WO2020162377A1 - 液圧ポンプ流量較正システム - Google Patents

液圧ポンプ流量較正システム Download PDF

Info

Publication number
WO2020162377A1
WO2020162377A1 PCT/JP2020/003827 JP2020003827W WO2020162377A1 WO 2020162377 A1 WO2020162377 A1 WO 2020162377A1 JP 2020003827 W JP2020003827 W JP 2020003827W WO 2020162377 A1 WO2020162377 A1 WO 2020162377A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
hydraulic
hydraulic pump
pump
command signal
Prior art date
Application number
PCT/JP2020/003827
Other languages
English (en)
French (fr)
Inventor
英泰 村岡
敦之 木下
知道 能勢
嘉彦 畑
孝志 陵城
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to US17/428,017 priority Critical patent/US20220106770A1/en
Priority to GB2111981.3A priority patent/GB2595184B/en
Priority to CN202080011386.XA priority patent/CN113348301B/zh
Publication of WO2020162377A1 publication Critical patent/WO2020162377A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • F15B11/0423Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in" by controlling pump output or bypass, other than to maintain constant speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/17Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/002Calibrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/09Flow through the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/255Flow control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/265Control of multiple pressure sources
    • F15B2211/2656Control of multiple pressure sources by control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/3059Assemblies of multiple valves having multiple valves for multiple output members
    • F15B2211/30595Assemblies of multiple valves having multiple valves for multiple output members with additional valves between the groups of valves for multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • F15B2211/31547Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having multiple pressure sources and multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/32Directional control characterised by the type of actuation
    • F15B2211/327Directional control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41509Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
    • F15B2211/41518Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve being connected to multiple pressure sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/45Control of bleed-off flow, e.g. control of bypass flow to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/632Electronic controllers using input signals representing a flow rate
    • F15B2211/6326Electronic controllers using input signals representing a flow rate the flow rate being an output member flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6652Control of the pressure source, e.g. control of the swash plate angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6654Flow rate control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6656Closed loop control, i.e. control using feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6658Control using different modes, e.g. four-quadrant-operation, working mode and transportation mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • F15B2211/7142Multiple output members, e.g. multiple hydraulic motors or cylinders the output members being arranged in multiple groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/85Control during special operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/855Testing of fluid pressure systems

