WO2022208694A1 - 作業機械 - Google Patents

作業機械 Download PDF

Info

Publication number
WO2022208694A1
WO2022208694A1 PCT/JP2021/013702 JP2021013702W WO2022208694A1 WO 2022208694 A1 WO2022208694 A1 WO 2022208694A1 JP 2021013702 W JP2021013702 W JP 2021013702W WO 2022208694 A1 WO2022208694 A1 WO 2022208694A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
target
meter
cylinder
boom
Prior art date
Application number
PCT/JP2021/013702
Other languages
English (en)
French (fr)
Inventor
裕昭 天野
賢人 熊谷
真司 西川
昭広 楢▲崎▼
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to JP2023509991A priority Critical patent/JPWO2022208694A1/ja
Priority to PCT/JP2021/013702 priority patent/WO2022208694A1/ja
Publication of WO2022208694A1 publication Critical patent/WO2022208694A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"

Definitions

  • the present invention relates to working machines.
  • driven members such as booms and arms are rotated by fluid pressure cylinders such as hydraulic cylinders.
  • fluid pressure cylinders such as hydraulic cylinders.
  • the speed of the fluid pressure cylinder is constant when the operation signal is constant.
  • the working device is composed of a welded structure made by welding steel plates, it has a large inertial mass. Therefore, if the operation command changes abruptly, the driven member suddenly accelerates or stops suddenly, which may cause a shock to the entire vehicle body. For this reason, there is known a method of reducing the shock by gently switching a directional control valve that controls the supply and discharge of pressure oil to the hydraulic cylinder for the front work device (see Patent Document 1).
  • An object of the present invention is to operate a work device at a stable acceleration/deceleration while preventing sudden movements of the work device.
  • a work machine includes a pump that discharges a working fluid, a plurality of fluid pressure cylinders that are driven by the working fluid that is discharged from the pump, and a plurality of driven members that are driven by the fluid pressure cylinders.
  • an operation device for outputting an operation command for the fluid pressure cylinder; a control device for controlling the operation of the work device based on the operation command for the operation device; and an attitude detection device for detecting the attitude of the work device.
  • the control device calculates a target pressure and a target speed of the fluid pressure cylinder based on the operation command from the operating device, and calculates a target flow rate of the fluid pressure cylinder based on the target speed of the fluid pressure cylinder. do.
  • the control device calculates the actual speed of the fluid pressure cylinder based on the detection result of the attitude detection device, and calculates the degree of divergence between the target speed of the fluid pressure cylinder and the actual speed of the fluid pressure cylinder.
  • the control device executes pressure control for setting the pressure of the fluid pressure cylinder to the target pressure when the degree of deviation is greater than a predetermined value.
  • the control device executes flow rate control for setting the flow rate of the fluid pressure cylinder to the target flow rate when the degree of deviation is smaller than a predetermined value.
  • the work device it is possible to operate the work device at a stable acceleration/deceleration while preventing sudden movements of the work device.
  • FIG. 1 is a side view of a hydraulic excavator according to an embodiment of the present invention
  • FIG. 2 is a diagram showing a coordinate system (excavator reference coordinate system) in a hydraulic excavator
  • FIG. 4 is a functional block diagram of the main controller, showing functions for calculating the meter-in target pressure, meter-out target pressure, pump target pressure, and actuator target speed, and for setting the pressure control flag.
  • FIG. 4 is a functional block diagram of the main controller, showing functions for calculating a meter-in control valve command value for pressure control, a directional control valve command value, and a pump volume command value.
  • FIG. 4 is a functional block diagram of the main controller, showing functions for calculating a meter-in control valve command value for pressure control, a directional control valve command value, and a pump volume command value.
  • FIG. 4 is a functional block diagram of the main controller, showing functions for calculating a directional control valve command value for flow rate control, a meter-in control valve command value, and a pump volume command value.
  • FIG. 4 is a functional block diagram of the main controller, showing functions for generating directional control valve commands, meter-in control valve commands, and pump displacement commands;
  • FIG. 4 is a diagram showing the contents of arithmetic processing performed by an inertia moment correction ratio arithmetic unit C1; The figure explaining the method of calculating the moment-of-inertia actual value Ia from an equation of motion.
  • FIG. 4 is a functional block diagram of the main controller, showing functions for calculating a directional control valve command value for flow rate control, a meter-in control valve command value, and a pump volume command value.
  • FIG. 4 is a functional block diagram of the main controller, showing functions for generating directional control valve commands, meter-in control valve commands, and pump displacement commands
  • FIG. 4
  • FIG. 4 is a diagram for explaining a method of calculating a moment of inertia reference value Ib; The figure which shows the content of the arithmetic processing which the target thrust calculating part C2 performs.
  • FIG. 10 is a diagram showing the contents of calculation processing performed by the target pressure calculation unit C3, and shows processing for calculating the meter-in target pressure and the meter-out target pressure.
  • FIG. 10 is a diagram showing the details of the calculation processing performed by the target pressure calculation unit C3, and shows the processing for calculating the pump target pressure.
  • FIG. 5 is a diagram showing the contents of arithmetic processing performed by an actuator target speed arithmetic unit C4; The figure which shows the content of the arithmetic processing which the pressure control flag setting part C5 performs.
  • FIG. 5 is a diagram showing the details of arithmetic processing performed by a pressure control meter-in control valve command arithmetic unit C7;
  • FIG. 5 is a diagram showing the details of arithmetic processing performed by a pressure control directional control valve command arithmetic unit C8;
  • FIG. 10 is a diagram showing the contents of arithmetic processing performed by a pressure control pump volume command arithmetic unit C9;
  • FIG. 5 is a diagram showing the contents of arithmetic processing performed by a flow rate control meter-in control valve command arithmetic unit C13;
  • 10 is a diagram showing the contents of arithmetic processing performed by a flow rate control pump displacement command arithmetic unit C14; 4 is a time chart showing an example of the operation of the hydraulic excavator according to the present embodiment when a single boom raising operation is performed; 5 is a time chart showing an example of the operation when a single boom raising operation is performed in the hydraulic excavator according to the comparative example of the present embodiment; 4 is a time chart showing an example of the operation of the hydraulic excavator according to the present embodiment when a single arm pulling operation is performed; 5 is a time chart showing an example of an operation when a single arm pulling operation is performed in a hydraulic excavator according to a comparative example of the present embodiment;
  • FIG. 1 is a side view of a hydraulic excavator 1 according to an embodiment of the present invention.
  • the longitudinal direction and the vertical direction of the hydraulic excavator 1 are defined as shown in FIG. That is, in the present embodiment, the front of the driver's seat (to the left in the figure) is the front of the hydraulic excavator 1 unless otherwise specified.
  • the hydraulic excavator 1 includes a body (body) 20 and a working device 10 attached to the body 20 .
  • the machine body 20 includes a running body 2 and a revolving body 3 mounted on the running body 2 so as to be able to turn.
  • the traveling body 2 has a pair of left and right crawlers and a traveling hydraulic motor 2a that is an actuator.
  • the traveling body 2 travels by driving the crawler with a traveling hydraulic motor 2a.
  • the revolving body 3 has a revolving hydraulic motor 3a as an actuator.
  • the revolving body 3 is rotated with respect to the traveling body 2 by a revolving hydraulic motor 3a.
  • the revolving body 3 includes a revolving frame 30, an operator's cab 31 provided on the front left side of the revolving frame 30, a counterweight 32 provided at the rear of the revolving frame 30, and a rear side of the operator's cab 31 in the revolving frame 30. and an engine compartment 33 .
  • the engine room 33 accommodates an engine as a power source and hydraulic equipment such as a hydraulic pump, valves, and an accumulator.
  • the work device 10 is rotatably connected to the center of the front portion of the revolving frame 30 .
  • the working device 10 is a multi-joint working device having a plurality of driven members (11, 12, 13) rotatably connected and a plurality of fluid pressure cylinders (11a, 12a, 13a) for driving the driven members. It is a device.
  • a boom 11, an arm 12 and a bucket 13 as three driven members are connected in series.
  • the base end of the boom 11 is rotatably connected to the front portion of the revolving frame 30 by a boom pin 11b (see FIG. 3).
  • the base end of the arm 12 is rotatably connected to the tip of the boom 11 by an arm pin 12b (see FIG. 3).
  • the bucket 13 is rotatably connected to the tip of the arm 12 by a bucket pin 13b (see FIG. 3).
  • the boom pin 11b, the arm pin 12b, and the bucket pin 13b are arranged parallel to each other, and the respective driven members (11, 12, 13) are relatively rotatable within the same plane.
  • the boom 11 is driven by a hydraulic cylinder (hereinafter also referred to as a boom cylinder 11a), which is an actuator, and rotates with respect to the revolving frame 30.
  • the arm 12 is driven by a hydraulic cylinder (hereinafter also referred to as an arm cylinder 12 a ), which is an actuator, and rotates with respect to the boom 11 .
  • the bucket 13 is driven by a hydraulic cylinder (hereinafter also referred to as a bucket cylinder 13 a ), which is an actuator, and rotates with respect to the arm 12 .
  • These hydraulic cylinders (11a, 12, 13a) are driven by working oil as working fluid discharged from a pump 81 (see FIG. 2), which will be described later.
  • FIG. 2 is a diagram showing a hydraulic system 90 mounted on the hydraulic excavator 1.
  • the hydraulic system 90 is provided with hydraulic equipment for driving a plurality of hydraulic actuators (2a, 3a, 11a, 12a, 13a). Hydraulic equipment for driving the other hydraulic actuators (2a, 3a, 13a) is omitted from illustration.
  • FIG. 2 also shows a main controller 100, which is a control device that controls the operation of the working device 10 based on operation commands from the operation devices 23 and 24, and devices (23 to 29) that output signals to the main controller 100.
  • the hydraulic excavator 1 includes an operation device (also referred to as a boom operation device) 23 for operating a boom cylinder 11a (boom 11) and an operation device for operating an arm cylinder 12a (arm 12). 24 (also referred to as an arm operating device).
  • the operating devices (23, 24) are provided in the driver's cab 31. As shown in FIG.
  • the boom operation device 23 detects an operation lever 23a that can be tilted from a neutral position to the boom up side and the boom down side, and the operation direction and the operation amount of the operation lever 23a, and determines the operation direction and the operation amount of the operation lever 23a. and an operation sensor that outputs an operation signal representing the boom cylinder 11a to the main controller 100 as an operation command for the boom cylinder 11a.
  • the arm operation device 24 detects an operation lever 24a that can be tilted from the neutral position to the arm cloud side (arm pull side) and the arm dump side (arm push side), and the operation direction and operation amount of the operation lever 24a. and an operation sensor that outputs an operation signal representing the operation direction and amount of operation of the operation lever 24a to the main controller 100 as an operation command for the arm cylinder 12a.
  • the operating devices 23, 24 When the operating levers 23a, 24a are tilted in one direction (hydraulic cylinder extension side) from the neutral position, the operating devices 23, 24 output an operating signal indicating a positive operation amount, and the operating levers 23a, 23b are tilted from the neutral position. When tilted to the other side (hydraulic cylinder contraction side), it outputs an operation signal representing a negative value of the operation amount.
  • the operation amount (operation angle) of the operation levers 23a and 24a detected by the operation sensors of the operation devices 23 and 24 is 0[%] (0°) at the neutral position, and the absolute value increases as the tilt from the neutral position increases. value increases.
  • an engine control dial for setting the target rotational speed of the engine 80 is provided in the driver's cab 31 .
  • Main controller 100 determines a target rotation speed based on an operation signal from the engine control dial, and outputs a signal of the determined target rotation speed to engine controller 108 .
  • the engine 80 is provided with an engine rotation speed sensor 80a that detects the actual rotation speed of the engine 80 and a fuel injection device 80b that adjusts the amount of fuel injected into the cylinders of the engine 80 .
  • the engine controller 108 controls the fuel injection device 80b so that the actual rotation speed of the engine 80 detected by the engine rotation speed sensor 80a becomes the target rotation speed output from the main controller 100.
  • the hydraulic system 90 includes a variable displacement pump 81 whose discharge displacement (displacement volume) can be changed, a main circuit HC that supplies hydraulic oil discharged from the pump 81 to the boom cylinder 11a and the arm cylinder 12a, the pump 81 and a bleed-off passage Lb connecting the tank 19 in which hydraulic oil is stored.
  • the pump 81 is connected to the engine 80 and driven by the engine 80 to suck hydraulic oil from the tank 19 and discharge it.
  • the pump 81 is a piston-type hydraulic pump (fluid pressure pump), and its discharge capacity changes as the inclination of the swash plate is changed by the regulator 81a.
  • the engine 80 is a power source of the hydraulic excavator 1, and is configured by an internal combustion engine such as a diesel engine, for example.
  • the main circuit HC includes a directional control valve (hereinafter also referred to as a boom control valve) for controlling the flow of hydraulic oil supplied from the pump 81 to the boom cylinder 11a and the flow of hydraulic oil discharged from the boom cylinder 11a to the tank 19. ) 45, and a direction control valve (hereinafter also referred to as an arm control valve) 46 for controlling the flow of hydraulic oil supplied from the pump 81 to the arm cylinder 12a and the flow of hydraulic oil discharged from the arm cylinder 12a to the tank 19. and are provided.
  • a directional control valve hereinafter also referred to as a boom control valve
  • an arm control valve for controlling the flow of hydraulic oil supplied from the pump 81 to the arm cylinder 12a and the flow of hydraulic oil discharged from the arm cylinder 12a to the tank 19.
  • the direction control valves 45, 46 have pilot pressure receiving portions 45c, 45d, 46c, 46d, and solenoid valves 45a, 45b, 46a, 46b that output pilot pressures to the pilot pressure receiving portions 45c, 45d, 46c, 46d.
  • the solenoid valves 45a, 45b, 46a, 46b reduce pilot primary pressure from a pilot circuit having a pilot hydraulic source such as a pilot pump (not shown) to generate pilot secondary pressure, and reduce the generated pilot secondary pressure. It is output to the pilot pressure receiving portions 45c, 45d, 46c and 46d of the direction control valves 45 and 46, respectively.
  • the solenoid valves 45a, 45b, 46a, and 46b are proportional solenoid valves that are driven by solenoid thrust generated according to the control current supplied to the solenoids from the main controller 100 and generate pilot secondary pressure according to the control current. .
  • the main controller 100 controls the solenoid valves 45a and 45b based on the operation signal output from the boom operating device 23, and controls the solenoid valves 46a and 46b based on the operating signal output from the arm operating device 24. .
  • the boom control valve 45 When the pilot secondary pressure generated by the solenoid valve 45a acts on the pilot pressure receiving portion 45c of the boom control valve 45, the boom control valve 45 is switched to the extended position. As a result, the hydraulic fluid discharged from the pump 81 is guided to the bottom chamber of the boom cylinder 11a, and the hydraulic fluid is discharged from the rod chamber to the tank 19, thereby extending the boom cylinder 11a. As a result, the boom 11 rotates upward (that is, the boom 11 stands up).
