記載のポリカーボネート樹脂組成物。
  8.  (前記式(2)で表される構成単位(モル))/(前記式(1)で表される構成単位(モル)+前記式(2)で表される構成単位(モル)+前記一般式(3)で表される構成単位(モル))×100が、28~52モル%である、請求項1から7のいずれかに記載のポリカーボネート樹脂組成物。
  9.  (前記一般式(3)で表される構成単位(モル))/(前記式(1)で表される構成単位(モル)+前記式(2)で表される構成単位(モル)+前記一般式(3)で表される構成単位(モル))×100が、28~52モル%である、請求項1から8のいずれかに記載のポリカーボネート樹脂組成物。
  10.  前記一般式(3)で表される構成単位が、
    Figure JPOXMLDOC01-appb-C000004
    である、請求項1から9のいずれかに記載のポリカーボネート樹脂組成物。
  11.  ガラス転移温度(Tg)が、140℃~200℃である、請求項1から10のいずれかに記載のポリカーボネート樹脂組成物。
  12.  屈折率(nD)が、1.565~1.600であり、且つアッベ数(v)が、26~32である、請求項1から11のいずれかに記載のポリカーボネート樹脂組成物。
  13.  屈折率(nD)及びアッベ数(v)が以下の関係式を満たす、請求項1から12のいずれかに記載のポリカーボネート樹脂組成物。
     -0.0130v +1.9480<nD<-0.0130v +1.9900
  14.  重量平均分子量(Mw)が、10,000~70,000である、請求項1から13のいずれかに記載のポリカーボネート樹脂組成物。
  15.  請求項1から14のいずれかに記載のポリカーボネート樹脂組成物を含む、光学レンズ。
  16.  厚みが0.01~30mmである、請求項15に記載の光学レンズ。
     
PCT/JP2020/004522 2019-02-08 2020-02-06 ポリカーボネート樹脂組成物及びそれを用いた光学レンズ WO2020162533A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217019372A KR20210124193A (ko) 2019-02-08 2020-02-06 폴리카보네이트 수지 조성물 및 그것을 사용한 광학 렌즈
JP2020571254A JPWO2020162533A1 (ja) 2019-02-08 2020-02-06 ポリカーボネート樹脂組成物及びそれを用いた光学レンズ
CN202080012710.XA CN113439099B (zh) 2019-02-08 2020-02-06 聚碳酸酯树脂组合物及使用其的光学透镜
EP20752110.5A EP3922658B1 (en) 2019-02-08 2020-02-06 Polycarbonate resin composition and optical lens using this
US17/428,388 US20220135738A1 (en) 2019-02-08 2020-02-06 Polycarbonate resin composition and optical lens using this

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019021873 2019-02-08
JP2019-021873 2019-02-08

Publications (1)

Publication Number Publication Date
WO2020162533A1 true WO2020162533A1 (ja) 2020-08-13

Family

ID=71947591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004522 WO2020162533A1 (ja) 2019-02-08 2020-02-06 ポリカーボネート樹脂組成物及びそれを用いた光学レンズ

Country Status (7)

Country Link
US (1) US20220135738A1 (ja)
EP (1) EP3922658B1 (ja)
JP (1) JPWO2020162533A1 (ja)
KR (1) KR20210124193A (ja)
CN (1) CN113439099B (ja)
TW (1) TW202041566A (ja)
WO (1) WO2020162533A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466234A (en) 1987-09-08 1989-03-13 Mitsubishi Gas Chemical Co Aromatic-aliphatic polycarbonate copolymer
JPH0873584A (ja) * 1994-07-08 1996-03-19 Teijin Chem Ltd 芳香族ポリカーボネート共重合体
JPH0881549A (ja) * 1994-07-12 1996-03-26 Teijin Chem Ltd 芳香族ポリカーボネート共重合体
JPH10120777A (ja) 1996-10-18 1998-05-12 Mitsubishi Gas Chem Co Inc 新規なポリカーボネート樹脂
JPH11228683A (ja) 1998-02-10 1999-08-24 Mitsubishi Gas Chem Co Inc 新規な共重合ポリカーボネート樹脂及びこの製造法
JPH11349676A (ja) 1998-06-10 1999-12-21 Mitsubishi Gas Chem Co Inc 芳香族−脂肪族共重合ポリカーボネート樹脂
JP2000063506A (ja) 1998-06-12 2000-02-29 Mitsubishi Gas Chem Co Inc 芳香族―脂肪族共重合ポリカ―ボネ―ト
JP2013076982A (ja) * 2011-09-14 2013-04-25 Mitsubishi Chemicals Corp 位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置
WO2017010313A1 (ja) * 2015-07-16 2017-01-19 ソニー株式会社 情報処理装置および方法、並びにプログラム
WO2018016516A1 (ja) 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 ポリカーボネート樹脂、その製造方法及び光学レンズ
WO2019188702A1 (ja) * 2018-03-30 2019-10-03 帝人株式会社 ポリカーボネート樹脂及びそれを含む光学部材