Definitions

  • the present invention relates to a hydraulic pump flow rate calibration system that calibrates a discharge flow rate of a hydraulic pump when the hydraulic pump is connected to a hydraulic actuator.
  • the actuator includes, for example, a hydraulic cylinder and a hydraulic motor.
  • the hydraulic cylinder and the hydraulic motor operate at a speed corresponding to a flow direction and a direction according to a flowing direction of hydraulic oil supplied by supplying hydraulic fluid thereto, for example, hydraulic oil.
  • a supply system is connected to the actuator, and the supply system includes a pump and a directional control valve. In the supply system, pressure oil is discharged from the pump to operate the actuator, and the direction and flow rate of the pressure oil supplied from the pump to the actuator are controlled by the directional control valve. This allows the actuator to be operated in the desired direction and speed.
  • a variable capacity pump is used in the supply system with such a function, and the energy efficiency of the supply system is improved by changing the discharge flow rate of the pump according to the situation.
  • a swash plate type pump is adopted as a variable displacement pump, and a regulator is configured as described below to tilt the swash plate of the swash plate type pump. That is, the regulator tilts the swash plate at an angle according to the signal pressure output from the electromagnetic proportional control valve, and the electromagnetic proportional control valve changes the pressure corresponding to the signal (that is, current) input thereto. Output signal pressure. That is, the regulator can cause the pump to discharge the hydraulic fluid at the flow rate (that is, the flow rate according to the flow rate characteristic) corresponding to the signal input to the electromagnetic proportional control valve. Can be controlled.
  • the flow characteristics of the regulator vary from product to product. Therefore, the flow rate characteristics are measured in the shipping test at the manufacturing plant etc., and it is checked whether the flow rate characteristics are within the tolerance range. If the flow rate characteristics are not within the tolerance range, the regulator components are replaced. I try to keep it within the tolerance range. In this way, the discharge flow rate of the pump can be controlled with high accuracy, and the energy efficiency of the supply system is further improved.
  • an object of the present invention is to provide a hydraulic pump flow rate calibration system capable of calibrating the discharge flow rate of a hydraulic pump when mounted on an actual machine.
  • the hydraulic pump flow rate calibration system of the present invention is a variable displacement type hydraulic pump that is connected to a hydraulic actuator that operates at a speed according to the flow rate of the supplied hydraulic fluid and that supplies the hydraulic fluid to the hydraulic actuator.
  • a regulator that changes the discharge flow rate of the hydraulic pump according to an input flow rate command signal, a flow rate detection device that detects the flow rate of the hydraulic fluid supplied to the hydraulic actuator, and a flow rate command signal to the regulator.
  • a controller for controlling the regulator by outputting the measured characteristic of the discharge flow rate with respect to a flow rate command signal, and a calibration device for performing calibration based on the measured characteristic with respect to a preset reference characteristic,
  • the actual measurement characteristic is calculated by detecting the flow rate supplied to the hydraulic actuator by the flow rate detection device when the control device outputs a predetermined flow rate command signal to the regulator.
  • the discharge flow rate of the hydraulic pump can be calibrated in a state where the hydraulic pump is connected to the hydraulic actuator, for example, in an actual machine such as a construction machine.
  • the hydraulic actuator it is possible to prevent the operation of the hydraulic actuator from varying from device to device when the hydraulic fluid is supplied from the hydraulic pump to the hydraulic actuator.
  • the hydraulic actuator is a hydraulic motor
  • the flow rate detection device has a rotation sensor that detects a value according to the rotation speed of the output shaft of the hydraulic motor. It is preferable to detect the flow rate supplied to the hydraulic motor based on the result and the suction capacity of the hydraulic motor.
  • the hydraulic motor revolves a revolving structure provided so as to revolve with respect to a structure, and the rotation sensor rotates the revolving body as a value corresponding to a rotational speed of an output shaft of the hydraulic motor. It is preferable that the turning speed of the body is detected, and the flow rate detection device detects the flow rate supplied to the hydraulic motor based on the detected turning speed and the suction capacity of the hydraulic motor.
  • the discharge flow rate of the hydraulic pump can be calibrated by detecting the turning speed of the turning body.
  • the calibration device is provided with a control unit provided on the revolving structure, and the rotation sensor is a gyro sensor and is built in the control unit.
  • the turning speed of the turning body can be calculated by the gyro sensor incorporated in the control unit, it is not necessary to newly provide a rotation sensor, and an increase in the number of parts can be suppressed.
  • the hydraulic pump flow rate calibration system of the present invention is connected to a hydraulic actuator that operates at a speed according to the flow rate of the supplied hydraulic fluid, and supplies the hydraulic fluid to the hydraulic actuator.
  • the first regulator to be changed, the first hydraulic pump, the second hydraulic pump, and the hydraulic actuator are connected, and one of the first hydraulic pump and the second hydraulic pump is connected to the hydraulic pressure.
  • a switching valve that is connected to an actuator, a flow rate detection device that detects the flow rate of hydraulic fluid supplied to the hydraulic actuator, and a control that outputs a first flow rate command signal to the first regulator and controls the first regulator.
  • a first device wherein the first actual measurement characteristic is characterized in that the switching valve outputs the first hydraulic pump and the hydraulic pressure when the control device outputs a predetermined first flow rate command signal to the first regulator. It is calculated by connecting to an actuator and detecting the flow rate supplied to the hydraulic actuator by the flow rate detecting device.
  • the discharge flow rate of the first hydraulic pump can be calibrated in a state where the two hydraulic pumps are connected to the hydraulic actuator, for example, an actual machine such as a construction machine. Accordingly, it is possible to prevent the operation of the hydraulic actuator from varying from device to device when the hydraulic fluid is supplied from the first hydraulic pump to the hydraulic actuator.
  • the hydraulic actuator is a hydraulic motor
  • the flow rate detection device has a rotation sensor that detects a value according to the rotation speed of the output shaft of the hydraulic motor. It is preferable to detect the flow rate supplied to the hydraulic motor based on the result and the suction capacity of the hydraulic motor.
  • the hydraulic motor revolves a revolving structure provided so as to revolve with respect to a structure, and the rotation sensor rotates the revolving body as a value corresponding to a rotational speed of an output shaft of the hydraulic motor. It is preferable that the turning speed of the body is detected, and the flow rate detection device detects the flow rate supplied to the hydraulic motor based on the detected turning speed and the suction capacity of the hydraulic motor.
  • the discharge flow rate of the hydraulic pump can be calibrated by detecting the turning speed of the turning body.
  • the calibration device is provided with a control unit provided on the revolving structure, and the rotation sensor is a gyro sensor and is built in the control unit.
  • the turning speed of the turning body can be calculated by the gyro sensor incorporated in the control unit, it is not necessary to newly provide a rotation sensor, and an increase in the number of parts can be suppressed.
  • a second regulator that changes a discharge flow rate of the second hydraulic pump that is a variable displacement type according to a second flow rate command signal that is input
  • the control device includes the second regulator.
  • a second flow rate command signal is output to control the second regulator
  • the calibration device calculates a second actual measurement characteristic of the discharge flow rate of the second hydraulic pump with respect to the second flow rate command signal, and is determined in advance.
  • the second reference characteristic is calibrated based on the second actual measurement characteristic, and the second actual measurement characteristic is determined by the switching valve when the predetermined second flow rate command signal is output to the second regulator. It is preferable that the hydraulic pressure is calculated by connecting the two hydraulic pumps to the hydraulic actuator and detecting the flow rate supplied to the hydraulic actuator with the flow rate detecting device.
  • the discharge flow rate of both the first and second hydraulic pumps can be calibrated in a state where the two hydraulic pumps are connected to the hydraulic actuator, for example, in an actual machine such as a construction machine. ..
  • the hydraulic circuit is connected to a supply passage formed between the first hydraulic actuator, which is the hydraulic actuator, and the switching valve, and a pump passage between the first hydraulic pump and the switching valve.
  • a replenishment part a discharge valve connected to the pump passage and configured to be openable/closable, and opening to discharge the working fluid flowing in the pump passage to a tank, and an outflow detecting the flow rate of the working fluid flowing in the replenishing portion.
  • a flow rate detecting device wherein the switching valve is further connected to a second hydraulic actuator different from the first hydraulic actuator, and the first hydraulic pump is connected to the first hydraulic actuator.
  • the second hydraulic pump is connected to the second hydraulic actuator, and the first hydraulic pump is connected to the second hydraulic pressure when the second hydraulic pump is connected to the first hydraulic actuator.
  • the replenishment unit is connected to an actuator, and the replenishment unit supplies the hydraulic fluid discharged from the second hydraulic pump to the second hydraulic pump when the second hydraulic pump is connected to the first hydraulic actuator by the switching valve.
  • a flow from the supply passage side to the pump passage side is allowed in order to replenish the hydraulic actuator, and a flow in the opposite direction is blocked, and the first actual measurement characteristic is determined by the controller from the controller to the first regulator.
  • the switching valve connects the first hydraulic pump and the first hydraulic actuator and closes the discharge valve to supply the first hydraulic actuator to the first hydraulic actuator.
  • the second actual measurement characteristic is calculated by detecting the flow rate with the flow rate detection device, and when the predetermined second flow rate command signal is output to the second regulator, the second actual measurement characteristic is set by the switching valve to the second hydraulic pump.
  • the flow rate supplied to the first hydraulic actuator is detected by the flow rate detection device by connecting the first hydraulic actuator and the discharge valve is opened.
  • the flow rate detected by the flow rate detection device and the outflow flow rate is preferably calculated based on the outflow rate detected by the detection device.
  • the discharge flow rate of the second hydraulic pump can be calibrated with high accuracy in the system including the replenishment section.
  • the replenishment portion has a throttle
  • the outflow flow rate detection device detects a discharge pressure of the first hydraulic pump and a discharge pressure of the second hydraulic pump.
  • a second pressure sensor for controlling the outflow rate based on the differential pressure between the first pressure sensor and the second pressure sensor.
  • the outflow rate when the hydraulic fluid is supplied from the second hydraulic pump to the first hydraulic actuator can be grasped with high accuracy, so that the second hydraulic pump can be operated with higher accuracy.
  • the discharge flow rate can be calibrated.
  • a second regulator that changes a discharge flow rate of the second hydraulic pump that is a variable displacement type according to a second flow rate command signal that is input, and a first hydraulic actuator that is the hydraulic actuator.
  • a supply passage formed between the switching valve and the pump passage formed between the first hydraulic pump and the switching valve is connected to prevent a flow from the supply passage side to the pump passage side.
  • the bypass passage having the bypass check valve interposed therein and the switching valve are further connected to a second hydraulic actuator different from the first hydraulic actuator, and the first hydraulic pump is connected to the first hydraulic actuator.
  • the second hydraulic pump is connected to the second hydraulic actuator when the second hydraulic pump is connected to the first hydraulic actuator, and the first hydraulic pump is connected to the first hydraulic pump when the second hydraulic pump is connected to the first hydraulic actuator.
  • the control device Connected to a second hydraulic actuator, the control device outputs a second flow rate command signal to the second regulator to control the second regulator, and the calibration device controls the second flow rate command signal to the second flow rate command signal.
  • a second measured characteristic of the discharge flow rate of the hydraulic pump is calculated, and calibration is performed based on the second measured characteristic with respect to a predetermined second reference characteristic, and the second measured characteristic is stored in the second regulator.
  • the reference first flow rate command signal is output to the first regulator, and the switching valve connects the second hydraulic pump to the first hydraulic actuator. Supplying hydraulic fluid discharged from the first hydraulic pump to the first hydraulic actuator via the bypass passage, and hydraulic fluid discharged from the second hydraulic pump via the switching valve.
  • the flow rate supplied to the first hydraulic actuator and supplied to the first hydraulic actuator is detected by the flow rate detection device, and is calculated based on the detected flow rate and the corrected flow rate detected by the flow rate detection device.
  • the corrected flow rate is detected when the control device outputs a reference first flow rate command signal to the first regulator and the switching valve connects the first hydraulic pump to the first hydraulic actuator. It is preferably the flow rate detected by the device.
  • the discharge flow rate of both the first and second hydraulic pumps can be calibrated in a state where the two hydraulic pumps are connected to the hydraulic actuator, for example, in an actual machine such as a construction machine. ..
  • the switching valve is capable of connecting both the first hydraulic pump and the second hydraulic pump to the hydraulic actuator
  • the calibration device includes the second liquid for the second flow rate command signal.
  • a second actually measured characteristic of the discharge flow rate of the pressure pump is calculated, and calibration is performed based on the second actually measured characteristic with respect to a predetermined second reference characteristic, and the second actually measured characteristic is predetermined by the second regulator.
  • the first flow rate command signal serving as a reference is output to the first regulator, and both the first hydraulic pump and the second hydraulic pump are operated by the switching valve.
  • the flow rate supplied to the hydraulic actuator connected to the hydraulic actuator is detected by the flow rate detection device, and is calculated based on the detected flow rate and the corrected flow rate detected by the flow rate detection device, and the corrected flow rate is A flow rate that flows to the hydraulic actuator when the control device outputs a reference first flow rate command signal to the first regulator and the switching valve connects the first hydraulic pump to the hydraulic actuator. It is preferable.
  • the discharge flow rate of both the first and second hydraulic pumps can be calibrated in a state where the two hydraulic pumps are connected to the hydraulic actuator, for example, in an actual machine such as a construction machine. ..
  • the calibration device corrects the flow rate detected by the flow rate detection device based on the leakage amount of the hydraulic actuator, and calculates the actual measurement characteristics based on the corrected flow rate.
  • the discharge flow rate of each hydraulic pump can be calibrated with higher accuracy.
  • the actually measured characteristics are calculated based on a plurality of flow rates that are output by a plurality of flow rate command signals different from each other and are respectively detected by the flow rate detection device when they are output.
  • the discharge flow rate of each hydraulic pump can be calibrated with higher accuracy.
  • the calibration device calculates an actual measurement characteristic when a predetermined condition is satisfied.
  • the hydraulic pump can be automatically calibrated, which improves convenience.
  • the discharge flow rate of the hydraulic pump can be calibrated in a state where the hydraulic pump is mounted on an actual machine.
  • hydraulic drive systems 1, 1A to 1D of the first to fifth embodiments which are examples of the hydraulic pump flow rate calibration system of the present invention, will be described with reference to the drawings.
  • the concept of the direction used in the following description is used for convenience of description, and the direction of the configuration of the invention is not limited to the direction.
  • the hydraulic drive systems 1 and 1A to 1D described below are merely one embodiment of the present invention. Therefore, the present invention is not limited to the embodiments, and additions, deletions, and changes can be made without departing from the spirit of the invention.
  • a work machine such as a construction machine can perform various works by using a hydraulic fluid (for example, oil).
  • working machines include, for example, a crane, a wheel loader, and a shovel, and a case where the work machine is applied to the shovel 3 shown in FIG. 1 will be described below.
  • the shovel 3 can perform various operations such as excavation by an attachment attached to the tip end, for example, the bucket 4.
  • the shovel 3 has a traveling device 5 such as a crawler for carrying the excavated material, and the revolving unit 6 is mounted on the traveling device 5.
  • the revolving structure 6 is formed with a driver's seat 6a for a driver to board, and a boom 7 is provided so as to be vertically swingable.
  • An arm 8 is provided at the tip of the boom 7 so as to be vertically swingable, and a bucket 4 is provided at the tip of the arm 8. That is, the revolving structure 6 is provided with the bucket 4 via the boom 7 and the arm 8, and the bucket 4 can be moved up and down by operating the boom 7 and the arm 8.
  • the revolving structure 6 is configured to be revolvable with respect to the traveling device 5 that is a structure, and by revolving the structure, the bucket 4 can be moved to any position of 360 degrees.
  • the shovel 3 configured in this way is provided with, for example, a plurality of hydraulic actuators 11L, 11R, 12 to 15 for moving the traveling device 5, the swing body 6, the boom 7, the arm 8 and the bucket 4.
  • the shovel 3 includes a pair of left and right traveling hydraulic motors 11L and 11R, a turning hydraulic motor 12, a boom cylinder 13 (see FIG. 1), an arm cylinder 14 (see FIG. 1), and a bucket cylinder 15 (see FIG. 1). See).
  • the pair of right and left traveling hydraulic motors 11L and 11R are so-called hydraulic motors, and hydraulic fluid is supplied to the pair of traveling hydraulic motors 11L and 11R to drive the pair of left and right crawlers 5R and 5L provided in the traveling device 5, respectively.
  • the revolving structure 6 is provided with a revolving hydraulic motor 12 for revolving the revolving structure 6.
  • the turning hydraulic motor 12 is also a so-called hydraulic motor, and the working fluid is supplied thereto to turn the turning body 6.
  • the boom cylinder 13, the arm cylinder 14, and the bucket cylinder 15 are provided in the boom 7, the arm 8, and the bucket 4, respectively, and are supplied with hydraulic fluid to expand and contract to expand the boom 7, the arm 8, and the bucket 4. Rock each.
  • the various hydraulic actuators 11L, 11R, 12 to 15 are operated by supplying the hydraulic fluid, and the hydraulic drive system 1 is installed in the shovel 3 to supply the hydraulic fluid to them. Equipped.
  • the hydraulic drive system 1 mainly includes two hydraulic pumps 21L and 21R, two regulators 23L and 23R, and a hydraulic pressure supply device 24.
  • Each of the two hydraulic pumps 21L and 21R is, for example, a tandem type double pump, and is configured to be driven by a shared input shaft 25.
  • the two hydraulic pumps 21L and 21R do not necessarily have to be tandem type double pumps, but may be parallel type double pumps, or may be single pumps each formed separately. .. Further, the number of hydraulic pumps provided in the hydraulic drive system 1 is not necessarily limited to two, and may be three or more.
  • the two hydraulic pumps 21L and 21R configured as described above are connected to a drive source 26 such as an engine or an electric motor via an input shaft 25, and the drive source 26 rotates the input shaft 25 to thereby provide two The hydraulic fluid is discharged from the hydraulic pumps 21L and 21R.
  • a drive source 26 such as an engine or an electric motor
  • the two hydraulic pumps 21L and 21R configured in this way are both variable displacement swash plate pumps and have swash plates 22L and 22R, respectively. That is, the left hydraulic pump 21L, which is one of the two hydraulic pumps 21L and 21R, changes its discharge flow rate by changing the tilt angle of the swash plate 22L, and the other hydraulic pump 21R.
  • the right hydraulic pump 21R can change its discharge flow rate by changing the tilt angle of the swash plate 22R.
  • the hydraulic pumps 21L and 21R are respectively provided with regulators 23L and 23R for changing the tilt angles of the swash plates 22L and 22R.
  • the two regulators 23L and 23R can respectively adjust the tilt angles in accordance with the flow rate command signals input thereto to control the discharge flow rates of the respective hydraulic pumps 21L and 21R.
  • each of the regulators 23L and 23R has an electromagnetic proportional control valve (not shown), and outputs a signal pressure of a pressure corresponding to a flow rate command signal input to the electromagnetic proportional control valve. Then, the servo pistons (not shown) of the regulators 23L and 23R move to positions corresponding to the signal pressure.
  • the swash plates 22L and 22R described above are connected to each servo piston, and the swash plates 22L and 22R are tilted according to the movement of the servo piston.
  • the swash plates 22L and 22R are tilted at the tilt angle according to the flow rate command signal, that is, the hydraulic fluid having the flow rate according to the flow rate command signal is discharged from the hydraulic pumps 21L and 21R.
  • the hydraulic fluid thus discharged is supplied to each hydraulic actuator 11L, 11R, 12 to 15, and two hydraulic pumps 21L, 21L, for controlling the flowing direction and flow rate of the hydraulic fluid supplied thereto.
  • a hydraulic pressure supply device 24 is connected to 21R.
  • the hydraulic pressure supply device 24 has a plurality of directional control valves 31L, 31R, 32.
  • the plurality of directional control valves 31L, 31R, 32 are arranged so as to correspond to the hydraulic actuators 11L, 11R, 12 to 15 described above, and the hydraulic fluid to the corresponding hydraulic actuators 11L, 11R, 12 to 15 Flow and flow rates can be controlled. More specifically, the hydraulic pressure supply device 24 has left and right traveling directional control valves 31L and 31R and a turning directional control valve 32 as directional control valves corresponding to the hydraulic actuators 11L, 11R and 12, respectively. doing.
  • the left and right traveling directional control valves 31L, 31R are arranged in correspondence with each of the left and right traveling hydraulic motors 11L, 11R, and control the flow and flow rate of the hydraulic fluid for each.
  • the turning directional control valve 32 is arranged corresponding to the turning hydraulic motor 12, and controls the flow and flow rate of the hydraulic fluid with respect to the turning hydraulic motor 12.
  • the hydraulic pressure supply device 24 also has various directional control valves corresponding to the boom cylinder 13, the arm cylinder 14, the bucket cylinder 15, and the like.
  • a directional control valve (not shown) corresponding to the boom cylinder 13 is connected to the parallel passage 48 that branches from the left pump passage 33L.
  • the hydraulic pressure supply device 24 has a plurality of directional control valves, but in the following, the directional control other than the above-described three directional control valves 31L, 31R, 32 which are particularly related to the pump flow rate calibration process described later. Illustration and detailed description of the valve are omitted.
  • the hydraulic pressure supply device 24 also has a traveling rectilinear valve 30, which will be described in detail later, in addition to the plurality of directional control valves 31L, 31R, 32 described above.
  • Two directional control valves 31L, 32 of the three directional control valves 31L, 31R, 32 except for the right traveling directional control valve 31R are connected to the traveling straight-ahead valve 30 which is an example of a switching valve.
  • the traveling straight-ahead valve 30 is connected to the left pump passage 33L and the right pump passage 33R, and is connected to the two hydraulic pumps 21L and 21R via the respective pump passages 33L and 33R.
  • the two directional control valves 31L, 32 can be connected to the respective hydraulic pumps 21L, 21R via the straight travel valve 30.
  • the right-side traveling directional control valve 31R is connected to the right-side hydraulic pump 21R so as to be parallel to the traveling rectilinear valve 30. That is, the right-side traveling directional control valve 31R is connected to the right-side hydraulic pump 21R without passing through the traveling rectilinear valve 30 and is configured as follows.
  • the right-side traveling directional control valve 31R is connected to the right-side pump passage 33R and also connected to the tank 27 and the right-side traveling hydraulic motor 11R, and their connection states can be switched. More specifically, the right traveling directional control valve 31R is a so-called spool valve and has a spool 31Ra.
  • the spool 31Ra receives the pilot pressures respectively output from the two different electromagnetic proportional control valves 31Rb and 31Rc at both ends thereof, and the spool 31Ra receives one of the predetermined directions from the neutral position in accordance with the pressure difference between the two pilot pressures. And move to the other. As a result, the connection state between the right pump passage 33R and the tank 27 and the right traveling hydraulic motor 11R is switched.
  • the right traveling directional control valve 31R the right pump passage 33R and the right traveling hydraulic motor 11R are shut off when the spool 31Ra is positioned at the neutral position.
  • the right pump passage 33R is connected to the right traveling hydraulic motor 11R and the working fluid is supplied to the right traveling hydraulic motor 11R.
  • the flow direction of the hydraulic fluid supplied to the right-side traveling hydraulic pressure motor 11R is switched according to the position of the spool 31Ra. The direction can be switched.
  • the right travel directional control valve 31R adjusts its opening to an opening according to the position of the spool 31Ra, and supplies a hydraulic fluid having a flow rate corresponding to the opening to the right travel hydraulic motor 11R.
  • the speed of the traveling hydraulic motor 11R is controlled.
  • the right-direction traveling directional control valve 31R configured as described above is directly connected to the right-side hydraulic pump 21R via the right-side pump passage 33R as described above.
  • the other directional control valves 31L and 31R are connected to the two hydraulic pumps 21L and 21R via the traveling straight-travel valve 30 as described above, and the traveling straight-travel valve 30 corresponds to the working state of the shovel 3.
  • the hydraulic pumps 21L and 21R connected to the direction control valves 31L and 31R can be switched.
  • the straight-ahead travel valve 30 having such a function is configured as follows.
  • the traveling straight-ahead valve 30 has a bias in the flow rate of the hydraulic fluid flowing through the pair of left and right traveling hydraulic motors 11L and 11R when the actuator is operated, for example, the boom operation and the turning operation are performed while the shovel 3 is traveling straight. This is a valve for suppressing the occurrence.
  • the straight travel valve 30 can switch the hydraulic pumps 21L and 21R connected to the two directional control valves 31L and 32, respectively.
  • the straight-ahead travel valve 30 configured as described above is connected to the right pump passage 33R so as to be in parallel with the right travel directional control valve 31R as described above, and is also connected to the left pump passage 33L.
  • Left and right supply passages 34L and 34R are connected to the traveling straight-ahead valve 30, a left traveling direction control valve 31L is connected via the left supply passage 34L, and a turning passage is provided via a right supply passage 34R.
  • the directional control valve 32 is connected.
  • the straight traveling valve 30 arranged in this way switches the connection state of these four passages 33L, 33R, 34L, 34R and switches the hydraulic pumps 21L, 21R respectively connected to the two directional control valves 31L, 32. ..
  • the straight traveling valve 30 is a so-called spool valve and has a spool 30a.
  • the spool 30a can move along its axis, and the function of the straight travel valve 30 is switched by the movement of the spool 30a. That is, the spool 30a can move between the first position A1 and the second position A2.
  • the left pump passage 33L is connected to the left supply passage 34L
  • the right pump passage 33R is connected to the right supply passage 34R (first function).
  • the left pump passage 33L is connected to the right supply passage 34R
  • the right pump passage 33R is connected to the left supply passage 34L (second function).
  • the connection state of the four passages 33L, 33R, 34L, 34R changes as follows when the spool 30a is located between the first position A1 and the second position A2.
  • the spool 30a increases the opening degree between the left pump passage 33L and the right supply passage 34R as the spool 30a advances from the first position A1 toward the second position A2. Further, the opening degree between the right pump passage 33R and the left supply passage 34L increases as the position moves from the first position A1 toward the second position A2. Further, in the straight travel valve 30, the two pump passages 33L and 33R are both connected to the two hydraulic pumps 21L and 21R when the spool 30a is located between the first position A1 and the second position A2. (Merging function).
  • the traveling straight-ahead valve 30 can switch the connection state of the four passages 33L, 33R, 34L, 34R by changing the position of the spool 30a.
  • a spring member 30b is provided on the spool 30a to change its position.
  • the spring member 30b is provided at one end of the spool 30a and urges the spool 30a to be positioned at the first position A1.
  • the switching command pressure acts on the other end of the spool 30a so as to resist the spring member 30b, and the traveling linear valve 30 is provided with the switching electromagnetic proportional control valve 35 in order to act the switching command pressure. It is connected.
  • the switching electromagnetic proportional control valve 35 outputs the switching command pressure of the pressure according to the switching command signal input thereto.
  • the output switching command pressure is applied to the other end of the spool 30a as described above, and the spool 30a is pressed by the pressing force corresponding to the switching command pressure.
  • a pressing force corresponding to the biasing force of the spring member 30b and the switching command pressure acts on each end of the spool 30a so as to oppose each other, and the spool 30a is positioned at a position where these forces are balanced.
  • the spool 30a is moved between the first position A1 and the second position A2 by adjusting the switching command pressure, and the connection destination of each of the two pump passages 33L, 33R is either the supply passage 34L, 34R. Can be switched to.
  • the left travel direction control valve 31L is connected to the left supply passage 34L whose connection destination can be switched.
  • the left-side traveling directional control valve 31L is connected to the left-side supply passage 34L, the left-side traveling hydraulic motor 11L, and the tank 27, and their connection states can be switched. More specifically, the left traveling directional control valve 31L is a so-called spool valve and has a spool 31La.
  • the spool 31La receives the pilot pressures respectively output from the two different electromagnetic proportional control valves 31Lb and 31Lc at both ends thereof, and the spool 31La receives a predetermined pressure from the neutral position according to the pressure difference between the two pilot pressures. Move to the other. As a result, the connection state between the left supply passage 34L and the tank 27 and the left traveling hydraulic motor 11L is switched.
  • the left traveling directional control valve 31L the left supply passage 34L and the left traveling hydraulic motor 11L are shut off when the spool 31La is positioned at the neutral position.
  • the left side supply passage 34L is connected to the left side traveling hydraulic motor 11L, and the hydraulic fluid guided to the left side supply passage 34L is transferred to the left side traveling hydraulic motor 11L.
  • the direction in which the hydraulic fluid supplied to the left-side traveling hydraulic pressure motor 11L flows is switched according to the position of the spool 31La, and by switching the rotation direction of the left-side traveling hydraulic motor 11L.
  • the direction can be switched.
  • the left travel directional control valve 31L adjusts its opening according to the position of the spool 31La, and supplies the left travel liquid pressure motor 11L with a flow rate of hydraulic fluid corresponding to the opening.
  • the speed of the pressure motor 11L is controlled.
  • the left traveling direction control valve 31L configured in this manner is connected to the left supply passage 34L as described above.
  • the turning direction control valve 32 is connected to the right side supply passage 34R.
  • the turning direction control valve 32 is connected to the turning hydraulic motor 12 and the tank 27 in addition to the right supply passage 34R.
  • a check valve 36 is provided between the right side supply passage 34R and the turning direction control valve 32, and the check valve 36 allows the hydraulic fluid from the turning direction control valve 32 to flow into the right side supply passage 34R. The flow is blocked.
  • the turning directional control valve 32 arranged in this way can switch the connection state between the right supply passage 34R and the tank 27 and the turning hydraulic motor 12. More specifically, the turning direction control valve 32 is a so-called spool valve and has a spool 32a.
  • the spool 32a receives pilot pressures respectively output from two different electromagnetic proportional control valves 32b and 32c at both ends thereof, and one and the other from the neutral position according to the differential pressure between the two pilot pressures to be received. Move to. As a result, the connection state between the right side supply passage 34R and the tank 27 and the turning hydraulic motor 12 can be switched. That is, in the turning direction control valve 32, the right side supply passage 34R and the turning hydraulic motor 12 are shut off when the spool 32a is positioned at the neutral position.
  • the turning direction control valve 32 when the spool 32a moves from the neutral position to the one side and the other side in the predetermined direction, the right side supply passage 34 is connected to the swivel hydraulic motor 12, and the hydraulic fluid guided to the right side supply passage 34 is supplied to the swivel hydraulic motor 12. can do.
  • the turning direction control valve 32 the direction in which the hydraulic fluid supplied to the turning hydraulic motor 12 flows is switched according to the position of the spool 32a, and the rotation direction of the turning hydraulic motor 12 is switched by the switching. be able to. Further, the turning directional control valve 32 adjusts its opening according to the position of the spool 32a, and supplies the turning hydraulic pressure motor 12 with a flow rate of hydraulic fluid corresponding to the opening, thereby turning the turning hydraulic motor 12. Control the speed of.
  • the following configuration is connected between the turning direction control valve 32 and the turning hydraulic motor 12. That is, the turning direction control valve 32 is connected to the turning hydraulic motor 12 via the two turning supply passages 37L and 37R, and the relief valves 38L and 37L are connected to the two turning supply passages 37L and 37R. 38R are respectively connected.
  • the two relief valves 38L and 38R discharge the hydraulic fluid to the tank 27 when the hydraulic pressure of the hydraulic fluid flowing through the connected swirl supply passages 37L and 37R exceeds a predetermined relief pressure.
  • the two turning supply passages 37L, 37R are connected to the tank 27 via the check valves 39L, 39R, so that the working fluid can be supplemented from the tank 27 when the working fluid runs short. ing.
  • the hydraulic pressure supply device 24 also has bypass passages 40L and 40R branching from the left supply passage 34L and the right pump passage 33R, respectively. Traveling direction control valves 31L and 31R are respectively interposed in these two bypass passages 40L and 40R. More specifically, the left side bypass passage 40L, which is one of the bypass passages, has the left side traveling directional control valve 31L interposed therein, and the opening degree of the left side bypass passage 40L according to the movement of the left side traveling directional control valve 31L. Is adjusted. On the other hand, the right side directional control valve 31R is interposed in the right side bypass passage 40R, and the opening degree of the right side bypass passage 40R is adjusted according to the movement of the right side directional control valve 31R.
  • the first replenishing passage 41 and the second replenishing passage 42 are formed to replenish the working fluid to them.
  • the first supply passage 41 is formed so as to bridge the left bypass passage 40L and the parallel passage 48
  • the second supply passage 42 is formed so as to bridge the right bypass passage 40R and the right supply passage 34R.
  • a check valve 43 is interposed in the first supply passage 41. The check valve 43 guides the working fluid from the left bypass passage 40L to the parallel passage 48 and blocks the flow of the working fluid in the opposite direction.
  • the check valve 43 guides the hydraulic fluid from the left bypass passage 40L to the parallel passage 48 when the flow rate of the hydraulic fluid in the parallel passage 48 becomes insufficient.
  • a check valve 44 is also provided in the second supply passage 42.
  • the check valve 44 which is an example of a check valve for bypass, guides the hydraulic fluid from the right bypass passage 40R to the right supply passage 34R and blocks the flow of the hydraulic fluid in the opposite direction. That is, when the flow rate of the hydraulic fluid in the right side supply passage 34R is insufficient, the check valve 44 guides the hydraulic fluid from the right side bypass passage 40R to the right side supply passage 34R.
  • Two unload valves 45L and 45R are connected to the two pump passages 33L and 33R, respectively, and the two pump passages 33L and 33R are connected via the corresponding unload valves 45L and 45R. It is connected to the tank 27.
  • the two unload valves 45L and 45R are, for example, spool valves and have spools 45La and 45Ra.
  • the two unload valves 45L, 45R adjust the opening of tank passages 46L, 46R connecting the corresponding pump passages 33L, 33R and the tank 27 by making the spools 45La, 45Ra stroke, and supply passages 34L, 34R. It is possible to control the flow rate of the hydraulic fluid flowing through (ie, bleed-off control).