  • the boom control valve 45 When the pilot secondary pressure generated by the solenoid valve 45b acts on the pilot pressure receiving portion 45d of the boom control valve 45, the boom control valve 45 is switched to the retracted position. As a result, the hydraulic fluid discharged from the pump 81 is guided to the rod chamber of the boom cylinder 11a, and the hydraulic fluid is discharged from the bottom chamber to the tank 19, causing the boom cylinder 11a to contract. As a result, the boom 11 rotates downward (that is, the boom 11 falls down).
  • the arm control valve 46 When the pilot secondary pressure generated by the solenoid valve 46a acts on the pilot pressure receiving portion 46c of the arm control valve 46, the arm control valve 46 is switched to the extended position. As a result, the hydraulic fluid discharged from the pump 81 is guided to the bottom chamber of the arm cylinder 12a, and the hydraulic fluid is discharged from the rod chamber to the tank 19, thereby extending the arm cylinder 12a. As a result, the arm 12 rotates downward (that is, the arm 12 performs a crowding motion (arm pulling motion)).
  • the arm control valve 46 When the pilot secondary pressure generated by the solenoid valve 46b acts on the pilot pressure receiving portion 46d of the arm control valve 46, the arm control valve 46 is switched to the retracted position. As a result, the hydraulic fluid discharged from the pump 81 is guided to the rod chamber of the arm cylinder 12a, and the hydraulic fluid is discharged from the bottom chamber to the tank 19, causing the arm cylinder 12a to contract. As a result, the arm 12 rotates upward (that is, the arm 12 performs a dump operation (arm pushing operation)).
  • a passage connected to the pump port of the boom control valve 45 (a passage on the upstream side of the boom control valve 45) is provided with a meter-in control valve (also called a boom meter-in control valve) for controlling the flow of hydraulic oil supplied to the boom cylinder 11a. ) 41 is provided.
  • the meter-in control valve 41 also functions as a check valve for maintaining the load pressure of the boom cylinder 11a, and is fully closed when the pump discharge pressure falls below the cylinder pressure.
  • a passage connected to the pump port of the arm control valve 46 (a passage on the upstream side of the arm control valve 46) is provided with a meter-in control valve (also called an arm meter-in control valve) for controlling the flow of hydraulic oil supplied to the arm cylinder 12a. ) 42 is provided.
  • the meter-in control valve 42 also functions as a check valve for maintaining the load pressure of the arm cylinder 12a, and is fully closed when the pump discharge pressure falls below the cylinder pressure.
  • the meter-in control valves 41 and 42 are driven by a solenoid thrust generated in accordance with control current supplied from the main controller 100 to an electromagnetic drive section (solenoid), and the degree of opening (meter-in opening area) is adjusted in accordance with the control current. It is an electromagnetic proportional valve.
  • the bleed-off passage Lb is provided upstream of the meter-in control valves 41 and 42 so as to branch off from the pump discharge passage.
  • a bleed-off valve 18 that discharges hydraulic oil discharged from the pump 81 to the tank 19 is provided in the bleed-off passage Lb.
  • the bleed-off valve 18 can adjust the bleed-off flow rate and the pump discharge pressure by changing the opening degree of the bleed-off passage Lb.
  • the bleed-off valve 18 is driven by a solenoid thrust generated in accordance with a control current supplied from the main controller 100 to an electromagnetic drive unit (solenoid), and its opening (bleed-off opening area) is adjusted in accordance with the control current. It is an electromagnetic proportional valve.
  • the main controller 100 includes a CPU (Central Processing Unit) 101 as an operation circuit, a ROM (Read Only Memory) 102 as a storage device, a RAM (Random Access Memory) 103 as a storage device, an input/output interface 104, and other It consists of a microcomputer with peripheral circuits.
  • the main controller 100 may be composed of one microcomputer or may be composed of a plurality of microcomputers.
  • the engine controller 108 also has the same configuration as the main controller 100, is connected to the main controller 100, and exchanges information (data) with each other.
  • the ROM 102 is a non-volatile memory such as an EEPROM, and stores programs capable of executing various calculations. That is, the ROM 102 is a storage medium capable of reading a program that implements the functions of this embodiment.
  • a RAM 103 is a volatile memory and a work memory for directly inputting/outputting data to/from the CPU 101 . The RAM 103 temporarily stores necessary data while the CPU 101 is executing the program.
  • the main controller 100 may further include a storage device such as a flash memory or hard disk drive.
  • the CPU 101 is a processing device that develops a program stored in the ROM 102 into the RAM 103 and executes arithmetic operations, and performs predetermined arithmetic processing on signals received from the input/output interface 104, the ROM 102, and the RAM 103 according to the program.
  • Input/output interface 104 receives signals from operation devices 23 and 24, pressure sensors 25 to 29, posture detection device 15, engine controller 108, and the like.
  • the input unit of the input/output interface 104 converts the input signal into data that can be calculated by the CPU 101 .
  • the output section of the input/output interface 104 generates a signal for output according to the calculation result of the CPU 101, and outputs the signal to the direction control valves 45 and 46, the meter-in control valves 41 and 42, the bleed-off valve 18 and the regulator. 81a or the like.
  • the attitude detection device 15 includes IMUs (Inertial Measurement Units) 15a to 15d attached to the boom 11, the arm 12, the bucket 13, and the revolving frame 30, respectively, and a revolving angle sensor 15e attached to the airframe 20. , and an attitude calculation controller 15f.
  • the IMU 15c for detecting the attitude of the bucket 13 is attached to the bucket link 13b (see FIG. 1).
  • the IMUs 15a, 15b, 15c, and 15d detect the angular velocity and acceleration of the three orthogonal axes of the members as information about the posture of the hydraulic excavator 1, and output the detection results to the posture calculation controller 15f.
  • the turning angle sensor 15e detects the turning angle, which is the relative angle of the turning body 3 with respect to the traveling body 2 in a plane orthogonal to the turning center axis, as information about the attitude of the hydraulic excavator 1, and outputs the detection result to the attitude calculation controller 15f. Output.
  • the posture calculation controller 15f calculates the boom angle ⁇ , arm angle ⁇ , bucket angle ⁇ , vehicle body tilt angle ⁇ , and swing angle ⁇ based on the detection results of the IMUs 15a to 15d and the detection result of the swing angle sensor 15e. is calculated, and the calculation result is output to the main controller 100 .
  • the attitude detection device 15 has a function of detecting the attitudes of the work device 10 and the machine body 20 .
  • FIG. 3 is a diagram showing a coordinate system (excavator reference coordinate system) in the hydraulic excavator 1.
  • the excavator reference coordinate system is a coordinate system set for the traveling body 2 .
  • the pivot axis of the swing body 3 is set as the Z axis.
  • the Z-axis (revolving center axis) and the boom pin 11b are perpendicular to each other, and the revolving center axis and the boom pin 11b are perpendicular to each other.
  • An axis passing through the central axis is set as the X-axis. That is, the axis extending in the longitudinal direction of the traveling body 2 is set as the X axis.
  • an axis perpendicular to each of the X-axis and the Z-axis is set as the Y-axis, and the intersection of the X-axis, the Y-axis, and the Z-axis is set as the origin O.
  • the boom angle ⁇ is the tilt angle of the boom 11 with respect to the XY plane
  • the arm angle ⁇ is the tilt angle of the arm 12 with respect to the boom 11
  • the bucket angle ⁇ is the tilt angle of the bucket 13 with respect to the arm 12
  • the swing angle ⁇ is the rotation angle of the revolving body 3 with respect to the traveling body 2 .
  • the vehicle body tilt angle ⁇ is the tilt angle of the machine body 20 (revolving body 3) with respect to the horizontal plane (reference plane), that is, the angle between the horizontal plane (reference plane) and the X axis.
  • the pressure sensor 25 detects the pump discharge pressure (circuit pressure of the main circuit HC) and outputs a signal representing the detection result (pump discharge pressure) to the main controller 100.
  • the pressure sensor 26 detects the pressure in the bottom chamber of the boom cylinder 11a (hereinafter also referred to as bottom pressure or boom bottom pressure) and outputs a signal representing the detection result to the main controller 100 .
  • the pressure sensor 27 detects the pressure in the rod chamber of the boom cylinder 11a (hereinafter also referred to as rod pressure or boom rod pressure) and outputs a signal representing the detection result to the main controller 100.
  • the pressure sensor 28 detects the pressure in the bottom chamber of the arm cylinder 12a (hereinafter also referred to as bottom pressure or arm bottom pressure) and outputs a signal representing the detection result to the main controller 100.
  • the pressure sensor 29 detects the pressure in the rod chamber of the arm cylinder 12a (hereinafter also referred to as rod pressure or arm rod pressure) and outputs a signal representing the detection result to the main controller 100.
  • the main controller 100 calculates target pressures and target speeds of the hydraulic cylinders (11a, 12a) based on operation commands from the operating devices 23, 24, and calculates hydraulic pressure and target speeds based on the target speeds of the hydraulic cylinders (11a, 12a). A target flow rate for the cylinders (11a, 12a) is calculated. Further, the main controller 100 calculates the actual speed of the hydraulic cylinders (11a, 12a) based on the detection result of the posture detection device 15, and calculates the degree of divergence between the target speed and the actual speed of the hydraulic cylinders (11a, 12a). Calculate the speed deviation ratio.
  • the main controller 100 controls the pressure of the hydraulic cylinders (11a, 12a) to the target pressure. Hydraulic cylinders (11a, 12a) are operated at stable acceleration/deceleration while preventing sudden operation of 12a). In addition, when the speed deviation ratio is smaller than a predetermined value Rw, the main controller 100 controls the flow rate of the hydraulic cylinders (11a, 12a) to the target flow rate, thereby meeting the operator's intention. The hydraulic cylinders (11a, 12a) are operated at a speed that
  • FIG. 4 to 7 are functional block diagrams of the main controller 100.
  • FIG. FIG. 4 shows functions for calculating the meter-in target pressure, meter-out target pressure, pump target pressure and actuator target speed, and for setting the pressure control flag.
  • FIG. 5 shows functions for calculating a meter-in control valve command value, a directional control valve command value, and a pump displacement command value for pressure control.
  • FIG. 6 shows functions for calculating the directional control valve command value for flow control, the meter-in control valve command value, and the pump displacement command value.
  • FIG. 7 illustrates functions for generating directional control valve commands, meter-in control valve commands and pump displacement commands.
  • the main controller 100 functions as a computing unit that performs various computations by executing programs stored in the ROM 102 .
  • the main controller 100 includes an inertia moment correction ratio calculation section C1, a target thrust calculation section C2, a target pressure calculation section C3, an actuator target speed calculation section C4, an actuator actual speed calculation section C18. and a pressure control flag setting unit C5. Further, as shown in FIG. 5, the main controller 100 includes a meter-in pressure calculation section C6, a pressure control meter-in control valve command calculation section C7, a pressure control directional control valve command calculation section C8, and a pressure control pump displacement command calculation section. Functions as C9. Further, as shown in FIG.
  • the main controller 100 includes a bleed-off valve command generator C10, a flow rate control directional control valve command calculator C11, an actuator target flow rate calculator C12, and a flow rate control meter-in control valve command calculator C13. and a flow rate control pump volume command calculation unit C14. Further, as shown in FIG. 7, the main controller 100 functions as a directional control valve command generator C15, a meter-in control valve command generator C16, and a pump displacement command generator C17.
  • FIG. 8 is a diagram showing the contents of the arithmetic processing performed by the inertia moment correction ratio calculator C1.
  • the moment of inertia correction ratio calculation unit C1 calculates the cylinder pressure (boom bottom pressure, boom rod pressure, arm bottom pressure and arm rod pressure) detected by the pressure sensors 26 to 29, and the hydraulic excavator detected by the posture detection device 15. Based on the posture information (angle information of each member) of 1, the moment of inertia correction ratio Cr is calculated.
  • the moment of inertia correction ratio calculator C1 includes a thrust moment calculator O1a, a gravitational moment calculator O1b, calculators O1c, O1d, and O1e, a moment of inertia reference value calculator O1f, a calculator O1g, and a determination unit. It functions as O1h, selection unit O1i, low-pass filter processing unit O1j, and calculation unit O1k.
  • a thrust moment calculation unit O1a, a gravitational moment calculation unit O1b, and calculation units O1c, O1d, and O1e calculate the moment of inertia actual measurement value Ia based on cylinder pressure and attitude information and information stored in the ROM 102. It functions as an arithmetic unit O1z.
  • FIG. 9 is a diagram illustrating a method of calculating the measured moment of inertia Ia about the boom pin 11b from the equation of motion.
  • the boom cylinder 11a has a rod end connected to the boom 11 by a rod-side pin, and a cylinder tube end connected to the revolving frame 30 by a bottom-side pin.
  • the length of a line segment (OA) connecting the center point Ob of the boom pin 11b and the center point A of the rod-side pin of the boom cylinder 11a is La
  • the axial direction of the boom cylinder 11a Let F be the thrust in the central axis direction), and let ⁇ a be the angle between the axis perpendicular to the line segment (OA) and the central axis of the boom cylinder 11a.
  • Lg be the length of a line segment (OG) that connects the center point Ob of the boom pin 11b and the center of gravity position G of the work device 10 supported by the revolving frame 30 via the boom pin 11b.
  • the rotational moment (hereinafter also referred to as thrust moment) Mf around the boom pin 11b due to the thrust F of the boom cylinder 11a acting on the working device 10 is calculated by the following equation (1). be.
  • the thrust force F of the boom cylinder 11a is defined by Sbot as the piston pressure receiving area in the bottom chamber (pressure receiving area for two cylinders), Srod as the piston pressure receiving area on the rod chamber side (pressure receiving area for two cylinders), and the bottom chamber.
  • Sbot the pressure of the acting hydraulic oil (bottom pressure)
  • Prod the pressure of the hydraulic oil acting on the rod chamber (rod pressure).
  • a rotational moment Mg around the boom pin 11b due to gravity acting on the work device 10 (hereinafter also referred to as a moment of gravity) is defined by m as the mass of the work device 10 supported by the revolving frame 30 via the boom pin 11b, g as the gravitational acceleration, and g as the gravitational acceleration.
  • ⁇ b be the angle between the axis perpendicular to the line segment (OG) and the vertical axis (the axis in the direction of gravity), which is expressed by the following equation (3).
  • the ROM 102 of the main controller 100 pre-stores various dimensional data for calculating the above equations (1) to (5).
  • the angle ⁇ a formed by Equation (1) can be calculated based on the boom angle ⁇ calculated by the posture detection device 15 and the dimension data stored in the ROM 102 in advance.
  • the dimension data stored in the ROM 102 includes the length La of the boom pin 11b and the line segment (OA), and the length of the line segment (OB) connecting the boom pin 11b and the center point B of the bottom side pin of the boom cylinder 11a. It includes the length Lb, the angle ⁇ t between the line segment (OB) and the X axis, and the angle ⁇ u between the straight line connecting the boom pin 11b and the arm pin 12b and the line segment (OA).