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4416325C2 (de) * 1993-09-22 1996-09-19 Bayer Ag Spezielle Polycarbonate und ihre Verwendung zur Herstellung optischer Artikel
JP2011236336A (ja) * 2010-05-11 2011-11-24 Teijin Chem Ltd 光弾性定数が低いポリカーボネート樹脂および光学成形体
JP4948670B2 (ja) * 2010-10-14 2012-06-06 キヤノン株式会社 電子写真感光体、プロセスカートリッジ、電子写真装置および電子写真感光体の製造方法
KR101297365B1 (ko) * 2011-09-16 2013-08-14 롯데케미칼 주식회사 폴리카보네이트 삼원공중합체, 이의 제조방법 및 이를 이용하는 성형품
JP6464030B2 (ja) * 2015-05-26 2019-02-06 帝人株式会社 ポリカーボネート樹脂組成物および光学フィルム
WO2017010318A1 (ja) * 2015-07-13 2017-01-19 帝人株式会社 撮像レンズ
CN108350260B (zh) * 2015-11-04 2021-01-12 三菱瓦斯化学株式会社 热塑性树脂组合物及其成型体
KR20180087265A (ko) * 2015-11-30 2018-08-01 제이에스알 가부시끼가이샤 광학 필터, 환경 광 센서 및 센서 모듈
JP6887295B2 (ja) * 2017-04-25 2021-06-16 三井化学株式会社 ポリカーボネート樹脂、その製造方法および光学成形体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6466234A (en) 1987-09-08 1989-03-13 Mitsubishi Gas Chemical Co Aromatic-aliphatic polycarbonate copolymer
JPH0873584A (ja) * 1994-07-08 1996-03-19 Teijin Chem Ltd 芳香族ポリカーボネート共重合体
JPH0881549A (ja) * 1994-07-12 1996-03-26 Teijin Chem Ltd 芳香族ポリカーボネート共重合体
JPH10120777A (ja) 1996-10-18 1998-05-12 Mitsubishi Gas Chem Co Inc 新規なポリカーボネート樹脂
JPH11228683A (ja) 1998-02-10 1999-08-24 Mitsubishi Gas Chem Co Inc 新規な共重合ポリカーボネート樹脂及びこの製造法
JPH11349676A (ja) 1998-06-10 1999-12-21 Mitsubishi Gas Chem Co Inc 芳香族−脂肪族共重合ポリカーボネート樹脂
JP2000063506A (ja) 1998-06-12 2000-02-29 Mitsubishi Gas Chem Co Inc 芳香族―脂肪族共重合ポリカ―ボネ―ト
JP2013076982A (ja) * 2011-09-14 2013-04-25 Mitsubishi Chemicals Corp 位相差フィルム、並びにこれを用いた円偏光板及び画像表示装置
WO2017010313A1 (ja) * 2015-07-16 2017-01-19 ソニー株式会社 情報処理装置および方法、並びにプログラム
WO2018016516A1 (ja) 2016-07-21 2018-01-25 三菱瓦斯化学株式会社 ポリカーボネート樹脂、その製造方法及び光学レンズ
WO2019188702A1 (ja) * 2018-03-30 2019-10-03 帝人株式会社 ポリカーボネート樹脂及びそれを含む光学部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3922658A4

Also Published As

Publication number Publication date
EP3922658B1 (en) 2022-11-30
US20220135738A1 (en) 2022-05-05
TW202041566A (zh) 2020-11-16
EP3922658A1 (en) 2021-12-15
CN113439099A (zh) 2021-09-24
EP3922658A4 (en) 2022-03-30
KR20210124193A (ko) 2021-10-14
CN113439099B (zh) 2022-12-09
JPWO2020162533A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
JP6689146B2 (ja) 熱可塑性樹脂
JP6689147B2 (ja) 熱可塑性樹脂
JP6739255B2 (ja) 熱可塑性樹脂
JP6154337B2 (ja) ポリカーボネート共重合体
JP6108651B2 (ja) ポリカーボネート樹脂組成物、光学フィルム及びポリカーボネート樹脂成形品
JP6904375B2 (ja) 熱可塑性樹脂の製造方法
CN113072694B (zh) 一种耐温变光学部件用聚碳酸酯树脂及其制备方法和应用
TWI418572B (zh) 聚碳酸酯樹脂及其製造方法
JP5808959B2 (ja) 高屈折率ポリカーボネート共重合体及び光学レンズ
JPWO2018181157A1 (ja) ポリカーボネート樹脂組成物及びそれを用いた光学レンズ
WO2020162533A1 (ja) ポリカーボネート樹脂組成物及びそれを用いた光学レンズ
WO2020080205A1 (ja) 熱可塑性樹脂組成物およびそれを用いた光学レンズまたはフィルム
WO2020138050A1 (ja) 熱可塑性樹脂組成物及びそれを用いた光学部材
WO2022158123A1 (ja) 熱可塑性樹脂およびそれからなる光学部材
WO2023085340A1 (ja) ポリカーボネート樹脂、ならびにそれを用いた光学レンズおよび光学フィルム
KR20230029590A (ko) 수지 조성물
JP2024055310A (ja) 熱可塑性樹脂組成物及びそれを含む光学部材
KR20220161254A (ko) 수지 조성물 그리고 그것을 포함하는 광학 렌즈 및 광학 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571254

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020752110

Country of ref document: EP

Effective date: 20210908