  • the opening of the tank passages 46L and 46R can be adjusted by making the strokes of the spools 45La and 45Ra, that is, changing the positions. It has spring members 45Lb and 45Rb.
  • the spring members 45Lb and 45Rb are provided at one end of the spools 45La and 45Ra and urge the spools 45La and 45Ra to close the tank passages 46L and 46R.
  • the left and right unload command pressures act on the other ends of the spools 45La and 45Ra so as to resist the spring member 30b, and the unload valve 45L outputs the left and right unload command pressures.
  • 45R are connected to electromagnetic proportional control valves 45Lc, 45Rc.
  • the electromagnetic proportional control valves 45Lc and 45Rc output the unload command pressure corresponding to the unload command signal input thereto.
  • the output unload command pressure is applied to the other ends of the spools 45La and 45Ra as described above, and the spools 45La and 45Ra are pressed by the pressing force corresponding to the unload command pressure.
  • the end portions of the spools 45La and 45Ra are acted on by the biasing forces of the spring members 45Lb and 45Rb and the unloading command pressure so as to oppose each other, and the spools 45La and 45Ra are Move to a position where the power of is balanced. Therefore, by adjusting the unload command pressure, the opening degree of the tank passages 46L, 46R can be adjusted and the tank passages 46L, 46R can be closed.
  • the hydraulic drive system 1 configured as described above further includes the control unit 50, and includes the regulators 23L and 23R, the straight travel valve 30, the directional control valves 31L, 31R and 32, and the unload valves 45L and 45R.
  • a turning operation device 51 and a traveling operation device 52 are electrically connected to the control unit 50, which is a control device, and commands relating to the operation of the hydraulic pressure supply device 24 are supplied by these operation devices 51 and 52. Can be given.
  • These operating devices 51 and 52 are provided in the shovel 3 (more specifically, the driver's seat 6a) to operate the turning hydraulic motor 12 and the pair of traveling hydraulic motors 11L and 11R, and for example, electric It is composed of a joystick or a remote control valve.
  • the turning operation device 51 is provided in the driver's seat 6a of the shovel 3 to operate the turning hydraulic motor 12, and has a turning operation lever 51a. Further, the turning operation lever 51a is configured to be tiltable, and when the turning operation lever 51a is tilted, the turning operation device 51 outputs a signal to the control unit 50.
  • the traveling operation device 52 is provided on the driver's seat 6a of the shovel 3 to operate the pair of left and right traveling hydraulic motors 11L and 11R.
  • the traveling operating device 52 thus arranged has a pair of left and right foot pedals 52a and 52b, and each of the foot pedals 52a and 52b includes a left traveling hydraulic motor 11L and a right traveling hydraulic motor. It is provided so as to correspond to each 11R.
  • the foot pedals 52a and 52b can be operated by stepping on them with a foot, and when operated, the traveling operation device 52 outputs a signal to the control unit 50.
  • the control unit 50 controls the movements of the directional control valves 31L, 31R, 32 according to the signals output from the operating devices 51, 52, and controls the movements of the directional control valves 31L, 31R, 32.
  • the control unit 50 is electrically connected to the electromagnetic proportional control valves 31Lb, 31Lc, 31Rb, 31Rc, 32b, 32c provided on the directional control valves 31L, 31R, 32, respectively, and the operating device 51,
  • a command signal is output to the electromagnetic proportional control valves 31Lb, 31Lc, 31Rb, 31Rc, 32b, 32c according to the signal output from 52.
  • the control unit 50 is also electrically connected to a switching electromagnetic proportional control valve 35 provided on the traveling straight-ahead valve 30, and the switching electromagnetic proportional control valve according to an output signal from the traveling operation device 52 or the like. A switching command signal is output to 35. Further, the control unit 50 is also electrically connected to the electromagnetic proportional control valves 45Lc, 45Rc connected to the unload valves 45L, 45R, and the electromagnetic proportional control valves 45Lc, 45Rc are electrically connected according to the output signals from the operating devices 51, 52. An unload command signal is output to 45Lc and 45Rc.
  • the hydraulic drive system 1 further includes the following configuration. That is, the hydraulic drive system 1 includes the gyro sensor 60.
  • the gyro sensor 60 which is a flow rate detection device, is, for example, a triaxial gyro sensor, and is electrically connected to the control unit 50.
  • the gyro sensor 60 outputs a signal according to a predetermined angular velocity around the x-axis, the y-axis, and the z-axis to the control unit 50, and the control unit 50 outputs each signal based on the signal from the gyro sensor 60. Calculate the angular velocity.
  • the gyro sensor 60 thus configured is housed in the housing 50a of the control unit 50 as shown in FIG.
  • the gyro sensor 60 arranged as described above is adapted to revolve with the revolving structure 6 when the revolving structure 6 revolves, and the control unit 50 controls the revolving structure based on the signal output from the gyro sensor 60.
  • the turning speed of 6 can be calculated.
  • the hydraulic drive system 1 also includes two pressure sensors 62L and 62R.
  • the left pressure sensor 62L which is one of the two pressure sensors 62L and 62R, is connected to the left pump passage 33L and outputs a signal corresponding to the discharge pressure of the left hydraulic pump 21L to the control unit 50.
  • the right pressure sensor 62R which is the other pressure sensor 62R, is connected to the right pump passage 33R and outputs a signal corresponding to the discharge pressure of the right hydraulic pump 21R to the control unit 50.
  • the control unit 50 detects the discharge pressure of the two hydraulic pumps 21L and 21R based on the signals output from the two pressure sensors 62L and 62R. In addition, the control unit 50 performs various calculations and stores various information.
  • the control unit 50 controls the movement of the hydraulic pressure supply device 24 in accordance with the operation performed on the operating devices 51 and 52, and the hydraulic actuators 11L, 11R and 12 are activated. Activate.
  • the operation of the control unit 50 when operating the hydraulic actuators 11L, 11R, 12 will be described. That is, when the turning operation lever 51a is operated and a signal is output from the turning operation device 51, the control unit 50 first actuates the right unload valve 45R to close the right tank passage 46R.
  • the control unit 50 also outputs a turning command signal corresponding to the signal of the turning operation device 51 to the electromagnetic proportional control valve 32b (or the electromagnetic proportional control valve 32c) to operate the turning directional control valve 32.
  • the spool 30a of the straight travel valve 30 is located at the first position A1, and the turning direction control valve 32 is connected to the right hydraulic pump 21R via the right pump passage 33R and the right supply passage 34R. Therefore, the hydraulic fluid from the right hydraulic pump 21R is supplied to the turning hydraulic motor 12, and the turning hydraulic motor 12 is rotated by the working fluid.
  • the spool 32a moves to a position corresponding to the operation amount of the turning operation lever 51a, and the turning direction control valve 32 has an opening degree corresponding to the operation amount of the turning operation lever 51a. Opens.
  • a hydraulic fluid having a flow rate according to the opening is supplied to the turning hydraulic motor 12, and the turning body 6 can be turned at a turning speed according to the operation amount of the turning operation lever 51a.
  • the control unit 50 first operates the left unload valve 45L. It is operated to close the left tank passage 46L. The control unit 50 also outputs a travel command signal corresponding to the signal from the travel operation device 52 to the electromagnetic proportional control valve 31Lb (or the electromagnetic proportional control valve 31Lc) to operate the left travel directional control valve 31L.
  • the spool 30a of the straight travel valve 30 is located at the first position A1 and the left travel directional control valve 31L is located on the left pump passage 33L and the left travel passage control valve 31L. It is connected to the left hydraulic pump 21L via the left supply passage 34L. Therefore, the hydraulic fluid from the left hydraulic pump 21L is supplied to the left traveling directional control valve 31L, and this hydraulic fluid operates the left traveling hydraulic motor 11L.
  • the spool 31La moves to a position corresponding to the operation amount of the left foot pedal 52a, and the left traveling direction control is performed at an opening degree corresponding to the operation amount of the left foot pedal 52a.
  • the valve 31L opens.
  • a hydraulic fluid having a flow rate according to the opening is supplied to the left traveling hydraulic motor 11L, and the left traveling hydraulic motor 11L is rotated at a rotation speed corresponding to the operation amount of the left foot pedal 52a. be able to. That is, the left crawler 5L can be moved at a speed corresponding to the operation amount of the left foot pedal 52a.
  • the control unit 50 When only the right foot pedal 52b is operated, the control unit 50 first operates the right unload valve 45R to close the right tank passage 46R. Further, the control unit 50 outputs a traveling command signal to the electromagnetic proportional control valve 31Lb (or the electromagnetic proportional control valve 31Lc) to operate the left traveling directional control valve 31L. As a result, the right traveling hydraulic motor 11R rotates at a speed corresponding to the operation amount of the right foot pedal 52b, that is, the right crawler 5R can be moved at a speed corresponding to the operation amount of the right foot pedal 52b. it can.
  • the control unit 50 operates as follows. To work.
  • control unit 50 causes the switching proportional solenoid control valve 35 connected to the traveling straight-travel valve 30 to operate when the signal from the traveling operation device 52 is output in a state where both the foot pedals 52a and 52b are operated.
  • a switching command signal is output to move the spool 30a to the second position A2.
  • the function of the straight travel valve 30 is switched to the second function. That is, the left pump passage 33L is connected to the right supply passage 34R, and the right pump passage 33R is connected to the left supply passage 34L.
  • the left and right traveling direction control valves 31L and 31R are both connected to the right hydraulic pump 21R, and the turning direction control valve 32 is connected to the left hydraulic pump 21L.
  • each of the left and right traveling direction control valves 31L, 31R opens at an opening degree corresponding to the operation amount of each foot pedal 52a, 52b, and each hydraulic motor 11L, 11R has each foot pedal 52a. , 52b is introduced into the hydraulic fluid at a flow rate corresponding to the manipulated variable. Thereby, each hydraulic motor 11L, 11R can be rotated at a speed corresponding to the operation amount of each foot pedal 52a, 52b, that is, the shovel 3 can be moved at a speed corresponding to the operation amount of the foot pedals 52a, 52b. You can drive straight ahead.
  • both the pair of left and right hydraulic motors for traveling 11L and 11R to one hydraulic pump 21R during straight traveling in this way, the following advantages can be obtained. That is, when the pair of left and right traveling hydraulic motors 11L and 11R are connected to the separate hydraulic pumps 21L and 21R, when the traveling hydraulic motors 12 are operated together with the traveling hydraulic motors 11L and 11R, The hydraulic fluid of the hydraulic pump 21L is also guided to the turning hydraulic motor 12. Then, the hydraulic fluid to be supplied to the left traveling hydraulic motor 11L is insufficient, and a desired flow rate of hydraulic fluid cannot be guided to the traveling hydraulic motor 11R.
  • the control unit 50 controls the movement of the hydraulic pressure supply device 24 according to the operation performed on the operating devices 51 and 52, and operates the hydraulic actuators 11L, 11R and 12.
  • the control unit 50 operates each hydraulic actuator 11L, 11R, 12 at a speed according to the operation amount of the operating devices 51, 52 (for example, at a speed according to the operation amount of the turning operation lever 51a, the swing body). 6) is operated as follows. That is, the control unit 50 controls the opening degrees of the directional control valves 31L, 31R, 32, and controls the discharge flow rates of the hydraulic pumps 21L, 21R via the regulators 23L, 23R. More specifically, the hydraulic pumps 21L and 21R have flow rate characteristics as shown in FIG.
  • the flow rate characteristic indicates the relationship between the discharge flow rate and the tilt angle (that is, the flow rate command signal).
  • the horizontal axis indicates the flow rate command signal (current) and the vertical axis indicates the discharge flow rate.
  • the discharge flow rates of the hydraulic pumps 21L and 21R become the minimum flow rate Qmin when the flow rate command signal is Imin or less, and increase in proportion to the flow rate command signal when the flow rate command signal exceeds Imin.
  • the discharge flow rate of the hydraulic pumps 21L and 21R becomes the maximum flow rate Qmax.
  • the control unit 50 presets and stores such a flow rate characteristic (solid line in FIG. 3) and calculates a flow rate command signal to be output to the regulators 23L and 23R based on the stored flow rate characteristic, that is, the reference characteristic. Then, the hydraulic pumps 21L and 21R are caused to discharge the hydraulic fluid at a flow rate corresponding to the manipulated variable.
  • the reference characteristic may differ from the actual flow rate characteristic due to various factors.
  • the control unit 50 with the calibration device has the function of calibrating the stored reference characteristics in order to bridge the differences between them. Below, the hydraulic pump flow rate calibration process performed using the turning hydraulic motor 12, which is an example of the first hydraulic actuator, will be described.
  • the control unit 50 determines whether or not a predetermined calibration condition is satisfied.
  • the calibration condition is, for example, that a power switch of the shovel 3 is operated to supply power to the control unit 50, or a calibration switch (not shown) is operated to input a calibration command to the control unit 50. Further, the calibration condition may be that a predetermined time elapses in a state where the operation devices 51 and 52 are not operated.
  • the control unit 50 starts the flow rate calibration process as shown in FIG. 4 and proceeds to step S1.
  • step S1 which is the first supply state switching step
  • the hydraulic pressure is set to the first supply state in which the hydraulic fluid discharged from the right hydraulic pump 21R which is the first hydraulic pump is supplied to the turning hydraulic motor 12.
  • the state of the drive system 1 is switched. More specifically, the control unit 50 outputs a signal to each of the valves 30, 31L, 31R, 32, 45L, 45R and controls their operations as follows. That is, the control unit 50 closes the right tank passage 46R by the right unload valve 45R so that the hydraulic fluid discharged from the right hydraulic pump 21R is not bleed off. On the other hand, the left tank passage 46L is fully opened by the left unload valve 45L, and the entire amount of hydraulic fluid discharged from the left hydraulic pump 21L is returned to the tank 27.
  • control unit 50 positions the spool 30a of the straight travel valve 30 at the first position A1, and the hydraulic fluid discharged from the right hydraulic pump 21R is guided to the right supply passage 34R via the straight travel valve 30. I'll let you be.
  • control unit 50 operates the turning direction control valve 32, that is, strokes the spool 32a of the turning direction control valve 32 and supplies the working fluid guided to the right side supply passage 34R to the turning hydraulic motor 12. To be done. At this time, the spool 32a is stroked so that the opening degree of the turning direction control valve 32 is fully opened.
  • the directional control valves 31L and 31R including various directional control valves corresponding to the boom cylinder 13, the arm cylinder 14, the bucket cylinder 15, etc.
  • their spools 31La and 31Ra (Including spools of the various directional valves) is positioned at a neutral position, and hydraulic fluid flows to other hydraulic actuators such as the left traveling hydraulic motor 11L (second hydraulic actuator) and the right traveling hydraulic motor 11R. Try not to.
  • the spool 32a of the turning direction control valve 32 is stroked so that all of the hydraulic fluid of the right hydraulic pump 21R is supplied only to the turning hydraulic motor 12.
  • the state of the hydraulic pressure supply device 24 is switched to the first supply state in which all of the hydraulic fluid of the right hydraulic pump 21R is supplied only to the turning hydraulic motor 12, the process proceeds to step S2.
  • step S2 which is the command current setting step, a predetermined flow rate command signal I1 (for example, the first flow rate command signal) set based on the flow rate characteristics stored in advance is set to the right hydraulic pump 21R (for example, the first hydraulic pressure). It is output to the right regulator 23R (for example, the first regulator) provided in the pump.
  • the flow rate command signal I1 is preset and set so that Imin ⁇ I1 ⁇ Imax based on the above-mentioned reference characteristic of the right hydraulic pump 21R, that is, the first reference characteristic (see the solid line in FIG. 3).
  • the flow rate command signal I1 is output to the right regulator 23R.
  • step S3 which is the turning speed detection step, the turning speed of the turning body 6 is detected. That is, the control unit 50 detects the swing speed of the swing structure 6 based on the signal output from the gyro sensor 60.
  • the gyro sensor 60 is mounted on the revolving structure 6 such that the z axis thereof is substantially parallel to the revolving structure of the revolving structure 6, and the control unit is detected by detecting the angular velocity around the z axis. 50 calculates the turning speed of the turning body 6.
  • the revolving speed of the revolving structure 6 is not limited to the above-described calculation method, and the revolving speed may be calculated based on the biaxial or triaxial angular velocity detected based on the signal output from the gyro sensor 60. ..
  • the process proceeds to step S4.
  • step S4 which is the swirl flow rate calculation step
  • the flow rate of the working fluid supplied to the swirl hydraulic motor 12 during swirl that is, the swirl flow rate is calculated. That is, the control unit 50 stores in advance the displacement (suction capacity) of the swirling hydraulic motor 12 and the reduction ratio between the swirling hydraulic motor 12 and the revolving structure 6, and this displacement and step S3.
  • the swirling flow rate is calculated based on the swirling speed calculated in step 1. More specifically, the swirl flow rate is calculated by multiplying the swirl speed calculated in step S3 by the displacement.
  • step S5 which is the first calibration point acquisition step
  • the actual discharge flow rate of the right hydraulic pump 21R is calculated, and the calibration point of the right hydraulic pump 21R is acquired based on the actual discharge flow rate. That is, the control unit 50 calculates the discharge flow rate of the right hydraulic pump 21R based on the swirl flow rate calculated in step S4.
  • the leak amount of the hydraulic fluid in the swirl hydraulic motor 12 that is, the motor leak amount.
  • the motor leak amount is an amount that changes according to the discharge pressure of the hydraulic fluid supplied to the turning hydraulic motor 12, and the control unit 50 controls the discharge pressure of the right hydraulic pump 21R and the turning hydraulic motor 12. It is calculated based on the motor efficiency characteristic.
  • the discharge pressure of the right hydraulic pump 21R is detected based on the signal from the right pressure sensor 62R, and the motor efficiency characteristic of the turning hydraulic motor 12 (with respect to the usage rate of the supplied flow rate, depending on the pressure)
  • the changing characteristics are stored in the control unit 50 in advance.
  • the control unit 50 adds the calculated motor leak amount to the turning flow rate.
  • the motor leak amount does not necessarily have to be calculated based on the discharge pressure of the right hydraulic pump 21R, and may be a constant value based on the motor efficiency characteristic of the turning hydraulic motor 12. Further, in calculating the discharge flow rate, it is not always necessary to refer to the motor leak amount, and the discharge flow rate may be the swirling flow rate. These two cases (that is, the case where the pressure and the motor leak amount are not referred to respectively) are suitable when it is not necessary to calibrate the flow rate characteristics based on the more accurate discharge flow rate, and based on the more accurate discharge flow rate. When it is preferable to calibrate the first reference characteristic, it is preferable to calculate the motor leak amount based on the discharge pressure and the motor efficiency characteristic, as described above. The same applies when calculating the discharge flow rate of the left hydraulic pump 21L described later.
  • the control unit 50 After calculating the discharge flow rate, the control unit 50 stores the discharge flow rate in association with the flow rate command signal I1 set in step S2. For example, as shown in FIG. 3, when the discharge flow rate discharged with respect to the flow rate command signal I1 is larger than the first reference characteristic (solid line in FIG. 3), the calibration point 71 is acquired. When the first calibration point 71 is calculated in this way, the process proceeds to step S6.
  • step S6 which is the step of confirming the number of calibration points, it is determined whether or not two or more calibration points have been acquired when performing calibration for the first reference characteristic.
  • the number of calibration points to be acquired may be three or more.
  • the process returns to step S2, and the right hydraulic pump 21R discharges the flow rate command signal I2 (first flow rate command signal) having a value different from the flow rate command signal I1.
  • the discharge flow rate is calculated. That is, the control unit 50 outputs the flow rate command signal I2 (Imin ⁇ I2 ⁇ Imax) having a value different from the flow rate command signal I1 to the right regulator 23R in step S2.
  • control unit 50 When the control unit 50 outputs the set flow rate command signal I2 to the right regulator 23R, it next detects the turning speed (step S3), and further calculates the turning flow rate based on the turning speed detected in step S3 (step S3). S4). Further, the control unit 50 calculates the discharge flow rate based on the swirl flow rate detected in step S4, and stores the calculated discharge flow rate and the flow rate command signal I2 in association with each other.
  • the second calibration point 72 is obtained in this way (see FIG. 3), the process proceeds to step S7.
  • step S7 which is the first pump flow rate calibration process
  • the first reference characteristic is calibrated based on the two calibration points 71 and 72 acquired in step S5. That is, in the range where the flow rate Q is Qmin ⁇ Q ⁇ Qmax, the straight line that passes through the two calibration points 71 and 72 (see the alternate long and short dash line in FIG. 3) is the first measured characteristic that is the actual flow characteristic of the right hydraulic pump 21R. It is calculated. More specifically, the control unit 50 calculates the slope and intercept in the range of Qmin ⁇ Q ⁇ Qmax of the first measured characteristic based on the two calibration points 71 and 72, and calculates the first measured characteristic. The determined first measured characteristic is set as a new first reference characteristic. When the calibration of the first reference characteristic based on the first measured characteristic is performed in this way, the process proceeds to step S8.
  • step S8 which is the second supply state switching step
  • the hydraulic pressure is changed to the second supply state in which the hydraulic fluid discharged from the left hydraulic pump 21L, which is the second hydraulic pump, is supplied to the turning hydraulic motor 12.
  • the state of the drive system 1 is switched. More specifically, the control unit 50 outputs a signal to each of the valves 30, 31L, 31R, 32, 45L, 45R and controls their operations as follows. That is, the control unit 50 closes the left tank passage 46L by the left unload valve 45L so that the hydraulic fluid discharged from the left hydraulic pump 21L is not bleed off. On the other hand, the right tank passage 46R is fully opened by the right unload valve 45R, and the entire amount of hydraulic fluid discharged from the right hydraulic pump 21R is returned to the tank 27.
  • control unit 50 sets the position of the spool 30a of the straight travel valve 30 to the second position A2, and the hydraulic fluid discharged from the left hydraulic pump 21L is guided to the right supply passage 34R via the straight travel valve 30. I'll let you be. Further, the control unit 50, in order to supply all the hydraulic fluid of the left hydraulic pump 21L to only the turning hydraulic motor 12, only the spool 32a of the turning directional control valve 32, as in step S2. Stroke.
  • directional control valves 31L and 31R including various directional control valves corresponding to the boom cylinder 13, the arm cylinder 14, the bucket cylinder 15, etc.
  • their spools 31La and 31Ra (Including spools of the various directional valves) is positioned at a neutral position, and hydraulic fluid flows to other hydraulic actuators such as the left traveling hydraulic motor 11L (second hydraulic actuator) and the right traveling hydraulic motor 11R. Try not to.
  • the state of the hydraulic pressure supply device 24 is switched to the second supply state in which all the hydraulic fluid of the left hydraulic pump 21L is supplied only to the turning hydraulic motor 12, the process proceeds to step S9.
  • step S9 which is the command current setting step
  • the predetermined flow rate command signal I3 (for example, the second flow rate command signal) set based on the flow rate characteristics stored in advance is set to the left hydraulic pump 21L (for example, the second hydraulic pressure). It is output to the left regulator 23L (for example, the second regulator) provided in the pump.
  • the flow rate command signal I3 is set to Imin ⁇ I3 ⁇ Imax based on the second reference characteristic (see the solid line in FIG. 3) which is the reference characteristic of the left hydraulic pump 21L, like the flow rate command signal I1 described above.
  • the preset flow rate command signal I3 is output to the left regulator 23L.
  • the same reference characteristic is set in advance for the two hydraulic pumps 21L and 21R, but it is not necessarily the same and different reference characteristics may be set in advance.
  • the flow rate command signal I3 is set to a value different from the flow rate command signal I1, but it may be set to the same value as the amount command signal I1.
  • step S10 which is a turning speed detection step
  • the turning speed of the turning body 6 is detected as in step S3. That is, the control unit 50 detects the swing speed of the swing body 6 based on the signal output from the gyro sensor 60, and when the swing speed of the swing body 6 is calculated, the process proceeds to step S11.
  • step S11 which is the turning flow rate calculation step
  • the turning flow rate of the turning hydraulic motor 12 at the time of turning is calculated as in step S4. That is, the control unit 50 controls the displacement (suction capacity) of the turning hydraulic motor 12 and the speed reduction ratio between the turning hydraulic motor 12 and the turning body 6 which are stored in advance, and the turning speed calculated in step S10.
  • the swirl flow rate is calculated based on and, and when the swirl flow rate is calculated, the process proceeds to step S12.
  • step S12 which is the second calibration point acquisition step
  • the actual discharge flow rate of the left hydraulic pump 21L is calculated, and the calibration point of the left hydraulic pump 21L is acquired based on the actual discharge flow rate. That is, the control unit 50 calculates the discharge flow rate of the left hydraulic pump 21L based on the swirling flow rate calculated in step S11. Therefore, first, the control unit 50 discharges the left hydraulic pump 21L based on the signal from the left pressure sensor 62L. Detect pressure. Then, the control unit 50 calculates the motor leak amount of the turning hydraulic motor 12 based on the detected discharge pressure of the left hydraulic pump 21L and the motor efficiency characteristic of the turning hydraulic motor 12. Finally, the control unit 50 calculates the discharge flow rate by adding the calculated motor leak amount to the turning flow rate.
  • the control unit 50 stores the discharge flow rate in association with the flow rate command signal I3 set in step S9. For example, as shown in FIG. 3, when the discharge flow rate discharged with respect to the flow rate command signal I3 is smaller than the second reference characteristic (solid line in FIG. 3), the calibration point 73 is acquired. When the first calibration point 73 is acquired in this way, the process proceeds to step S13.
  • step S13 which is the step of confirming the number of calibration points, it is determined whether or not two or more calibration points are acquired when performing the calibration with respect to the second reference characteristic.
  • the number of calibration points to be acquired may be three or more.
  • the process returns to step S9, and the left hydraulic pump 21L is discharged with respect to the flow rate command signal I4 (second flow rate command signal) having a value different from the flow rate command signal I3.
  • the discharge flow rate is calculated. That is, the control unit 50 outputs the flow rate command signal I4 (Imin ⁇ I4 ⁇ Imax) having a value different from the flow rate command signal I3 to the left regulator 23L in step S9.
  • the flow rate command signal I4 is set to a value different from the flow rate command signal I2, but it may be set to the same value as the quantity command signal I1.
  • the control unit 50 outputs the set flow rate command signal I4 to the left regulator 23L, the control unit 50 next detects the turning speed (step S10), and further calculates the turning flow rate based on the turning speed detected in step S10 (step S10). S11). Further, the control unit 50 calculates the discharge flow rate based on the swirl flow rate detected in step S11, and stores the calculated discharge flow rate and the flow rate command signal I4 in association with each other.
  • the second calibration point 74 is obtained in this way (see FIG. 3), the process proceeds from step S13 to step S14.
  • step S14 which is the second pump flow rate calibration process
  • the second reference characteristic is calibrated based on the two calibration points 73 and 74 acquired in step S12. That is, in the range where the flow rate Q is Qmin ⁇ Q ⁇ Qmax, the straight line passing through the two calibration points 73 and 74 (see the chain double-dashed line in FIG. 3) is the actual flow rate characteristic of the left hydraulic pump 21L, which is the second measured characteristic.
  • the control unit 50 calculates the second measured characteristic by calculating the slope and the intercept in the range of Qmin ⁇ Q ⁇ Qmax of the second measured characteristic based on the two calibration points 73 and 74.
  • the determined second measured characteristic is set as a new second reference characteristic.
  • the flow rate calibration process as described above can be executed to calibrate the flow rate characteristics of the two hydraulic pumps 21L and 21R in the state where the excavator 3 is mounted. Therefore, in the shovel 3 in which the hydraulic drive system 1 is mounted, the discharge flow rates of the two hydraulic pumps 21L and 21R can be controlled with high accuracy. Further, the hydraulic drive system 1 can calculate the discharge flow rates of the two hydraulic pumps 21L and 21R based on the turning speed detected by the gyro sensor 60 and calibrate the flow rate characteristics based on the calculated discharge flow rates. That is, in the hydraulic drive system 1, it is possible to calibrate the flow rate characteristics of the two hydraulic pumps 21L and 21R without newly providing a flow rate sensor, and it is possible to prevent the number of parts from increasing to perform calibration. You can
  • the hydraulic drive system 1A of the second embodiment is similar in configuration to the hydraulic drive system 1 of the first embodiment as shown in FIG. Therefore, with respect to the configuration of the hydraulic drive system 1A of the second embodiment, differences from the hydraulic drive system 1 of the first embodiment will be mainly described, and the same reference numerals will be given to the same configurations for the description. Omit it.
  • the hydraulic pressure supply device 24A of the hydraulic drive system 1A of the second embodiment further includes a replenishment section 47 in addition to the configuration of the hydraulic pressure supply device 24 of the hydraulic drive system 1 of the first embodiment.
  • the 47 has the following functions. That is, when the flow rate of the working fluid flowing through the right pump passage 33R is insufficient, the replenishment unit 47 guides the working fluid from the right supply passage 34R to the right pump passage 33R and replenishes it. More specifically, the replenishment section 47 has a replenishment passage 47a, a throttle 47b, and a check valve 47c.
  • the supply passage 47a is formed so as to bridge the right supply passage 34R and the right pump passage 33R.
  • a throttle 47b and a check valve 47c are interposed in the supply passage 47a, and the throttle 47b and the check valve 47c are arranged in that order from the right side supply passage 34R side in the supply passage 47a.
  • the check valve 47c thus arranged allows the flow of the hydraulic fluid from the right side supply passage 34R to the right side pump passage 33R and blocks the flow in the opposite direction.
  • the hydraulic drive system 1A configured as described above operates in substantially the same manner as the hydraulic drive system 1 of the first embodiment, but differs in the following points. That is, for example, when both the foot pedals 52a and 52b are operated while performing the boom operation and the turning operation, the two hydraulic motors 11L and 11R are both connected to the right hydraulic pump 21R. That is, the hydraulic fluid is supplied from the right hydraulic pump 21R to the two hydraulic motors 11L and 11R. Therefore, when the operation amounts of the foot pedals 52a and 52b are both large, when the hydraulic fluid is supplied to both of the two hydraulic motors 11L and 11R, the discharge flow rate from the right hydraulic pump 21R may be insufficient. In such a case, the hydraulic drive system 1A can supplement the insufficient flow rate by replenishing the working fluid from the right side supply passage 34R to the right side pump passage 33R via the replenishment section 47.
  • the flow rate characteristics of the two hydraulic pumps 21L and 21R can be calibrated by the same flow rate calibration process as the hydraulic drive system 1 of the first embodiment.
  • the replenishment section 47 since the replenishment section 47 is provided, when the hydraulic fluid is supplied from the left hydraulic pump 21L to the turning hydraulic motor 12 in steps S9 to S11, a part of the hydraulic fluid discharged from the left hydraulic pump 21L is replenished.
  • the discharge flow rate of the left hydraulic pump 21L cannot be accurately calculated because it is returned from the portion 47 to the tank 27. Therefore, in order to accurately calculate the discharge flow rate of the left hydraulic pump 21L and configure the flow rate characteristics of the two hydraulic pumps 21L and 21R with higher accuracy, the control unit 50A of the hydraulic drive system 1A uses the following flow rate.
  • the control unit 50A determines whether or not a predetermined calibration condition is satisfied, and if the calibration condition is satisfied, the flow rate calibration process as shown in FIG. 6 is executed.
  • the process proceeds to step S1, and thereafter, the control unit 50A executes steps S1 to S5 similarly to the hydraulic drive system 1 of the first embodiment, and the right side which is the first hydraulic pump.
  • the flow rate of the hydraulic pump 21R is calibrated.
  • step S1 when the flow rate calibration process is started, the state of the hydraulic drive system 1 is first switched to the first supply state (step S1), and then the flow rate command signal I1 is set and output to the right regulator 23R (step S2). ). After the output, the turning speed is detected (step S3), and the turning flow rate is calculated based on the turning speed detected in step S3 (step S4). Further, the control unit 50A calculates the discharge flow rate based on the swirling flow rate detected in step S4, and stores the calculated discharge flow rate and the flow rate command signal I1 in association with each other, that is, acquires the calibration point 71. (See FIG. 3) (step S5).
  • step S6 the flow rate command signal I2 is output to the right regulator 23R, and the second calibration point 72 is acquired (steps S3 to S3). S5).
  • step S6 the first actual measurement characteristic is calculated based on the two calibration points 71 and 72, and the calculated first actual measurement characteristic is updated. It is set as the first reference characteristic (step S7).
  • step S20 the second pump calibration process as shown in FIG. 7 is executed, and the process proceeds to step S21.
  • step S21 which is the minimum tilt angle switching step
  • the swash plate 22R of the right hydraulic pump 21R is tilted to the minimum tilt angle. That is, the control unit 50A sets the flow rate command signal I5 ( ⁇ Imin) based on the first reference characteristic so that the tilt angle of the swash plate 22R becomes the minimum tilt angle, and the flow rate command signal I5 is set to the right regulator. Output to 23R.
  • the swash plate 22R of the right hydraulic pump 21R is tilted to the minimum tilt angle, and the minimum flow rate Qmin of hydraulic fluid is discharged from the right hydraulic pump 21R.
  • step S22 which is the turning speed detection step
  • the turning speed of the turning body 6 is detected as in step S3 and the like. That is, the control unit 50A detects the swing speed of the swing body 6 based on the signal output from the gyro sensor 60, and when the swing speed of the swing body 6 is calculated, the process proceeds to step S23.
  • step S23 which is the turning flow rate calculating step
  • the turning flow rate of the turning hydraulic motor 12 during turning is calculated as in step S4 and the like. That is, the control unit 50A is based on the displacement of the turning hydraulic motor 12 and the speed reduction ratio between the turning hydraulic motor 12 and the turning body 6 which are stored in advance, and the turning speed calculated in step S22.
  • the swirl flow rate is calculated, and when the swirl flow rate is calculated, the process proceeds to step S24.
  • step S24 which is the first pump minimum flow rate calculation step
  • the minimum flow rate Qmin of the right hydraulic pump 21R is calculated. That is, the control unit 50A calculates the minimum flow rate Qmin of the right hydraulic pump 21R based on the swirling flow rate calculated in step S23 as in step S5 and the like. To detect the discharge pressure of the right hydraulic pump 21R. Then, the control unit 50A calculates the motor leak amount of the turning hydraulic motor 12 based on the detected discharge pressure of the left hydraulic pump 21L and the motor efficiency characteristic of the turning hydraulic motor 12. Finally, the control unit 50A adds the calculated motor leak amount to the turning flow rate to calculate the minimum flow rate Qmin. When the minimum flow rate Qmin is calculated, the process proceeds to step S25.
  • step S25 which is the second supply state switching step
  • the hydraulic pressure is set to the second supply state in which the hydraulic fluid discharged from the left hydraulic pump 21L, which is the second hydraulic pump, is supplied to the turning hydraulic motor 12.
  • the state of the drive system 1 is switched. That is, the control unit 50A closes the left tank passage 46L by the left unload valve 45L and simultaneously closes the right tank passage 46R by the right unload valve 45R. At the same time, the control unit 50A positions the position of the spool 30a of the straight traveling valve 30 at the second position A2.
  • step S26 which is a command current setting step