  • the thrust moment calculator O1a shown in FIG. 8 calculates the length of the boom cylinder 11a (cylinder length ), the angle ⁇ OAB formed by the line segment (OA) and the line segment (AB) is computed, and ⁇ a is calculated by subtracting ⁇ OAB from 90°.
  • the cylinder speed is calculated by differentiating the cylinder length with time.
  • the thrust force F in equation (2) is calculated based on the bottom pressure Pbot detected by the pressure sensor 26, the rod pressure Prod detected by the pressure sensor 27, and the pressure receiving areas Sbot and Srod stored in advance in the ROM 102. It is possible.
  • the thrust moment calculation unit O1a uses equations (1) and (2) based on the detection results of the pressure sensors 26 and 27, the detection results of the posture detection device 15, and various data stored in the ROM 102 to obtain A thrust moment Mf is calculated.
  • the angle ⁇ b formed by the length Lb in Equation (3) (that is, the position of the center of gravity G of the combined center of gravity of the driven member) is determined by the angles ⁇ , ⁇ , ⁇ of each driven member detected by the posture detection device 15, and It can be calculated based on the respective center-of-gravity positions, masses and lengths of the boom 11, the arm 12 and the bucket 13, which are stored in the ROM 102 in advance.
  • the gravitational moment calculation unit O1b calculates the gravitational moment Mg by using Equation (3) based on the detection result of the attitude detection device 15 and various data stored in the ROM 102.
  • the calculation unit O1c adds the gravitational moment Mg, which is the calculation result of the gravity moment calculation unit O1b, to the thrust moment Mf, which is the calculation result of the thrust moment calculation unit O1a. That is, the calculation unit O1c performs calculation based on Equation (4).
  • the calculation unit O1d calculates the angular acceleration ⁇ ′′ of the boom 11 based on the detection result of the attitude detection device 15.
  • the angular acceleration ⁇ ′′ is calculated by second-order differentiation of the boom angle ⁇ with respect to time.
  • the computing unit O1d repeatedly acquires the boom angle ⁇ detected by the posture detection device 15 at a predetermined control cycle. Therefore, the calculation unit O1d calculates the difference ( ⁇ b- ⁇ a) between the previous value ⁇ a and the current value ⁇ b of the boom angle ⁇ repeatedly detected in a predetermined control cycle from the time ta when the previous value ⁇ a was detected, and calculates the current value ⁇ b.
  • the computing unit O1d similarly calculates the boom angular acceleration ⁇ ′′, which is the time rate of change of the boom angular velocity ⁇ ′, from the previous value and the current value of the boom angular velocity ⁇ ′.
  • the calculation unit O1e calculates the measured value of the moment of inertia I (the measured moment of inertia Ia) by dividing the calculation result of the calculation unit O1c by the calculation result of the calculation unit O1d. That is, the calculation unit O1e performs calculation based on Equation (5). Note that, when the angular acceleration ⁇ ′′ is 0 (zero), the calculation unit O1e takes measures to prevent division by zero, for example, by replacing it with a predetermined minimum value.
  • the moment of inertia measured value Ia obtained in this manner is affected by external loads such as the load condition in the bucket 13 and the reaction force from the ground during excavation work, and when the bucket 13 is empty, which will be described later. It is a value different from the moment of inertia (reference moment of inertia value Ib) in the loaded state.
  • the moment of inertia reference value calculator O1f calculates the moment of inertia reference value Ib based on the posture information and the information stored in the ROM 102 .
  • the moment of inertia reference value Ib is the moment of inertia of the working device 10 when the bucket 13 is empty and not moving in a predetermined posture, and is calculated based on the posture of the working device 10 .
  • FIG. 10 is a diagram illustrating a method for calculating the moment of inertia reference value Ib.
  • the moment of inertia reference value Ib is the moment around the center point Ob of the boom pin 11b of the boom 11, I1, the moment around the center point Ob of the boom pin 11b of the arm 12, I2, and the moment around the center point Ob of the boom pin 11b of the bucket 13. Assuming that I3, it is represented by the following equation (6).
  • the moments I1, I2, and I3 are the moment of inertia about the center of gravity of the boom 11, Ig1, the moment of inertia about the center of gravity of the arm 12, Ig2, the mass of the boom 11, m1, the mass of the arm 12, m2, and the mass of the bucket 13, m3.
  • the distance from the center point Ob of the boom pin 11b to the center of gravity G1 of the boom 11 is Lg1
  • the distance from the center point Ob of the boom pin 11b to the center of gravity G2 of the arm 12 is Lg2
  • the center of gravity G3 of the bucket 13 is from the center point Ob of the boom pin 11b.
  • the following equation (7) is obtained.
  • Distances Lg1, Lg2, and Lg3 in equation (7) are the angles ⁇ , ⁇ , and ⁇ of each driven member detected by the attitude detection device 15, and the center-of-gravity position of the boom 11 from the boom pin 11b stored in the ROM 102 in advance. It can be calculated based on the distance to G1, the distance from the arm pin 12b to the gravity center position G2 of the arm 12, and the distance from the bucket pin 13b to the gravity center position G3 of the bucket 13.
  • the moment of inertia reference value calculator O1f calculates the moment of inertia reference value Ib by using equations (6) and (7) based on the detection result of the posture detection device 15 and various data stored in the ROM 102. .
  • the calculation unit O1g calculates the absolute value of the angular acceleration ⁇ ′′, which is the calculation result of the calculation unit O1d.
  • the determination unit O1h determines that the calculation result
  • the low-pass filtering unit O1j performs low-pass filtering on the output from the selecting unit O1i, and outputs it as the moment of inertia estimated value Ie.
  • the calculation unit O1k calculates the moment of inertia correction ratio Cr by dividing the moment of inertia estimated value Ie by the moment of inertia reference value Ib.
  • the moment of inertia correction ratio calculator C1 calculates the moment of inertia correction ratio Cr based on the cylinder pressure and the posture information. Although the calculation of the moment of inertia correction ratio Cr about the boom pin 11b has been described as an example, similar calculations are performed for the moment of inertia correction ratio Cr about the arm pin 12b and the moment of inertia correction ratio Cr about the bucket pin 13b.
  • FIG. 11 is a diagram showing the details of the calculation process performed by the target thrust calculation section C2.
  • the target thrust calculation section C2 calculates the target thrust of the hydraulic cylinder based on the operation signal, the posture information, the inertia moment correction ratio Cr calculated by the inertia moment correction ratio calculation section C1, and the gravitational moment Mg of the work device 10. do.
  • the calculation method of the target thrust with respect to the boom cylinder 11a is demonstrated to an example.
  • the target thrust calculation unit C2 includes calculation units O2a, O2b, O2c, O2d, O2e, and O2f, a minimum value selection unit O2g, a calculation unit O2h, a determination unit O2i, a selection unit O2j, a calculation unit O2k, and a thrust component calculation unit O2l. Function.
  • the ROM 102 stores a maximum torque table T2a in which operation signals and maximum torques are associated, and an acceleration torque table T2b in which operation signals and acceleration torque target values are associated.
  • the maximum torque table T2a has a characteristic that the absolute value of the maximum torque increases as the absolute value of the operation amount of the operating lever 23a increases.
  • the calculation unit O2a refers to the maximum torque table T2a and calculates the maximum torque based on the operation signal input from the boom operation device 23.
  • FIG. The maximum torque is the maximum value of the torque when the work device 10 is stopped, such as during pressing.
  • the acceleration torque table T2b has characteristics such that the absolute value of the acceleration torque target value increases as the absolute value of the operation amount of the operating lever 23a increases.
  • the computation unit O2a refers to the acceleration torque table T2b and computes the acceleration torque target value based on the operation signal input from the boom operating device 23.
  • the acceleration torque target value is the acceleration torque target value when the working device 10 is operated in the air.
  • the calculation unit O2c subtracts 1 from the inertia moment correction ratio Cr about the boom pin 11b, and the calculation unit O2d multiplies the calculation result of the calculation unit O2c by the gain Gm.
  • the calculation unit O2e adds 1 to the calculation result of the calculation unit O2d to calculate the torque adjustment gain.
  • the gain Gm is a value from 0 (zero) to 1 (0 ⁇ Gm ⁇ 1) and is stored in the ROM 102 in advance.
  • the calculation unit O2f calculates a corrected acceleration torque target value by multiplying the acceleration torque target value, which is the calculation result of the calculation unit O2b, by the torque adjustment gain, which is the calculation result of the calculation unit O2e.
  • the gain Gm may be changed by an operator's operation on an input device (not shown) such as a touch panel.
  • an input device such as a touch panel.
  • the gain Gm is set to 0, the acceleration torque target value is multiplied by 1 even if the moment of inertia actually measured value Ia and the moment of inertia reference value Ib are different. That is, the acceleration torque target value is not corrected according to the moment of inertia correction ratio.
  • the gain Gm increases, the influence of correction of the acceleration torque target value based on the moment of inertia correction ratio increases.
  • the operator can adjust the magnitude of the acceleration of the actuator by setting the magnitude of the gain Gm using the input device.
  • the minimum value selection unit O2g selects the smaller one of the maximum torque calculated by the calculation unit O2a and the corrected acceleration torque target value (acceleration torque target value ⁇ torque adjustment gain) that is the calculation result of the calculation unit O2f. .
  • the calculation unit O2h calculates the absolute value of the operation signal of the boom cylinder 11a (the amount of operation of the operation lever 23a).
  • the determination unit O2i determines whether or not the absolute value of the operation signal is greater than a preset threshold Th2. When the determination unit O2i makes an affirmative determination, that is, when it determines that the absolute value of the operation signal is greater than the threshold Th2, the selection unit O2j selects the minimum value selected by the minimum value selection unit O2g.
  • the selection unit O2j selects 0 (zero) when the determination unit O2i makes a negative determination, that is, when it determines that the absolute value of the operation signal is equal to or less than the threshold Th2.
  • the calculation unit O2k calculates the boom target torque by subtracting the gravitational moment Mg of the work device 10 from the value selected by the selection unit O2j. That is, the calculation unit O2k calculates the target torque by adding the torque in the direction of canceling the rotational moment Mg due to gravity acting on the work device 10 to the value selected by the selection unit O2j.
  • the thrust component calculation unit O2l calculates the axial thrust component of the boom cylinder 11a as a target thrust based on the boom target torque calculated by the calculation unit O2k, the posture information, and the dimension data stored in the ROM 102. That is, the thrust component calculation unit O2l calculates the thrust of the boom cylinder 11a required to generate the boom target torque as the target thrust of the boom cylinder 11a.
  • the target thrust calculation unit C2 calculates the target thrust based on the operation signal, the posture information, the inertia moment correction ratio Cr, and the gravitational moment Mg.
  • the calculation of the target thrust of the boom cylinder 11a has been described as an example, similar calculations are performed for the target thrust of the arm cylinder 12a and the target thrust of the bucket cylinder 13a.
  • FIG. 12 and 13 are diagrams showing the details of the calculation process performed by the target pressure calculator C3.
  • FIG. 12 shows processing for calculating the meter-in target pressure and meter-out target pressure
  • FIG. 13 shows processing for calculating the pump target pressure.
  • the target pressure calculation section C3 calculates the meter-in target pressure and the meter-out target pressure based on the target thrust and the operation signal of the hydraulic cylinder.
  • An example of computing the meter-in target pressure and the meter-out target pressure of the boom cylinder 11a based on the target thrust and the operation signal of the boom cylinder 11a will be described below as a representative example.
  • the target pressure calculation unit C3 functions as calculation units O3a, O3b, determination unit O3c, selection units O3d, O3e, and maximum value selection units O3f, O3g.
  • the calculation unit O3a multiplies the target thrust of the boom cylinder 11a calculated by the target thrust calculation unit C2 by (1/Sbot) to calculate the bottom side target pressure.
  • the calculation unit O3b multiplies the target thrust of the boom cylinder 11a calculated by the target thrust calculation unit C2 by (-1/Srod) to calculate the rod side target pressure.
  • the determination unit O3c determines whether or not the boom operation amount is a positive value based on the operation signal of the boom cylinder 11a.
  • the selection unit O3d selects the bottom side target pressure when the boom operation amount is a positive value, and selects the rod side target pressure when the boom operation amount is not a positive value.
  • the selection unit O3e selects the rod side target pressure when the boom operation amount is a positive value, and selects the bottom side target pressure when the boom operation amount is a negative value.
  • the maximum value selection unit O3f compares the target pressure selected by the selection unit O3d and a predetermined value P1 (for example, about 1 MPa) stored in advance in the ROM 102, selects the larger one, and sets the selected value to the meter-in target. determined as pressure.
  • the maximum value selection unit O3g compares the target pressure selected by the selection unit O3e with 0 (zero), selects the larger one, and determines the selected value as the meter-out target pressure.
  • the target pressure calculation section C3 calculates the meter-in target pressure and meter-out target pressure of the hydraulic cylinder based on the operation signal and the target thrust. For example, when the operation lever 23a is operated to the maximum operation position so as to accelerate the boom cylinder 11a in the extension direction, a positive target thrust is calculated by the target thrust calculation unit C2, and an affirmative determination is made by the determination unit O3c. be. Therefore, the selection unit O3d selects the bottom side target pressure obtained by multiplying the positive target thrust by (1/Sbot). Therefore, the maximum value selection unit O3f selects the bottom side target pressure selected by the selection unit O3d as the meter-in target pressure. The selection unit O3e selects the rod-side target pressure obtained by multiplying the positive target thrust by (-1/Srod). The maximum value selection unit O3g selects 0 (zero) as the meter-out target pressure.
  • the meter-in target pressure and meter-out target pressure of the boom cylinder 11a has been described as an example, the meter-in target pressure and meter-out target pressure of the arm cylinder 12a and the meter-in target pressure and meter-out target pressure of the bucket cylinder 13a are also calculated. A similar operation is performed.
  • the target pressure calculator C3 also functions as a maximum value selector O3h.
  • the maximum value selection unit O3h selects the highest one of the meter-in target pressures of the hydraulic cylinders calculated by the maximum value selection unit O3f, and determines the selected meter-in target pressure as the pump target pressure.
  • FIG. 14 is a diagram showing the details of the arithmetic processing performed by the actuator target speed calculator C4.
  • the actuator target speed calculator C4 calculates the target speed of each actuator based on the operation signal of each actuator.
  • An example of calculating the target speed of the boom cylinder (actuator) 11a based on the operation signal of the boom cylinder (actuator) 11a will be described below as a representative example.
  • the actuator target speed calculator C4 calculates the target speed of the boom cylinder 11a based on the operation signal of the boom cylinder 11a.
  • the ROM 102 stores a table T4 in which operation signals and target speeds of the boom cylinder 11a are associated with each other.
  • the table T4 shows the characteristics that the absolute value of the target speed increases as the absolute value of the operation amount of the control lever 23a increases.
  • the actuator target speed calculation unit C4 refers to the table T4 and calculates the target speed of the boom cylinder 11a based on the operation signal input from the boom operation device 23.
  • the target speed indicates the target speed in the extension direction of the boom cylinder 11a when positive, and the target speed in the retraction direction of the boom cylinder 11a when negative.
  • the actuator target speed calculator C4 also calculates the target speeds of the arm cylinder 12a, the bucket cylinder 13a, the traveling hydraulic motor 2a, and the turning hydraulic motor 3a.
  • FIG. 15 is a diagram showing the details of the arithmetic processing performed by the pressure control flag setting section C5.
  • the pressure control flag setting unit C5 sets the pressure control flag to ON or OFF based on the actuator target speed and actual speed.
  • An example of setting the pressure control flag of the boom cylinder (actuator) 11a based on the target speed and the actual speed of the boom cylinder (actuator) 11a will be described below as a representative example.
  • the actual speed of the boom cylinder 11a is calculated by the actual actuator speed calculation section C18 shown in FIG.
  • the actual actuator speed calculation section C18 calculates the actual speeds of the boom cylinder 11a, the arm cylinder 12a and the bucket cylinder 13a based on the posture information detected by the posture detection device 15.
  • FIG. For example, the actuator actual velocity calculator C18 calculates the length La of the line segment (OA), the length Lb of the line segment (OB) shown in FIG.
  • the actual speed of the boom cylinder 11a is calculated based on ⁇ t and ⁇ u.
  • the pressure control flag setting unit C5 functions as calculation units O5a, O5b, O5e, maximum value selection unit O5f, calculation unit O5g, determination unit O5h, and selection unit O5i.
  • the calculation unit O5a calculates the cylinder speed difference by subtracting the actual speed from the target speed of the boom cylinder 11a.
  • the calculator O5b calculates the absolute value of the cylinder speed difference calculated by the calculator O5a.
  • the calculator O5e calculates the absolute value of the target speed of the boom cylinder 11a.
  • the maximum value selection unit O5f compares the absolute value of the target speed of the boom cylinder 11a calculated by the calculation unit O5e with the minimum cylinder speed Vmin stored in the ROM 102 in advance, and selects the larger one.
  • the cylinder minimum speed Vmin is a speed at which the hydraulic cylinder can be considered to be substantially stopped, and is set to a value of, for example, approximately 5 [mm/s].
  • the calculation unit O5g calculates the speed deviation ratio by dividing the absolute value of the cylinder speed difference calculated by the calculation unit O5b by the value selected by the maximum value selection unit O5f.
  • the speed deviation ratio is an index representing the degree of deviation between the target speed and the actual speed of the boom cylinder 11a, and the larger the numerical value, the greater the deviation between the target speed and the actual speed.
  • Determination unit O5h determines whether or not the speed deviation ratio is greater than a predetermined value Rw stored in ROM 102 in advance.
  • the predetermined value Rw is a predetermined threshold value, and is set to a value of approximately 0.2, for example. In this case, it can be said that the determination unit O5h is executing determination processing to determine whether or not the speed deviation of the actual speed of the boom cylinder 11a from the target speed exceeds 20%.
  • the selection unit O5i sets the pressure control flag to ON.
  • the determination unit O5h makes a negative determination, that is, when it determines that the speed deviation ratio is equal to or less than the predetermined value Rw, the selection unit O5i sets the pressure control flag to OFF.
  • the pressure control flag is a flag for switching the control method of the hydraulic cylinder to pressure control or flow rate control, as will be described later.
  • the main controller 100 changes the pressure (meter-in pressure and meter-out pressure) of the hydraulic cylinders (11a, 12a) to the target pressure (meter-in target pressure and meter-out target pressure). ) to perform pressure control. Further, when the pressure control flag is set to OFF, the main controller 100 executes flow rate control for setting the flow rate supplied to the hydraulic cylinders (11a, 12a) to the target flow rate.
  • FIG. 16 is a diagram showing the details of the arithmetic processing performed by the meter-in pressure arithmetic unit C6.
  • a meter-in pressure calculation unit C6 calculates an actual meter-in pressure of each hydraulic cylinder and an actual maximum meter-in pressure, which is the maximum value among a plurality of actual meter-in pressures, based on the cylinder pressure.
  • the meter pressure calculation section C6 functions as a determination section O6a, a selection section O6b, and a maximum value selection section O6c.
  • the determination unit O6a determines whether or not the boom operation amount is a positive value based on the operation signal of the boom cylinder 11a.
  • the selection unit O6b selects the boom bottom pressure detected by the pressure sensor 26 as the actual boom meter-in pressure when the boom operation amount is a positive value, and when the boom operation amount is not a positive value, the pressure sensor 27 Select the detected boom rod pressure as the actual boom meter-in pressure.
  • similar processing is performed to select either the arm bottom pressure detected by the pressure sensor 28 or the arm rod pressure detected by the pressure sensor 29 as the actual arm meter-in pressure. is selected as the actual bucket meter-in pressure.
  • the maximum value selection unit O6c selects the highest one of the actual boom meter-in pressure, the actual arm meter-in pressure, and the actual bucket meter-in pressure, and determines the selected one as the actual maximum meter-in pressure.
  • FIG. 17 is a diagram showing the contents of arithmetic processing performed by the pressure control meter-in control valve command arithmetic section C7.
  • the pressure control meter-in control valve command calculation unit C7 calculates a pressure control meter-in control valve command value based on the actual meter-in pressure and the target meter-in pressure.
  • An example of calculating the command value of the meter-in control valve for pressure control of the boom cylinder 11a based on the actual meter-in pressure and the target meter-in pressure of the boom cylinder 11a will be described below as a representative example.
  • the pressure control meter-in control valve command calculator C7 functions as calculators O7a, O7b, and O7c.
  • the calculation unit O7a calculates the meter-in pressure deviation by subtracting the meter-in target pressure of the boom cylinder 11a from the actual meter-in pressure of the boom cylinder 11a.
  • the calculation unit O7b calculates the target opening area of the meter-in control valve 41 based on the meter-in pressure deviation.
  • the ROM 102 stores a table T7b in which the meter-in pressure deviation and the target opening area of the meter-in control valve 41 are associated with each other.
  • Table T7b shows that when the meter-in pressure deviation is 0 (zero) or more, the target opening area is the minimum value Aimin (>0), and when the meter-in pressure deviation is less than 0 (zero), the target opening area is the maximum. This is a characteristic that has a value Aimax (>Aimin).
  • the calculation unit O7b refers to the table T7b and calculates the target opening area of the meter-in control valve 41 based on the meter-in pressure deviation.
  • the calculation unit O7c refers to the current conversion table T7c stored in the ROM 102, and based on the target opening area of the meter-in control valve 41, the target value of the control current to be supplied to the electromagnetic drive unit (solenoid) of the meter-in control valve 41. is calculated as a meter-in control valve command value for pressure control.
  • the pressure control meter-in control valve command calculation unit C7 also calculates pressure control meter-in control valve command values for the meter-in control valve 42 of the arm cylinder 12a and the meter-in control valve (not shown) of the bucket cylinder 13a.
  • FIG. 18 is a diagram showing the details of the arithmetic processing performed by the pressure control directional control valve command arithmetic unit C8.
  • the pressure control directional control valve command calculation unit C8 calculates a pressure control valve based on the cylinder pressure, the operation signal, the meter-out target pressure calculated by the target pressure calculation unit C3, and the target thrust calculated by the target thrust calculation unit C2. Calculate the directional control valve command value.
  • An example of calculating the pressure control directional control valve command value for the boom cylinder 11a based on the cylinder pressure (rod pressure and bottom pressure) of the boom cylinder 11a, the operation signal, and the meter-out target pressure will be described below as a representative example.
  • the pressure control directional control valve command calculation unit C8 functions as calculation units O8a, O8b, O8c and O8d, determination units O8e and O8f, selection units O8g and O8h, and calculation units O8i and O8j. .
  • the computing unit O8a computes the meter-out pressure deviation by subtracting the boom rod pressure from the meter-out target pressure.
  • the calculator O8b calculates the meter-out pressure deviation by subtracting the boom bottom pressure from the meter-out target pressure.
  • the computing units O8c and O8d compute the target opening area of the directional control valve 45 based on the meter-out pressure deviation.
  • the ROM 102 stores tables T8c and T8d in which the meter-out pressure deviation and the target opening area of the directional control valve 45 are associated with each other. Tables T8c and T8d show that when the meter-out pressure deviation is 0 (zero) or more, the target opening area becomes the minimum value Aomin (>0), and when the meter-out pressure deviation is less than 0 (zero), the target This is the characteristic that the aperture area becomes the maximum value Aomax (>Aomin).
  • the calculation units O8c and O8d refer to the tables T8c and T8d and calculate the target opening area of the directional control valve 45 based on the meter-out pressure deviation.
  • the determination unit O8e determines whether or not the boom operation amount is a positive value and the target thrust force of the boom cylinder 11a is a positive value.
  • the determination unit O8f determines whether or not the boom operation amount is a negative value and the target thrust force of the boom cylinder 11a is a negative value.
  • the selection unit O8g stores in the ROM 102 in advance.
  • the maximum value Aomax is selected as the target aperture area.
  • the selection unit O8g performs calculation in the calculation unit O8c. Select a target aperture area.
  • the selection unit O8h When the determination unit O8f makes an affirmative determination, that is, when it is determined that the boom operation amount is a negative value and the target thrust force of the boom cylinder 11a is a negative value, the selection unit O8h is stored in the ROM 102 in advance. The maximum value Aomax is selected as the target aperture area.
  • the determination unit O8f makes a negative determination, that is, when it is determined that the boom operation amount is not a negative value or the target thrust force of the boom cylinder 11a is not a negative value
  • the selection unit O8h performs calculation in the calculation unit O8d. Select a target aperture area.
  • the calculation unit O8i refers to the current conversion table T8i stored in the ROM 102, and drives the direction control valve 45 to the cylinder extension side based on the target opening area of the direction control valve 45 selected by the selection unit O8g.
  • the target value of the control current to be supplied to the solenoid of the solenoid valve 45a is calculated as the directional control valve command value for pressure control.
  • the calculation unit O8i calculates the control current based on the table T8i only when the boom cylinder 11a is operated to the extension side. When the boom cylinder 11a is operated to retract, the calculation unit O8i does not perform calculation based on the table T8i and sets the control current to the minimum value (standby current).
  • the calculation unit O8j refers to the current conversion table T8j stored in the ROM 102, and drives the direction control valve 45 to the cylinder contraction side based on the target opening area of the direction control valve 45 selected by the selection unit O8h.
  • the target value of the control current to be supplied to the solenoid of the solenoid valve 45b is calculated as the directional control valve command value for pressure control.
  • the calculation unit O8j calculates the control current based on the table T8j only when the boom cylinder 11a is operated to the contraction side. When the boom cylinder 11a is operated to extend, the calculation unit O8j does not perform calculation based on the table T8j and sets the control current to the minimum value (standby current).
  • the pressure control directional control valve command calculation unit C8 also calculates pressure control directional control valve command values for the directional control valve 45 of the arm cylinder 12a and the directional control valve (not shown) of the bucket cylinder 13a.
  • FIG. 19 is a diagram showing the details of the arithmetic processing performed by the pressure control pump volume command arithmetic unit C9.
  • a pressure control pump displacement command calculation unit C9 calculates a pressure control pump displacement command value based on the pump target pressure and the actual pump discharge pressure.
  • the pressure control pump displacement command calculator C9 functions as calculators O9a and O9b.
  • the calculation unit O9a calculates the pump pressure deviation by subtracting the actual pump discharge pressure from the pump target pressure.
  • the calculation unit O9b calculates the discharge capacity of the pump 81 based on the pump pressure deviation.
  • the ROM 102 stores a table T9b in which the pump pressure deviation and the discharge capacity of the pump 81 are associated with each other. Table T9b shows that when the pump pressure deviation is less than 0 (zero), the discharge capacity is the minimum value qmin (>0), and when the pump pressure deviation is 0 (zero) or more, the discharge capacity is the maximum value qmax. (>qmin).
  • the computation unit O9b refers to the table T9b and computes the discharge capacity of the pump 81 as a pressure control pump volume command value based on the pump pressure deviation.
  • FIG. 20 is a diagram showing the details of the arithmetic processing performed by the bleed-off valve command generating section C10. As shown in FIG. 20, the bleed-off valve command generation unit C10 generates a bleed-off valve command for controlling the control current supplied to the electromagnetic drive unit (solenoid) of the bleed-off valve 18 based on the operation signal of the actuator. to generate
  • the bleed-off valve command generation unit C10 functions as a calculation unit O10a, a minimum value selection unit O10b, and a calculation unit O10c.
  • the ROM 102 stores tables T10a1 and T10a2 in which actuator operation signals (boom cylinder 11a operation signal, arm cylinder 12a operation signal, etc.) are associated with operation required opening areas of the bleed-off valve 18.
  • the computation unit O10a computes the operation required opening area based on the operation signal corresponding to each actuator. An example of calculating the operation required opening area based on the operation signal of the boom cylinder 11a will be described below as a representative example.
  • the computation unit O10a computes the operation required opening area of the bleed-off valve 18 based on the operation signal of the boom cylinder 11a.
  • the table T10a1 has a characteristic that the required operation opening area decreases as the absolute value of the operation amount of the operation lever 23a increases. In this embodiment, when the operating lever 23a is positioned in the dead zone including the neutral position, the required opening area for operation is set to be the maximum opening area.
  • the computation unit O10a refers to the table T10a1 and computes the required operation opening area based on the operation signal input from the boom operation device 23.
  • the calculation unit O10a also refers to the table T10a2 and calculates the operation required opening area based on the operation signal input from the arm operation device 24.
  • FIG. Furthermore, although not shown, the computing unit O10a computes the operation required opening area based on the operation signal of the bucket cylinder 13a, the operation signal of the traveling hydraulic motor 2a, and the operation signal of the turning hydraulic motor 3a.
  • the minimum value selection unit O10b selects the smallest of the plurality of operation required opening areas calculated by the calculation unit O10a, and sets the selected one as the target opening area At of the bleed-off valve 18.
  • the minimum value selection unit O10b outputs the target opening area At of the bleed-off valve 18 to the calculation unit O10c.
  • the minimum value selection unit O10b also outputs the target opening area At of the bleed-off valve 18 to the flow rate control pump displacement command calculation unit C14 (see FIG. 8).
  • the calculation unit O10c refers to the current conversion table T10c stored in the ROM 102, and supplies the current to the electromagnetic drive unit (solenoid) of the bleed-off valve 18 based on the target opening area At input from the minimum value selection unit O10b. Calculate the target value of the control current.
  • the calculation unit O10c generates a bleed-off valve command for controlling the control current supplied to the electromagnetic drive unit of the bleed-off valve 18 to a target value, and sends the generated bleed-off valve command to a current control unit (not shown). Output. Based on the bleed-off valve command, the current control section controls the control current so that the control current supplied to the electromagnetic drive section of the bleed-off valve 18 becomes a target value.
  • FIG. 21 is a diagram showing the details of the arithmetic processing performed by the flow control directional control valve command arithmetic unit C11.