  • a predetermined flow rate command signal I3 which is set based on the flow rate characteristics stored in advance, is output to the left regulator 23L as in step S8.
  • the swash plate 22L of the left hydraulic pump 21L is tilted at a tilt angle according to the flow rate command signal I3, and hydraulic fluid having a flow rate according to the flow rate command signal I3 is discharged from the left hydraulic pump 21L. Then, the hydraulic fluid is supplied to the turning hydraulic motor 12 through the straight traveling valve 30 and the turning direction control valve 32.
  • control unit 50A outputs the flow rate command signal I5 to the right regulator 23R, and causes the right hydraulic pump 21R to discharge the discharge flow rate calculated in step S24, that is, the minimum flow rate Qmin.
  • the hydraulic fluid discharged from the right hydraulic pump 21R in this manner is guided to the right supply passage 34R via the bypass passage 40R and the supply passage 42 because the right tank passage 46R is closed, and the left hydraulic pressure is there. It merges with the hydraulic fluid discharged from the pump 21L and is supplied to the turning hydraulic motor 12 together with the hydraulic fluid.
  • the process proceeds to step S27.
  • step S27 which is the turning speed detection step
  • the turning speed of the turning body 6 is detected as in step S9. That is, the control unit 50A detects the swing speed of the swing body 6 based on the signal output from the gyro sensor 60, and when the swing speed of the swing body 6 is detected, the process proceeds to step S28.
  • step S28 which is the turning flow rate calculating step
  • the turning flow rate of the turning hydraulic motor 12 at the time of turning is calculated as in step S10. That is, the control unit 50A is based on the displacement volume of the turning hydraulic motor 12 and the speed reduction ratio between the turning hydraulic motor 12 and the turning body 6 which are stored in advance, and the turning speed detected in step S27. The turning flow rate is calculated, and when the turning flow rate is calculated, the process proceeds to step S29.
  • step S29 which is the second calibration point acquisition step
  • the actual discharge flow rate of the left hydraulic pump 21L is calculated, and the calibration point of the left hydraulic pump 21L is acquired based on the actual discharge flow rate. That is, the control unit 50A calculates the discharge flow rate of the left hydraulic pump 21L based on the swirling flow rate calculated in step S28. For that purpose, first, the discharge of the left hydraulic pump 21L is calculated based on the signal from the left pressure sensor 62L. Detect pressure. Then, the control unit 50A calculates the motor leak amount of the turning hydraulic motor 12 based on the detected discharge pressure of the left hydraulic pump 21L and the motor efficiency characteristic of the turning hydraulic motor 12. Then, the calculated motor leak amount is added to the swirl flow rate to calculate the discharge flow rate.
  • the discharge flow rate thus calculated is the sum of the discharge flow rates of the two hydraulic pumps 21L and 21R, that is, the total flow rate. Is. Therefore, in order to calculate the discharge flow rate from the left hydraulic pump 21L, the discharge flow rate from the right hydraulic pump 21R is subtracted from the total flow rate. That is, in step S26, the right hydraulic pump 21R outputs the flow command signal I5 to the right regulator 23R so as to discharge a predetermined discharge flow, that is, the minimum flow Qmin, and the discharge flow of the right hydraulic pump 21R. Is already known in step S24.
  • the control unit 50A stores the discharge flow rate in association with the flow rate command signal I3 set in step S26, that is, acquires the calibration point 73 (FIG. 3). reference).
  • the process proceeds to step S30.
  • step S30 which is the step of confirming the number of calibration points, it is determined whether or not two or more calibration points have been acquired when performing calibration for the second reference characteristic.
  • the number of calibration points to be acquired may be three or more.
  • the process returns to step S26, the flow rate command signal I4 is output to the left regulator 23L, the turning speed is detected next (step S27), and further detected in step S27.
  • the turning flow rate is calculated based on the turning speed (step S28).
  • the control unit 50A calculates the discharge flow rate based on the swirl flow rate detected in step S28, and stores the calculated discharge flow rate and the flow rate command signal I4 in association with each other (step S29).
  • the process proceeds from step S30 to step S31.
  • step S31 which is the second pump flow rate calibration process
  • the second reference characteristic is calibrated based on the two calibration points 73 and 74 acquired in step S29, as in step S14 of the first embodiment. That is, in the range where the flow rate Q is Qmin ⁇ Q ⁇ Qmax, the straight line passing through the two calibration points 73 and 74 (see the chain double-dashed line in FIG. 3) is the actual flow rate characteristic of the left hydraulic pump 21L, which is the second measured characteristic.
  • the control unit 50A calculates the second actually measured characteristic by calculating the slope and intercept in the range of Qmin ⁇ Q ⁇ Qmax of the second actually measured characteristic based on the two calibration points 73 and 74.
  • the determined second measured characteristic is set as a new second reference characteristic.
  • the flow rate calibration process as described above is executed to calibrate the flow rate characteristics of the two hydraulic pumps 21L and 21R with higher accuracy when the replenishment section 47 is provided. can do. Therefore, in the shovel 3 equipped with the hydraulic drive system 1A, the discharge flow rates of the two hydraulic pumps 21L and 21R can be controlled with high accuracy.
  • hydraulic drive system 1A of the second embodiment has the same effects as the hydraulic drive system 1 of the first embodiment.
  • the hydraulic drive system 1B of the third embodiment has exactly the same configuration as the hydraulic drive system 1A of the second embodiment as shown in FIG.
  • the second pump calibration process in the flow rate calibration process executed by the control unit 50B of the hydraulic drive system 1B is different from that executed by the control unit 50A of the hydraulic drive system 1A of the second embodiment.
  • the 2nd pump composition process which control unit 50B performs is explained in detail. That is, as shown in FIG. 6, the control unit 50B executes steps S1 to S7 of the flow rate calibration process, and when the calibration of the flow rate characteristic of the right hydraulic pump 21R, that is, the first reference characteristic is completed, moves to step S40.
  • the second pump configuration process as shown in FIG. 8 is executed, and the process proceeds to step S41.
  • step S41 which is the second supply state switching step
  • the hydraulic pressure is set to the second supply state in which the hydraulic fluid discharged from the left hydraulic pump 21L, which is the second hydraulic pump, is supplied to the turning hydraulic motor 12.
  • the state of the drive system 1 is switched. That is, the control unit 50B fully opens the right tank passage 46R by the right unload valve 45R, which is an example of a discharge valve, and closes the left tank passage 46L by the left unload valve 45L. Further, the control unit 50B positions the spool 30a of the straight-travel valve 30 at the second position A2 and actuates the turning direction control valve 32 so that the hydraulic fluid of the right hydraulic pump 21R causes the turning hydraulic motor 12 to move. To be supplied to. When the state of the hydraulic pressure supply device 24 is switched to the second supply state in this way, the process proceeds to step S42.
  • step S42 which is a command current setting step
  • a predetermined flow rate command signal I3 which is set based on the flow rate characteristics stored in advance, is output to the left regulator 23L as in step S26.
  • the swash plate 22L of the left hydraulic pump 21L is tilted at a tilt angle according to the flow rate command signal I3, and hydraulic fluid having a flow rate according to the flow rate command signal I3 is discharged from the left hydraulic pump 21L.
  • step S43 which is the turning speed detecting step
  • the turning speed of the turning body 6 is detected as in step S27.
  • step S44 which is the turning flow rate calculating step
  • the turning flow rate of the turning hydraulic motor 12 during turning is calculated as in step S28. That is, the control unit 50B is based on the displacement of the turning hydraulic motor 12 and the speed reduction ratio between the turning hydraulic motor 12 and the turning body 6 which are stored in advance, and the turning speed detected in step S43. The turning flow rate is calculated, and when the turning flow rate is calculated, the process proceeds to step S45.
  • step S45 which is the second calibration point acquisition step
  • the actual discharge flow rate of the left hydraulic pump 21L is calculated, and the calibration point of the left hydraulic pump 21L is acquired based on the actual discharge flow rate. That is, the control unit 50B calculates the discharge flow rate of the left hydraulic pump 21L based on the swirling flow rate calculated in step S45. Detect pressure. Then, the control unit 50B calculates the motor leak amount of the turning hydraulic motor 12 based on the detected discharge pressure of the left hydraulic pump 21L and the motor efficiency characteristic of the turning hydraulic motor 12. Then, the discharge flow rate of the left hydraulic pump 21L is calculated based on the calculated motor leak amount and swirling flow rate, but the discharge flow rate is calculated as follows.
  • the replenishment section 47 is provided and the right side tank passage 46R is fully opened. Therefore, a part of the hydraulic fluid discharged from the left hydraulic pump 21L flows into the tank 27 through the replenishment section 47, the right pump passage 33R, and the tank passage 46R, and the control unit 50B controls the motor leak amount.
  • the outflow rate Qa flowing out to the tank 27 is calculated. More specifically, the control unit 50B detects the discharge pressure of the right hydraulic pump 21R based on the signal from the right pressure sensor 62R (first pressure sensor), and detects the discharge pressure and the left pressure sensor 62L (second pressure sensor). The outflow rate Qa is calculated based on the discharge pressure detected by the pressure sensor). That is, the control unit 50B calculates the outflow flow rate Qa based on the following equation (1).
  • C is a flow coefficient
  • d is a diameter of the throttle 47b
  • P1 is a discharge pressure of the right hydraulic pump 21R
  • P2 is a discharge pressure of the left hydraulic pump 21L
  • is a liquid density of the working fluid.
  • C, the aperture diameter d, and the liquid density ⁇ are stored in advance by the control unit 50B.
  • the control unit 50B detects the two discharge pressures P1 and P2, the control unit 50B calculates the outflow rate Qa based on them and the equation (1).
  • control unit 50B constitutes an outflow flow rate detection device together with the two pressure sensors 62L and 62R, and the outflow flow rate based on the discharge pressures P1 and P2 detected based on the signals from the two pressure sensors 62L and 62R. To calculate. Then, the control unit 50B calculates the discharge flow rate of the left hydraulic pump 21L by adding the calculated motor leak amount and the outflow flow rate Qa to the swirl flow rate. When the discharge flow rate of the left hydraulic pump 21L is calculated, the control unit 50B stores the discharge flow rate in association with the flow rate command signal I3 set in step S42, that is, acquires the calibration point 73 (FIG. 3). reference). When the first calibration point 73 is obtained in this way, the process proceeds to step S46.
  • step S46 which is the step of checking the number of calibration points, it is determined whether or not two or more calibration points have been acquired when performing calibration for the second reference characteristic.
  • the number of calibration points to be acquired may be three or more.
  • the flow returns to step S42, the flow rate command signal I4 is output to the left regulator 23L, the turning speed is detected next (step S43), and further detected in step S43.
  • the turning flow rate is calculated based on the turning speed (step S44).
  • the control unit 50B calculates the discharge flow rate based on the swirl flow rate detected in step S44, and stores the calculated discharge flow rate and the flow rate command signal I4 in association with each other (step S45).
  • the process proceeds from step S46 to step S47.
  • step S47 which is the second pump flow rate calibration process
  • the second reference characteristic is calibrated based on the two calibration points 73 and 74 acquired in step S45, as in step S14 of the first embodiment. That is, in the range where the flow rate Q is Qmin ⁇ Q ⁇ Qmax, the straight line passing through the two calibration points 73 and 74 (see the chain double-dashed line in FIG. 3) is the actual flow rate characteristic of the left hydraulic pump 21L, which is the second measured characteristic. Is calculated as More specifically, the control unit 50B calculates the second actually measured characteristic by calculating the slope and intercept in the range of Qmin ⁇ Q ⁇ Qmax of the second actually measured characteristic based on the two calibration points 73 and 74. The determined second measured characteristic is set as a new second reference characteristic. When the calibration of the second reference characteristic based on the second actual measurement characteristic is performed in this way, the second pump calibration process ends, and the flow rate calibration process also ends.
  • the hydraulic drive system 1B by performing the flow rate calibration process in a procedure different from that of the hydraulic drive system 1A of the second embodiment, the flow rates of the two hydraulic pumps 21L and 21R are the same as in the hydraulic drive system 1A.
  • the property can be calibrated with higher accuracy. Therefore, in the shovel 3 equipped with the hydraulic drive system 1B, the discharge flow rates of the two hydraulic pumps 21L and 21R can be controlled with high accuracy.
  • the hydraulic drive system 1B of the third embodiment has the same effects as the hydraulic drive system 1A of the second embodiment.
  • the hydraulic drive system 1C of the fourth embodiment has exactly the same configuration as the hydraulic drive system 1A of the second embodiment as shown in FIG.
  • the second pump calibration process in the flow rate calibration process executed by the control unit 50C of the hydraulic drive system 1C is completely different from the hydraulic drive systems 1A and 1B of the second and third embodiments.
  • the 2nd pump calibration process which control unit 50C performs is demonstrated. That is, when the control unit 50C executes steps S1 to S5 of the flow rate calibration processing as shown in FIG. 6 and the calibration of the flow rate characteristic of the right hydraulic pump 21R is completed, the control unit 50C moves to step S50 and is shown in FIG. The second pump configuration process is performed, and the process proceeds to step S51. Control goes to step S51.
  • step S51 which is the third supply state switching step
  • the hydraulic drive system 1C is brought into the third supply state in which the hydraulic fluid discharged from the two hydraulic pumps 21L and 21R is supplied to the turning hydraulic motor 12.
  • the state is switched.
  • the control unit 50C outputs a signal to each of the valves 30, 31L, 31R, 32, 45L, 45R and controls the operations thereof as follows. That is, the control unit 50C closes the left tank passage 46L with the left unload valve 45L and closes the right tank passage 46R with the right unload valve 45R.
  • control unit 50C moves the spool 30a of the traveling straight-ahead valve 30 to the merging function, merges the hydraulic fluid discharged from the two hydraulic pumps 21L and 21R with the traveling straight-ahead valve 30, and supplies the right side supply passage 34R. To be guided to.
  • the control unit 50C operates the turning direction control valve 32, that is, strokes the spool 32a of the turning direction control valve 32.
  • the hydraulic fluid guided to the right supply passage 34R is supplied to the turning hydraulic motor 12.
  • the spool 32a is stroked so that the opening degree of the turning direction control valve 32 is fully opened.
  • the directional control valves 31L and 31R including various directional control valves corresponding to the boom cylinder 13, the arm cylinder 14, the bucket cylinder 15, etc.
  • their spools 31La and 31Ra (Including spools of the various directional valves) is positioned at a neutral position, and hydraulic fluid flows to other hydraulic actuators such as the left traveling hydraulic motor 11L (second hydraulic actuator) and the right traveling hydraulic motor 11R. Try not to.
  • the spool 32a of the turning direction control valve 32 is stroked so that all the hydraulic fluid of the two hydraulic pumps 21L and 21R is supplied only to the turning hydraulic motor 12.
  • the state of the hydraulic pressure supply device 24 is switched to the third supply state in which all the hydraulic fluids of the two hydraulic pumps 21L and 21R are supplied only to the turning hydraulic motor 12, the process proceeds to step S52. To do.
  • step S52 which is a command current setting step
  • a predetermined flow rate command signal I3 which is set based on the flow rate characteristics stored in advance, is output to the left regulator 23L as in steps S26 and S42.
  • the swash plate 22L of the left hydraulic pump 21L is tilted at a tilt angle according to the flow rate command signal I3, and hydraulic fluid having a flow rate according to the flow rate command signal I3 is discharged from the left hydraulic pump 21L.
  • a predetermined flow rate command signal that is, a flow rate command signal I5 ( ⁇ Imin) in this embodiment is also output to the right regulator 23R.
  • the swash plate 22L of the left hydraulic pump 21L tilts to the minimum tilt angle, and the discharge flow rate of the left hydraulic pump 21L becomes the minimum flow rate Qmin. In this way, the entire amount of the hydraulic fluid discharged from the two hydraulic pumps 21L and 21R is supplied to the turning hydraulic motor 12 via the straight traveling valve 30 and the turning direction control valve 32. When the hydraulic fluid is supplied in this manner, the process proceeds to step S53.
  • step S53 which is the turning speed detection step
  • the turning speed of the turning body 6 is detected as in step S3 and the like. That is, the control unit 50C detects the swing speed of the swing body 6 based on the signal output from the gyro sensor 60, and when the swing speed of the swing body 6 is calculated, the process proceeds to step S54.
  • step S54 which is the turning flow rate calculating step
  • the turning flow rate of the turning hydraulic motor 12 at the time of turning is calculated as in step S4 and the like. That is, the control unit 50C is based on the displacement volume of the turning hydraulic motor 12 and the speed reduction ratio between the turning hydraulic motor 12 and the turning body 6 which are stored in advance, and the turning speed calculated in step S53. The turning flow rate is calculated, and when the turning flow rate is calculated, the process proceeds to step S55.
  • step S55 which is the second calibration point acquisition step
  • the actual discharge flow rate of the left hydraulic pump 21L is calculated, and the calibration point of the left hydraulic pump 21L is acquired based on the actual discharge flow rate. That is, the control unit 50C calculates the discharge flow rate of the left hydraulic pump 21L based on the swirling flow rate calculated in step S54. , 21R is detected. Then, the control unit 50A calculates the motor leak amount of the turning hydraulic motor 12 based on the detected discharge pressure and the motor efficiency characteristic of the turning hydraulic motor 12. Then, the calculated motor leak amount is added to the swirl flow rate to calculate the discharge flow rate.
  • the discharge flow rate thus calculated is the sum of the discharge flow rates of the two hydraulic pumps 21L and 21R, that is, the total flow rate. Is. Therefore, in order to calculate the discharge flow rate from the left hydraulic pump 21L, the discharge flow rate from the right hydraulic pump 21R is subtracted from the total flow rate.
  • step S55 the flow rate command signal I5 is output to the right regulator 23R so that the right hydraulic pump 21R discharges a predetermined discharge flow rate, that is, the minimum flow rate Qmin.
  • the control unit 50C stores the discharge flow rate in association with the flow rate command signal I3 set in step S52, that is, acquires the calibration point 73 (FIG. 3). reference).
  • the process proceeds to step S56.
  • step S56 which is the step of confirming the number of calibration points, it is determined whether or not two or more calibration points are acquired when performing the calibration with respect to the second reference characteristic, as in step S30 of the second embodiment.
  • the number of calibration points to be acquired may be three or more. If it is determined that the number of acquired calibration points is one, the flow returns to step S52, the flow rate command signal I4 is output to the left regulator 23L, the turning speed is detected next (step S53), and further detected in step S53. The turning flow rate is calculated based on the turning speed (step S54).
  • control unit 50C calculates the discharge flow rate based on the swirling flow rate detected in step S54, and stores the calculated discharge flow rate and the flow rate command signal I4 in association with each other (step S55).
  • step S55 the control unit 50C calculates the discharge flow rate based on the swirling flow rate detected in step S54, and stores the calculated discharge flow rate and the flow rate command signal I4 in association with each other.
  • step S57 which is the second pump flow rate calibration process
  • the second reference characteristic is calibrated based on the two calibration points 73 and 74 acquired in step S55, as in step S31 of the second embodiment. That is, the control unit 50C calculates the second actual measurement characteristic based on the two calibration points 73 and 74, and the calculated second actual measurement characteristic is set as a new second reference characteristic.
  • the calibration of the second reference characteristic based on the second actual measurement characteristic is performed in this way, the second pump calibration process ends, and the flow rate calibration process also ends.
  • the flow rate calibration process as described above is executed to calibrate the flow rate characteristics of the two hydraulic pumps 21L and 21R with higher accuracy when the replenishment section 47 is provided. can do. Therefore, in the shovel 3 equipped with the hydraulic drive system 1C, the discharge flow rates of the two hydraulic pumps 21L and 21R can be controlled with high accuracy.
  • the pump flow rate calibration system may be the hydraulic drive system 1D of the fifth embodiment described below. That is, the hydraulic drive system 1D of the fifth embodiment is a system that supplies hydraulic fluid to the hydraulic motor 12D to drive it as shown in FIG. 10, and includes a hydraulic pump 21D, a regulator 23D, and a hydraulic pump 21D.
  • the pressure supply device 24D is provided.
  • the hydraulic pump 21D is a so-called variable displacement swash plate pump, and has a swash plate 22D.
  • the hydraulic pump 21D can change the discharge flow rate by tilting the swash plate 22D, and the hydraulic pump 21D is provided with a regulator 23D in order to tilt the swash plate 22D.
  • the regulator 23D adjusts the tilt angle of the swash plate 22D according to the flow rate command signal input thereto, and controls the discharge flow rate of the hydraulic pump 21D.
  • a hydraulic pressure supply device 24D is connected to the hydraulic pump 21D configured as described above to supply the discharged hydraulic fluid to the hydraulic motor 12D.
  • the hydraulic pressure supply device 24D has a directional control valve 32D and can control the flow and flow rate of the hydraulic fluid to the hydraulic motor 12D. More specifically, the directional control valve 32D is connected to the hydraulic motor 12 and the tank 27 in addition to the hydraulic pump 21D, and switches the connection state between the hydraulic pump 21D and the tank 27 and the hydraulic motor 12D. be able to. That is, the direction control valve 32D has the spool 32Da, and the connection state is switched by changing the position of the spool 32Da.
  • the spool 32Da receives pilot pressures respectively output from two different electromagnetic proportional control valves 32Db and 32Dc at both ends thereof, and one of the spool 32Da is moved from the neutral position to the one depending on the differential pressure of the two pilot pressures to be received. And move to the other.
  • the connection state between the hydraulic pump 21D and the tank 27 and the hydraulic motor 12D can be switched, and the rotational direction of the hydraulic motor 12D can be changed by switching the connection state and changing the flowing direction of the hydraulic fluid. it can.
  • the opening degree of the directional control valve 32D is adjusted to the opening degree corresponding to the position.
  • the following configuration is connected between the directional control valve 32D and the hydraulic motor 12D. That is, the directional control valve 32D is D-connected to the hydraulic motor 12 via the two turning supply passages 37DL, 37DR, and the relief valves 38DL, 38DR are respectively provided in the two turning supply passages 37DL, 37DR. It is connected.
  • the two relief valves 38DL, 38DR discharge the hydraulic fluid to the tank 27 when the hydraulic pressure of the hydraulic fluid flowing through the connected swirl supply passages 37DL, 37DR exceeds a predetermined relief pressure.
  • the two turning supply passages 37DL, 37DR are connected to the tank 27 via the check valves 39DL, 39DR, so that the hydraulic fluid can be supplemented from the tank 27 when the hydraulic fluid becomes insufficient. ing.
  • the hydraulic drive system 1D thus configured further includes a control unit 50D, and the movements of the regulator 23D and the directional control valve 32D are controlled by the control unit 50D.
  • an operating device 51D is electrically connected to the control unit 50D to give a command regarding the operation of the hydraulic pressure supply device 24D.
  • the operating device 51D is composed of, for example, an electric joystick or a remote control valve. That is, the operation device 51D has the operation lever 51Da, and when the operation lever 51Da is tilted, outputs a signal according to the tilt amount to the control unit 50D.
  • the control unit 50D controls the movement of the directional control valve 32D according to the signal output from the operating device 51D, and is configured as follows to control the movement of the directional control valve 32D. That is, the control unit 50D is electrically connected to the electromagnetic proportional control valves 32Db and 32Dc provided in the directional control valve 32D, respectively, and the electromagnetic proportional control valve 32Db according to the signal output from the operating device 51D. , 32Dc to output a command signal. Then, the electromagnetic proportional control valves 32Db and 32Dc output the pilot pressure according to the command signal, and the spool 32Da moves to a position corresponding to the differential pressure between the two pilot pressures. As a result, the direction control valve 32 opens at an opening degree corresponding to the operation amount of the operation lever 51Da, and the hydraulic fluid having a flow rate according to the operation amount of the operation lever 51Da is supplied to the hydraulic motor 12D.
  • the hydraulic drive system 1D also includes a rotation sensor 60D and a pressure sensor 62D.
  • the rotation sensor 60D is provided on the output shaft 12a of the hydraulic motor 12D and is electrically connected to the control unit 50. Further, the rotation sensor 60D outputs a signal according to the rotation speed of the output shaft 12a to the control unit 50D, and the control unit 50D detects the rotation speed of the hydraulic motor 12D based on the signal from the rotation sensor 60D. Further, the pressure sensor 62D is connected to the hydraulic pump 21D and is electrically connected to the control unit 50D.
  • the pressure sensor 62D arranged in this way outputs a signal corresponding to the discharge pressure of the hydraulic pump 21D to the control unit 50, and the control unit 50D outputs the hydraulic pressure based on the signal output from the pressure sensor 62D.
  • the discharge pressure of the pump 21D is detected.
  • the control unit 50D performs various calculations and stores various information.
  • the control unit 50D controls the movement of the hydraulic pressure supply device 24D according to the operation performed on the operating device 51D, and operates the hydraulic actuator 12D. That is, when the operation lever 51Da is operated and a signal is output from the operation device 51D, the control unit 50D outputs a rotation command signal corresponding to the signal to the electromagnetic proportional control valve 32Db (or the electromagnetic proportional control valve 32Dc). The directional control valve 32D is operated. As a result, the hydraulic fluid from the hydraulic pump 21D is supplied to the hydraulic motor 12D, and the hydraulic motor 12D is rotated by this hydraulic fluid.
  • control unit 50D opens the directional control valve 32D at an opening degree according to the operation amount of the operation lever 51Da, and discharges the hydraulic pump 21D via the regulator 23D according to the operation amount of the operation lever 51Da. To control. As a result, the hydraulic motor 12D can be rotated at a rotation speed according to the operation amount of the operation lever 51Da.
  • the control unit 50D having such a function like the control units 50, 50A, and 50B of the first to third embodiments, sets the reference characteristic of the hydraulic pump 21D in advance, and sets the flow rate characteristic to the set value. Calibrate.
  • the hydraulic pump flow rate calibration process executed by the control unit 50D will be described. That is, the control unit 50D determines whether or not a predetermined calibration condition is satisfied, and if the calibration condition is satisfied, the flow rate calibration process as shown in FIG. 10 is executed. When the flow rate calibration process is executed, the process proceeds to step S61.
  • step S61 which is the supply state switching step
  • the state of the hydraulic drive system 1D is switched to the supply state in which the hydraulic fluid discharged from the hydraulic pump 21D is supplied to the hydraulic motor 12D.
  • the control unit 50D outputs a signal to the electromagnetic proportional control valve 32Db (or the electromagnetic proportional control valve 32Dc) of the directional control valve 32D to operate the spool 32Da of the directional control valve 32D, and the hydraulic pump 21D.
  • the tank 27 is connected to the hydraulic motor 12D.
  • the spool 32Da is stroked so that the opening of the directional control valve 32D is fully opened so that the entire amount of the hydraulic fluid of the hydraulic pump 21D is supplied to the hydraulic motor 12D.
  • the process proceeds to step S62.
  • step S62 which is a command current setting step, as in step S2 described above, a predetermined flow rate command signal I1 set based on the reference characteristic is output to the regulator 23D.
  • the swash plate 22D of the hydraulic pump 21D is tilted at the tilt angle corresponding to the flow rate command signal I1, and the hydraulic fluid having a flow rate according to the flow rate command signal I1 is discharged from the hydraulic pump 21D.
  • step S63 which is the rotation speed detection step, the rotation speed of the hydraulic motor 12D is detected. That is, the control unit 50 detects the rotation speed of the hydraulic motor 12D based on the signal output from the rotation sensor 60D. When the rotation speed of the hydraulic motor 12D is detected, the process proceeds to step S64.
  • step S64 which is the supply flow rate calculation step
  • the flow rate of the hydraulic fluid supplied to the hydraulic motor 12D while the hydraulic motor 12D is rotating that is, the supply flow rate is calculated. That is, the control unit 50 stores in advance the displacement of the hydraulic motor 12D, and calculates the supply flow rate based on this displacement and the rotation speed detected in step S63. More specifically, the supply flow rate is calculated by multiplying the rotational speed calculated in step S63 by the displacement.
  • the process proceeds to step S65.
  • step S65 which is a calibration point acquisition process
  • the control unit 50D After calculating the discharge flow rate, the control unit 50D stores the discharge flow rate in association with the flow rate command signal I1 set in step S62. For example, as shown in FIG. 3, when the discharge flow rate discharged with respect to the flow rate command signal I1 is larger than the reference characteristic (solid line in FIG. 3), the calibration point 71 is acquired. When the first calibration point 71 is obtained in this way, the process proceeds to step S66.
  • step S66 which is the step of confirming the number of calibration points, it is determined whether or not two or more calibration points have been acquired when performing calibration for the reference characteristic.
  • the number of calibration points to be acquired may be three or more.
  • the flow returns to step S62, the flow rate command signal I2 is output to the regulator 23D, the turning speed is detected next (step S63), and the turning speed is detected in step S63.
  • the turning flow rate is calculated based on the speed (step S64).
  • the control unit 50D calculates the discharge flow rate based on the swirling flow rate detected in step S64, and stores the calculated discharge flow rate and the flow rate command signal I2 in association with each other (step S65).
  • step S67 which is the pump flow rate calibration process
  • the reference characteristic is calibrated based on the two calibration points 71 and 72 acquired in step S65, as in step S14 of the first embodiment. That is, in the range where the flow rate Q is Qmin ⁇ Q ⁇ Qmax, a straight line passing through the two calibration points 71 and 72 (see the chain double-dashed line in FIG. 3) is calculated as the actual measurement characteristic that is the actual flow rate characteristic of the hydraulic pump 21D.
  • the control unit 50D calculates the measured characteristic by calculating the slope and the intercept in the range of Qmin ⁇ Q ⁇ Qmax of the measured characteristic based on the two calibration points 71 and 72, and calculates the measured characteristic.
  • the measured characteristic is set as a new second reference characteristic. In this way, when the reference characteristic is calibrated based on the measured characteristic, the flow rate calibration process ends.
  • the discharge flow rate of the hydraulic pump 21D is calibrated by executing the above-described flow rate calibration process, with the hydraulic pump 21D being provided in the hydraulic drive system 1D.
  • the hydraulic drive system 1D can calculate the discharge flow rate of the hydraulic pump 21D based on the rotation speed of the hydraulic motor detected by the rotation sensor 60D, and calibrate the flow rate characteristic based on the calculated flow rate. That is, in the hydraulic drive system 1, the flow rate characteristics of the hydraulic pump 21D can be configured without newly providing a flow rate sensor, and an increase in the number of parts for calibration can be suppressed.
  • the hydraulic pump flow rate calibration process may be executed using the hoisting motor provided in the hoisting device of the crane instead of the turning motor. Further, in the case of a wheel loader or the like, the hydraulic pump flow rate calibration process may be executed by using a traveling motor instead of the swing motor. Further, the hydraulic pump flow rate calibration process may be executed using a cylinder instead of the hydraulic motor. That is, the flow rate supplied to the hydraulic actuator may be calculated based on the stroke amount of the rod of the cylinder, and the hydraulic pump flow rate calibration process may be executed based on the calculated flow rate. At this time, the stroke sensor functions as a flow rate detecting device.
  • the flow rate detection device does not necessarily have to be the gyro sensor 60 or the stroke sensor, and may be a flow meter or the like in the passage connected to each hydraulic actuator.
  • the triaxial gyro sensor is adopted as the gyro sensor 60, but the biaxial gyro sensor may be adopted.
  • the traveling directional control valves 31L and 31R operate based on the pilot pressure output from the electromagnetic proportional valves 31Lb, 31Lc, 31Rb and 31Lc.
  • the traveling operating device 52 is composed of a hydraulic remote control valve, and the traveling directional control valves 31L and 31R are hydraulically driven directional control valves that are driven by the pilot pressure output from the remote control valve. It may be.
  • the presence or absence of an operation on the traveling operation device 52 is detected by detecting the pilot pressure output from the remote control valve by a pressure sensor or the like.
  • each reference characteristic is calibrated based on two or more calibration points, but it is not always necessary to calibrate two or more. Absent. That is, the change point 75 from the minimum flow rate Qmim in each of the hydraulic pumps 21L, 21R, 21D has a smaller variation for each product than the change point 76 of the maximum flow rate Qmax, and can be regarded as a substantially fixed point. Therefore, it is possible to calculate the actually measured characteristics based on the change point 75 and one calculated calibration point, and to configure the reference characteristics based on the calculated actually measured characteristics.
  • the hydraulic drive systems 1, 1A, 1B of the first to third embodiments are provided with the unload valves 45L, 45R, they are not necessarily provided and the hydraulic drive as shown in FIG. It may be the system 1E. That is, the bypass cut valve 49L is interposed in the left bypass passage 40L of the hydraulic drive system 1E, and the left bypass passage 40L is connected to the tank 27 via the bypass cut valve 49L.
  • a directional control valve for example, a bucket directional control valve and a first boom directional control
  • the bypass cut valve 49L for example, a bucket directional control valve and a first boom directional control
  • the opening degree of the left bypass passage 40L is adjusted according to the position of the spool of each directional control valve including the directional control valve 31L.
  • the bypass cut valve 49R is also interposed in the right bypass passage 40R, and the right bypass passage 40R is connected to the tank 27 via the bypass cut valve 49R.
  • a turning directional control valve 32 and a directional control valve not shown for example, an arm directional control valve.
  • the second boom directional control valve, etc., and the opening degree of the right bypass passage 40R is adjusted according to the position of the spool of each directional control valve including the directional control valve 32.
  • the hydraulic pump flow rate calibration process is executed by using the bypass cut valves 49L and 49R as exhaust valves. That is, in step S1, by opening the bypass cut valve 49L, the left supply passage 34L is connected to the tank 27 via the left bypass passage 40L, and the entire amount of hydraulic fluid discharged from the left hydraulic pump 21L is returned to the tank 27. ..
  • the right bypass passage 40R is closed by the spool 32a of the turning direction control valve 32E regardless of whether the bypass cut valve 49R is opened or closed.
  • the bypass cut valve 49L is closed so that the left supply passage 34L is not returned to the tank 27.
  • the hydraulic pump flow rate calibration process can be realized without the unload valves 45L and 45R. Even if the unload valves 45L and 45R are provided, the hydraulic pump flow rate calibration process can be executed by the same method without operating the unload valves 45L and 45R.
  • the minimum flow rate Qmin is adopted as the correction flow rate, but it is not necessarily so, and the adopted flow rate may be a known flow rate. Further, the outflow flow rate does not necessarily have to be calculated using the above-described formula (1), and may be directly detected by connecting a flow rate sensor to the supply passage 47a.
  • Hydraulic drive system (fluid pump flow rate configuration system) 11L Left-hand drive hydraulic motor 12 Swing hydraulic motor 13 Boom cylinder 14 Arm cylinder 15 Bucket cylinder 21L Left-hand hydraulic pump 21R Right-hand hydraulic pump 23D, 23L, 23R Regulator 27 Tank 30 Straight-travel valve (switching valve) 32E Turning direction control valve 32 (discharging valve) 33R right side pump passage 34R right side supply passage 40R right side bypass passage 44 check valve (bypass check valve) 45R Right unload valve (discharge valve) 47 Replenishing part 47b Aperture 50, 50A, 50B, 50C, 50D Control unit (control device, calibration device) 60 Gyro sensor 60D Rotation sensor 62D Pressure sensor 62R Right pressure sensor 62L Left pressure sensor