  • the directional control valve command computation unit C11 for flow rate control computes target values of control currents to be supplied to the solenoid valves 45a, 45b, 46a, 46b that drive the directional control valves 45, 46.
  • FIG. The flow rate control directional control valve command calculation unit C11 refers to the table T11a stored in the ROM 102, and based on the operation signals of the actuators (boom cylinder 11a, arm cylinder 12a), controls to be supplied to the solenoid valves 45a and 46a.
  • a current target value is calculated as a directional control valve command value for flow rate control.
  • the flow rate control directional control valve command calculation unit C11 refers to the table T11b stored in the ROM 102, and based on the operation signals of the actuators (boom cylinder 11a, arm cylinder 12a), controls to be supplied to the solenoid valves 45b and 46b.
  • a current target value is calculated as a directional control valve command value for flow rate control.
  • FIG. 22 is a diagram showing the details of the arithmetic processing performed by the actuator target flow rate calculator C12.
  • the actuator target flow rate calculation section C12 calculates the target flow rate of the actuator based on the information (target speed and operation signal) corresponding to each actuator.
  • An example of calculating the target flow rate of the boom cylinder 11a based on the target speed and the operation signal of the boom cylinder 11a will be described below as a representative example.
  • the actuator target flow rate calculation unit C12 functions as multiplication units O12a and O12b, a determination unit O12c, and a selection unit O12d.
  • the multiplication unit O12a multiplies the target speed (positive value) of the boom cylinder 11a calculated by the actuator target speed calculation unit C4 by (Sbot) to calculate the bottom side inflow target flow rate.
  • the multiplier O12b multiplies the target speed (negative value) of the boom cylinder 11a calculated by the actuator target speed calculator C4 by (-Srod) to calculate the rod side inflow target flow rate.
  • the determination unit O12c determines whether or not the boom operation amount is a positive value based on the operation signal of the boom cylinder 11a. When the boom operation amount is a positive value, the determination unit O12c determines the bottom side inflow target flow rate as the target flow rate of the boom cylinder 11a. If the boom operation amount is not a positive value, the determination unit O12c determines the rod-side inflow target flow rate as the target flow rate of the boom cylinder 11a.
  • the actuator target flow rate calculation unit C12 calculates the operation signal and target speed of the arm cylinder 12a, the operation signal and target speed of the bucket cylinder 13a, the operation signal and target speed of the travel hydraulic motor 2a, and the operation signal and target speed of the turning hydraulic motor 3a. Each target flow rate is calculated based on the operation signal and the target speed.
  • FIG. 23 is a diagram showing the details of the arithmetic processing performed by the flow rate control meter-in control valve command arithmetic unit C13.
  • the flow control meter-in control valve command calculation section C13 calculates the target flow rate calculated by the actuator target flow rate calculation section C12, the pump discharge pressure detected by the pressure sensor 25, and the meter-in pressure calculation section C6. Based on the calculated actual meter-in pressure and actual meter-in maximum pressure, a flow control meter-in control valve command value is calculated.
  • the flow rate control meter-in control valve command calculation unit C13 functions as calculation units O13a, O13b, O13c, O13d, O13e, a determination unit O13f, a selection unit O13g, and a calculation unit O13h.
  • the calculation unit O13a subtracts the actual meter-in pressure from the actual maximum meter-in pressure.
  • the calculation unit O13b subtracts the actual meter-in pressure from the pump discharge pressure.
  • the calculation unit O13c takes the square root of the calculation result of the calculation unit O13b.
  • the calculation unit O13d multiplies the calculation result of the calculation unit O13c by the flow coefficient c stored in the ROM102.
  • the calculation unit O13e calculates the target opening area of the meter-in control valve 41 by dividing the calculation result of the calculation unit O13d from the target flow rate of the boom cylinder 11a.
  • the determination unit O13f determines whether or not the difference between the actual maximum meter-in pressure and the actual meter-in pressure, which are the calculation results of the calculation unit O13a, is greater than zero.
  • the selection unit O13g selects the target opening area calculated by the calculation unit O13e. do.
  • the selection unit O13g selects the maximum value Aimax stored in advance in the ROM 102 as a target. Select as open area.
  • the calculation unit O13h refers to the current conversion table T7c stored in the ROM 102, and based on the target opening area of the meter-in control valve 41 selected by the selection unit O13g, the electromagnetic drive unit (solenoid) of the meter-in control valve 41 The target value of the control current to be supplied is calculated as the flow control meter-in control valve command value.
  • flow rate control meter-in control valve command calculation unit C13 also calculates flow rate control meter-in control valve command values for the meter-in control valve 42 of the arm cylinder 12a and the meter-in control valve (not shown) of the bucket cylinder 13a.
  • FIG. 24 is a diagram showing the details of the arithmetic processing performed by the flow rate control pump volume command arithmetic unit C14.
  • the flow control pump volume command calculator C 14 generates a pump volume command to be output to the regulator 81 a that controls the discharge volume of the pump 81 .
  • the flow rate control pump volume command calculation unit C14 functions as an integration unit O14a, a calculation unit O14b, multiplication units O14c and O14d, an addition unit O14e, and a division unit O14f.
  • the integration unit O14a integrates the target flow rates of each actuator (boom cylinder 11a, arm cylinder 12a, etc.) calculated by the actuator target flow rate calculation unit C12, and calculates the target flow rate total value.
  • the calculation unit O14b takes the square root of the pump discharge pressure P detected by the pressure sensor 25.
  • the multiplication unit O14c multiplies the calculation result (square root of the pump discharge pressure P) of the calculation unit O14b by the target opening area At of the bleed-off valve 18 calculated by the bleed-off valve command generation unit C10.
  • the multiplication unit O14d multiplies the calculation result of the multiplication unit O14c by the flow coefficient c stored in the ROM 102 to calculate the bleed-off flow rate (flow rate of hydraulic oil passing through the bleed-off valve 18).
  • the addition unit O14e calculates the pump target flow rate Qt by adding the bleed-off flow rate that is the calculation result of the multiplication unit O14d to the target flow rate total value that is the calculation result of the integration unit O14a.
  • the division unit O14f divides the pump target flow rate Qt, which is the calculation result of the addition unit O14e, by the actual engine rotation speed detected by the engine rotation speed sensor 80a, and converts the target value of the discharge capacity (displacement volume) into the pump displacement command value. Calculate as
  • the directional control valve command generator C15 determines whether the pressure control flag is set to ON. When the pressure control flag is set to ON, the directional control valve command generation unit C15 selects the pressure control directional control valve command value calculated by the pressure control directional control valve command calculation unit C8, and generates the electromagnetic valve 45a. , 45b, 46a, and 46b to a pressure control directional control valve command value (target value). shown). When the pressure control flag is set to OFF, the directional control valve command generator C15 selects the directional control valve command value for flow rate control calculated by the directional control valve command calculator C11 for flow rate control, and controls the solenoid valve 45a.
  • the current control unit controls the control current so that the control current supplied to the solenoids of the solenoid valves 45a, 45b, 46a, and 46b reaches a target value based on the directional control valve command.
  • the meter-in control valve command generator C16 determines whether the pressure control flag is set to ON. When the pressure control flag is set to ON, the meter-in control valve command generation unit C16 selects the pressure control meter-in control valve command value calculated by the pressure control meter-in control valve command calculation unit C7, A meter-in control valve command is generated for controlling the control current supplied to the electromagnetic drive units (solenoids) of 41 and 42 to a pressure control meter-in control valve command value (target value), and the generated meter-in control valve command is applied to the current Output to a control unit (not shown).
  • the meter-in control valve command generation unit C16 selects the flow control meter-in control valve command value calculated by the flow control meter-in control valve command calculation unit C13, A meter-in control valve command is generated for controlling the control current supplied to the electromagnetic drive units (solenoids) of 41 and 42 to a flow rate control meter-in control valve command value (target value), and the generated meter-in control valve command is applied to the current Output to a control unit (not shown). Based on the meter-in control valve command, the current control section controls the control current so that the control current supplied to the electromagnetic drive sections (solenoids) of the meter-in control valves 41 and 42 becomes a target value.
  • the pump volume command generation unit C17 generates the pressure control pump volume command value calculated by the pressure control pump volume command calculation unit C9 and the flow control pump volume command value calculated by the flow control pump volume command calculation unit C14. , and select the larger one.
  • the pump volume command generator C17 generates a pump volume command for controlling the discharge volume of the pump 81 to the selected pump volume command value, and outputs the generated pump volume command to the regulator 81a.
  • FIG. 25 is a time chart showing changes in the pump target flow rate, boom actual flow rate, pump discharge pressure, and boom bottom pressure when a single boom raising operation is performed.
  • the horizontal axis of FIG. 25 indicates time (time).
  • the vertical axis of FIG. 25(A) indicates the operation signal (boom raising operation amount) of the boom cylinder 11a
  • the vertical axis of FIG. 25(B) indicates the target speed and actual speed of the boom cylinder 11a.
  • the vertical axis of C) indicates the on/off state of the pressure control flag
  • the vertical axis of FIG. 25(D) indicates the target thrust of the boom cylinder 11a
  • the vertical axis of FIG. 25(E) indicates the boom meter-in target pressure. and pump target pressure. Note that the boom meter-in target pressure and the pump target pressure are the same because the time chart is for a single boom raising operation.
  • 25(F) indicates the control valve signal (control current value) on the boom raising side of the directional control valve 45
  • the vertical axis of FIG. 25(G) indicates the control valve signal of the boom meter-in control valve 41.
  • 25(H) shows the target flow rate (boom target flow rate) and actual flow rate (actual boom flow rate) of the boom cylinder 11a and the target flow rate (pump target flow rate) of the pump 81
  • FIG. (I) indicates the pump discharge pressure (pump pressure) detected by the pressure sensor 25 and the boom bottom pressure detected by the pressure sensor 26 .
  • the operating lever 23a is held at the neutral position.
  • the target cylinder speed increases as the amount of operation increases.
  • the cylinder actual speed increases following the cylinder target speed.
  • the pressure control flag is switched from off to on (see FIG. 15).
  • the pump flow rate is controlled so that the pump discharge pressure is maintained at the pump target pressure.
  • the main controller 100 monitors the difference between the pump target pressure and the actual pump discharge pressure. Control.
  • the flow rate of pump 81 is controlled. As a result, the flow rate (actual boom flow rate) of hydraulic oil supplied to the boom cylinder 11a gradually increases from time t2 to time t3.
  • the pressure control flag is switched from ON to OFF (see FIG. 15).
  • the control state transitions from pressure control to normal flow rate control.
  • the flow rate of hydraulic oil supplied to the boom cylinder 11a is controlled so that the extension speed of the boom cylinder 11a is constant.
  • FIG. 26 is a time chart showing an example of operation when a single boom-up operation is performed in a hydraulic excavator according to a comparative example of this embodiment.
  • the pressure control explained in this embodiment is not executed. That is, even if the target speed and the actual speed of the boom cylinder 11a deviate from each other, the flow rate control is executed. Therefore, for example, when the operating lever 23a is suddenly operated from the neutral position to the maximum operating position on the boom raising side, the pump target flow rate and the boom target flow rate rapidly reach the maximum flow rate according to the amount of operation of the operating lever 23a. To increase. As a result, the boom actual flow rate suddenly increases, and the operation of the boom cylinder 11a may become unstable.
  • the meter-in pressure of the boom cylinder 11a is kept constant. is controlled to gradually increase the flow rate of hydraulic oil supplied to the boom cylinder 11a. Therefore, according to the present embodiment, the boom actual flow rate does not suddenly increase, the operation of the boom 11 is prevented from becoming unstable, and the boom 11 can be accelerated at a substantially constant acceleration.
  • the boom raising operation and the arm dumping operation can be similarly stably performed.
  • the arm meter-in target pressure is higher than the boom meter-in target pressure
  • the arm meter-in target pressure is set as the pump target pressure (see FIG. 13).
  • the main controller 100 monitors the difference between the target meter-in pressure and the actual meter-in pressure, and controls the opening of the boom meter-in control valve 41 so as to reduce the difference. That is, the main controller 100 reduces the pump pressure by controlling the opening degree of the boom meter-in control valve 41, and controls the actual meter-in pressure so that the actual meter-in pressure is maintained at the target meter-in pressure (see FIG. 17). reference).
  • FIG. 27 is a time chart showing changes in the pump target flow rate, the arm actual flow rate, and the arm rod pressure when the arm pulling independent operation is stopped.
  • the horizontal axis of FIG. 27 indicates time (time).
  • the vertical axis of FIG. 27(A) indicates the operation signal (arm cloud operation amount) of the arm cylinder 12a
  • the vertical axis of FIG. 27(B) indicates the target speed and the actual speed of the arm cylinder 12a
  • the vertical axis of C) indicates the ON/OFF state of the pressure control flag
  • the vertical axis of FIG. 27D indicates the target thrust of the arm cylinder 12a
  • the vertical axis of FIG. 27E indicates the arm meter-out target pressure. is shown.
  • the vertical axis of FIG. 27(F) indicates the control valve signal (control current value) on the arm pulling side of the directional control valve 46
  • 27(G) indicates the control valve signal of the arm meter-in control valve 42.
  • 27(H) shows the target flow rate (arm target flow rate) and actual flow rate (arm actual flow rate) of the arm cylinder 12a and the target flow rate (pump target flow rate) of the pump 81
  • FIG. (I) indicates the pump discharge pressure detected by the pressure sensor 25 and the rod pressure of the arm cylinder 12 a detected by the pressure sensor 29 . It should be noted that the arm bottom pressure and the pump pressure are the same because the time chart is for a single arm pulling operation.
  • the operating lever 24a is held at the maximum operating position.
  • the cylinder target speed decreases as the amount of operation decreases.
  • the cylinder actual speed decreases following the cylinder target speed.
  • the pressure control flag is switched from off to on (see FIG. 15).
  • the directional control valve 46 As a meter-out control valve is controlled so that the arm rod pressure is held at the arm meter-out target pressure.
  • the main controller 100 monitors the difference between the meter-out target pressure and the arm rod pressure, and adjusts the opening of the directional control valve 46 so that the arm rod pressure is maintained at the meter-out target pressure. to control.
  • the main controller 100 controls the degree of opening of the meter-in control valve 42 so that the meter-in pressure is maintained at a predetermined value P1 (for example, approximately 1 MPa) to prevent cavitation from occurring.
  • P1 for example, approximately 1 MPa
  • FIG. 28 is a time chart showing an example of the operation of a hydraulic excavator according to a comparative example of the present embodiment when a single arm pulling operation is performed.
  • the pressure control explained in this embodiment is not executed. That is, even if the target speed and the actual speed of the arm cylinder 12a deviate from each other, the flow rate control is executed. Therefore, for example, when the operating lever 24a is suddenly operated from the maximum operating position on the arm pulling side to the neutral position, the pump target flow rate and the arm target flow rate rapidly reach the minimum flow rate according to the amount of operation of the operating lever 24a. Decrease. As a result, the arm actual flow rate may suddenly decrease, and the operation of the arm cylinder 12a may become unstable.
  • the meter-out pressure of the arm cylinder 12a is controlled so that the flow rate of the hydraulic oil supplied to the arm cylinder 12a is gradually decreased so that the constant is constant. Therefore, according to the present embodiment, the arm actual flow rate does not suddenly decrease, the operation of the arm 12 is prevented from becoming unstable, and the arm 12 can be decelerated at a substantially constant deceleration.
  • the hydraulic excavator (working machine) 1 includes a pump 81 that discharges working fluid, and a plurality of fluid pressure cylinders (boom cylinder 11a, arm cylinder 12a and bucket cylinder 13a) driven by the working fluid discharged from the pump 81. ) and a plurality of driven members (boom 11, arm 12 and bucket 13) driven by fluid pressure cylinders (boom cylinder 11a, arm cylinder 12a and bucket cylinder 13a); 11a, arm cylinder 12a, and bucket cylinder 13a), and a main controller (control device) for controlling the operation of the work device 10 based on the operation signals of the operation devices 23 and 24. ) 100 and an orientation detection device 15 for detecting the orientation of the working device 10 .
  • the main controller 100 controls the meter-in target pressure and meter-out target pressure (see FIG. 12) of the boom cylinder (fluid pressure cylinder) 11a and the arm cylinder (fluid pressure cylinder) 12a based on the operation signals from the operation devices 23 and 24, and A target speed (see FIG. 14) is calculated.
  • the main controller 100 calculates the target flow rate of the hydraulic cylinders (11a, 12a) based on the target speeds of the hydraulic cylinders (11a, 12a) (see FIG. 22).
  • the main controller 100 calculates the actual velocities of the hydraulic cylinders 11a and 12a based on the detection results of the attitude detection device 15 (see FIG. 4), and calculates the degree of divergence between the target velocities and the actual velocities of the hydraulic cylinders (11a and 12a). Calculate the speed deviation rate to represent (see FIG. 15).
  • the main controller 100 sets the pressures (meter-in pressure and meter-out pressure) of the hydraulic cylinders 11a and 12a to target pressures (meter-in target pressure and meter-out target pressure). pressure control is executed to achieve this (see FIG. 7, FIG. 15, etc.).
  • the main controller 100 executes flow rate control to set the flow rate (supply flow rate) of the hydraulic cylinders 11a and 12a to the target flow rate (FIGS. 7 and 15). etc.).
  • the pressure control is executed to prevent sudden movement of the work device 10 and operate the work device 10 at a stable acceleration/deceleration.
  • the speed deviation rate degree of divergence
  • the work implement 10 can be operated at the speed intended by the operator by executing the flow rate control. As a result, work accuracy such as excavation and leveling can be improved.
  • the hydraulic excavator 1 includes meter-in control valves 41, 42 that control the flow of working fluid supplied to the hydraulic cylinders (11a, 12a).
  • the pump 81 is a variable displacement pump whose discharge capacity can be changed.
  • the main controller 100 controls the discharge capacity of the pump 81 and the opening degree of the meter-in control valve 41 in pressure control, so that the hydraulic cylinders (11a, 12a) Control the meter-in pressure (see FIGS. 12, 13, 17, 19 and 25, etc.). Accordingly, in the pressure control, the working device 10 can be operated with stable acceleration.
  • the hydraulic excavator 1 includes directional control valves (meter-out control valves) 45, 46 that control the flow of working fluid discharged from the hydraulic cylinders (11a, 12a).
  • the main controller 100 controls the opening degrees of the directional control valves (meter-out control valves) 45, 46 in pressure control to ) to control the meter-out pressure (see FIGS. 12, 18 and 27, etc.).
  • the working device 10 can be operated at a stable deceleration.
  • the meter-out control valves are the directional control valves 45, 46 that control the flow of working fluid supplied from the pump 81 to the hydraulic cylinders (11a, 12a). That is, the directional control valves 45 and 46 function as meter-out control valves. Therefore, since there is no need to provide a dedicated meter-out control valve in addition to the direction control valves 45 and 46, the cost of the hydraulic excavator 1 can be reduced compared to the case of providing a dedicated meter-out control valve.
  • the hydraulic excavator 1 includes pressure sensors 26, 27, 28, and 29 that detect the pressure of the hydraulic cylinders (11a, 12a).
  • the main controller 100 calculates the thrust force F of the hydraulic cylinders (11a, 12a) based on the detection results of the pressure sensors 26, 27, 28, 29 (see FIG. 8), and based on the detection results of the posture detection device 15, , the acceleration/deceleration (velocity change rate) ⁇ ′′ of the hydraulic cylinders (11a, 12a) (see FIG. 8). , determines the target pressure of the hydraulic cylinders (11a, 12a) (see FIGS. 11 and 12).
  • the driven members (11, 12) may be adjusted. Velocity can vary greatly.
  • the actually generated thrust F of the hydraulic cylinders (11a, 12a) and the acceleration/deceleration ⁇ ′′ of the driven member are actually measured, the acceleration torque target value is corrected by the torque adjustment gain, and the target torque and the target thrust are calculated, and the target pressure is calculated based on the calculation results, thereby suppressing changes in the acceleration/deceleration due to the attitude of the work device 10 .
  • the main controller 100 calculates the rotational moment Mg due to gravity acting on the working device 10 based on the detection result of the posture detection device 15, and controls the hydraulic cylinders (11a, 12a) so as to cancel the rotational moment Mg due to gravity. ) is determined (see FIGS. 11 and 12). As a result, it is possible to suppress changes in the acceleration/deceleration of the work device 10 due to the effect of gravity when the posture of the work device 10 changes. In other words, regardless of the posture of the work device 10, the work device 10 can be operated at an appropriate acceleration/deceleration.
  • the main controller 100 detects the thrust force of the hydraulic cylinders (11a, 12a) acting on the working device 10 based on the detection result of the posture detection device 15 and the thrust force F of the hydraulic cylinders (11a, 12a). to calculate the rotational moment Mf.
  • the main controller 100 calculates the actual moment of inertia Ia based on the rotational moment Mg due to thrust, the rotational moment Mg due to gravity, and the acceleration/deceleration ⁇ ′′. ) is determined (see FIGS. 8, 11 and 12, etc.), thereby reducing the reaction force acting on the bucket 13 from the ground and Therefore, it is possible to prevent the acceleration/deceleration of the work device 10 from changing due to the influence of gravity or the like acting on the excavated object.
  • the work device 10 when the operation command changes abruptly, the work device 10 is prevented from being rapidly accelerated or decelerated, and the work device 10 is controlled at the acceleration/deceleration intended by the operator. It is possible to provide the hydraulic excavator 1 that can operate the According to such a hydraulic excavator 1, it is possible to easily perform excavation, leveling, and other operations with high accuracy along the target surface.
  • the directional control valves 45 and 46 are used as meter-out control valves to adjust the opening of the hydraulic fluid passages discharged from the hydraulic cylinders (11a and 12a). It is not limited to this.
  • a meter-out control valve may be provided separately from the direction control valves 45 and 46 .
  • the directional control valves 45 and 46 do not need to adjust the opening of the meter-out side passages. Therefore, the influence of the pressure loss of the working fluid passing through the meter-in side passages of the direction control valves 45 and 46 accompanying the adjustment of the meter-out side passages by the direction control valves 45 and 46 can be reduced.
  • a meter-out control valve dedicated to adjusting the opening degree of the meter-out side passage is provided, control accuracy can be improved by reducing the size of the meter-out control valve.
  • the operating devices 23 and 24 are operated by an operator, but the present invention is not limited to this.