Abstract

液圧ポンプ流量較正システムは、供給される作動液の流量に応じた速度にて作動する液圧アクチュエータに接続され、液圧アクチュエータに作動液を供給する可変容量型の液圧ポンプと、入力される流量指令信号に応じて液圧ポンプの吐出流量を変更するレギュレータと、液圧アクチュエータに供給される作動液の流量を検出する流量検出装置と、レギュレータに流量指令信号を出力してレギュレータを制御する制御装置と、流量指令信号に対する吐出流量の実測特性を算出し、予め設定された基準特性に対して実測特性に基づいた較正を行う較正装置とを備え、実測特性は、制御装置からレギュレータに所定の流量指令信号を出力する際に、液圧アクチュエータに供給される流量を流量検出装置で検出することにより算出される。

Description

液圧ポンプ流量較正システム
 本発明は、液圧ポンプが液圧アクチュエータに接続されている状態において、その液圧ポンプの吐出流量を較正する液圧ポンプ流量較正システムに関する。
 ショベル等の建設機械は、そこに備わるバケット等のアタッチメントによって掘削等の各種作業を行うことができ、これらの作業を行うべくアクチュエータ及び供給システムを備えている。アクチュエータには、例えば液圧シリンダ及び液圧モータがある。液圧シリンダ及び液圧モータは、それらに作動液、例えば圧油を供給することによって供給される圧油の流れる方向に応じた方向及び流量に応じた速度にて作動する。また、アクチュエータには供給システムが接続されており、供給システムは、ポンプ及び方向制御弁を備えている。供給システムでは、アクチュエータを作動すべくポンプから圧油が吐出され、またポンプからアクチュエータに供給される圧油の流れる方向及び流量を方向制御弁によって制御する。これにより、アクチュエータを所望の方向で且つ速度で作動させることができる。
 このような機能を有する供給システムでは、可変容量型のポンプが採用されており、状況に応じてポンプの吐出流量を変えることによって供給システムにおけるエネルギー効率の向上を図っている。このような要望を満たすために、可変容量型のポンプとして、例えば斜板式ポンプが採用されており、斜板式ポンプの斜板を傾転させるべくレギュレータが以下のように構成されている。即ち、レギュレータは、電磁比例制御弁から出力される信号圧に応じた角度に斜板を傾転させ、また電磁比例制御弁は、そこに入力される信号(即ち、電流)に応じた圧力の信号圧を出力する。即ち、レギュレータは、電磁比例制御弁に入力される信号に応じた流量(即ち、流量特性に応じた流量)の作動液をポンプから吐出させることができ、供給システムでは、ポンプの吐出流量を電気的に制御することができる。
 このように構成されている供給システムでは、レギュレータの流量特性が個々の製品毎にばらつきを有している。それ故、製造工場等において出荷試験で流量特性を計測し、流量特性が公差の範囲内に収まるか否かを検査し、公差の範囲内に収まらない場合には、レギュレータの構成部品を交換するなどして公差の範囲内に収まるようにしている。このようにポンプの吐出流量を高い精度にて制御することを可能にし、供給システムにおける更なるエネルギー効率の向上を図っている。
 前述の通り、製造工場等では出荷試験で流量特性を計測してから可変容量型のポンプが出荷されているが、その試験では予め定められた1つの圧力条件の下でのみ計測が行われている。他方、可変容量型のポンプが搭載される建設機械等の実機では、それが使用される環境における圧力条件が出荷試験における圧力条件と必ずしも一致しないことが多く、出荷試験にて計測された流量特性が実機に搭載した場合に再現されない。即ち、出荷試験時に計測した流量特性と実機搭載時における流量特性とに誤差が生じている。それ故、このような実機に搭載した際の誤差をなくすべく、実機に搭載した状態で液圧ポンプの吐出流量を較正し、吐出流量をより正確に制御することを可能にすることが望まれている。
 そこで本発明は、実機に搭載した状態で液圧ポンプの吐出流量を較正することができる液圧ポンプ流量較正システムを提供することを目的としている。
 本発明の液圧ポンプ流量較正システムは、供給される作動液の流量に応じた速度にて作動する液圧アクチュエータに接続され、前記液圧アクチュエータに作動液を供給する可変容量型の液圧ポンプと、入力される流量指令信号に応じて前記液圧ポンプの吐出流量を変更するレギュレータと、前記液圧アクチュエータに供給される作動液の流量を検出する流量検出装置と、前記レギュレータに流量指令信号を出力して前記レギュレータを制御する制御装置と、流量指令信号に対する前記吐出流量の実測特性を算出し、予め設定された基準特性に対して実測特性に基づいた較正を行う較正装置とを備え、実測特性は、前記制御装置から前記レギュレータに所定の流量指令信号を出力する際に、前記液圧アクチュエータに供給される流量を前記流量検出装置で検出することにより算出されるものである。
 本発明に従えば、液圧ポンプが液圧アクチュエータに接続されている状態、例えば建設機械等の実機にて液圧ポンプの吐出流量の較正を行うことができる。これにより、液圧ポンプから液圧アクチュエータに作動液を供給した際の液圧アクチュエータの動作が機器毎にばらつくことを抑制することができる。
 上記発明において、前記液圧アクチュエータは、液圧モータであり、前記流量検出装置は、前記液圧モータの出力軸の回転速度に応じた値を検出する回転センサを有し、前記回転センサの検出結果と前記液圧モータの吸入容量とに基づいて前記液圧モータに供給される流量を検出することが好ましい。
 上記構成に従えば、回転センサによって検出流量を推定することによって、流量を直接検出する流量センサを備えずとも液圧ポンプの吐出流量の較正を行うことができる。
 上記発明において、前記液圧モータは、構造体に対して旋回可能に設けられている旋回体を旋回させ、前記回転センサは、前記液圧モータの出力軸の回転速度に応じた値として前記旋回体の旋回速度を検出し、前記流量検出装置は、検出される旋回速度と前記液圧モータの吸入容量とに基づいて前記液圧モータに供給される流量を検出することが好ましい。
 上記構成に従えば、旋回体の旋回速度を検出することによって、液圧ポンプの吐出流量の較正を行うことができる。
 上記発明において、前記較正装置を有し、前記旋回体に設けられる制御ユニットを備え、前記回転センサは、ジャイロセンサであって、前記制御ユニットに内蔵されていることが好ましい。
 上記構成に従えば、制御ユニットに内装されたジャイロセンサによって旋回体の旋回速度を演算することができるので、新たに回転センサを設ける必要がなく、部品点数の増加を抑制することができる。
 本発明の液圧ポンプ流量較正システムは、供給される作動液の流量に応じた速度にて作動する液圧アクチュエータに接続され、前記液圧アクチュエータに作動液を供給する可変容量型の第1液圧ポンプと、前記液圧アクチュエータに接続され、前記液圧アクチュエータに作動液を供給する第2液圧ポンプと、入力される第1流量指令信号に応じて前記第1液圧ポンプの吐出流量を変更する第1レギュレータと、前記第1液圧ポンプ及び前記第2液圧ポンプ並びに前記液圧アクチュエータに接続され、前記第1液圧ポンプ及び前記第2液圧ポンプのうち何れかを前記液圧アクチュエータと接続する切換弁と、前記液圧アクチュエータに供給される作動液の流量を検出する流量検出装置と、前記第1レギュレータに第1流量指令信号を出力して前記第1レギュレータを制御する制御装置と、第1流量指令信号に対する前記第1液圧ポンプの吐出流量の第1実測特性を算出し、予め設定された第1基準特性に対して当該第1実測特性に基づいた較正を行う較正装置と、を更に備え、前記第1実測特性は、前記制御装置から前記第1レギュレータに所定の第1流量指令信号を出力する際に、前記切換弁によって前記第1液圧ポンプと前記液圧アクチュエータとを接続して前記液圧アクチュエータに供給される流量を前記流量検出装置で検出することにより算出されるものである。
 上記構成に従えば、2つの液圧ポンプが液圧アクチュエータに接続されている状態、例えば建設機械等の実機にて第1液圧ポンプの吐出流量の較正を行うことができる。これにより、第1液圧ポンプから液圧アクチュエータに作動液を供給した際の液圧アクチュエータの動作が機器毎にばらつくことを抑制することができる。
 上記発明において、前記液圧アクチュエータは、液圧モータであり、前記流量検出装置は、前記液圧モータの出力軸の回転速度に応じた値を検出する回転センサを有し、前記回転センサの検出結果と前記液圧モータの吸入容量とに基づいて前記液圧モータに供給される流量を検出することが好ましい。
 上記構成に従えば、回転センサによって検出流量を推定することによって、流量を直接検出する流量センサを備えずとも液圧ポンプの吐出流量の較正を行うことができる。
 上記発明において、前記液圧モータは、構造体に対して旋回可能に設けられている旋回体を旋回させ、前記回転センサは、前記液圧モータの出力軸の回転速度に応じた値として前記旋回体の旋回速度を検出し、前記流量検出装置は、検出される旋回速度と前記液圧モータの吸入容量とに基づいて前記液圧モータに供給される流量を検出することが好ましい。
 上記構成に従えば、旋回体の旋回速度を検出することによって、液圧ポンプの吐出流量の較正を行うことができる。
 上記発明において、前記較正装置を有し、前記旋回体に設けられる制御ユニットを備え、前記回転センサは、ジャイロセンサであって、前記制御ユニットに内蔵されていることが好ましい。
 上記構成に従えば、制御ユニットに内装されたジャイロセンサによって旋回体の旋回速度を演算することができるので、新たに回転センサを設ける必要がなく、部品点数の増加を抑制することができる。
 上記発明において、入力される第2流量指令信号に応じて、可変容量型である前記第2液圧ポンプの吐出流量を変更する第2レギュレータを更に備え、前記制御装置は、前記第2レギュレータに第2流量指令信号を出力して前記第2レギュレータを制御し、前記較正装置は、第2流量指令信号に対する前記第2液圧ポンプの吐出流量の第2実測特性を算出し、予め定められた第2基準特性に対して当該第2実測特性に基づいた較正を行い、前記第2実測特性は、前記第2レギュレータに所定の第2流量指令信号を出力する際に、前記切換弁によって前記第2液圧ポンプと前記液圧アクチュエータとを接続して前記液圧アクチュエータに供給される流量を前記流量検出装置で検出することにより算出されることが好ましい。
 上記構成に従えば、2つの液圧ポンプが液圧アクチュエータに接続されている状態、例えば建設機械等の実機にて第1及び第2液圧ポンプの両方の吐出流量の較正を行うことができる。これにより、各液圧ポンプから液圧アクチュエータに作動液を供給した際の液圧アクチュエータの動作が機器毎にばらつくことを抑制することができる。
 上記発明において、前記液圧アクチュエータである第1液圧アクチュエータと前記切換弁との間に形成される供給通路及び前記第1液圧ポンプと前記切換弁との間のポンプ通路とに夫々接続される補給部と、前記ポンプ通路に接続され且つ開閉可能に構成され、開くことで前記ポンプ通路を流れる作動液をタンクに排出する排出弁と、前記補給部を流れる作動液の流量を検出する流出流量検出装置とを更に備え、前記切換弁は、前記第1液圧アクチュエータと異なる第2液圧アクチュエータに更に接続され、前記第1液圧ポンプが前記第1液圧アクチュエータに接続されている際に前記第2液圧ポンプを前記第2液圧アクチュエータに接続し、前記第2液圧ポンプが前記第1液圧アクチュエータに接続されている際に前記第1液圧ポンプを前記第2液圧アクチュエータに接続し、前記補給部は、前記切換弁によって前記第2液圧ポンプが前記第1液圧アクチュエータに接続されている際に前記第2液圧ポンプから吐出される作動液を前記第2液圧アクチュエータに補給すべく前記供給通路側から前記ポンプ通路側への流れを許容すると共に、その逆方向の流れを阻止し、前記第1実測特性は、前記制御装置から前記第1レギュレータに所定の第1流量指令信号を出力する際に、前記切換弁によって前記第1液圧ポンプと前記第1液圧アクチュエータとを接続すると共に前記排出弁を閉じて前記第1液圧アクチュエータに供給される流量を前記流量検出装置で検出することにより算出され、前記第2実測特性は、前記第2レギュレータに所定の第2流量指令信号を出力する際に、前記切換弁によって前記第2液圧ポンプと前記第1液圧アクチュエータとを接続すると共に前記排出弁を開いて前記第1液圧アクチュエータに供給される流量を前記流量検出装置で検出し、前記流量検出装置で検出される流量と前記流出流量検出装置で検出される流出流量とに基づいて算出されることが好ましい。
 上記構成に従えば、補給部を備えるシステムにおいて、第2液圧ポンプの吐出流量の較正を高い精度にて行うことができる。
 上記発明において、前記補給部は、絞りを有し、前記流出流量検出装置は、前記第1液圧ポンプの吐出圧を検出する第1圧力センサと、前記第2液圧ポンプの吐出圧を検出する第2圧力センサとを有し、前記第1圧力センサ及び前記第2圧力センサの差圧に基づいて前記流出流量を演算することが好ましい。
 上記構成に従えば、第2液圧ポンプから第1液圧アクチュエータに作動液を供給する際の流出流量を高い精度にて把握することができるので、より高い精度にて第2液圧ポンプの吐出流量の較正を行うことができる。
 上記発明において、入力される第2流量指令信号に応じて、可変容量型である前記第2液圧ポンプの吐出流量を変更する第2レギュレータと、前記液圧アクチュエータである第1液圧アクチュエータと前記切換弁との間に形成される供給通路と前記第1液圧ポンプと前記切換弁との間に形成されるポンプ通路を繋ぎ、前記供給通路側から前記ポンプ通路側への流れを阻止するバイパス用逆止弁が介在するバイパス通路と、前記切換弁は、前記第1液圧アクチュエータと異なる第2液圧アクチュエータに更に接続され、前記第1液圧ポンプが前記第1液圧アクチュエータに接続されている際に前記第2液圧ポンプを前記第2液圧アクチュエータに接続し、前記第2液圧ポンプが前記第1液圧アクチュエータに接続されている際に前記第1液圧ポンプを前記第2液圧アクチュエータに接続し、前記制御装置は、前記第2レギュレータに第2流量指令信号を出力して前記第2レギュレータを制御し、前記較正装置は、第2流量指令信号に対する前記第2液圧ポンプの吐出流量の第2実測特性を算出し、予め定められた第2基準特性に対して当該第2実測特性に基づいた較正を行い、前記第2実測特性は、前記第2レギュレータに所定の第2流量指令信号を出力する際に、前記第1レギュレータに基準となる第1流量指令信号を出力すると共に前記切換弁によって前記第2液圧ポンプを前記第1液圧アクチュエータに接続し、前記第1液圧ポンプから吐出される作動液を前記バイパス通路を介して前記第1液圧アクチュエータに供給すると共に前記第2液圧ポンプから吐出される作動油を前記切換弁を介して前記第1液圧アクチュエータに供給して前記第1液圧アクチュエータに供給される流量を前記流量検出装置で検出し、前記流量検出装置で検出される検出流量と補正流量とに基づいて算出され、前記補正流量は、前記制御装置から前記第1レギュレータに基準となる第1流量指令信号を出力すると共に前記切換弁によって前記第1液圧ポンプを前記第1液圧アクチュエータに接続した際に前記流量検出装置で検出される流量であることが好ましい。
 上記構成に従えば、2つの液圧ポンプが液圧アクチュエータに接続されている状態、例えば建設機械等の実機にて第1及び第2液圧ポンプの両方の吐出流量の較正を行うことができる。これにより、各液圧ポンプから液圧アクチュエータに作動液を供給した際の液圧アクチュエータの動作が機器毎にばらつくことを抑制することができる。
 上記発明において、前記切換弁は、前記第1液圧ポンプ及び前記第2液圧ポンプの両方を前記液圧アクチュエータと接続可能であり、前記較正装置は、第2流量指令信号に対する前記第2液圧ポンプの吐出流量の第2実測特性を算出し、予め定められた第2基準特性に対して当該第2実測特性に基づいた較正を行い、前記第2実測特性は、前記第2レギュレータに所定の第2流量指令信号を出力する際に、前記第1レギュレータに基準となる第1流量指令信号を出力すると共に前記切換弁によって前記第1液圧ポンプ及び前記第2液圧ポンプの両方を前記液圧アクチュエータに接続して前記液圧アクチュエータに供給される流量を前記流量検出装置で検出し、前記流量検出装置で検出される検出流量と補正流量とに基づいて算出され、前記補正流量は、前記制御装置から前記第1レギュレータに基準となる第1流量指令信号を出力すると共に前記切換弁によって前記第1液圧ポンプを前記液圧アクチュエータに接続した際に前記液圧アクチュエータに流れる流量であることが好ましい。
 上記構成に従えば、2つの液圧ポンプが液圧アクチュエータに接続されている状態、例えば建設機械等の実機にて第1及び第2液圧ポンプの両方の吐出流量の較正を行うことができる。これにより、各液圧ポンプから液圧アクチュエータに作動液を供給した際の液圧アクチュエータの動作が機器毎にばらつくことを抑制することができる。
 上記発明において、前記較正装置は、前記流量検出装置で検出される流量を前記液圧アクチュエータの漏れ量に基づいて補正し、補正された流量に基づいて実測特性を算出することが好ましい。
 上記構成に従えば、より高い精度にて各液圧ポンプの吐出流量の較正を行うことができる。
 上記発明において、実測特性は、互いに異なる複数の流量指令信号を出力し、それらを出力した際に前記流量検出装置によって夫々検出される複数の流量に基づいて算出されることが好ましい。
 上記構成に従えば、より高い精度にて各液圧ポンプの吐出流量の較正を行うことができる。
 上記発明において、前記較正装置は、予め定められる条件を充足すると、実測特性を算出することが好ましい。
 上記構成に従えば、条件を充足すると自動的に液圧ポンプの較正を行わせることができ、利便性が向上する。
 本発明によれば、実機に搭載した状態で液圧ポンプの吐出流量を較正することができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
本件発明に係る実施形態の液圧駆動システムが搭載されるショベルを示す斜視図である。 図1のショベルに搭載される第1実施形態の液圧駆動システムを示す液圧回路である。 図2の液圧駆動システムの液圧ポンプの流量特性を示すグラフである。 図2に示す液圧駆動システムで実行される流量較正処理の手順を示すフローチャートである。 第2乃至第4実施形態の液圧駆動システムを示す液圧回路である。 図5に示す液圧駆動システムで実行される流量較正処理の手順を示すフローチャートである。 第2実施形態の液圧駆動システムで実行される第2ポンプ較正処理の手順を示すフローチャートである。 第3実施形態の液圧駆動システムで実行される第2ポンプ較正処理の手順を示すフローチャートである。 第4実施形態の液圧駆動システムで実行される第2ポンプ較正処理の手順を示すフローチャートである。 第5実施形態の液圧駆動システムを示す液圧回路である。 図11の液圧駆動システムで実行される流量較正処理の手順を示すフローチャートである。 その他の実施形態の液圧駆動システムを示す液圧回路である。
 以下、本発明の液圧ポンプ流量較正システムの一例である第1乃至第5実施形態の液圧駆動システム1,1A~1Dについて図面を参照して説明する。なお、以下の説明で用いる方向の概念は、説明する上で便宜上使用するものであって、発明の構成の向き等をその方向に限定するものではない。また、以下に説明する液圧駆動システム1,1A~1Dは、本発明の一実施形態に過ぎない。従って、本発明は実施形態に限定されず、発明の趣旨を逸脱しない範囲で追加、削除、変更が可能である。
 <第1実施形態>
 建設機械等の作業機械は、作動液(例えば、油)を用いることによって様々な作業を行うことができる。このよう作業機械の一例としては、例えばクレーン、ホイルローダ、及びショベルがあり、以下では図1に示すショベル3に適用した場合について説明する。ショベル3は、先端部に取り付けられたアタッチメント、例えばバケット4によって掘削等の様々な作業を行うことができるようになっている。また、ショベル3は、掘削したものを運搬すべくクローラ等の走行装置5を有しており、走行装置5の上に旋回体6が載せられている。
 旋回体6には、運転者が搭乗するための運転席6aが形成され、またブーム7が上下方向に揺動可能に設けられている。ブーム7の先端部には、アーム8が上下方向に揺動可能に設けられ、またアーム8の先端部にはバケット4が設けられている。即ち、旋回体6には、ブーム7及びアーム8を介してバケット4が設けられており、ブーム7及びアーム8を作動させることによってバケット4を昇降させることができる。更に、旋回体6は、構造体である走行装置5に対して旋回可能に構成されており、旋回させることによってバケット4を360度何れの位置にも移動させることができる。このように構成されるショベル3には、走行装置5、旋回体6、ブーム7、アーム8及びバケット4を動かすべく、例えば複数の液圧アクチュエータ11L,11R,12~15が備わっている。
 即ち、ショベル3は、左右一対の走行用液圧モータ11L,11R、旋回用液圧モータ12、ブームシリンダ13(図1参照)、アームシリンダ14(図1参照)、及びバケットシリンダ15(図1参照)を備えている。左右一対の走行用液圧モータ11L,11Rは、いわゆる液圧モータであり、そこに作動液が供給されることによって走行装置5に備わる左右一対のクローラ5R,5Lの各々を駆動してショベル3を前進、後退、及び方向転換させる。また、旋回体6には、それを旋回させるべく旋回用液圧モータ12が設けられている。旋回用液圧モータ12もまた、いわゆる液圧モータであり、そこに作動液が供給されることによって旋回体6を旋回させる。また、ブームシリンダ13、アームシリンダ14、及びバケットシリンダ15は、ブーム7、アーム8及びバケット4に夫々設けられ、それらに作動液が供給されることによって伸縮してブーム7、アーム8及びバケット4を夫々揺動させる。このように各種液圧アクチュエータ11L,11R,12~15は、作動液が供給されることによって作動するようになっており、それらに作動液を供給すべくショベル3には液圧駆動システム1が備わっている。
 [液圧駆動システム]
 液圧駆動システム1は、図2に示すように、主に2つの液圧ポンプ21L,21Rと、2つのレギュレータ23L,23Rと、液圧供給装置24とを備えている。2つの液圧ポンプ21L,21Rの各々は、例えばタンデム型のダブルポンプであり、共有する入力軸25によって駆動可能に構成されている。なお、2つの液圧ポンプ21L,21Rは、必ずしもタンデム型のダブルポンプである必要はなく、パラレル型のダブルポンプであってもよく、また各々が別々に形成されるシングルポンプであってもよい。また、液圧駆動システム1に備わる液圧ポンプの数は、必ずしも2つに限定されず、3つ以上であってもよい。このように構成されている2つの液圧ポンプ21L,21Rは、入力軸25を介してエンジン又は電動機等の駆動源26に繋がっており、駆動源26が入力軸25を回転させることによって2つの液圧ポンプ21L,21Rから作動液が吐出される。
 このように構成されている2つの液圧ポンプ21L,21Rは、共に可変容量型の斜板ポンプであり、斜板22L,22Rを夫々有している。即ち、2つの液圧ポンプ21L,21Rのうち一方のポンプ21Lである左側液圧ポンプ21Lは、斜板22Lの傾転角を変えることによってその吐出流量を変え、また他方の液圧ポンプ21Rである右側液圧ポンプ21Rは、斜板22Rの傾転角を変えることによってその吐出流量を変えることができる。また、液圧ポンプ21L,21Rの各々には、その斜板22L,22Rの傾転角を変えるべくレギュレータ23L,23Rが夫々設けられている。2つのレギュレータ23L,23Rは、そこに入力される流量指令信号に応じて傾転角を夫々調整し、各液圧ポンプ21L,21Rの吐出流量を制御することができる。
 更に詳細に説明すると、レギュレータ23L,23Rは、電磁比例制御弁(図示せず)を夫々有しており、電磁比例制御弁が入力される流量指令信号に応じた圧力の信号圧を出力する。そうすると、レギュレータ23L,23Rのサーボピストン(図示せず)が信号圧に応じた位置に移動する。各サーボピストンには、前述する斜板22L,22Rが連結されており、斜板22L,22Rは、サーボピストンの動きに応じて傾転する。それ故、斜板22L,22Rが流量指令信号に応じた傾転角に傾転する、即ち、流量指令信号に応じた流量の作動液が液圧ポンプ21L,21Rから吐出される。このようにして吐出されている作動液は各液圧アクチュエータ11L,11R,12~15に供給され、またそれらに供給される作動液の流れる方向及び流量を制御すべく2つの液圧ポンプ21L,21Rには液圧供給装置24が接続されている。
 液圧供給装置24は、複数の方向制御弁31L,31R,32を有している。複数の方向制御弁31L,31R,32は、前述する各液圧アクチュエータ11L,11R,12~15に対応させて配置されており、対応する液圧アクチュエータ11L,11R,12~15に対する作動液の流れ及び流量を制御することができる。更に詳細に説明すると、液圧供給装置24は、液圧アクチュエータ11L,11R,12に夫々対応する方向制御弁として、左側及び右側走行用方向制御弁31L,31R、旋回用方向制御弁32を有している。左側及び右側走行用方向制御弁31L,31Rは、左右一対の走行用液圧モータ11L,11Rの各々に対応させて配置され、各々に対する作動液の流れ及び流量を制御する。他方、旋回用方向制御弁32は、旋回用液圧モータ12に対応させて配置され、旋回用液圧モータ12に対する作動液の流れ及び流量を制御する。なお、液圧供給装置24は、方向制御弁31L,31R,32の他、ブームシリンダ13、アームシリンダ14、及びバケットシリンダ15等に対応する各種方向制御弁も夫々有している。例えば、ブームシリンダ13に対応する方向制御弁(図示せず)は、左側ポンプ通路33Lから分岐するパラレル通路48に接続されている。このように液圧供給装置24は、複数の方向制御弁を有しているが、以下では後述するポンプ流量較正処理に特に関連する前述する3つの方向制御弁31L,31R,32以外の方向制御弁については図示及び詳しい説明を省略する。
 また、液圧供給装置24は、前述する複数の方向制御弁31L,31R,32の他に、後で詳述する走行直進弁30も有している。切換弁の一例である走行直進弁30には、3つの方向制御弁31L,31R,32のうち右側走行用方向制御弁31Rを除く2つの方向制御弁31L,32が接続されている。また、走行直進弁30は、左側ポンプ通路33L及び右側ポンプ通路33Rと接続されており、各々のポンプ通路33L,33Rを介して2つの液圧ポンプ21L,21Rと接続されている。即ち、2つの方向制御弁31L,32は、走行直進弁30を介して各液圧ポンプ21L,21Rに接続することができる。他方、右側走行用方向制御弁31Rは、走行直進弁30に並列するように右側液圧ポンプ21Rに接続されている。即ち、右側走行用方向制御弁31Rは、走行直進弁30を介することなく右側液圧ポンプ21Rに接続されており、以下のように構成されている。
 右側走行用方向制御弁31Rは、右側ポンプ通路33Rに接続されていると共にタンク27及び右側走行用液圧モータ11Rに接続されており、それらの接続状態を切換えることができる。更に詳細に説明すると、右側走行用方向制御弁31Rは、いわゆるスプール弁であり、スプール31Raを有している。スプール31Raは、その両端部に異なる2つの電磁比例制御弁31Rb,31Rcから夫々出力されるパイロット圧を夫々受圧しており、受圧する2つのパイロット圧の差圧に応じて中立位置から所定方向一方及び他方に移動する。これにより、右側ポンプ通路33R及びタンク27と右側走行用液圧モータ11Rとの接続状態が切換わる。即ち、右側走行用方向制御弁31Rでは、スプール31Raが中立位置に位置する際に右側ポンプ通路33Rと右側走行用液圧モータ11Rとの間が遮断される。他方、スプール31Raが中立位置から所定方向一方及び他方に移動すると、右側ポンプ通路33Rが右側走行用液圧モータ11Rに接続され、右側走行用液圧モータ11Rに作動液が供給される。また、右側走行用方向制御弁31Rでは、スプール31Raの位置に応じて右側走行用液圧モータ11Rに供給される作動液の流れる方向が切換わり、切換えることによって右側走行用液圧モータ11Rの回転方向を切換えることができる。また、右側走行用方向制御弁31Rは、その開度をスプール31Raの位置に応じた開度に調整し、開度に応じた流量の作動液を右側走行用液圧モータ11Rに流すことによって右側走行用液圧モータ11Rの速度を制御する。
 このように構成されている右側走行用方向制御弁31Rは、前述の通り右側ポンプ通路33Rを介して右側液圧ポンプ21Rに直接接続されている。他方、他の方向制御弁31L,31Rは、前述の通り走行直進弁30を介して2つの液圧ポンプ21L,21Rに接続されており、走行直進弁30は、ショベル3の作業状態に応じて方向制御弁31L,31Rに接続される液圧ポンプ21L,21Rを切換えることができる。このような機能を有する走行直進弁30は、以下のように構成されている。
 走行直進弁30は、ショベル3を直進走行させつつアクチュエータ等の操作、例えばブーム操作及び旋回操作等を行う際に、左右一対の走行用液圧モータ11L,11Rに流れる作動液の流量に偏りが生じることを抑制するための弁である。このような機能を達成すべく、走行直進弁30は、2つの方向制御弁31L,32に夫々接続される液圧ポンプ21L,21Rを切換えることができる。このように構成されている走行直進弁30は、前述の通り右側走行用方向制御弁31Rに並列するように右側ポンプ通路33Rに接続され、また左側ポンプ通路33Lにも接続されている。また、走行直進弁30には、左側及び右側供給通路34L,34Rが接続されており、左側供給通路34Lを介して左側走行用方向制御弁31Lが接続され、右側供給通路34Rを介して旋回用方向制御弁32が接続されている。このように配置される走行直進弁30は、これら4つの通路33L,33R,34L,34Rの接続状態を切換え、2つの方向制御弁31L,32に夫々接続される液圧ポンプ21L,21Rを切換える。
 更に詳細に説明すると、走行直進弁30は、いわゆるスプール弁であり、スプール30aを有している。スプール30aは、その軸線に沿って移動することができ、スプール30aが移動することによって走行直進弁30のファンクションが切換わる。即ち、スプール30aは、第1位置A1と第2位置A2との間で移動することができる。第1位置A1では、左側ポンプ通路33Lが左側供給通路34Lに接続され、また右側ポンプ通路33Rが右側供給通路34Rに接続されている(第1ファンクション)。他方、第2位置A2では、左側ポンプ通路33Lが右側供給通路34Rに接続され、また右側ポンプ通路33Rが左側供給通路34Lに接続されている(第2ファンクション)。また、走行直進弁30では、スプール30aが第1位置A1と第2位置A2との間に位置する状態において4つの通路33L,33R,34L,34Rの接続状態が以下のように変化する。
 即ち、スプール30aは、第1位置A1から第2位置A2の方へと進みにつれて左側ポンプ通路33Lと右側供給通路34Rとの間の開度を増加させる。また、右側ポンプ通路33Rと左側供給通路34Lとの間の開度は、第1位置A1から第2位置A2の方へと進みにつれて増加する。また、走行直進弁30では、スプール30aが第1位置A1と第2位置A2との間に位置する状態において2つのポンプ通路33L,33Rが共に2つの液圧ポンプ21L,21Rに接続されている(合流ファンクション)。
 このように走行直進弁30は、スプール30aの位置を変えることによって4つの通路33L,33R,34L,34Rの接続状態を切換えることができるようになっている。また、スプール30aには、その位置を変えるべくばね部材30bが設けられている。ばね部材30bは、スプール30aの一端部に設けられており、第1位置A1に位置させるべくスプール30aを付勢している。また、スプール30aの他端部には、ばね部材30bに抗するように切換指令圧が作用しており、切換指令圧を作用させるべく走行直進弁30には、切換用電磁比例制御弁35が接続されている。切換用電磁比例制御弁35は、そこに入力される切換指令信号に応じた圧力の切換指令圧を出力する。出力された切換指令圧は、前述の通りスプール30aの他端部に与えられ、スプール30aは切換指令圧に応じた押圧力によって押圧されている。
 このようにスプール30aの各端部には、互いに抗するようにばね部材30bの付勢力及び切換指令圧に応じた押圧力が作用しており、スプール30aは、これらの力が均衡する位置に移動する。即ち、切換指令圧を調整することによってスプール30aを第1位置A1と第2位置A2との間で移動させ、2つポンプ通路33L,33Rの各々の接続先を供給通路34L,34Rの何れかに切換えることができる。このように接続先を切換え可能な左側供給通路34Lには、左側走行用方向制御弁31Lが接続されている。
 左側走行用方向制御弁31Lは、左側供給通路34Lの他、左側走行用液圧モータ11L及びタンク27に接続されており、それらの接続状態を切換えることができる。更に詳細に説明すると、左側走行用方向制御弁31Lは、いわゆるスプール弁であり、スプール31Laを有している。スプール31Laは、その両端部に異なる2つの電磁比例制御弁31Lb,31Lcから夫々出力されるパイロット圧を夫々受圧しており、受圧する2つのパイロット圧の差圧に応じて中立位置から所定一方及び他方に移動する。これにより、左側供給通路34L及びタンク27と左側走行用液圧モータ11Lとの接続状態が切換わる。即ち、左側走行用方向制御弁31Lでは、スプール31Laが中立位置に位置する際に左側供給通路34Lと左側走行用液圧モータ11Lとの間が遮断される。他方、スプール31Laが中立位置から所定方向一方及び他方に移動すると、左側供給通路34Lが左側走行用液圧モータ11Lに接続され、左側供給通路34Lに導かれる作動液を左側走行用液圧モータ11Lに供給することができる。また、左側走行用方向制御弁31Lでは、スプール31Laの位置に応じて左側走行用液圧モータ11Lに供給される作動液の流れる方向が切換わり、切換えることによって左側走行用液圧モータ11Lの回転方向を切換えることができる。また、左側走行用方向制御弁31Lは、その開度をスプール31Laの位置に応じて調整し、開度に応じた流量の作動液を左側走行用液圧モータ11Lに流すことによって左側走行用液圧モータ11Lの速度を制御する。このように構成されている左側走行用方向制御弁31Lは、前述の通り左側供給通路34Lに接続されている。他方、右側供給通路34Rには、旋回用方向制御弁32が接続されている。
 旋回用方向制御弁32は、右側供給通路34Rの他、旋回用液圧モータ12及びタンク27に接続されている。なお、右側供給通路34Rと旋回用方向制御弁32との間には、逆止弁36が設けられており、逆止弁36によって旋回用方向制御弁32から右側供給通路34Rへの作動液の流れが阻止されている。このように配置されている旋回用方向制御弁32は、右側供給通路34R及びタンク27と旋回用液圧モータ12との接続状態を切換えることができる。更に詳細に説明すると、旋回用方向制御弁32は、いわゆるスプール弁であり、スプール32aを有している。スプール32aは、その両端部に異なる2つの電磁比例制御弁32b,32cから夫々出力されるパイロット圧を夫々受圧しており、受圧する2つのパイロット圧の差圧に応じて中立位置から一方及び他方に移動する。これにより、右側供給通路34R及びタンク27と旋回用液圧モータ12との接続状態を切換えることができる。即ち、旋回用方向制御弁32では、スプール32aが中立位置に位置する際に右側供給通路34Rと旋回用液圧モータ12との間が遮断される。他方、スプール32aが中立位置から所定方向一方及び他方に移動すると、右側供給通路34が旋回用液圧モータ12に接続され、右側供給通路34に導かれる作動液を旋回用液圧モータ12に供給することができる。また、旋回用方向制御弁32では、スプール32aの位置に応じて旋回用液圧モータ12に供給される作動液の流れる方向が切換わり、切換えることによって旋回用液圧モータ12の回転方向を切換えることができる。また、旋回用方向制御弁32は、その開度をスプール32aの位置に応じて調整し、開度に応じた流量の作動液を旋回用液圧モータ12に流すことによって旋回用液圧モータ12の速度を制御する。
 なお、旋回用方向制御弁32と旋回用液圧モータ12との間には、以下のような構成が接続されている。即ち、旋回用方向制御弁32は、2つの旋回用供給通路37L,37Rを介して旋回用液圧モータ12に接続されており、2つの旋回用供給通路37L,37Rには、リリーフ弁38L,38Rが夫々接続されている。2つのリリーフ弁38L,38Rは、接続されている旋回用供給通路37L,37Rを流れる作動液の液圧が所定のリリーフ圧を超えると、作動液をタンク27に排出する。また、2つの旋回用供給通路37L,37Rは、逆止弁39L,39Rを介してタンク27に接続されており、作動液が不足する際にタンク27から作動液を補うことができるようになっている。
 また、液圧供給装置24は、左側供給通路34L及び右側ポンプ通路33Rから夫々分岐するバイパス通路40L,40Rを有している。これらの2つのバイパス通路40L,40Rには、走行用方向制御弁31L,31Rが夫々介在している。具体的に説明すると、一方のバイパス通路である左側バイパス通路40Lには、左側走行用方向制御弁31L介在しており、左側走行用方向制御弁31Lの動きに応じて左側バイパス通路40Lの開度が調整される。他方、右側バイパス通路40Rには、右側走行用方向制御弁31Rが介在しており、右側走行用方向制御弁31Rの動きに応じて右側バイパス通路40Rの開度が調整される。
 更に、液圧供給装置24では、パラレル通路48及び右側供給通路34Rの各々における作動液の流量が不足した際、それらに作動液を補給すべく第1補給通路41及び第2補給通路42が形成されている。第1補給通路41は、左側バイパス通路40Lとパラレル通路48とに架け渡すように形成され、第2補給通路42は、右側バイパス通路40Rと右側供給通路34Rとに架け渡すように形成されている。また、第1補給通路41には、逆止弁43が介在している。逆止弁43は、左側バイパス通路40Lからパラレル通路48へ作動液を導き、その逆方向の作動液の流れを阻止する。即ち、逆止弁43は、パラレル通路48における作動液の流量が不足すると左側バイパス通路40Lからパラレル通路48へ作動液を導く。他方、第2補給通路42にも逆止弁44が介在している。バイパス用逆止弁の一例である逆止弁44は、右側バイパス通路40Rから右側供給通路34Rへ作動液を導き、その逆方向の作動液の流れを阻止する。即ち、逆止弁44は、右側供給通路34Rにおける作動液の流量が不足すると、右側バイパス通路40Rから右側供給通路34Rへ作動液を導く。また、2つのポンプ通路33L,33Rには、2つのアンロード弁45L,45Rが夫々対応させて接続されており、2つのポンプ通路33L,33Rは、対応するアンロード弁45L,45Rを介してタンク27に接続されている。