  • the present invention can also be applied to the case where the work device 10 is operated based on an operation command from an autopilot instead of the operation devices 23 and 24 .
  • the work device 10 can also be operated based on the operation command from the semi-autopilot device.
  • the present invention can be applied.
  • control device main controller 100
  • functions of the control device may be realized by hardware (for example, logic for executing each function is designed by an integrated circuit).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

作業機械は、ポンプからの作動流体によって駆動される複数の流体圧シリンダ及び流体圧シリンダによって駆動される複数の被駆動部材を有する作業装置と、流体圧シリンダの操作指令を出力する操作装置と、操作装置の操作指令に基づき作業装置の動作を制御する制御装置と、作業装置の姿勢を検出する姿勢検出装置と、を備える。制御装置は、操作指令に基づいて流体圧シリンダの目標圧及び目標速度を演算し、目標速度に基づいて流体圧シリンダの目標流量を演算し、姿勢検出装置の検出結果に基づいて流体圧シリンダの実速度を演算する。制御装置は、流体圧シリンダの目標速度と実速度の乖離度合いが所定値よりも大きいときには流体圧シリンダの圧力制御を実行し、乖離度合いが所定値よりも小さいときには、流体圧シリンダの流量制御を実行する。

Description

作業機械
 本発明は、作業機械に関する。
 油圧ショベルなどの作業機械においては、ブーム、アームなどの被駆動部材を油圧シリンダなどの流体圧シリンダにより回動駆動する。一般的に、作業装置の軌跡を制御するためには、操作信号が一定の場合は、流体圧シリンダの速度は一定となることが望ましい。
 しかしながら、作業装置は、鋼板を溶接してなる溶接構造物によって構成されているため、慣性質量が大きい。このため、操作指令が急激に変化すると、被駆動部材が急加速あるいは急停止することにより、車体全体にショックが生じることがある。このため、フロント作業装置用油圧シリンダへの圧油の給排を制御する方向制御弁を緩やかに切り替えることで、ショックを低減する方法が知られている(特許文献1参照)。
 特許文献1に記載の作業機械では、ブーム下げ操作時間が設定時間よりも長い場合、ブーム下げ用パイロットポートに接続されるパイロット管路に設けられた電磁切換弁を開通油路位置から絞り部付油路位置に切り替えることにより、ブーム用パイロット切換弁(方向制御弁)のスプールの戻り動作を遅延させる。スプールの戻り動作が遅延すると、方向制御弁のメータアウト開口の開度が徐々に小さくなり、ブレーキ圧が徐々に大きくなるため、ブームを緩停止させることができる。
特開平7-207697号公報
 しかしながら、特許文献1に記載の作業機械では、方向制御弁のスプールの戻り動作を遅延させることにより、方向制御弁のメータアウト開口の開度が徐々に小さくなるとともに、方向制御弁のメータイン開口の開度も徐々に小さくなる。その結果、ブームシリンダが停止するときに発生するブレーキ圧と、ポンプによる押し込み圧とのバランスが崩れ、安定してアクチュエータを緩停止させることができないおそれがある。
 本発明は、作業装置の急動作を防止しつつ、安定した加減速度で作業装置を動作させることを目的とする。
 本発明の一態様による作業機械は、作動流体を吐出するポンプと、前記ポンプから吐出される作動流体によって駆動される複数の流体圧シリンダ及び前記流体圧シリンダによって駆動される複数の被駆動部材を有する作業装置と、前記流体圧シリンダの操作指令を出力する操作装置と、前記操作装置の操作指令に基づき前記作業装置の動作を制御する制御装置と、前記作業装置の姿勢を検出する姿勢検出装置と、を備える。前記制御装置は、前記操作装置からの操作指令に基づいて、前記流体圧シリンダの目標圧及び目標速度を演算し、前記流体圧シリンダの目標速度に基づいて、前記流体圧シリンダの目標流量を演算する。前記制御装置は、前記姿勢検出装置の検出結果に基づいて、前記流体圧シリンダの実速度を演算し、前記流体圧シリンダの目標速度と前記流体圧シリンダの実速度の乖離度合いを演算する。前記制御装置は、前記乖離度合いが予め定められた所定値よりも大きいときには、前記流体圧シリンダの圧力を前記目標圧とするための圧力制御を実行する。前記制御装置は、前記乖離度合いが予め定められた所定値よりも小さいときには、前記流体圧シリンダの流量を前記目標流量とするための流量制御を実行する。
 本発明によれば、作業装置の急動作を防止しつつ、安定した加減速度で作業装置を動作させることができる。
本発明の実施形態に係る油圧ショベルの側面図。 油圧ショベルに搭載される油圧システムを示す図。 油圧ショベルにおける座標系(ショベル基準座標系)を示す図。 メインコントローラの機能ブロック図であり、メータイン目標圧、メータアウト目標圧、ポンプ目標圧及びアクチュエータ目標速度を演算するための機能、並びに圧力制御フラグを設定するための機能について示す。 メインコントローラの機能ブロック図であり、圧力制御用のメータイン制御弁指令値、方向制御弁指令値及びポンプ容積指令値を演算するための機能について示す。 メインコントローラの機能ブロック図であり、流量制御用の方向制御弁指令値、メータイン制御弁指令値及びポンプ容積指令値を演算するための機能について示す。 メインコントローラの機能ブロック図であり、方向制御弁指令、メータイン制御弁指令及びポンプ容積指令を生成するための機能について示す。 慣性モーメント補正比率演算部C1が行う演算処理の内容について示す図。 運動方程式から慣性モーメント実測値Iaを算出する方法について説明する図。 慣性モーメント基準値Ibを算出する方法について説明する図。 目標推力演算部C2が行う演算処理の内容について示す図。 目標圧演算部C3が行う演算処理の内容について示す図であり、メータイン目標圧及びメータアウト目標圧を演算するための処理について示す。 目標圧演算部C3が行う演算処理の内容について示す図であり、ポンプ目標圧を演算するための処理について示す。 アクチュエータ目標速度演算部C4が行う演算処理の内容について示す図。 圧力制御フラグ設定部C5が行う演算処理の内容について示す図。 メータイン圧演算部C6が行う演算処理の内容について示す図。 圧力制御用メータイン制御弁指令演算部C7が行う演算処理の内容について示す図。 圧力制御用方向制御弁指令演算部C8が行う演算処理の内容について示す図。 圧力制御用ポンプ容積指令演算部C9が行う演算処理の内容について示す図。 ブリードオフ弁指令生成部C10が行う演算処理の内容について示す図。 流量制御用方向制御弁指令演算部C11が行う演算処理の内容について示す図。 アクチュエータ目標流量演算部C12が行う演算処理の内容について示す図。 流量制御用メータイン制御弁指令演算部C13が行う演算処理の内容について示す図。 流量制御用ポンプ容積指令演算部C14が行う演算処理の内容について示す図。 本実施形態に係る油圧ショベルにおいて、ブーム上げ単独操作を行った場合の動作の一例を示すタイムチャート。 本実施形態の比較例に係る油圧ショベルにおいて、ブーム上げ単独操作を行った場合の動作の一例について示すタイムチャート。 本実施形態に係る油圧ショベルにおいて、アーム引き単独操作を行った場合の動作の一例を示すタイムチャート。 本実施形態の比較例に係る油圧ショベルにおいて、アーム引き単独操作を行った場合の動作の一例について示すタイムチャート。
 図面を参照して、本発明の実施形態に係る作業機械について説明する。本実施形態では、作業機械が、クローラ式の油圧ショベルである例について説明する。
 図1は、本発明の実施形態に係る油圧ショベル1の側面図である。説明の便宜上、図1に示すように油圧ショベル1の前後および上下方向を規定する。つまり、本実施形態では、特に断り書きのない場合は、運転席の前方(同図中では左方向)を油圧ショベル1の前方とする。
 油圧ショベル1は、機体(車体)20と、機体20に取り付けられる作業装置10と、を備える。機体20は、走行体2と、走行体2上に旋回可能に搭載された旋回体3とを備える。走行体2は、左右一対のクローラと、アクチュエータである走行用油圧モータ2aと、を有する。走行体2は、クローラを走行用油圧モータ2aによって駆動することにより走行する。旋回体3は、アクチュエータである旋回用油圧モータ3aを有する。旋回体3は、旋回用油圧モータ3aによって、走行体2に対して回転する。
 旋回体3は、旋回フレーム30と、旋回フレーム30の前部左側に設けられる運転室31と、旋回フレーム30の後部に設けられるカウンタウエイト32と、旋回フレーム30における運転室31の後側に設けられるエンジン室33と、を有する。エンジン室33には、動力源であるエンジン及び油圧ポンプ、バルブ、アキュムレータ等の油圧機器が収容されている。旋回フレーム30の前部中央には作業装置10が回動可能に連結されている。
 作業装置10は、回動可能に連結される複数の被駆動部材(11,12,13)及び被駆動部材を駆動する複数の流体圧シリンダ(11a,12a,13a)を有する多関節型の作業装置である。本実施形態では、3つの被駆動部材としてのブーム11、アーム12及びバケット13が、直列的に連結される。ブーム11は、その基端部が旋回フレーム30の前部においてブームピン11b(図3参照)によって回動可能に連結される。アーム12は、その基端部がブーム11の先端部においてアームピン12b(図3参照)によって回動可能に連結される。バケット13は、アーム12の先端部においてバケットピン13b(図3参照)によって回動可能に連結される。ブームピン11b、アームピン12b、バケットピン13bは、互いに平行に配置され、各被駆動部材(11,12,13)は同一面内で相対回転可能とされている。
 ブーム11は、アクチュエータである油圧シリンダ(以下、ブームシリンダ11aとも記す)によって駆動され、旋回フレーム30に対して回動する。アーム12は、アクチュエータである油圧シリンダ(以下、アームシリンダ12aとも記す)によって駆動され、ブーム11に対して回動する。バケット13は、アクチュエータである油圧シリンダ(以下、バケットシリンダ13aとも記す)によって駆動され、アーム12に対して回動する。これらの油圧シリンダ(11a,12,13a)は、後述するポンプ81(図2参照)から吐出される作動流体としての作動油によって駆動される。
 図2は、油圧ショベル1に搭載される油圧システム90を示す図である。なお、油圧システム90には、複数の油圧アクチュエータ(2a,3a,11a,12a,13a)を駆動するための油圧機器が設けられているが、図2では、ブームシリンダ11aとアームシリンダ12aを駆動するための油圧機器についてのみ図示し、その他の油圧アクチュエータ(2a,3a,13a)を駆動するための油圧機器についての図示は省略している。
 図2では、操作装置23,24の操作指令に基づき作業装置10の動作を制御する制御装置であるメインコントローラ100と、メインコントローラ100に信号を出力する装置(23~29)についても図示している。図2に示すように、油圧ショベル1は、ブームシリンダ11a(ブーム11)を操作するための操作装置(ブーム操作装置とも記す)23と、アームシリンダ12a(アーム12)を操作するための操作装置(アーム操作装置とも記す)24と、を備える。操作装置(23,24)は、運転室31内に設けられる。
 ブーム操作装置23は、中立位置からブーム上げ側及びブーム下げ側に傾動操作可能な操作レバー23aと、操作レバー23aの操作方向及び操作量を検出して、操作レバー23aの操作方向及び操作量を表す操作信号をブームシリンダ11aの操作指令としてメインコントローラ100に出力する操作センサと、を有する。アーム操作装置24は、中立位置からアームクラウド側(アーム引き側)及びアームダンプ側(アーム押し側)に傾動操作可能な操作レバー24aと、操作レバー24aの操作方向及び操作量を検出して、操作レバー24aの操作方向及び操作量を表す操作信号をアームシリンダ12aの操作指令としてメインコントローラ100に出力する操作センサと、を有する。
 操作装置23,24は、操作レバー23a,24aが中立位置から一方(油圧シリンダ伸長側)へ傾けられると正の値の操作量を表す操作信号を出力し、操作レバー23a,23bが中立位置から他方(油圧シリンダ収縮側)へ傾けられると負の値の操作量を表す操作信号を出力する。操作装置23,24の操作センサで検出される操作レバー23a,24aの操作量(操作角)は、中立位置のときに0[%](0°)であり、中立位置から傾けるほど、その絶対値が大きくなる。
 なお、図示しないが、運転室31内には、エンジン80の目標回転速度を設定するためのエンジンコントロールダイヤルが設けられている。メインコントローラ100は、エンジンコントロールダイヤルからの操作信号に基づいて目標回転速度を決定し、決定した目標回転速度の信号をエンジンコントローラ108に出力する。エンジン80には、エンジン80の実回転速度を検出するエンジン回転速度センサ80a及びエンジン80のシリンダ内に噴射する燃料の噴射量を調整する燃料噴射装置80bが設けられている。エンジンコントローラ108は、エンジン回転速度センサ80aで検出されたエンジン80の実回転速度が、メインコントローラ100から出力される目標回転速度となるように、燃料噴射装置80bを制御する。
 油圧システム90は、吐出容量(押しのけ容積)の変更が可能な可変容量型のポンプ81と、ポンプ81から吐出される作動油をブームシリンダ11a及びアームシリンダ12aに供給するメイン回路HCと、ポンプ81と作動油が貯留されるタンク19とを接続するブリードオフ通路Lbと、を備える。
 ポンプ81は、エンジン80に接続され、エンジン80によって駆動されて、タンク19から作動油を吸い込み、吐出する。ポンプ81は、ピストン式の油圧ポンプ(流体圧ポンプ)であり、レギュレータ81aにより斜板の傾きが変更されることで吐出容量が変化する。エンジン80は、油圧ショベル1の動力源であり、例えば、ディーゼルエンジン等の内燃機関により構成される。
 メイン回路HCには、ポンプ81からブームシリンダ11aに供給される作動油の流れ、及びブームシリンダ11aからタンク19に排出される作動油の流れを制御する方向制御弁(以下、ブーム制御弁とも記す)45と、ポンプ81からアームシリンダ12aに供給される作動油の流れ、及びアームシリンダ12aからタンク19に排出される作動油の流れを制御する方向制御弁(以下、アーム制御弁とも記す)46と、が設けられる。
 方向制御弁45,46は、パイロット受圧部45c,45d,46c,46dと、パイロット受圧部45c,45d,46c,46dにパイロット圧を出力する電磁弁45a,45b,46a,46bと、を有する。電磁弁45a,45b,46a,46bは、図示しないパイロットポンプ等のパイロット油圧源を有するパイロット回路からのパイロット1次圧を減圧して、パイロット2次圧を生成し、生成したパイロット2次圧を方向制御弁45,46のパイロット受圧部45c,45d,46c,46dに出力する。
 電磁弁45a,45b,46a,46bは、メインコントローラ100からソレノイドに供給される制御電流に応じて発生するソレノイド推力によって駆動され、制御電流に応じたパイロット2次圧を生成する電磁比例弁である。
 メインコントローラ100は、ブーム操作装置23から出力される操作信号に基づいて、電磁弁45a,45bを制御し、アーム操作装置24から出力される操作信号に基づいて、電磁弁46a,46bを制御する。
 電磁弁45aによって生成されたパイロット2次圧が、ブーム制御弁45のパイロット受圧部45cに作用すると、ブーム制御弁45が伸長位置に切り換えられる。これにより、ポンプ81から吐出された作動油がブームシリンダ11aのボトム室に導かれるとともにロッド室からタンク19に作動油が排出され、ブームシリンダ11aが伸長する。その結果、ブーム11が上方向に回動する(すなわち、すなわちブーム11が起立する)。
 電磁弁45bによって生成されたパイロット2次圧が、ブーム制御弁45のパイロット受圧部45dに作用すると、ブーム制御弁45が収縮位置に切り換えられる。これにより、ポンプ81から吐出された作動油がブームシリンダ11aのロッド室に導かれるとともにボトム室からタンク19に作動油が排出され、ブームシリンダ11aが収縮する。その結果、ブーム11が下方向に回動する(すなわち、ブーム11が倒伏する)。
 電磁弁46aによって生成されたパイロット2次圧が、アーム制御弁46のパイロット受圧部46cに作用すると、アーム制御弁46が伸長位置に切り換えられる。これにより、ポンプ81から吐出された作動油がアームシリンダ12aのボトム室に導かれるとともにロッド室からタンク19に作動油が排出され、アームシリンダ12aが伸長する。その結果、アーム12が下方向に回動する(すなわち、アーム12がクラウド動作(アーム引き動作)を行う)。
 電磁弁46bによって生成されたパイロット2次圧が、アーム制御弁46のパイロット受圧部46dに作用すると、アーム制御弁46が収縮位置に切り換えられる。これにより、ポンプ81から吐出された作動油がアームシリンダ12aのロッド室に導かれるとともにボトム室からタンク19に作動油が排出され、アームシリンダ12aが収縮する。その結果、アーム12が上方向に回動する(すなわち、アーム12がダンプ動作(アーム押し動作)を行う)。
 メイン回路HCには、ポンプ吐出圧(回路圧)が予め設定されている設定圧を上回ると、ポンプ81から吐出される作動油をタンク19に排出することにより、ポンプ吐出圧の最高圧力を規定するリリーフ弁47が設けられている。
 ブーム制御弁45のポンプポートに接続される通路(ブーム制御弁45の上流側の通路)には、ブームシリンダ11aへ供給される作動油の流れを制御するメータイン制御弁(ブームメータイン制御弁とも記す)41が設けられる。なお、メータイン制御弁41は、ブームシリンダ11aの負荷圧を保持するための逆止弁としての機能も有し、ポンプ吐出圧がシリンダ圧を下回った場合には全閉となる。アーム制御弁46のポンプポートに接続される通路(アーム制御弁46の上流側の通路)には、アームシリンダ12aへ供給される作動油の流れを制御するメータイン制御弁(アームメータイン制御弁とも記す)42が設けられる。なお、メータイン制御弁42は、アームシリンダ12aの負荷圧を保持するための逆止弁としての機能も有し、ポンプ吐出圧がシリンダ圧を下回った場合には全閉となる。
 メータイン制御弁41,42は、メインコントローラ100から電磁駆動部(ソレノイド)に供給される制御電流に応じて発生するソレノイド推力によって駆動され、制御電流に応じて開度(メータイン開口面積)が調整される電磁比例弁である。
 ブリードオフ通路Lbは、メータイン制御弁41,42の上流側において、ポンプ吐出通路から分岐するよう設けられている。ブリードオフ通路Lbには、ポンプ81から吐出される作動油をタンク19へ排出するブリードオフ弁18が設けられる。ブリードオフ弁18は、ブリードオフ通路Lbの開度を変化させることにより、ブリードオフ流量及びポンプ吐出圧の調整が可能とされている。