 2つのアンロード弁45L,45Rは、例えばスプール弁であり、スプール45La,45Raを有している。2つのアンロード弁45L,45Rは、そのスプール45La,45Raをストロークさせることによって対応するポンプ通路33L,33Rとタンク27とを繋ぐタンク通路46L,46Rの開度を調整し、供給通路34L,34Rに流れる作動液の流量を制御することができる(即ち、ブリードオフ制御)。このようにアンロード弁45L,45Rでは、スプール45La,45Raをストロークさせる、即ち位置を変えることによってタンク通路46L,46Rの開度を調整することができるようになっており、その位置を変えるべくばね部材45Lb,45Rbを有している。
 ばね部材45Lb,45Rbは、スプール45La,45Raの一端部に設けられており、タンク通路46L,46Rを閉じるべくスプール45La,45Raを付勢している。また、スプール45La,45Raの他端部には、ばね部材30bに抗するように左側及び右側アンロード指令圧が夫々作用しており、左側及び右側アンロード指令圧を出力させるべくアンロード弁45L,45Rには、電磁比例制御弁45Lc,45Rcが接続されている。電磁比例制御弁45Lc,45Rcは、そこに入力されるアンロード指令信号に応じた圧力のアンロード指令圧を出力する。出力されたアンロード指令圧は、前述の通りスプール45La,45Raの他端部に与えられ、スプール45La,45Raはアンロード指令圧に応じた押圧力によって押圧されている。
 このようにスプール45La,45Raの各端部には、互いに抗するようにばね部材45Lb,45Rbの付勢力及びアンロード指令圧に応じた押圧力が作用しており、スプール45La,45Raは、これらの力が均衡する位置に移動する。それ故、アンロード指令圧を調整することによってタンク通路46L,46Rの開度を調整してタンク通路46L,46Rを閉じることができる。
 このように構成されている液圧駆動システム1は、更に制御ユニット50を有しており、レギュレータ23L,23R、走行直進弁30、方向制御弁31L,31R,32、及びアンロード弁45L,45Rの動きが制御ユニット50によって制御されている。また、制御装置である制御ユニット50には、旋回用操作装置51、及び走行用操作装置52が電気的に接続されており、それらの操作装置51,52によって液圧供給装置24の動作に関する指令を与えることができる。これらの操作装置51,52は、旋回用液圧モータ12、及び一対の走行用液圧モータ11L,11Rを作動させるべくショベル3(より詳しくは、運転席6a)に備えられており、例えば電気ジョイスティック又はリモートコントロール弁等によって構成されている。
 更に詳細に説明すると、旋回用操作装置51は、旋回用液圧モータ12を作動させるべくショベル3の運転席6aに設けられており、旋回用操作レバー51aを有している。また、旋回用操作レバー51aは、傾倒可能に構成されており、旋回用操作レバー51aが傾倒されると旋回用操作装置51は制御ユニット50に信号を出力する。他方、走行用操作装置52は、左右一対の走行用液圧モータ11L,11Rを作動させるべくショベル3の運転席6aに設けられている。このように配置されている走行用操作装置52は、左右一対のフットペダル52a,52bを有しており、各フットペダル52a,52bは、左側走行用液圧モータ11L及び右側走行用液圧モータ11Rに夫々対応させて設けられている。また、各フットペダル52a,52bは、足で踏みつける等して操作することができ、操作されると走行用操作装置52が制御ユニット50に信号を出力する。
 制御ユニット50は、操作装置51,52から出力される信号に応じて各方向制御弁31L,31R,32の動きを制御するようになっており、方向制御弁31L,31R,32の動きを制御すべく以下のように構成されている。即ち、制御ユニット50は、方向制御弁31L,31R,32に設けられている各電磁比例制御弁31Lb,31Lc,31Rb,31Rc,32b,32cに夫々電気的に接続されており、操作装置51,52から出力される信号に応じて電磁比例制御弁31Lb,31Lc,31Rb,31Rc,32b,32cに指令信号を出力する。また、制御ユニット50は、走行直進弁30に設けられる切換用電磁比例制御弁35にも電気的に接続されており、走行用操作装置52からの出力信号等に応じて切換用電磁比例制御弁35に切換指令信号を出力する。更に、制御ユニット50は、アンロード弁45L,45Rに接続される電磁比例制御弁45Lc,45Rcにも電気的に接続されており、操作装置51,52からの出力信号に応じて電磁比例制御弁45Lc,45Rcにアンロード指令信号を出力する。
 また、液圧駆動システム1は、以下のような構成を更に備えている。即ち、液圧駆動システム1は、ジャイロセンサ60を備えている。流量検出装置であるジャイロセンサ60は、例えば3軸ジャイロセンサであり、制御ユニット50に電気的に接続されている。ジャイロセンサ60は、予め定められたx軸、y軸、及びz軸まわりの角速度に応じた信号を制御ユニット50に出力し、制御ユニット50は、ジャイロセンサ60からの信号に基づいて各軸の角速度を算出する。このように構成されているジャイロセンサ60は、図1に示すような制御ユニット50の筐体50aに収められて旋回体6に設けられている、即ち制御ユニット50に内蔵されている。このように配置されているジャイロセンサ60は、旋回体6が旋回する際に旋回体6と共に旋回するようになっており、制御ユニット50は、ジャイロセンサ60から出力される信号に基づいて旋回体6の旋回速度を算出することができる。
 また液圧駆動システム1は、2つの圧力センサ62L,62Rも備えている。2つの圧力センサ62L,62Rのうちの一方である左側圧力センサ62Lは、左側ポンプ通路33Lに接続され、左側液圧ポンプ21Lの吐出圧に応じた信号を制御ユニット50に出力する。また、他方の圧力センサ62Rである右側圧力センサ62Rは、右側ポンプ通路33Rに接続されており、右側液圧ポンプ21Rの吐出圧に応じた信号を制御ユニット50に出力する。そして、制御ユニット50は、2つの圧力センサ62L,62Rから出力される信号に基づいて2つの液圧ポンプ21L,21Rの吐出圧を検出する。その他、制御ユニット50は、種々の演算を行うと共に種々の情報を記憶している。
 [液圧駆動システムの動作について]
 このように構成されている液圧駆動システム1では、操作装置51,52に行われる操作に応じて制御ユニット50が液圧供給装置24の動きを制御し、液圧アクチュエータ11L,11R,12を作動させる。以下では、液圧アクチュエータ11L,11R,12を作動させる際の制御ユニット50の動作について説明する。即ち、制御ユニット50は、旋回用操作レバー51aが操作されて旋回用操作装置51から信号が出力されると、まず右側アンロード弁45Rを作動させて右側タンク通路46Rを閉じる。また、制御ユニット50は、旋回用操作装置51の信号に応じた旋回指令信号を電磁比例制御弁32b(又は電磁比例制御弁32c)に出力して旋回用方向制御弁32を作動させる。この際、走行直進弁30のスプール30aは第1位置A1に位置しており、旋回用方向制御弁32が右側ポンプ通路33R及び右側供給通路34Rを介して右側液圧ポンプ21Rと繋がっている。それ故、右側液圧ポンプ21Rからの作動液が旋回用液圧モータ12に供給され、この作動液によって旋回用液圧モータ12が回転する。また、旋回用方向制御弁32では、旋回用操作レバー51aの操作量に応じた位置にスプール32aが移動し、旋回用操作レバー51aの操作量に応じた開度にて旋回用方向制御弁32が開口する。これにより、その開度に応じた流量の作動液が旋回用液圧モータ12に供給され、旋回用操作レバー51aの操作量に応じた旋回速度にて旋回体6を旋回させることができる。
 次に、一対のフットペダル52a,52bのうち一方だけ、例えば左側のフットペダル52aが操作されて走行用操作装置52から信号が出力されると、制御ユニット50は、まず左側アンロード弁45Lを作動させて左側タンク通路46Lを閉じる。また、制御ユニット50は、走行用操作装置52からの信号に応じた走行指令信号を電磁比例制御弁31Lb(又は電磁比例制御弁31Lc)に出力し、左側走行用方向制御弁31Lを作動させる。また、一対のフットペダル52a,52bのうち一方だけが操作される場合、走行直進弁30のスプール30aは第1位置A1に位置しており、左側走行用方向制御弁31Lが左側ポンプ通路33L及び左側供給通路34Lを介して左側液圧ポンプ21Lと繋がっている。それ故、左側液圧ポンプ21Lからの作動液が左側走行用方向制御弁31Lに供給され、この作動液によって左側走行用液圧モータ11Lが作動する。また、左側走行用方向制御弁31Lでは、左側のフットペダル52aの操作量に応じた位置にスプール31Laが移動し、左側のフットペダル52aの操作量に応じた開度にて左側走行用方向制御弁31Lが開口する。これにより、その開度に応じた流量の作動液が左側走行用液圧モータ11Lに供給され、左側のフットペダル52aの操作量に応じた回転速度にて左側走行用液圧モータ11Lを回転させることができる。即ち、左側のフットペダル52aの操作量に応じた速度にて左側クローラ5Lを動かすことができる。
 また、右側のフットペダル52bだけを操作した場合、制御ユニット50は、まず右側アンロード弁45Rを作動させて右側タンク通路46Rを閉じる。また、制御ユニット50は、走行指令信号を電磁比例制御弁31Lb(又は電磁比例制御弁31Lc)に出力して左側走行用方向制御弁31Lを作動させる。これにより、右側のフットペダル52bの操作量に応じた速度にて右側走行用液圧モータ11Rが回転する、即ち右側のフットペダル52bの操作量に応じた速度にて右側クローラ5Rを動かすことができる。他方、例えばブーム又は旋回体等を動かしつつショベル3を直進走行させる場合、即ち、例えばブーム操作及び旋回操作を行いつつフットペダル52a,52bの両方が操作された場合、制御ユニット50は以下のように動作する。
 即ち、制御ユニット50は、フットペダル52a,52bの両方が操作された状態において走行用操作装置52からの信号が出力されると、走行直進弁30に接続される切換用電磁比例制御弁35に切換指令信号を出力し、スプール30aを第2位置A2へと移動させる。これにより、走行直進弁30のファンクションが第2ファンクションに切換わる。即ち、左側ポンプ通路33Lが右側供給通路34Rに接続され、右側ポンプ通路33Rが左側供給通路34Lに接続される。これにより、左側及び右側走行用方向制御弁31L,31Rが共に右側液圧ポンプ21Rに接続され、旋回用方向制御弁32が左側液圧ポンプ21Lに接続される。また、左側及び右側走行用方向制御弁31L,31Rの各々は、各フットペダル52a,52bの操作量に応じた開度にて開口し、各液圧モータ11L,11Rには、各フットペダル52a,52bの操作量に応じた流量の作動液が導かれる。これにより、各フットペダル52a,52bの操作量に応じた速度にて各液圧モータ11L,11Rを回転させることができる、即ちフットペダル52a,52bの操作量に応じた速度にてショベル3を直進走行させることができる。
 このように直進走行時において左右一対の走行用液圧モータ11L,11Rの両方を1つの液圧ポンプ21Rに接続することによって以下のような利点がある。即ち、左右一対の走行用液圧モータ11L,11Rが別々の液圧ポンプ21L,21Rに接続されている場合、走行用液圧モータ11L,11Rと共に旋回用液圧モータ12を作動させると、左側液圧ポンプ21Lの作動液が旋回用液圧モータ12にも導かれる。そうすると、左側走行用液圧モータ11Lに供給すべき作動油が不足して、所望の流量の作動液を走行用液圧モータ11Rに導くことができない。それ故、直進走行させるべく2つのフットペダル52a,52bの両方を操作した際に、走行用液圧モータ11L,11Rに供給される作動液の流量に偏りが生じて、液圧ショベルの直進性が低下する。これに対して1つの液圧ポンプ21Rに左右一対の走行用液圧モータ11L,11Rの両方が接続されている場合、旋回用液圧モータ12の作動の有無に関わらず右側液圧ポンプ21Rから走行用液圧モータ11L,11Rに作動液が略等分配されて供給される。それ故、走行用液圧モータ11L,11Rに供給される作動液の流量に偏りが生じることを抑制することができ、ショベル3の直進走行時における直進性を高めることができる。なお、旋回体6以外、ブーム7、アーム8、及びバケット4を同時操作する際も同様にョベル3の直進走行時における直進性を高めることができる。
 このように液圧駆動システム1では、操作装置51,52に行われる操作に応じて制御ユニット50が液圧供給装置24の動きを制御し、液圧アクチュエータ11L,11R,12を作動させる。また、制御ユニット50は、操作装置51,52に対する操作量に応じた速度で各液圧アクチュエータ11L,11R,12を作動させる(例えば、旋回用操作レバー51aの操作量に応じた速度で旋回体6を作動させる)べく、以下のように動作する。即ち、制御ユニット50は、方向制御弁31L,31R,32の開度を制御すると共に、レギュレータ23L,23Rを介して液圧ポンプ21L,21Rの吐出流量を制御する。更に詳細に説明すると、液圧ポンプ21L,21Rは、図3に示すような流量特性を有している。ここで流量特性は、吐出流量と傾転角(即ち、流量指令信号)との関係を示すものであり、図3では、横軸が流量指令信号(電流)、縦軸が吐出流量を示している。図3に示すように、液圧ポンプ21L,21Rの吐出流量は、流量指令信号がImin以下において最小流量Qminとなり、Iminを超えると流量指令信号に比例するように増加する。そして流量指令信号がImax以上にて液圧ポンプ21L,21Rの吐出流量が最大流量Qmaxとなる。
 制御ユニット50は、このような流量特性(図3の実線)が予め設定されて記憶しており、記憶される流量特性、即ち基準特性に基づいてレギュレータ23L,23Rに出力する流量指令信号を演算して液圧ポンプ21L,21Rに操作量に応じた流量の作動液を吐出させる。他方、基準特性は、様々な要因により実際の流量特性と異なっていることがある。較正装置を有する制御ユニット50は、それらの間の差を埋めるべく、記憶される基準特性を較正する機能を有している。以下では、第1液圧アクチュエータの一例である旋回用液圧モータ12を使用して行われる液圧ポンプ流量較正処理について説明する。
 [液圧ポンプ流量較正処理]
 液圧ポンプ流量較正システムである液圧駆動システム1では、まず制御ユニット50が予め定められる較正条件を充足するか否かを判断する。較正条件とは、例えばショベル3の電源スイッチが操作されて制御ユニット50に電力が供給されたり、図示しない較正スイッチが操作されて制御ユニット50に較正指令が入力されたりすることである。また、較正条件は、操作装置51,52が操作されていない状態において予め定められた時間が経過することであってもよい。このような較正条件を充足すると、制御ユニット50は、図4に示すような流量較正処理を開始し、ステップS1に移行する。
 第1供給状態切換工程であるステップS1では、第1液圧ポンプである右側液圧ポンプ21Rから吐出される作動液が旋回用液圧モータ12に供給されるような第1供給状態に液圧駆動システム1の状態が切換えられる。具体的に説明すると、制御ユニット50は、各弁30,31L,31R,32,45L,45Rに対して信号を出力し、それらの動作を以下のように制御する。即ち、制御ユニット50は、右側アンロード弁45Rによって右側タンク通路46Rを閉じて右側液圧ポンプ21Rから吐出される作動液がブリードオフされないようにする。他方、左側タンク通路46Lは、左側アンロード弁45Lによって全開放されており、左側液圧ポンプ21Lから吐出される作動液の全量がタンク27に戻される。同時に、制御ユニット50は、走行直進弁30のスプール30aの位置を第1位置A1に位置させ、右側液圧ポンプ21Rから吐出される作動液が走行直進弁30を介して右側供給通路34Rに導かれるようにする。
 更に、制御ユニット50は、旋回用方向制御弁32を作動させる、即ち旋回用方向制御弁32のスプール32aをストロークさせて右側供給通路34Rに導かれた作動液が旋回用液圧モータ12に供給されるようにする。この際、旋回用方向制御弁32の開度が全開となるように、スプール32aをストロークさせる。他方、旋回用方向制御弁32以外の方向制御弁31L,31R(ブームシリンダ13、アームシリンダ14、及びバケットシリンダ15等に対応する各種方向制御弁を含む)については、それらのスプール31La,31Ra(前記各種方向弁のスプールを含む)を中立位置に位置させ、左側走行用液圧モータ11L(第2液圧アクチュエータ)及び右側走行用液圧モータ11R等の他の液圧アクチュエータに作動液が流れないようにする。このようにして旋回用方向制御弁32のスプール32aだけをストロークさせ、右側液圧ポンプ21Rの作動液の全てが旋回用液圧モータ12だけに供給されるようにする。このようにして、右側液圧ポンプ21Rの作動液の全てが旋回用液圧モータ12だけに供給される第1供給状態に液圧供給装置24の状態を切換えると、ステップS2に移行する。
 指令電流設定工程であるステップS2では、予め記憶される流量特性に基づいて設定される所定の流量指令信号I1(例えば、第1流量指令信号)が右側液圧ポンプ21R(例えば、第1液圧ポンプ)に設けられる右側レギュレータ23R(例えば、第1レギュレータ)に出力される。ここで流量指令信号I1は、右側液圧ポンプ21Rの前述する基準特性、即ち第1基準特性(図3の実線参照)に基づいてImin≦I1≦Imaxとなるように事前に設定され、設定された流量指令信号I1が右側レギュレータ23Rに出力される。これにより、右側液圧ポンプ21Rの斜板22Rが流量指令信号I1に応じた傾転角に傾転し、流量指令信号I1に応じた流量の作動液が右側液圧ポンプ21Rから吐出される。そして、その作動液の全量が走行直進弁30及び旋回用方向制御弁32を介して旋回用液圧モータ12に供給されると、ステップS3に移行する。
 旋回速度検出工程であるステップS3では、旋回体6の旋回速度が検出される。即ち、制御ユニット50は、ジャイロセンサ60から出力される信号に基づいて旋回体6の旋回速度を検出する。なお、本実施形態では、ジャイロセンサ60がそのz軸が旋回体6の旋回軸と略平行になるように旋回体6に搭載されており、z軸まわりの角速度を検出することによって、制御ユニット50は、旋回体6の旋回速度を算出している。但し、旋回体6の旋回速度は前述する算出方法に限定されず、ジャイロセンサ60から出力される信号に基づいて検出される2軸又は3軸の角速度に基づいて旋回速度を算出してもよい。このように旋回体6の旋回速度が検出されると、ステップS4に移行する。
 旋回流量算出工程であるステップS4では、旋回時において旋回用液圧モータ12に供給された作動液の流量、即ち旋回流量が算出される。即ち、制御ユニット50は、旋回用液圧モータ12の押しのけ容積(吸入容量)及び旋回用液圧モータ12と旋回体6との間の減速比を予め記憶しており、この押しのけ容積とステップS3で算出した旋回速度とに基づいて旋回流量を算出する。具体的に説明すると、ステップS3で算出される旋回速度に押しのけ容積を乗算することによって旋回流量が算出される。旋回流量が算出されると、ステップS5に移行する。
 第1較正点取得工程であるステップS5では、右側液圧ポンプ21Rの実際の吐出流量が算出され、その実際の吐出流量に基づいて右側液圧ポンプ21Rの較正点が取得される。即ち、制御ユニット50は、ステップS4で算出した旋回流量に基づいて右側液圧ポンプ21Rの吐出流量を算出するが、そのためにまず旋回用液圧モータ12における作動液の漏れ量、即ちモータリーク量を算出する。モータリーク量は、旋回用液圧モータ12に供給される作動液の吐出圧に応じて変化する量であり、制御ユニット50は、右側液圧ポンプ21Rの吐出圧と旋回用液圧モータ12のモータ効率特性とに基づいて算出する。ここで、右側液圧ポンプ21Rの吐出圧は、右側圧力センサ62Rからの信号に基づいて検出され、旋回用液圧モータ12のモータ効率特性(供給される流量の使用率に関し、圧力に応じて変化する特性)は、制御ユニット50に予め記憶されている。制御ユニット50は、モータリーク量を算出すると、算出されたモータリーク量を旋回流量に加算する。これにより、吐出流量(=旋回流量+モータリーク量)が算出される。
 なお、モータリーク量は、必ずしも右側液圧ポンプ21Rの吐出圧に基づいて算出する必要はなく、旋回用液圧モータ12のモータ効率特性に基づいて一定値としてもよい。更に、吐出流量を算出する上で、必ずしもモータリーク量を参照する必要はなく、吐出流量=旋回流量としてもよい。これら2つの場合(即ち、圧力及びモータリーク量を夫々参照しない場合)は、より正確な吐出流量に基づいて流量特性を較正する必要がない場合において好適であり、より正確な吐出流量に基づいて第1基準特性を較正することが好ましい場合には、前述の通り、モータリーク量を吐出圧とモータ効率特性に基づいて算出することが好ましい。後述する左側液圧ポンプ21Lの吐出流量を算出する際も同様である。
 制御ユニット50は、吐出流量を算出すると、その吐出流量をステップS2にて設定した流量指令信号I1と対応付けて記憶する。例えば、図3に示すように第1基準特性(図3の実線)に比べて流量指令信号I1に対して吐出される吐出流量が大きい場合、較正点71が取得される。このように1つ目の較正点71が算出されると、ステップS6に移行する。
 較正点数確認工程であるステップS6では、第1基準特性に対する較正を行うに際して2点以上の較正点を取得したか否かが判断される。なお、取得する較正点の数は、3点以上であってもよい。取得した較正点が1つであると判断されると、ステップS2に戻り、流量指令信号I1と異なる値の流量指令信号I2(第1流量指令信号)に対して右側液圧ポンプ21Rから吐出される吐出流量が算出される。即ち、制御ユニット50は、ステップS2において流量指令信号I1と異なる値の流量指令信号I2(Imin≦I2≦Imax)を右側レギュレータ23Rに出力する。制御ユニット50は、設定される流量指令信号I2を右側レギュレータ23Rに出力すると、次に旋回速度を検出し(ステップS3)、更にステップS3で検出され旋回速度に基づいて旋回流量を算出する(ステップS4)。更に、制御ユニット50は、ステップS4で検出される旋回流量に基づいて吐出流量を算出すると共に、算出された吐出流量と流量指令信号I2とを対応付けて記憶する。このようにして2つ目の較正点72が取得されると(図3参照)、ステップS7に移行する。
 第1ポンプ流量較正工程であるステップS7では、ステップS5にて取得した2つの較正点71,72に基づいて第1基準特性が較正される。即ち、流量QがQmin≦Q≦Qmaxの範囲において、2つの較正点71,72を通る直線(図3の一点鎖線参照)が右側液圧ポンプ21Rの実際の流量特性である第1実測特性として算出される。更に詳細に説明すると、制御ユニット50は、2つの較正点71,72に基づいて第1実測特性のQmin≦Q≦Qmaxの範囲における傾き及び切片を演算し、第1実測特性を算出し、算出された第1実測特性が新たな第1基準特性として設定される。このように第1実測特性に基づいた第1基準特性の較正が行われると、ステップS8に移行する。
 第2供給状態切換工程であるステップS8では、第2液圧ポンプである左側液圧ポンプ21Lから吐出される作動液が旋回用液圧モータ12に供給されるような第2供給状態に液圧駆動システム1の状態を切換える。具体的に説明すると、制御ユニット50は、各弁30,31L,31R,32,45L,45Rに対して信号を出力し、それらの動作を以下のように制御する。即ち、制御ユニット50は、左側アンロード弁45Lによって左側タンク通路46Lを閉じて左側液圧ポンプ21Lから吐出される作動液がブリードオフされないようにする。他方、右側タンク通路46Rは、右側アンロード弁45Rによって全開放されており、右側液圧ポンプ21Rから吐出される作動液の全量がタンク27に戻される。同時に、制御ユニット50は、走行直進弁30のスプール30aの位置を第2位置A2に位置させ、左側液圧ポンプ21Lから吐出される作動液が走行直進弁30を介して右側供給通路34Rに導かれるようにする。また、制御ユニット50は、左側液圧ポンプ21Lの作動液の全てが旋回用液圧モータ12だけに供給されるようにすべく、ステップS2と同様に旋回用方向制御弁32のスプール32aだけをストロークさせる。なお、旋回用方向制御弁32以外の方向制御弁31L,31R(ブームシリンダ13、アームシリンダ14、及びバケットシリンダ15等に対応する各種方向制御弁を含む)については、それらのスプール31La,31Ra(前記各種方向弁のスプールを含む)を中立位置に位置させ、左側走行用液圧モータ11L(第2液圧アクチュエータ)及び右側走行用液圧モータ11R等の他の液圧アクチュエータに作動液が流れないようにする。このようにして、左側液圧ポンプ21Lの作動液の全てが旋回用液圧モータ12だけに供給される第2供給状態に液圧供給装置24の状態が切換えられると、ステップS9に移行する。
 指令電流設定工程であるステップS9では、予め記憶される流量特性に基づいて設定される所定の流量指令信号I3(例えば、第2流量指令信号)が左側液圧ポンプ21L(例えば、第2液圧ポンプ)に設けられる左側レギュレータ23L(例えば、第2レギュレータ)に出力される。ここで流量指令信号I3は、前述する流量指令信号I1と同様に、左側液圧ポンプ21Lの基準特性である第2基準特性(図3の実線参照)に基づいてImin≦I3≦Imaxとなるように事前に設定され、設定された流量指令信号I3が左側レギュレータ23Lに出力される。なお、本実施形態では、2つの液圧ポンプ21L,21Rに対して同一の基準特性が予め設定されているが、必ずしも同一である必要はなく異なる基準特性が予め設定されていてもよい。また、本実施形態では、流量指令信号I3が流量指令信号I1と異なる値に設定されているが、量指令信号I1と同じ値に設定されてもよい。流量指令信号I3が左側レギュレータ23Lに出力されることにより、左側液圧ポンプ21Lの斜板22Lが流量指令信号I3に応じた傾転角に傾転し、流量指令信号I3に応じた流量の作動液が左側液圧ポンプ21Lから吐出される。そして、その作動液の全量が走行直進弁30及び旋回用方向制御弁32を介して旋回用液圧モータ12に供給されると、ステップS10に移行する。
 旋回速度検出工程であるステップS10では、ステップS3と同様に旋回体6の旋回速度が検出される。即ち、制御ユニット50がジャイロセンサ60から出力される信号に基づいて旋回体6の旋回速度を検出し、旋回体6の旋回速度が算出されるとステップS11に移行する。また、旋回流量算出工程であるステップS11では、ステップS4と同様に旋回時における旋回用液圧モータ12の旋回流量が算出される。即ち、制御ユニット50は、予め記憶されている旋回用液圧モータ12の押しのけ容積(吸入容量)及び旋回用液圧モータ12と旋回体6との間の減速比とステップS10で算出した旋回速度とに基づいて旋回流量を算出し、旋回流量が算出されるとステップS12に移行する。
 第2較正点取得工程であるステップS12では、左側液圧ポンプ21Lの実際の吐出流量が算出されると共に、その実際の吐出流量に基づいて左側液圧ポンプ21Lの較正点が取得される。即ち、制御ユニット50は、ステップS11で算出した旋回流量に基づいて左側液圧ポンプ21Lの吐出流量を算出するが、そのためにまず左側圧力センサ62Lからの信号に基づいて左側液圧ポンプ21Lの吐出圧を検出する。そして、制御ユニット50は、検出される左側液圧ポンプ21Lの吐出圧と旋回用液圧モータ12のモータ効率特性とに基づいて旋回用液圧モータ12のモータリーク量を算出する。最後に、制御ユニット50は、算出されたモータリーク量を旋回流量に加算して吐出流量を算出する。制御ユニット50は、吐出流量が算出されると、その吐出流量をステップS9にて設定した流量指令信号I3と対応付けて記憶する。例えば、図3に示すように第2基準特性(図3の実線)に比べて流量指令信号I3に対して吐出される吐出流量が小さい場合、較正点73が取得される。このようにして1つ目の較正点73が取得されると、ステップS13に移行する。
 較正点数確認工程であるステップS13では、第2基準特性に対する較正を行うに際して2点以上の較正点を取得したか否かが判断される。なお、取得する較正点の数は、3点以上であってもよい。取得した較正点が1つであると判断されると、ステップS9に戻り、流量指令信号I3と異なる値の流量指令信号I4(第2流量指令信号)に対して左側液圧ポンプ21Lから吐出される吐出流量が算出される。即ち、制御ユニット50は、ステップS9において流量指令信号I3と異なる値の流量指令信号I4(Imin≦I4≦Imax)を左側レギュレータ23Lに出力する。なお、本実施形態では、流量指令信号I4が流量指令信号I2と異なる値に設定されているが、量指令信号I1と同じ値に設定されてもよい。制御ユニット50は、設定される流量指令信号I4を左側レギュレータ23Lに出力すると、次に旋回速度を検出し(ステップS10)、更にステップS10で検出され旋回速度に基づいて旋回流量を算出する(ステップS11)。更に、制御ユニット50は、ステップS11で検出される旋回流量に基づいて吐出流量を算出すると共に、算出された吐出流量と流量指令信号I4とを対応付けて記憶する。このようにして2つ目の較正点74が取得されると(図3参照)、ステップS13からステップS14に移行する。
 第2ポンプ流量較正工程であるステップS14では、ステップS12にて取得した2つの較正点73,74に基づいて第2基準特性が較正される。即ち、流量QがQmin≦Q≦Qmaxの範囲において、2つの較正点73,74を通る直線(図3の二点鎖線参照)が左側液圧ポンプ21Lの実際の流量特性である第2実測特性として算出される。更に詳細に説明すると、制御ユニット50は、2つの較正点73,74に基づいて第2実測特性のQmin≦Q≦Qmaxの範囲における傾き及び切片を演算して第2実測特性を算出し、算出された第2実測特性が新たな第2基準特性として設定される。このように第2実測特性に基づいた第2基準特性の較正が行われると、流量較正処理が終了する。
 このように液圧駆動システム1では、前述するような流量較正処理を実行し、ショベル3において搭載された状態で2つの液圧ポンプ21L,21Rの流量特性を較正することができる。それ故、液圧駆動システム1が搭載されるショベル3において、2つの液圧ポンプ21L,21Rの吐出流量を高い精度にて制御することができる。また、液圧駆動システム1は、ジャイロセンサ60によって検出される旋回速度に基づいて2つの液圧ポンプ21L,21Rの吐出流量を算出し、それに基づいて流量特性を較正することができる。即ち、液圧駆動システム1では、新たに流量センサを備えずとも2つの液圧ポンプ21L,21Rの流量特性の較正を行うことができ、部品点数が較正を行うべく増加することを抑制することができる。
 <第2実施形態>
 第2実施形態の液圧駆動システム1Aは、図5に示すように第1実施形態の液圧駆動システム1と構成が類似している。従って、第2実施形態の液圧駆動システム1Aの構成については、第1実施形態の液圧駆動システム1と異なる点について主に説明し、同じ構成については同一の符号を付してその説明を省略する。
 第2実施形態の液圧駆動システム1Aの液圧供給装置24Aは、第1実施形態の液圧駆動システム1の液圧供給装置24の構成に加えて補給部47を更に備えており、補給部47は、以下のような機能を有している。即ち、補給部47は、右側ポンプ通路33Rに流れる作動液の流量が不足すると右側供給通路34Rから右側ポンプ通路33Rに作動液を導いて補充する。更に詳細に説明すると、補給部47は、補給通路47aと、絞り47bと、逆止弁47cとを有している。補給通路47aは、右側供給通路34Rと右側ポンプ通路33Rとに架け渡すように形成されている。また、補給通路47aには、絞り47b及び逆止弁47cが介在しており、絞り47b及び逆止弁47cは、補給通路47aにおいて右側供給通路34R側からその順番で並んでいる。このように配置される逆止弁47cは、右側供給通路34Rから右側ポンプ通路33Rへの作動液の流れを許容し、その逆方向の流れを阻止する。
 このように構成されている液圧駆動システム1Aは、第1実施形態の液圧駆動システム1と略同様に動作するが、以下の点で異なっている。即ち、例えばブーム操作及び旋回操作を行いつつフットペダル52a,52bの両方が操作された場合、2つの液圧モータ11L、11Rが共に右側液圧ポンプ21Rと接続される。即ち、右側液圧ポンプ21Rから2つの液圧モータ11L,11Rに作動液が供給される。それ故、フットペダル52a,52bの操作量が共に大きい場合、2つの液圧モータ11L,11Rの両方に作動液を供給するに際して右側液圧ポンプ21Rからの吐出流量だけでは不足する場合がある。液圧駆動システム1Aは、このような場合において補給部47を介して右側供給通路34Rから右側ポンプ通路33Rに作動液を補給し、不足する流量を補うことができる。
 このような機能を有する液圧駆動システム1Aでは、第1実施形態の液圧駆動システム1と同様の流量較正処理で2つの液圧ポンプ21L,21Rの流量特性を較正することも可能である。しかし、補給部47を備えるが故に、ステップS9~S11において左側液圧ポンプ21Lから旋回用液圧モータ12に作動液を供給する際、左側液圧ポンプ21Lから吐出される作動液の一部分が補給部47からタンク27に戻され、左側液圧ポンプ21Lの吐出流量を正確に算出することができない。そこで、左側液圧ポンプ21Lの吐出流量を正確に算出し、2つの液圧ポンプ21L,21Rの流量特性をより精度高く構成するべく液圧駆動システム1Aの制御ユニット50Aは、以下のような流量較正処理を実行する。即ち、制御ユニット50Aが予め定められる較正条件を充足するか否かを判断し、較正条件を充足すると図6に示すような流量較正処理を実行する。流量較正処理が実行されるとステップS1に移行し、その後、制御ユニット50Aは、第1実施形態の液圧駆動システム1と同様にステップS1~S5を実行して第1液圧ポンプである右側液圧ポンプ21Rの流量を較正する。
 即ち、流量較正処理が開始されると、まず液圧駆動システム1の状態を第1供給状態に切換え(ステップS1)、その後、流量指令信号I1を設定して右側レギュレータ23Rに出力する(ステップS2)。出力した後、旋回速度が検出され(ステップS3)、ステップS3で検出され旋回速度に基づいて旋回流量を算出する(ステップS4)。更に、制御ユニット50Aは、ステップS4で検出される旋回流量に基づいて吐出流量を算出すると共に、算出された吐出流量と流量指令信号I1とを対応付けて記憶する、即ち較正点71を取得する(図3参照)(ステップS5)。また、取得された較正点が1つ目であるので、ステップS6からステップS2に戻って流量指令信号I2が右側レギュレータ23Rに出力され、2つ目の較正点72が取得される(ステップS3~S5)。そして、2つの較正点71,72が取得されたと判定されると(ステップS6)、2つの較正点71,72に基づいて第1実測特性が算出され、算出された第1実測特性が新たな第1基準特性として設定される(ステップS7)。このように第1実測特性に基づいた第1基準特性の較正が行われるとステップS20に移行する。ステップS20では、図7に示すような第2ポンプ較正処理が実行され、ステップS21に移行する。
 最小傾転角切換工程であるステップS21では、右側液圧ポンプ21Rの斜板22Rが最小傾転角まで傾転させられる。即ち、制御ユニット50Aは、斜板22Rの傾転角が最小傾転角になるように第1基準特性に基づいて流量指令信号I5(≦Imin)を設定し、その流量指令信号I5を右側レギュレータ23Rに出力する。これにより、右側液圧ポンプ21Rの斜板22Rが最小傾転角まで傾転し、最小流量Qminの作動液が右側液圧ポンプ21Rから吐出される。そして、その作動液の全量が走行直進弁30及び旋回用方向制御弁32を介して旋回用液圧モータ12に供給されると、ステップS22に移行する。
 旋回速度検出工程であるステップS22では、ステップS3等と同様に旋回体6の旋回速度が検出される。即ち、制御ユニット50Aはジャイロセンサ60から出力される信号に基づいて旋回体6の旋回速度を検出し、旋回体6の旋回速度が算出されるとステップS23に移行する。また、旋回流量算出工程であるステップS23では、ステップS4等と同様に旋回時における旋回用液圧モータ12の旋回流量が算出される。即ち、制御ユニット50Aは、予め記憶されている旋回用液圧モータ12の押しのけ容積及び旋回用液圧モータ12と旋回体6との間の減速比とステップS22で算出した旋回速度とに基づいて旋回流量を算出し、旋回流量が算出されるとステップS24に移行する。
 第1ポンプ最小流量演算工程であるステップS24では、右側液圧ポンプ21Rの最小流量Qminが算出される。即ち、制御ユニット50Aは、ステップS5等と同様に、ステップS23で算出した旋回流量に基づいて右側液圧ポンプ21Rの最小流量Qminを算出するが、そのためにまず右側圧力センサ62Rからの信号に基づいて右側液圧ポンプ21Rの吐出圧を検出する。そして、制御ユニット50Aは、検出される左側液圧ポンプ21Lの吐出圧と旋回用液圧モータ12のモータ効率特性とに基づいて旋回用液圧モータ12のモータリーク量を算出する。最後に、制御ユニット50Aは、算出されたモータリーク量を旋回流量に加算して最小流量Qminを算出する。最小流量Qminが算出されると、ステップS25に移行する。
 第2供給状態切換工程であるステップS25では、第2液圧ポンプである左側液圧ポンプ21Lから吐出される作動液が旋回用液圧モータ12に供給されるような第2供給状態に液圧駆動システム1の状態を切換える。即ち、制御ユニット50Aは、左側アンロード弁45Lによって左側タンク通路46Lを閉じ、同時に右側アンロード弁45Rによって右側タンク通路46Rを閉じる。同時に、制御ユニット50Aは、走行直進弁30のスプール30aの位置を第2位置A2に位置させる。このようにして液圧供給装置24の状態が第2供給状態に切換えられると、ステップS26に移行する。
 指令電流設定工程であるステップS26では、ステップS8と同様に予め記憶される流量特性に基づいて設定される所定の流量指令信号I3が左側レギュレータ23Lに出力される。左側液圧ポンプ21Lの斜板22Lが流量指令信号I3に応じた傾転角に傾転し、流量指令信号I3に応じた流量の作動液が左側液圧ポンプ21Lから吐出される。そして、その作動液が走行直進弁30及び旋回用方向制御弁32を介して旋回用液圧モータ12に供給される。また、制御ユニット50Aは、右側レギュレータ23Rに流量指令信号I5を出力し、ステップS24にて算出される吐出流量、即ち最小流量Qminを右側液圧ポンプ21Rから吐出させる。このようにして右側液圧ポンプ21Rから吐出された作動液は、右側タンク通路46Rが閉じられているので、バイパス通路40R及び補給通路42を介して右側供給通路34Rに導かれ、そこで左側液圧ポンプ21Lから吐出される作動液と合流し、その作動液と共に旋回用液圧モータ12に供給される。このようにして合流した作動液が走行直進弁30及び旋回用方向制御弁32を介して旋回用液圧モータ12に供給されると、ステップS27に移行する。
 旋回速度検出工程であるステップS27では、ステップS9と同様に旋回体6の旋回速度が検出される。即ち、制御ユニット50Aがジャイロセンサ60から出力される信号に基づいて旋回体6の旋回速度を検出し、旋回体6の旋回速度が検出されるとステップS28に移行する。また、旋回流量算出工程であるステップS28では、ステップS10と同様に旋回時における旋回用液圧モータ12の旋回流量が算出される。即ち、制御ユニット50Aは、予め記憶されている旋回用液圧モータ12の押しのけ容積及び旋回用液圧モータ12と旋回体6との間の減速比とステップS27で検出した旋回速度とに基づいて旋回流量を算出し、旋回流量が算出されるとステップS29に移行する。
 第2較正点取得工程であるステップS29では、左側液圧ポンプ21Lの実際の吐出流量が算出されると共に、その実際の吐出流量に基づいて左側液圧ポンプ21Lの較正点が取得される。即ち、制御ユニット50Aは、ステップS28で算出した旋回流量に基づいて左側液圧ポンプ21Lの吐出流量を算出するが、そのためにまず左側圧力センサ62Lからの信号に基づいて左側液圧ポンプ21Lの吐出圧を検出する。そして、制御ユニット50Aは、検出される左側液圧ポンプ21Lの吐出圧と旋回用液圧モータ12のモータ効率特性とに基づいて旋回用液圧モータ12のモータリーク量を算出する。そして、算出されたモータリーク量を旋回流量に加算して吐出流量を算出するが、このようにして算出された吐出流量は、2つの液圧ポンプ21L,21Rの吐出流量の総和、即ち総流量である。そこで、左側液圧ポンプ21Lからの吐出流量を算出すべく、総流量から右側液圧ポンプ21Rの吐出流量が減算される。即ち、ステップS26では、右側液圧ポンプ21Rが予め定められた吐出流量、即ち最小流量Qminを吐出するように右側レギュレータ23Rに流量指令信号I5を出力しており、右側液圧ポンプ21Rの吐出流量がステップS24において既知である。それ故、制御ユニット50Aは、この既知の吐出流量である最小流量Qmin(補正流量)を総流量から減算することによって左側液圧ポンプ21Lの吐出流量(=旋回流量+モータリーク量-最小流量Qmin)を算出する。制御ユニット50Aは、左側液圧ポンプ21Lの吐出流量が算出されると、その吐出流量をステップS26にて設定した流量指令信号I3と対応付けて記憶する、即ち較正点73を取得する(図3参照)。このようにして1つ目の較正点73が取得されると、ステップS30に移行する。
 較正点数確認工程であるステップS30では、第2基準特性に対する較正を行うに際して2点以上の較正点を取得したか否かが判断される。なお、取得する較正点の数は、3点以上であってもよい。取得した較正点が1つであると判断されると、ステップS26に戻って流量指令信号I4が左側レギュレータ23Lに出力され、次に旋回速度を検出し(ステップS27)、更にステップS27で検出され旋回速度に基づいて旋回流量を算出する(ステップS28)。更に、制御ユニット50Aは、ステップS28で検出される旋回流量に基づいて吐出流量を算出すると共に、算出された吐出流量と流量指令信号I4とを対応付けて記憶する(ステップS29)。このようにして2つ目の較正点74が取得されると(図3参照)、ステップS30からステップS31に移行する。
 第2ポンプ流量較正工程であるステップS31では、第1実施形態のステップS14と同様に、ステップS29にて取得した2つの較正点73,74に基づいて第2基準特性が較正される。即ち、流量QがQmin≦Q≦Qmaxの範囲において、2つの較正点73,74を通る直線(図3の二点鎖線参照)が左側液圧ポンプ21Lの実際の流量特性である第2実測特性として算出される。更に詳細に説明すると、制御ユニット50Aは、2つの較正点73,74に基づいて第2実測特性のQmin≦Q≦Qmaxの範囲における傾き及び切片を演算して第2実測特性を算出し、算出された第2実測特性が新たな第2基準特性として設定される。このように第2実測特性に基づいた第2基準特性の較正が行われると第2ポンプ較正処理が終了し、また流量較正処理も終了する。
 このように液圧駆動システム1Aでは、前述するような流量較正処理を実行することによって、補給部47を備えている場合において2つの液圧ポンプ21L,21Rの流量特性をより高い精度にて較正することができる。それ故、液圧駆動システム1Aが搭載されるショベル3において、2つの液圧ポンプ21L,21Rの吐出流量を高い精度にて制御することができる。
 その他、第2実施形態の液圧駆動システム1Aは、第1実施形態の液圧駆動システム1と同様の作用効果を奏する。
 <第3実施形態>
 第3実施形態の液圧駆動システム1Bは、図5に示すように第2実施形態の液圧駆動システム1Aと全く同じ構成を有している。他方、液圧駆動システム1Bの制御ユニット50Bが実行する流量較正処理における第2ポンプ較正処理が第2実施形態の液圧駆動システム1Aの制御ユニット50Aが実施するそれと異なっている。以下では、制御ユニット50Bが実行する第2ポンプ構成処理について詳しく説明する。即ち、制御ユニット50Bは、図6に示すように流量較正処理のステップS1~S7を実行して右側液圧ポンプ21Rの流量特性、即ち第1基準特性の較正が終了すると、ステップS40に移行して図8に示すような第2ポンプ構成処理が実行され、ステップS41に移行する。
 第2供給状態切換工程であるステップS41では、第2液圧ポンプである左側液圧ポンプ21Lから吐出される作動液が旋回用液圧モータ12に供給されるような第2供給状態に液圧駆動システム1の状態を切換える。即ち、制御ユニット50Bは、排出弁の一例である右側アンロード弁45Rによって右側タンク通路46Rを全開放すると共に、左側アンロード弁45Lによって左側タンク通路46Lを閉じる。また、制御ユニット50Bは、走行直進弁30のスプール30aの位置を第2位置A2に位置させると共に旋回用方向制御弁32を作動させ、右側液圧ポンプ21Rの作動液が旋回用液圧モータ12に供給されるようにする。このようにして液圧供給装置24の状態が第2供給状態に切換えられると、ステップS42に移行する。
 指令電流設定工程であるステップS42では、ステップS26と同様に予め記憶される流量特性に基づいて設定される所定の流量指令信号I3が左側レギュレータ23Lに出力される。左側液圧ポンプ21Lの斜板22Lが流量指令信号I3に応じた傾転角に傾転し、流量指令信号I3に応じた流量の作動液が左側液圧ポンプ21Lから吐出される。そして、その作動液が走行直進弁30及び旋回用方向制御弁32を介して旋回用液圧モータ12に供給されると、ステップS43に移行する。旋回速度検出工程であるステップS43では、ステップS27と同様に旋回体6の旋回速度が検出される。即ち、制御ユニット50Bがジャイロセンサ60から出力される信号に基づいて旋回体6の旋回速度を検出し、旋回体6の旋回速度が検出されるとステップS44に移行する。また、旋回流量算出工程であるステップS44では、ステップS28と同様に旋回時における旋回用液圧モータ12の旋回流量が算出される。即ち、制御ユニット50Bは、予め記憶されている旋回用液圧モータ12の押しのけ容積及び旋回用液圧モータ12と旋回体6との間の減速比とステップS43で検出した旋回速度とに基づいて旋回流量を算出し、旋回流量が算出されるとステップS45に移行する。
 第2較正点取得工程であるステップS45では、左側液圧ポンプ21Lの実際の吐出流量が算出されると共に、その実際の吐出流量に基づいて左側液圧ポンプ21Lの較正点が取得される。即ち、制御ユニット50Bは、ステップS45で算出した旋回流量に基づいて左側液圧ポンプ21Lの吐出流量を算出するが、そのためにまず左側圧力センサ62Lからの信号に基づいて左側液圧ポンプ21Lの吐出圧を検出する。そして、制御ユニット50Bは、検出される左側液圧ポンプ21Lの吐出圧と旋回用液圧モータ12のモータ効率特性とに基づいて旋回用液圧モータ12のモータリーク量を算出する。そして、算出されたモータリーク量及び旋回流量に基づいて左側液圧ポンプ21Lの吐出流量を算出するが、以下のようにして吐出流量が算出される。
 即ち、液圧駆動システム1Bでは、補給部47が備わっており且つ右側タンク通路46Rが全開放されている。それ故、左側液圧ポンプ21Lから吐出される作動液の一部分が補給部47、右側ポンプ通路33R、及びタンク通路46Rを介してタンク27に流出しており、制御ユニット50Bは、モータリーク量に加えてタンク27に流出する流出流量Qaを算出する。具体的に説明すると、制御ユニット50Bは、右側圧力センサ62R(第1圧力センサ)からの信号に基づいて右側液圧ポンプ21Rの吐出圧を検出し、その吐出圧と左側圧力センサ62L(第2圧力センサ)で検出される吐出圧とに基づいて流出流量Qaを算出する。即ち、制御ユニット50Bは、以下の式(1)に基づいて流出流量Qaを算出する。
式1
Figure JPOXMLDOC01-appb-I000001
ここで、Cは流量係数、dは絞り47bの絞り径、P1は右側液圧ポンプ21Rの吐出圧、P2は左側液圧ポンプ21Lの吐出圧、ρは作動液の液密度であり、流量計数C、絞り径d、及び液密度ρは、制御ユニット50Bによって予め記憶されている。制御ユニット50Bは、2つの吐出圧P1,P2を検出すると、それらと式(1)とに基づいて流出流量Qaを算出する。即ち、制御ユニット50Bは、2つの圧力センサ62L,62Rと共に流出流量検出装置を構成しており、2つの圧力センサ62L,62Rから信号に基づいて検出される吐出圧P1,P2に基づいて流出流量を算出する。そして、制御ユニット50Bは、算出されたモータリーク量及び流出流量Qaを旋回流量に加算することによって左側液圧ポンプ21Lの吐出流量を算出する。制御ユニット50Bは、左側液圧ポンプ21Lの吐出流量が算出されると、その吐出流量をステップS42にて設定した流量指令信号I3と対応付けて記憶する、即ち較正点73を取得する(図3参照)。このようにして1つ目の較正点73が取得されると、ステップS46に移行する。
 較正点数確認工程であるステップS46では、第2基準特性に対する較正を行うに際して2点以上の較正点を取得したか否かが判断される。なお、取得する較正点の数は、3点以上であってもよい。取得した較正点が1つであると判断されると、ステップS42に戻って流量指令信号I4が左側レギュレータ23Lに出力され、次に旋回速度を検出し(ステップS43)、更にステップS43で検出され旋回速度に基づいて旋回流量を算出する(ステップS44)。更に、制御ユニット50Bは、ステップS44で検出される旋回流量に基づいて吐出流量を算出すると共に、算出された吐出流量と流量指令信号I4とを対応付けて記憶する(ステップS45)。このようにして2つ目の較正点74が取得されると(図3参照)、ステップS46からステップS47に移行する。
 第2ポンプ流量較正工程であるステップS47では、第1実施形態のステップS14と同様に、ステップS45にて取得した2つの較正点73,74に基づいて第2基準特性が較正される。即ち、流量QがQmin≦Q≦Qmaxの範囲において、2つの較正点73,74を通る直線(図3の二点鎖線参照)が左側液圧ポンプ21Lの実際の流量特性である第2実測特性として算出される。更に詳細に説明すると、制御ユニット50Bは、2つの較正点73,74に基づいて第2実測特性のQmin≦Q≦Qmaxの範囲における傾き及び切片を演算して第2実測特性を算出し、算出された第2実測特性が新たな第2基準特性として設定される。このように第2実測特性に基づいた第2基準特性の較正が行われると第2ポンプ較正処理が終了し、また流量較正処理も終了する。
 このように液圧駆動システム1Bでは、第2実施形態の液圧駆動システム1Aと異なる手順の流量較正処理を実行することによって、液圧駆動システム1Aと同じく2つの液圧ポンプ21L,21Rの流量特性をより高い精度にて較正することができる。それ故、液圧駆動システム1Bが搭載されるショベル3において、2つの液圧ポンプ21L,21Rの吐出流量を高い精度にて制御することができる。
 その他、第3実施形態の液圧駆動システム1Bは、第2実施形態の液圧駆動システム1Aと同様の作用効果を奏する。
 <第4実施形態>
 第4実施形態の液圧駆動システム1Cは、図5に示すように第2実施形態の液圧駆動システム1Aと全く同じ構成を有している。他方、液圧駆動システム1Cの制御ユニット50Cが実行する流量較正処理における第2ポンプ較正処理が第2及び第3実施形態の液圧駆動システム1A,1Bと全く異なっている。以下では、制御ユニット50Cが実施する第2ポンプ較正処理について説明する。即ち、制御ユニット50Cは、図6に示すように流量較正処理のステップS1~S5を実行して右側液圧ポンプ21Rの流量特性の較正が終了すると、ステップS50に移行して図9に示すような第2ポンプ構成処理が実行され、ステップS51に移行する。ステップS51に移行する。
 第3供給状態切換工程であるステップS51では、2つの液圧ポンプ21L,21Rから吐出される作動液が旋回用液圧モータ12に供給されるような第3供給状態に液圧駆動システム1Cの状態が切換えられる。具体的に説明すると、制御ユニット50Cは、各弁30,31L,31R,32,45L,45Rに対して信号を出力し、それらの動作を以下のように制御する。即ち、制御ユニット50Cは、左側アンロード弁45Lによって左側タンク通路46Lを閉じ、また右側アンロード弁45Rによって右側タンク通路46Rを閉じる。更に、制御ユニット50Cは、走行直進弁30のスプール30aを合流ファンクションへと移動させ、2つの液圧ポンプ21L,21Rから吐出される作動液を走行直進弁30にて合流させて右側供給通路34Rに導かれるようにする。
 制御ユニット50Cは、旋回用方向制御弁32を作動させる、即ち旋回用方向制御弁32のスプール32aをストロークさせる。これにより、右側供給通路34Rに導かれた作動液が旋回用液圧モータ12に供給される。この際、旋回用方向制御弁32の開度が全開となるように、スプール32aをストロークさせる。他方、旋回用方向制御弁32以外の方向制御弁31L,31R(ブームシリンダ13、アームシリンダ14、及びバケットシリンダ15等に対応する各種方向制御弁を含む)については、それらのスプール31La,31Ra(前記各種方向弁のスプールを含む)を中立位置に位置させ、左側走行用液圧モータ11L(第2液圧アクチュエータ)及び右側走行用液圧モータ11R等の他の液圧アクチュエータに作動液が流れないようにする。このようにして旋回用方向制御弁32のスプール32aだけをストロークさせ、2つの液圧ポンプ21L、21Rの作動液の全てが旋回用液圧モータ12だけに供給されるようにする。このようにして、2つの液圧ポンプ21L、21Rの作動液の全てが旋回用液圧モータ12だけに供給される第3供給状態に液圧供給装置24の状態を切換えると、ステップS52に移行する。
 指令電流設定工程であるステップS52では、ステップS26,S42と同様に予め記憶される流量特性に基づいて設定される所定の流量指令信号I3が左側レギュレータ23Lに出力される。左側液圧ポンプ21Lの斜板22Lが流量指令信号I3に応じた傾転角に傾転し、流量指令信号I3に応じた流量の作動液が左側液圧ポンプ21Lから吐出される。他方、右側レギュレータ23Rにも所定の流量指令信号、本実施形態では流量指令信号I5(≦Imin)が出力される。左側液圧ポンプ21Lの斜板22Lが最小傾転角まで傾転し、左側液圧ポンプ21Lの吐出流量を最小流量Qminにする。このようにして2つの液圧ポンプ21L,21Rから吐出される作動液は、その全量が走行直進弁30及び旋回用方向制御弁32を介して旋回用液圧モータ12に供給される。このようにして作動液が供給されると、ステップS53に移行する。
 旋回速度検出工程であるステップS53では、ステップS3等と同様に旋回体6の旋回速度が検出される。即ち、制御ユニット50Cはジャイロセンサ60から出力される信号に基づいて旋回体6の旋回速度を検出し、旋回体6の旋回速度が算出されるとステップS54に移行する。また、旋回流量算出工程であるステップS54では、ステップS4等と同様に旋回時における旋回用液圧モータ12の旋回流量が算出される。即ち、制御ユニット50Cは、予め記憶されている旋回用液圧モータ12の押しのけ容積及び旋回用液圧モータ12と旋回体6との間の減速比とステップS53で算出した旋回速度とに基づいて旋回流量を算出し、旋回流量が算出されるとステップS55に移行する。
 第2較正点取得工程であるステップS55では、左側液圧ポンプ21Lの実際の吐出流量が算出されると共に、その実際の吐出流量に基づいて左側液圧ポンプ21Lの較正点が取得される。即ち、制御ユニット50Cは、ステップS54で算出した旋回流量に基づいて左側液圧ポンプ21Lの吐出流量を算出するが、そのためにまず圧力センサ62L、62Rからの信号に基づいて2つの液圧ポンプ21L、21Rの吐出圧の少なくとも一方を検出する。そして、制御ユニット50Aは、検出される吐出圧と旋回用液圧モータ12のモータ効率特性とに基づいて旋回用液圧モータ12のモータリーク量を算出する。そして、算出されたモータリーク量を旋回流量に加算して吐出流量を算出するが、このようにして算出された吐出流量は、2つの液圧ポンプ21L,21Rの吐出流量の総和、即ち総流量である。そこで、左側液圧ポンプ21Lからの吐出流量を算出すべく、総流量から右側液圧ポンプ21Rの吐出流量が減算される。
 即ち、ステップS55では、右側液圧ポンプ21Rが予め定められた吐出流量、即ち最小流量Qminを吐出するように右側レギュレータ23Rに流量指令信号I5が出力されている。右側液圧ポンプ21Rの流量特性、即ち第1基準特性は、ステップS7において較正されており、第1基準特性と流量指令信号I5とに基づいて右側液圧ポンプ21Rの吐出流量を算出することができる。それ故、制御ユニット50Cは、この算出される吐出流量である最小流量Qmin(補正流量)を総流量から減算することによって左側液圧ポンプ21Lの吐出流量(=旋回流量+モータリーク量-最小流量Qmin)を算出する。制御ユニット50Cは、左側液圧ポンプ21Lの吐出流量が算出されると、その吐出流量をステップS52にて設定した流量指令信号I3と対応付けて記憶する、即ち較正点73を取得する(図3参照)。このようにして1つ目の較正点74が取得されると、ステップS56に移行する。
 較正点数確認工程であるステップS56では、第2実施形態のステップS30と同様に第2基準特性に対する較正を行うに際して2点以上の較正点を取得したか否かが判断される。なお、取得する較正点の数は、3点以上であってもよい。取得した較正点が1つであると判断されると、ステップS52に戻って流量指令信号I4が左側レギュレータ23Lに出力され、次に旋回速度を検出し(ステップS53)、更にステップS53で検出され旋回速度に基づいて旋回流量を算出する(ステップS54)。更に、制御ユニット50Cは、ステップS54で検出される旋回流量に基づいて吐出流量を算出すると共に、算出された吐出流量と流量指令信号I4とを対応付けて記憶する(ステップS55)。このようにして2つ目の較正点74が取得されると(図3参照)、ステップS56からステップS57に移行する。
 第2ポンプ流量較正工程であるステップS57では、第2実施形態のステップS31と同様に、ステップS55にて取得した2つの較正点73,74に基づいて第2基準特性が較正される。即ち、制御ユニット50Cは、2つの較正点73,74に基づいて第2実測特性を算出し、算出された第2実測特性が新たな第2基準特性として設定される。このように第2実測特性に基づいた第2基準特性の較正が行われると第2ポンプ較正処理が終了し、また流量較正処理も終了する。
 このように液圧駆動システム1Cでは、前述するような流量較正処理を実行することによって、補給部47を備えている場合において2つの液圧ポンプ21L,21Rの流量特性をより高い精度にて較正することができる。それ故、液圧駆動システム1Cが搭載されるショベル3において、2つの液圧ポンプ21L,21Rの吐出流量を高い精度にて制御することができる。
 <第5実施形態>
 ポンプ流量較正システムは、以下に示す第5実施形態の液圧駆動システム1Dであってもよい。即ち、第5実施形態の液圧駆動システム1Dは、図10に示すように液圧モータ12Dに作動液を供給してそれを駆動させるシステムであり、液圧ポンプ21Dと、レギュレータ23Dと、液圧供給装置24Dを備えている。液圧ポンプ21Dは、いわゆる可変容量型の斜板ポンプであり、斜板22Dを有している。液圧ポンプ21Dは、斜板22Dを傾転させることによって吐出流量を変えることができ、斜板22Dを傾転させるべく液圧ポンプ21Dにはレギュレータ23Dが設けられている。レギュレータ23Dは、そこに入力される流量指令信号に応じて斜板22Dの傾転角を調整し、液圧ポンプ21Dの吐出流量を制御する。このように構成されている液圧ポンプ21Dには、吐出した作動液を液圧モータ12Dに供給すべく液圧供給装置24Dが接続されている。
 液圧供給装置24Dは、方向制御弁32Dを有しており、液圧モータ12Dに対する作動液の流れ及び流量を制御することができる。更に詳細に説明すると、方向制御弁32Dは、液圧ポンプ21Dの他、液圧モータ12及びタンク27に接続されており、液圧ポンプ21D及びタンク27と液圧モータ12Dとの接続状態を切換えることができる。即ち、方向制御弁32Dは、スプール32Daを有しており、スプール32Daの位置を変えることで前記接続状態を切換える。また、スプール32Daは、その両端部に異なる2つの電磁比例制御弁32Db,32Dcから夫々出力されるパイロット圧を夫々受圧しており、受圧する2つのパイロット圧の差圧に応じて中立位置から一方及び他方に移動する。これにより、液圧ポンプ21D及びタンク27と液圧モータ12Dとの接続状態を切換えることができ、接続状態を切換えて作動液の流れる方向を変えることによって液圧モータ12Dの回転方向を変えることができる。また、スプール32Daは、2つのパイロット圧の差圧に応じた位置に移動することによって、その位置に応じた開度へと方向制御弁32Dの開度が調整される。
 なお、方向制御弁32Dと液圧モータ12Dとの間には、以下のような構成が接続されている。即ち、方向制御弁32Dは、2つの旋回用供給通路37DL,37DRを介して液圧モータ12にD接続されており、2つの旋回用供給通路37DL,37DRには、リリーフ弁38DL,38DRが夫々接続されている。2つのリリーフ弁38DL,38DRは、接続されている旋回用供給通路37DL,37DRを流れる作動液の液圧が所定のリリーフ圧を超えると、作動液をタンク27に排出する。また、2つの旋回用供給通路37DL,37DRは、逆止弁39DL,39DRを介してタンク27に接続されており、作動液が不足する際にタンク27から作動液を補うことができるようになっている。
 このように構成されている液圧駆動システム1Dは、更に制御ユニット50Dを有しており、レギュレータ23D及び方向制御弁32Dの動きが制御ユニット50Dによって制御されている。また、制御ユニット50Dには、液圧供給装置24Dの動作に関する指令を与えるべく操作装置51Dが電気的に接続されている。操作装置51Dは、例えば電気ジョイスティック又はリモートコントロール弁等によって構成されている。即ち、操作装置51Dは、操作レバー51Daを有しており、操作レバー51Daが傾倒されると、その傾倒量に応じた信号を制御ユニット50Dに出力する。
 制御ユニット50Dは、操作装置51Dから出力される信号に応じて方向制御弁32Dの動きを制御するようになっており、方向制御弁32Dの動きを制御すべく以下のように構成されている。即ち、制御ユニット50Dは、方向制御弁32Dに設けられている各電磁比例制御弁32Db,32Dcに夫々電気的に接続されており、操作装置51Dから出力される信号に応じて電磁比例制御弁32Db,32Dcに指令信号を出力する。そうすると、電磁比例制御弁32Db,32Dcは指令信号に応じたパイロット圧を出力し、スプール32Daが2つのパイロット圧の差圧に応じた位置へと移動する。これにより、方向制御弁32が操作レバー51Daの操作量に応じた開度にて開口し、操作レバー51Daの操作量に応じた流量の作動液が液圧モータ12Dに供給される。
 また、液圧駆動システム1Dは、回転センサ60D及び圧力センサ62Dを備えている。回転センサ60Dは、液圧モータ12Dの出力軸12aに設けられており、制御ユニット50に電気的に接続されている。また、回転センサ60Dは、出力軸12aの回転数に応じた信号を制御ユニット50Dに出力し、制御ユニット50Dは、回転センサ60Dからの信号に基づいて液圧モータ12Dの回転数を検出する。また、圧力センサ62Dは、液圧ポンプ21Dに接続され、また制御ユニット50Dに電気的に接続されている。このように配置されている圧力センサ62Dは、液圧ポンプ21Dの吐出圧力に応じた信号を制御ユニット50に出力し、制御ユニット50Dは、圧力センサ62Dからの出力される信号に基づいて液圧ポンプ21Dの吐出圧を検出する。その他、制御ユニット50Dは、種々の演算を行うと共に種々の情報を記憶している。
 このように構成されている液圧駆動システム1Dでは、操作装置51Dに行われる操作に応じて制御ユニット50Dが液圧供給装置24Dの動きを制御し、液圧アクチュエータ12Dを作動させる。即ち、制御ユニット50Dは、操作レバー51Daが操作されて操作装置51Dから信号が出力されると、その信号に応じた回転指令信号を電磁比例制御弁32Db(又は電磁比例制御弁32Dc)に出力して方向制御弁32Dを作動させる。これにより、液圧ポンプ21Dからの作動液が液圧モータ12Dに供給され、この作動液によって液圧モータ12Dが回転する。また、制御ユニット50Dは、方向制御弁32Dを操作レバー51Daの操作量に応じた開度にて開口させ、且つ操作レバー51Daの操作量に応じてレギュレータ23Dを介して液圧ポンプ21Dの吐出流量を制御する。これにより、操作レバー51Daの操作量に応じた回転数にて液圧モータ12Dを回転させることができる。
 このような機能を有する制御ユニット50Dは、第1乃至第3実施形態の制御ユニット50,50A,50Bと同様に、液圧ポンプ21Dの基準特性を予め設定しており、設定される流量特性に対して較正を行う。以下では、制御ユニット50Dが実行する液圧ポンプ流量較正処理について説明する。即ち、制御ユニット50Dは、予め定められる較正条件を充足するか否かを判断し、較正条件を充足すると図10に示すような流量較正処理を実行する。流量較正処理が実行されるとステップS61に移行する。
 供給状態切換工程であるステップS61では、液圧ポンプ21Dから吐出される作動液が液圧モータ12Dに供給されるような供給状態に液圧駆動システム1Dの状態が切換えられる。具体的に説明すると、制御ユニット50Dは、方向制御弁32Dの電磁比例制御弁32Db(又は電磁比例制御弁32Dc)に信号を出力して方向制御弁32Dのスプール32Daを作動させ、液圧ポンプ21D及びタンク27を液圧モータ12Dに接続させる。この際、液圧ポンプ21Dの作動液の全量が液圧モータ12Dに供給されるようにすべく、方向制御弁32Dの開度が全開となるようにスプール32Daをストロークさせる。このようにスプール32Daがストロークして液圧供給装置24Dの状態が供給状態に切換わると、ステップS62に移行する。
 指令電流設定工程であるステップS62では、前述するステップS2と同様に、基準特性に基づいて設定される所定の流量指令信号I1がレギュレータ23Dに出力される。これにより、液圧ポンプ21Dの斜板22Dが流量指令信号I1に応じた傾転角に傾転し、流量指令信号I1に応じた流量の作動液が液圧ポンプ21Dから吐出される。そして、その作動液の全量が方向制御弁32Dを介して液圧モータ12Dに供給されると、ステップS63に移行する。回転数検出工程であるステップS63では、液圧モータ12Dの回転数が検出される。即ち、制御ユニット50は、回転センサ60Dから出力される信号に基づいて液圧モータ12Dの回転数を検出する。そして、液圧モータ12Dの回転数が検出されると、ステップS64に移行する。
 供給流量算出工程であるステップS64では、液圧モータ12Dが回転している際に液圧モータ12Dに供給された作動液の流量、即ち供給流量が算出される。即ち、制御ユニット50は、液圧モータ12Dの押しのけ容積を予め記憶しており、この押しのけ容積とステップS63で検出した回転数とに基づいて供給流量を算出する。具体的に説明すると、ステップS63で算出される回転数に押しのけ容積を乗算することによって供給流量が算出される。供給流量が算出されると、ステップS65に移行する。
 較正点取得工程であるステップS65では、液圧ポンプ21Dの実際の吐出流量が算出されると共に、その実際の吐出流量に基づいて液圧ポンプ21Dの較正点が取得される。即ち、制御ユニット50Dは、ステップS64で算出した供給流量に基づいて液圧ポンプ21Dの吐出流量を算出するが、そのためにまず圧力センサ62Dからの信号に基づいて液圧ポンプ21Dの吐出圧を検出する。そして、制御ユニット50Dは、検出された吐出圧に基づいて液圧モータ12Dのモータリーク量を算出し、更に算出されたモータリーク量を旋回流量に加算する。これにより、液圧モータ12Dの吐出流量(=旋回流量+モータリーク量)が算出される。制御ユニット50Dは、吐出流量を算出すると、その吐出流量をステップS62にて設定した流量指令信号I1と対応付けて記憶する。例えば、図3に示すように基準特性(図3の実線)に比べて流量指令信号I1に対して吐出される吐出流量が大きい場合、較正点71が取得される。このようにして1つ目の較正点71が取得されると、ステップS66に移行する。
 較正点数確認工程であるステップS66では、基準特性に対する較正を行うに際して2点以上の較正点を取得したか否かが判断される。なお、取得する較正点の数は、3点以上であってもよい。取得した較正点が1つであると判断されると、ステップS62に戻って流量指令信号I2がレギュレータ23Dに出力され、次に旋回速度を検出し(ステップS63)、更にステップS63で検出され旋回速度に基づいて旋回流量を算出する(ステップS64)。更に、制御ユニット50Dは、ステップS64で検出される旋回流量に基づいて吐出流量を算出すると共に、算出された吐出流量と流量指令信号I2とを対応付けて記憶する(ステップS65)。このようにして2つ目の較正点74が取得されると(図3参照)、ステップS67に移行する。
 ポンプ流量較正工程であるステップS67では、第1実施形態のステップS14と同様に、ステップS65にて取得した2つの較正点71,72に基づいて基準特性が較正される。即ち、流量QがQmin≦Q≦Qmaxの範囲において、2つの較正点71,72を通る直線(図3の二点鎖線参照)が液圧ポンプ21Dの実際の流量特性である実測特性として算出される。更に詳細に説明すると、制御ユニット50Dは、2つの較正点71,72に基づいて実測特性のQmin≦Q≦Qmaxの範囲における傾き及び切片を演算して実測特性を算出し、算出された第2実測特性が新たな第2基準特性として設定される。このように、実測特性に基づいた基準特性の較正が行われると、流量較正処理が終了する。
 このように液圧駆動システム1Dでは、前述するような流量較正処理を実行することによって、液圧ポンプ21Dを液圧駆動システム1Dに備えた状態で、液圧ポンプ21Dの吐出流量を較正することができる。即ち、液圧駆動システム1Dにおいて液圧ポンプ21Dの吐出流量を高い精度にて制御することができる。また、液圧駆動システム1は、回転センサ60Dによって検出される液圧モータの回転数に基づいて液圧ポンプ21Dの吐出流量を算出し、それに基づいて流量特性を較正することができる。即ち、液圧駆動システム1では、新たに流量センサを備えずとも液圧ポンプ21Dの流量特性の構成を行うことができ、較正を行うべく部品点数が増加することを抑制することができる。
 <その他の実施形態>
 第1乃至第3実施形態の液圧駆動システム1,1A,1Bでは、主にショベル3に搭載されている場合について説明しているが、必ずしもショベル3に限定されず他の建設機械、例えばクレーン及びホイルローダ等であってもよい。また、必ずしも建設機械に限定されず、液圧駆動式のロボットに適用されてもよく、その際には作動液として生理食塩水等の水が使用されてもよい。
 なお、クレーンの場合、旋回モータに代えてクレーンの巻上装置に備わる巻上モータを使用して液圧ポンプ流量較正処理が実行されてもよい。また、ホイルローダ等の場合には、旋回モータに代えて走行用モータ使用して液圧ポンプ流量較正処理が実行されてもよい。更に、液圧モータに代えてシリンダを使用して液圧ポンプ流量較正処理が実行されてもよい。即ち、シリンダのロッドのストローク量によって液圧アクチュエータへの供給流量が算出され、それに基づいて液圧ポンプ流量較正処理が実行されればよい。この際、ストロークセンサが流量検出装置として機能する。また、流量検出装置は、必ずしもジャイロセンサ60やストロークセンサである必要なく、各液圧アクチュエータに接続される通路に流量計等であってよい。更に、第1乃至第3実施形態の液圧駆動システム1,1A,1Bでは、ジャイロセンサ60として3軸のジャイロセンサが採用されているが、2軸のジャイロセンサを採用してもよい。
 更に、第1乃至第4実施形態の液圧駆動システム1,1A~1Cでは、走行用方向制御弁31L,31Rが電磁比例弁31Lb,31Lc,31Rb,31Lcから出力されるパイロット圧に基づいて作動するように構成されているが、必ずしもこのような構成である必要はない。即ち、走行用操作装置52が油圧式のリモートコントロール弁で構成され、走行用方向制御弁31L,31Rは、リモートコントロール弁から出力されるパイロット圧によって駆動するような油圧駆動式の方向制御弁であってもよい。この場合、リモートコントロール弁から出力されるパイロット圧の圧力センサなどによって検出することで、走行用操作装置52に対する操作の有無が検出される。
 また、第1乃至第5実施形態の液圧駆動システム1,1A~1Dでは、2つ以上の較正点に基づいて各基準特性の較正が行われているが、必ずしも2つ以上である必要はない。即ち、各液圧ポンプ21L,21R,21Dにおける最小流量Qmimからの変化点75は、製品毎のばらつきが最大流量Qmaxの変化点76それに比べて小さく、略定点とみなすことができる。それ故、この変化点75と算出される1つの較正点に基づいて実測特性を算出し、算出された実測特性に基づいて基準特性の構成を行うことができる。また、液圧ポンプ21L,21R,21Dの基準特性においてヒステリシスがある場合、流量増加時及び減少時において2つの較正点を夫々算出し、流量増加時及び減少時のそれぞれの場合に対して基準特性を較正するようにしてもよい。更に、基準特性に含まれる最小傾転角及び最大傾転角における流量、即ち液圧ポンプ21L,21R,21Dの最小流量Qmin及び最大流量Qmaxを前述する方法にて較正するようにしてもよい。
 また、第1乃至第3実施形態の液圧駆動システム1,1A,1Bは、アンロード弁45L,45Rを備えているが、必ずしも備えている必要はなく、図12に示すような液圧駆動システム1Eであってもよい。即ち、液圧駆動システム1Eの左側バイパス通路40Lには、バイパスカット弁49Lが介在しており、左側バイパス通路40Lは、バイパスカット弁49Lを介してタンク27に接続されている。また、左側バイパス通路40Lには、バイパスカット弁49Lの上流側であって左側走行用方向制御弁31Lの下流側に図示しない方向制御弁(例えば、バケット用方向制御弁及び第1ブーム用方向制御弁等)が介在しており、方向制御弁31Lを含む各方向制御弁のスプールの位置に応じて左側バイパス通路40Lの開度が調整される。他方、右側バイパス通路40Rにも、バイパスカット弁49Rが介在しており、右側バイパス通路40Rは、バイパスカット弁49Rを介してタンク27に接続されている。また、右側バイパス通路40Rには、バイパスカット弁49Rの上流側であって右側走行用方向制御弁31Rの下流側に旋回用方向制御弁32や図示しない方向制御弁(例えば、アーム用方向制御弁、及び第2ブーム用方向制御弁等)が介在しており、方向制御弁32を含む各方向制御弁のスプールの位置に応じて右側バイパス通路40Rの開度が調整される。
 このように構成されている液圧駆動システムでは、バイパスカット弁49L,49Rを排出弁として用いて液圧ポンプ流量較正処理が実行される。即ちステップS1において、バイパスカット弁49Lを開くことによって左側供給通路34Lが左側バイパス通路40Lを介してタンク27に繋がれ、左側液圧ポンプ21Lから吐出される作動液の全量がタンク27に戻される。他方、右側バイパス通路40Rは、バイパスカット弁49Rの開閉にかかわらず、旋回用方向制御弁32Eのスプール32aによって閉じられている。また、ステップS7では、バイパスカット弁49Lを閉じることによって左側供給通路34Lがタンク27に戻されないようにする。このようにバイパス通路40Lに介在するバイパスカット弁49Lを用いることによって、アンロード弁45L,45Rがなくても液圧ポンプ流量較正処理を実現することができる。なお、アンロード弁45L,45Rを備えている場合であっても、同様の方法によってアンロード弁45L,45Rを作動させることなく液圧ポンプ流量較正処理を実行することができる。
 また、第2実施形態の液圧駆動システム1Aでは、補正流量として最小流量Qminが採用されているが、必ずしもそうである必要はなく、採用される流量は既知の流量であればよい。更に、流出流量は、必ずしも前述する式(1)を用いて算出する必要はなく、補給通路47aに流量センサを接続して直接検出するようにしてもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 1,1A~1E 液圧駆動システム(液圧ポンプ流量構成システム)
 11L 左側走行用液圧モータ
 12 旋回用液圧モータ
 13 ブームシリンダ
 14 アームシリンダ
 15 バケットシリンダ
 21L 左側液圧ポンプ
 21R 右側液圧ポンプ
 23D,23L,23R レギュレータ
 27 タンク
 30 走行直進弁(切換弁)
 32E 旋回用方向制御弁32(排出弁)
 33R 右側ポンプ通路
 34R 右側供給通路
 40R 右側バイパス通路
 44 逆止弁(バイパス用逆止弁)
 45R 右側アンロード弁(排出弁)
 47 補給部
 47b 絞り
 50,50A,50B,50C,50D 制御ユニット(制御装置、較正装置)
 60 ジャイロセンサ
 60D 回転センサ
 62D 圧力センサ
 62R 右側圧力センサ
 62L 左側圧力センサ

Claims (16)

  1.  供給される作動液の流量に応じた速度にて作動する液圧アクチュエータに接続され、前記液圧アクチュエータに作動液を供給する可変容量型の液圧ポンプと、
     入力される流量指令信号に応じて前記液圧ポンプの吐出流量を変更するレギュレータと、
     前記液圧アクチュエータに供給される作動液の流量を検出する流量検出装置と、
     前記レギュレータに流量指令信号を出力して前記レギュレータを制御する制御装置と、
     流量指令信号に対する前記吐出流量の実測特性を算出し、予め設定された基準特性に対して実測特性に基づいた較正を行う較正装置とを備え、
     実測特性は、前記制御装置から前記レギュレータに所定の流量指令信号を出力する際に、前記液圧アクチュエータに供給される流量を前記流量検出装置で検出することにより算出される、液圧ポンプ流量較正システム。
  2.  前記液圧アクチュエータは、液圧モータであり、
     前記流量検出装置は、前記液圧モータの出力軸の回転速度に応じた値を検出する回転センサを有し、前記回転センサの検出結果と前記液圧モータの吸入容量とに基づいて前記液圧モータに供給される流量を検出する、請求項1に記載の液圧ポンプ流量較正システム。
  3.  前記液圧モータは、構造体に対して旋回可能に設けられている旋回体を旋回させ、
     前記回転センサは、前記液圧モータの出力軸の回転速度に応じた値として前記旋回体の旋回速度を検出し、
     前記流量検出装置は、検出される旋回速度と前記液圧モータの吸入容量とに基づいて前記液圧モータに供給される流量を検出する、請求項2に記載の液圧ポンプ流量較正システム。
  4.  前記較正装置を有し、前記旋回体に設けられる制御ユニットを備え、
     前記回転センサは、ジャイロセンサであって、前記制御ユニットに内蔵されている、請求項3に記載の液圧ポンプ流量較正システム。
  5.  供給される作動液の流量に応じた速度にて作動する液圧アクチュエータに接続され、前記液圧アクチュエータに作動液を供給する可変容量型の第1液圧ポンプと、
     前記液圧アクチュエータに接続され、前記液圧アクチュエータに作動液を供給する第2液圧ポンプと、
     入力される第1流量指令信号に応じて前記第1液圧ポンプの吐出流量を変更する第1レギュレータと、
     前記第1液圧ポンプ及び前記第2液圧ポンプ並びに前記液圧アクチュエータに接続され、前記第1液圧ポンプ及び前記第2液圧ポンプのうち何れかを前記液圧アクチュエータと接続する切換弁と、
     前記液圧アクチュエータに供給される作動液の流量を検出する流量検出装置と、
     前記第1レギュレータに第1流量指令信号を出力して前記第1レギュレータを制御する制御装置と、
     第1流量指令信号に対する前記第1液圧ポンプの吐出流量の第1実測特性を算出し、予め設定された第1基準特性に対して当該第1実測特性に基づいた較正を行う較正装置と、を更に備え、
     前記第1実測特性は、前記制御装置から前記第1レギュレータに所定の第1流量指令信号を出力する際に、前記切換弁によって前記第1液圧ポンプと前記液圧アクチュエータとを接続して前記液圧アクチュエータに供給される流量を前記流量検出装置で検出することにより算出される、液圧ポンプ流量較正システム。
  6.  前記液圧アクチュエータは、液圧モータであり、
     前記流量検出装置は、前記液圧モータの出力軸の回転速度に応じた値を検出する回転センサを有し、前記回転センサの検出結果と前記液圧モータの吸入容量とに基づいて前記液圧モータに供給される流量を検出する、請求項5に記載の液圧ポンプ流量較正システム。
  7.  前記液圧モータは、構造体に対して旋回可能に設けられている旋回体を旋回させ、
     前記回転センサは、前記液圧モータの出力軸の回転速度に応じた値として前記旋回体の旋回速度を検出し、
     前記流量検出装置は、検出される旋回速度と前記液圧モータの吸入容量とに基づいて前記液圧モータに供給される流量を検出する、請求項6に記載の液圧ポンプ流量較正システム。
  8.  前記較正装置を有し、前記旋回体に設けられる制御ユニットを備え、
     前記回転センサは、ジャイロセンサであって、前記制御ユニットに内蔵されている、請求項7に記載の液圧ポンプ流量較正システム。
  9.  入力される第2流量指令信号に応じて、可変容量型である前記第2液圧ポンプの吐出流量を変更する第2レギュレータを更に備え、
     前記制御装置は、前記第2レギュレータに第2流量指令信号を出力して前記第2レギュレータを制御し、
     前記較正装置は、第2流量指令信号に対する前記第2液圧ポンプの吐出流量の第2実測特性を算出し、予め定められた第2基準特性に対して当該第2実測特性に基づいた較正を行い、
     前記第2実測特性は、前記第2レギュレータに所定の第2流量指令信号を出力する際に、前記切換弁によって前記第2液圧ポンプと前記液圧アクチュエータとを接続して前記液圧アクチュエータに供給される流量を前記流量検出装置で検出することにより算出される、請求項5乃至8の何れか1つに記載の液圧ポンプ流量較正システム。
  10.  前記液圧アクチュエータである第1液圧アクチュエータと前記切換弁との間に形成される供給通路及び前記第1液圧ポンプと前記切換弁との間のポンプ通路とに夫々接続される補給部と、
     前記ポンプ通路に接続され且つ開閉可能に構成され、開くことで前記ポンプ通路を流れる作動液をタンクに排出する排出弁と、
     前記補給部を流れる作動液の流量を検出する流出流量検出装置とを更に備え、
     前記切換弁は、前記第1液圧アクチュエータと異なる第2液圧アクチュエータに更に接続され、前記第1液圧ポンプが前記第1液圧アクチュエータに接続されている際に前記第2液圧ポンプを前記第2液圧アクチュエータに接続し、前記第2液圧ポンプが前記第1液圧アクチュエータに接続されている際に前記第1液圧ポンプを前記第2液圧アクチュエータに接続し、
     前記補給部は、前記切換弁によって前記第2液圧ポンプが前記第1液圧アクチュエータに接続されている際に前記第2液圧ポンプから吐出される作動液を前記第2液圧アクチュエータに補給すべく前記供給通路側から前記ポンプ通路側への流れを許容すると共に、その逆方向の流れを阻止し、
     前記第1実測特性は、前記制御装置から前記第1レギュレータに所定の第1流量指令信号を出力する際に、前記切換弁によって前記第1液圧ポンプと前記第1液圧アクチュエータとを接続すると共に前記排出弁を閉じて前記第1液圧アクチュエータに供給される流量を前記流量検出装置で検出することにより算出され、
     前記第2実測特性は、前記第2レギュレータに所定の第2流量指令信号を出力する際に、前記切換弁によって前記第2液圧ポンプと前記第1液圧アクチュエータとを接続すると共に前記排出弁を開いて前記第1液圧アクチュエータに供給される流量を前記流量検出装置で検出し、前記流量検出装置で検出される流量と前記流出流量検出装置で検出される流出流量とに基づいて算出される、請求項9に記載の液圧ポンプ流量較正システム。
  11.  前記補給部は、絞りを有し、
     前記流出流量検出装置は、前記第1液圧ポンプの吐出圧を検出する第1圧力センサと、前記第2液圧ポンプの吐出圧を検出する第2圧力センサとを有し、前記第1圧力センサ及び前記第2圧力センサの差圧に基づいて前記流出流量を演算する、請求項10に記載の液圧ポンプ流量較正システム。
  12.  入力される第2流量指令信号に応じて、可変容量型である前記第2液圧ポンプの吐出流量を変更する第2レギュレータと、
     前記液圧アクチュエータである第1液圧アクチュエータと前記切換弁との間に形成される供給通路と前記第1液圧ポンプと前記切換弁との間に形成されるポンプ通路を繋ぎ、前記供給通路側から前記ポンプ通路側への流れを阻止するバイパス用逆止弁が介在するバイパス通路と、
     前記切換弁は、前記第1液圧アクチュエータと異なる第2液圧アクチュエータに更に接続され、前記第1液圧ポンプが前記第1液圧アクチュエータに接続されている際に前記第2液圧ポンプを前記第2液圧アクチュエータに接続し、前記第2液圧ポンプが前記第1液圧アクチュエータに接続されている際に前記第1液圧ポンプを前記第2液圧アクチュエータに接続し、
     前記制御装置は、前記第2レギュレータに第2流量指令信号を出力して前記第2レギュレータを制御し、
     前記較正装置は、第2流量指令信号に対する前記第2液圧ポンプの吐出流量の第2実測特性を算出し、予め定められた第2基準特性に対して当該第2実測特性に基づいた較正を行い、
     前記第2実測特性は、前記第2レギュレータに所定の第2流量指令信号を出力する際に、前記第1レギュレータに基準となる第1流量指令信号を出力すると共に前記切換弁によって前記第2液圧ポンプを前記第1液圧アクチュエータに接続し、前記第1液圧ポンプから吐出される作動液を前記バイパス通路を介して前記第1液圧アクチュエータに供給すると共に前記第2液圧ポンプから吐出される作動油を前記切換弁を介して前記第1液圧アクチュエータに供給して前記第1液圧アクチュエータに供給される流量を前記流量検出装置で検出し、前記流量検出装置で検出される検出流量と補正流量とに基づいて算出され、
     前記補正流量は、前記制御装置から前記第1レギュレータに基準となる第1流量指令信号を出力すると共に前記切換弁によって前記第1液圧ポンプを前記第1液圧アクチュエータに接続した際に前記流量検出装置で検出される流量である、請求項5乃至8の何れか1つに記載の液圧ポンプ流量較正システム。
  13.  前記切換弁は、前記第1液圧ポンプ及び前記第2液圧ポンプの両方を前記液圧アクチュエータと接続可能であり、
     前記較正装置は、第2流量指令信号に対する前記第2液圧ポンプの吐出流量の第2実測特性を算出し、予め定められた第2基準特性に対して当該第2実測特性に基づいた較正を行い、
     前記第2実測特性は、前記第2レギュレータに所定の第2流量指令信号を出力する際に、前記第1レギュレータに基準となる第1流量指令信号を出力すると共に前記切換弁によって前記第1液圧ポンプ及び前記第2液圧ポンプの両方を前記液圧アクチュエータに接続して前記液圧アクチュエータに供給される流量を前記流量検出装置で検出し、前記流量検出装置で検出される検出流量と補正流量とに基づいて算出され、
     前記補正流量は、前記制御装置から前記第1レギュレータに基準となる第1流量指令信号を出力すると共に前記切換弁によって前記第1液圧ポンプを前記液圧アクチュエータに接続した際に前記液圧アクチュエータに流れる流量である、請求項9に記載の液圧ポンプ流量較正システム。
  14.  前記較正装置は、前記流量検出装置で検出される流量を前記液圧アクチュエータの漏れ量に基づいて補正し、補正された流量に基づいて実測特性を算出する、請求項1乃至13の何れか1つに記載の液圧ポンプ流量較正システム。
  15.  実測特性は、互いに異なる複数の流量指令信号を出力し、それらを出力した際に前記流量検出装置によって夫々検出される複数の流量に基づいて算出される、請求項1乃至13の何れか1つに記載の液圧ポンプ流量較正システム。
  16.  前記較正装置は、予め定められる条件を充足すると、実測特性を算出する、請求項1乃至14の何れか1つに記載の液圧ポンプ流量較正システム。
     
PCT/JP2020/003827 2019-02-08 2020-01-31 液圧ポンプ流量較正システム WO2020162377A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/428,017 US20220106770A1 (en) 2019-02-08 2020-01-31 Hydraulic-pump flow-rate calibration system
GB2111981.3A GB2595184B (en) 2019-02-08 2020-01-31 Hydraulic-pump flow-rate calibration system
CN202080011386.XA CN113348301B (zh) 2019-02-08 2020-01-31 液压泵流量校正系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-021573 2019-02-08
JP2019021573A JP2020128733A (ja) 2019-02-08 2019-02-08 液圧ポンプ流量較正システム

Publications (1)

Publication Number Publication Date
WO2020162377A1 true WO2020162377A1 (ja) 2020-08-13

Family

ID=71947341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003827 WO2020162377A1 (ja) 2019-02-08 2020-01-31 液圧ポンプ流量較正システム

Country Status (5)

Country Link
US (1) US20220106770A1 (ja)
JP (1) JP2020128733A (ja)
CN (1) CN113348301B (ja)
GB (1) GB2595184B (ja)
WO (1) WO2020162377A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022100884A1 (en) * 2020-11-10 2022-05-19 Caterpillar Sarl Calibration method for variable capacity hydraulic pump

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7227187B2 (ja) * 2020-06-30 2023-02-21 株式会社竹内製作所 作業用アタッチメントへの油量較正方法、較正用治具、較正プログラム
JP7438082B2 (ja) 2020-11-06 2024-02-26 川崎重工業株式会社 液圧駆動システム
CN114809173A (zh) * 2022-03-23 2022-07-29 中联重科股份有限公司 正流量挖掘机及其控制方法及装置、控制器和存储介质
JP2023174096A (ja) 2022-05-27 2023-12-07 キャタピラー エス エー アール エル 可変容量型ポンプの制御較正装置およびその方法
JP2024058278A (ja) * 2022-10-14 2024-04-25 株式会社小松製作所 作業機械および作業機械の制御方法
JP2024058274A (ja) * 2022-10-14 2024-04-25 株式会社小松製作所 作業機械および作業機械の制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681772A (ja) * 1992-09-02 1994-03-22 Shin Caterpillar Mitsubishi Ltd 油圧ショベル用ポンプの出力制御装置
JPH11311203A (ja) * 1998-04-24 1999-11-09 Yutani Heavy Ind Ltd 油圧回路の調整方法および同装置
WO2005100793A1 (ja) * 2004-03-26 2005-10-27 Hitachi Construction Machinery Co., Ltd. 傾転制御信号の補正方法、傾転制御装置、建設機械および傾転制御信号補正用プログラム
WO2006129422A1 (ja) * 2005-06-02 2006-12-07 Shin Caterpillar Mitsubishi Ltd. 作業機械
WO2017085996A1 (ja) * 2015-11-20 2017-05-26 Kyb株式会社 カウンタバランス弁及びカウンタバランス弁を備えた流体圧制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128127A (ja) * 2017-02-10 2018-08-16 川崎重工業株式会社 液圧駆動システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681772A (ja) * 1992-09-02 1994-03-22 Shin Caterpillar Mitsubishi Ltd 油圧ショベル用ポンプの出力制御装置
JPH11311203A (ja) * 1998-04-24 1999-11-09 Yutani Heavy Ind Ltd 油圧回路の調整方法および同装置
WO2005100793A1 (ja) * 2004-03-26 2005-10-27 Hitachi Construction Machinery Co., Ltd. 傾転制御信号の補正方法、傾転制御装置、建設機械および傾転制御信号補正用プログラム
WO2006129422A1 (ja) * 2005-06-02 2006-12-07 Shin Caterpillar Mitsubishi Ltd. 作業機械
WO2017085996A1 (ja) * 2015-11-20 2017-05-26 Kyb株式会社 カウンタバランス弁及びカウンタバランス弁を備えた流体圧制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022100884A1 (en) * 2020-11-10 2022-05-19 Caterpillar Sarl Calibration method for variable capacity hydraulic pump

Also Published As

Publication number Publication date
CN113348301A (zh) 2021-09-03
JP2020128733A (ja) 2020-08-27
CN113348301B (zh) 2024-03-08
US20220106770A1 (en) 2022-04-07
GB2595184A (en) 2021-11-17
GB202111981D0 (en) 2021-10-06
GB2595184B (en) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2020162377A1 (ja) 液圧ポンプ流量較正システム
KR101887276B1 (ko) 건설 기계의 유압 제어 장치
JP6018442B2 (ja) 傾転角制御装置
KR19990087335A (ko) 유압구동기계의 제어장치
CN109477502A (zh) 控制器单元及液压驱动系统
JP2013521444A (ja) 液圧式の走行駆動装置及び該走行駆動装置の制御方法
US11920325B2 (en) Construction machine
US11821163B2 (en) Shovel
WO2018194110A1 (ja) 油圧機械の制御装置
JP2933806B2 (ja) 建設機械の油圧駆動装置
KR102413519B1 (ko) 작업 기계
JP7001574B2 (ja) 建設機械
JP7123735B2 (ja) 建設機械及び建設機械の制御システム
JPH07259140A (ja) 油圧ショベルのポンプ制御装置
JP4807888B2 (ja) 油圧駆動機械の制御装置
WO2022102391A1 (ja) 建設機械
WO2022208694A1 (ja) 作業機械
US11718977B2 (en) Work machine
JP6585401B2 (ja) 作業機械の制御装置
WO2019012700A1 (ja) 作業機械および作業機械の制御方法
JP2023117113A (ja) 油圧駆動装置及びこれを備えた建設機械
JP2023172765A (ja) 作業機械
JP2024044591A (ja) 作業機械の制御方法、作業機械用制御プログラム、作業機械用制御システム、作業機械
JP2024022353A (ja) 作業機械
JP2024020791A (ja) 旋回制御装置及びこれを備えた旋回式作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 202111981

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200131

122 Ep: pct application non-entry in european phase

Ref document number: 20752376

Country of ref document: EP

Kind code of ref document: A1