 ブリードオフ弁18は、メインコントローラ100から電磁駆動部(ソレノイド)に供給される制御電流に応じて発生するソレノイド推力によって駆動され、制御電流に応じて開度(ブリードオフ開口面積)が調整される電磁比例弁である。
 メインコントローラ100は、動作回路としてのCPU(Central Processing Unit)101、記憶装置としてのROM(Read Only Memory)102、記憶装置としてのRAM(Random Access Memory)103、入出力インタフェース104、及び、その他の周辺回路を備えたマイクロコンピュータで構成される。メインコントローラ100は、1つのマイクロコンピュータで構成してもよいし、複数のマイクロコンピュータで構成してもよい。エンジンコントローラ108もメインコントローラ100と同様の構成を有し、メインコントローラ100に接続され、相互に情報(データ)の授受を行う。
 ROM102は、EEPROM等の不揮発性メモリであり、各種演算が実行可能なプログラムが格納されている。すなわち、ROM102は、本実施形態の機能を実現するプログラムを読み取り可能な記憶媒体である。RAM103は揮発性メモリであり、CPU101との間で直接的にデータの入出力を行うワークメモリである。RAM103は、CPU101がプログラムを演算実行している間、必要なデータを一時的に記憶する。なお、メインコントローラ100は、フラッシュメモリ、ハードディスクドライブ等の記憶装置をさらに備えていてもよい。
 CPU101は、ROM102に記憶されたプログラムをRAM103に展開して演算実行する処理装置であって、プログラムに従って入出力インタフェース104及びROM102,RAM103から取り入れた信号に対して所定の演算処理を行う。入出力インタフェース104には、操作装置23,24、圧力センサ25~29、姿勢検出装置15、エンジンコントローラ108等からの信号が入力される。入出力インタフェース104の入力部は、入力された信号をCPU101で演算可能なデータに変換する。また、入出力インタフェース104の出力部は、CPU101での演算結果に応じた出力用の信号を生成し、その信号を方向制御弁45,46、メータイン制御弁41,42、ブリードオフ弁18及びレギュレータ81a等に出力する。
 姿勢検出装置15は、ブーム11、アーム12、バケット13及び旋回フレーム30のそれぞれに取り付けられているIMU(Inertial Measurement Unit:慣性計測装置)15a~15d、機体20に取り付けられている旋回角度センサ15e、及び、姿勢演算コントローラ15fを有している。なお、バケット13の姿勢を検出するためのIMU15cは、バケットリンク13bに取り付けられている(図1参照)。
 IMU15a,15b,15c,15dは、油圧ショベル1の姿勢に関する情報として、部材の直交3軸の角速度及び加速度を検出し、検出結果を姿勢演算コントローラ15fに出力する。旋回角度センサ15eは、油圧ショベル1の姿勢に関する情報として、旋回中心軸に直交する平面内における走行体2に対する旋回体3の相対角度である旋回角を検出し、検出結果を姿勢演算コントローラ15fに出力する。姿勢演算コントローラ15fは、IMU15a~15dでの検出結果、及び、旋回角度センサ15eでの検出結果に基づいて、ブーム角α、アーム角β、バケット角γ、車体傾斜角φ、及び、旋回角θを演算し、演算結果をメインコントローラ100に出力する。このように、姿勢検出装置15は、作業装置10及び機体20の姿勢を検出する機能を有している。
 図3は、油圧ショベル1における座標系(ショベル基準座標系)を示す図である。図3に示すように、ショベル基準座標系は、走行体2に対して設定される座標系である。ショベル基準座標系では、旋回体3の旋回中心軸がZ軸として設定される。ショベル基準座標系では、旋回体3の前後方向が走行体2の前後方向と一致している姿勢において、Z軸(旋回中心軸)及びブームピン11bに直交し、かつ、旋回中心軸及びブームピン11bの中心軸を通る軸がX軸として設定される。つまり、走行体2の前後方向に延在する軸がX軸として設定される。ショベル基準座標系では、X軸とZ軸のそれぞれに直交する軸がY軸として設定され、X軸、Y軸及びZ軸の交点が原点Oとして設定される。ブーム角αはX-Y平面に対するブーム11の傾斜角度であり、アーム角βはブーム11に対するアーム12の傾斜角度であり、バケット角γはアーム12に対するバケット13の傾斜角度であり、旋回角θは走行体2に対する旋回体3の回動角度である。また、車体傾斜角φは、水平面(基準面)に対する機体20(旋回体3)の傾斜角度、すなわち水平面(基準面)とX軸とのなす角である。
 図2に示すように、圧力センサ25は、ポンプ吐出圧(メイン回路HCの回路圧)を検出し、検出結果(ポンプ吐出圧)を表す信号をメインコントローラ100に出力する。圧力センサ26は、ブームシリンダ11aのボトム室の圧力(以下、ボトム圧、あるいはブームボトム圧とも記す)を検出し、検出結果を表す信号をメインコントローラ100に出力する。圧力センサ27は、ブームシリンダ11aのロッド室の圧力(以下、ロッド圧、あるいはブームロッド圧とも記す)を検出し、検出結果を表す信号をメインコントローラ100に出力する。圧力センサ28は、アームシリンダ12aのボトム室の圧力(以下、ボトム圧、あるいはアームボトム圧とも記す)を検出し、検出結果を表す信号をメインコントローラ100に出力する。圧力センサ29は、アームシリンダ12aのロッド室の圧力(以下、ロッド圧、あるいはアームロッド圧とも記す)を検出し、検出結果を表す信号をメインコントローラ100に出力する。
 メインコントローラ100は、操作装置23,24からの操作指令に基づいて、油圧シリンダ(11a,12a)の目標圧及び目標速度を演算し、油圧シリンダ(11a,12a)の目標速度に基づいて、油圧シリンダ(11a,12a)の目標流量を演算する。また、メインコントローラ100は、姿勢検出装置15の検出結果に基づいて、油圧シリンダ(11a,12a)の実速度を演算し、油圧シリンダ(11a,12a)の目標速度と実速度の乖離度合いとしての速度偏差比率を演算する。メインコントローラ100は、速度偏差比率が予め定められた所定値Rwよりも大きいときには、油圧シリンダ(11a,12a)の圧力を目標圧とするための圧力制御を実行することにより、油圧シリンダ(11a,12a)の急動作を防止しつつ、安定した加減速度で油圧シリンダ(11a,12a)を動作させる。また、メインコントローラ100は、速度偏差比率が予め定められた所定値Rwよりも小さいときには、油圧シリンダ(11a,12a)の流量を目標流量とするための流量制御を実行することにより、オペレータの意図する速度で油圧シリンダ(11a,12a)を動作させる。
 以下、図4~図24を参照して、メインコントローラ100の機能について、詳しく説明する。図4~図7は、メインコントローラ100の機能ブロック図である。図4は、メータイン目標圧、メータアウト目標圧、ポンプ目標圧及びアクチュエータ目標速度を演算するための機能、並びに圧力制御フラグを設定するための機能について示す。図5は、圧力制御用のメータイン制御弁指令値、方向制御弁指令値及びポンプ容積指令値を演算するための機能について示す。図6は、流量制御用の方向制御弁指令値、メータイン制御弁指令値及びポンプ容積指令値を演算するための機能について示す。図7は、方向制御弁指令、メータイン制御弁指令及びポンプ容積指令を生成するための機能について示す。メインコントローラ100は、ROM102に記憶されているプログラムを実行することにより、各種演算を行う演算部として機能する。
 具体的には、図4に示すように、メインコントローラ100は、慣性モーメント補正比率演算部C1、目標推力演算部C2、目標圧演算部C3、アクチュエータ目標速度演算部C4、アクチュエータ実速度演算部C18及び圧力制御フラグ設定部C5として機能する。また、図5に示すように、メインコントローラ100は、メータイン圧演算部C6、圧力制御用メータイン制御弁指令演算部C7、圧力制御用方向制御弁指令演算部C8及び圧力制御用ポンプ容積指令演算部C9として機能する。また、図6に示すように、メインコントローラ100は、ブリードオフ弁指令生成部C10、流量制御用方向制御弁指令演算部C11、アクチュエータ目標流量演算部C12、流量制御用メータイン制御弁指令演算部C13及び流量制御用ポンプ容積指令演算部C14として機能する。さらに、図7に示すように、メインコントローラ100は、方向制御弁指令生成部C15、メータイン制御弁指令生成部C16及びポンプ容積指令生成部C17として機能する。
 図8は、慣性モーメント補正比率演算部C1が行う演算処理の内容について示す図である。慣性モーメント補正比率演算部C1は、圧力センサ26~29で検出されたシリンダ圧(ブームボトム圧、ブームロッド圧、アームボトム圧及びアームロッド圧)、及び、姿勢検出装置15で検出された油圧ショベル1の姿勢情報(各部材の角度情報)に基づいて、慣性モーメント補正比率Crを演算する。
 図8に示すように、慣性モーメント補正比率演算部C1は、推力モーメント演算部O1a、重力モーメント演算部O1b、演算部O1c,O1d,O1e、慣性モーメント基準値演算部O1f、演算部O1g、判定部O1h、選択部O1i、ローパスフィルタ処理部O1j、及び演算部O1kとして機能する。推力モーメント演算部O1a、重力モーメント演算部O1b、演算部O1c,O1d,O1eは、シリンダ圧及び姿勢情報及びROM102に記憶されている情報に基づいて、慣性モーメント実測値Iaを演算する慣性モーメント実測値演算部O1zとして機能する。
 図9を参照して、運動方程式から慣性モーメント実測値Iaを算出する方法について説明する。図9は、運動方程式からブームピン11b回りの慣性モーメント実測値Iaを算出する方法について説明する図である。
 ブームシリンダ11aは、ロッドの端部がブーム11に対してロッド側ピンにより連結され、シリンダチューブの端部が旋回フレーム30に対してボトム側ピンにより連結されている。図9に示すように、ブームピン11bの中心点Obと、ブームシリンダ11aのロッド側ピンの中心点Aとを結ぶ直線である線分(OA)の長さをLa、ブームシリンダ11aの軸方向(中心軸方向)の推力をF、線分(OA)に直交する軸とブームシリンダ11aの中心軸とのなす角をΨaとする。また、ブームピン11bの中心点Obと、ブームピン11bを介して旋回フレーム30によって支持される作業装置10の重心位置Gとを結ぶ直線である線分(OG)の長さをLgとする。
 以上のように、各寸法を定義した場合、作業装置10に作用するブームシリンダ11aの推力Fによるブームピン11b回りの回転モーメント(以下、推力モーメントとも記す)Mfは、次式(1)により算出される。 
Figure JPOXMLDOC01-appb-M000001
 なお、ブームシリンダ11aの推力Fは、ボトム室のピストン受圧面積(シリンダ2本分の受圧面積)をSbot、ロッド室側のピストン受圧面積(シリンダ2本分の受圧面積)をSrod、ボトム室に作用する作動油の圧力(ボトム圧)をPbot、ロッド室に作用する作動油の圧力(ロッド圧)をProdとすると、次式(2)により算出される。
Figure JPOXMLDOC01-appb-M000002
 作業装置10に作用する重力によるブームピン11b回りの回転モーメント(以下、重力モーメントとも記す)Mgは、ブームピン11bを介して旋回フレーム30によって支持される作業装置10の質量をm、重力加速度をg、線分(OG)と直交する軸と鉛直軸(重力方向の軸)とのなす角をΨbとすると、次式(3)で表される。 
Figure JPOXMLDOC01-appb-M000003
 このため、ブームピン11b回りの回転の運動方程式は、ブームピン11b回りの慣性モーメントをI、ブーム11の角加速度をα″とすると、次式(4)となる。なお、作業装置10に外部からの荷重は働いていないものとする。
Figure JPOXMLDOC01-appb-M000004
 したがって、慣性モーメントIは、次式(5)で算出される。
Figure JPOXMLDOC01-appb-M000005
 メインコントローラ100のROM102には、上式(1)~(5)を演算するための、各種寸法データが予め記憶されている。
 式(1)のなす角Ψaは、姿勢検出装置15で演算されるブーム角α、及び、予めROM102に記憶されている寸法データに基づいて演算可能である。ROM102に記憶されている寸法データには、ブームピン11bと線分(OA)の長さLa、ブームピン11bとブームシリンダ11aのボトム側ピンの中心点Bとを結ぶ直線である線分(OB)の長さLb、線分(OB)とX軸とのなす角αt、ブームピン11bとアームピン12bとを結ぶ直線と線分(OA)とのなす角αuが含まれる。
 図8に示す推力モーメント演算部O1aは、例えば、長さLa,Lb,なす角αt,αu、及び姿勢検出装置15で検出されるブーム角αに基づいて、ブームシリンダ11aの長さ(シリンダ長)を演算し、線分(OA)と線分(AB)のなす角∠OABを演算し、90°から∠OABを減じることにより、Ψaを算出する。なお、シリンダ長を時間微分することにより、シリンダ速度が演算される。
 式(2)の推力Fは、圧力センサ26で検出されるボトム圧Pbot、圧力センサ27で検出されるロッド圧Prod、及び、予めROM102に記憶されている受圧面積Sbot,Srodに基づいて、演算可能である。
 推力モーメント演算部O1aは、圧力センサ26,27での検出結果、姿勢検出装置15での検出結果及びROM102に記憶されている各種データに基づき、式(1),(2)を用いることによって、推力モーメントMfを算出する。
 式(3)の長さLb及びなす角Ψb(すなわち、被駆動部材の合成重心の重心位置G)は、姿勢検出装置15で検出される各被駆動部材の角度α,β,γ、並びに、予めROM102に記憶されているブーム11、アーム12及びバケット13のそれぞれの重心位置、質量及び長さに基づいて演算可能である。
 重力モーメント演算部O1bは、姿勢検出装置15での検出結果及びROM102に記憶されている各種データに基づき、式(3)を用いることによって、重力モーメントMgを算出する。
 演算部O1cは、推力モーメント演算部O1aでの演算結果である推力モーメントMfに、重力モーメント演算部O1bでの演算結果である重力モーメントMgを加算する。すなわち、演算部O1cは、式(4)に基づく演算を行う。
 演算部O1dは、姿勢検出装置15での検出結果に基づき、ブーム11の角加速度α″を演算する。角加速度α″は、ブーム角αを時間で2階微分することにより演算される。演算部O1dは、姿勢検出装置15によって検出されるブーム角αを所定の制御周期で繰り返し、取得している。このため、演算部O1dは、所定の制御周期で繰り返し検出されるブーム角αの前回値αaと今回値αbとの差(αb-αa)を前回値αaを検出した時刻taから今回値αbを検出した時刻tbまでの時間Δt(=tb-ta)で除することにより、ブーム角αの時間変化率であるブーム角速度α′(=(αb-αa)/(tb-ta))を算出する。さらに、演算部O1dは、同様に、ブーム角速度α′の前回値と今回値とからブーム角速度α′の時間変化率であるブーム角加速度α″を算出する。
 演算部O1eは、演算部O1cでの演算結果を演算部O1dでの演算結果で除算することにより、慣性モーメントIの実測値(慣性モーメント実測値Ia)を演算する。すなわち、演算部O1eは、式(5)に基づく演算を行う。なお、演算部O1eは、角加速度α″が0(ゼロ)の場合には、例えば、予め定められている最小値で置き換えることにより、ゼロ割防止対策を行う。
 このようにして得られた慣性モーメント実測値Iaは、バケット13内の積載状況、掘削作業中の地山からの反力などの外的負荷の影響がある場合には、後述するバケット13が空荷の状態のときの慣性モーメント(慣性モーメント基準値Ib)とは異なる値となる。
 慣性モーメント基準値演算部O1fは、姿勢情報及びROM102に記憶されている情報に基づいて、慣性モーメント基準値Ibを演算する。慣性モーメント基準値Ibは、バケット13が空荷の状態であって所定の姿勢で動いていないときの作業装置10の慣性モーメントであり、作業装置10の姿勢に基づいて算出される。
 図10を参照して、慣性モーメント基準値Ibを算出する方法について説明する。図10は、慣性モーメント基準値Ibを算出する方法について説明する図である。慣性モーメント基準値Ibは、ブーム11のブームピン11bの中心点Ob回りのモーメントをI1、アーム12のブームピン11bの中心点Ob回りのモーメントをI2、バケット13のブームピン11bの中心点Ob回りのモーメントをI3とすると、次式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 モーメントI1,I2,I3は、ブーム11の重心回りの慣性モーメントをIg1、アーム12の重心回りの慣性モーメントIg2と、ブーム11の質量をm1、アーム12の質量をm2、バケット13の質量をm3、ブームピン11bの中心点Obからのブーム11の重心G1までの距離をLg1、ブームピン11bの中心点Obからアーム12の重心G2までの距離をLg2、ブームピン11bの中心点Obからバケット13の重心G3までの距離をLg3とすると、次式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
 式(7)の距離Lg1,Lg2,Lg3は、姿勢検出装置15で検出される各被駆動部材の角度α,β,γ、並びに、予めROM102に記憶されているブームピン11bからブーム11の重心位置G1までの距離、アームピン12bからアーム12の重心位置G2までの距離及びバケットピン13bからバケット13の重心位置G3までの距離に基づいて演算可能である。
 慣性モーメント基準値演算部O1fは、姿勢検出装置15での検出結果及びROM102に記憶されている各種データに基づき、式(6),(7)を用いることによって、慣性モーメント基準値Ibを演算する。
 演算部O1gは、演算部O1dでの演算結果である角加速度α″の絶対値を演算する。判定部O1hは、演算部O1gでの演算結果|α″|が予め設定されている閾値Th1よりも大きいか否かを判定する。選択部O1iは、判定部O1hで肯定判定されると、すなわち角加速度の絶対値|α″|が閾値Th1よりも大きいと判定されると、慣性モーメント実測値Iaを選択し、ローパスフィルタ処理部O1jに出力する。選択部O1iは、判定部O1hで否定判定されると、すなわち角加速度の絶対値|α″|が閾値Th1以下であると判定されると、慣性モーメント基準値Ibを選択し、ローパスフィルタ処理部O1jに出力する。
 ローパスフィルタ処理部O1jは、選択部O1iからの出力にローパスフィルタ処理を行い、慣性モーメント推定値Ieとして出力する。演算部O1kは、慣性モーメント推定値Ieを慣性モーメント基準値Ibで除算することにより、慣性モーメント補正比率Crを演算する。
 このように、慣性モーメント補正比率演算部C1は、シリンダ圧及び姿勢情報に基づいて、慣性モーメント補正比率Crを演算する。なお、ブームピン11b回りの慣性モーメント補正比率Crの演算を例に説明したが、アームピン12b回りの慣性モーメント補正比率Cr、バケットピン13b回りの慣性モーメント補正比率Crについても同様の演算が行われる。
 図11は、目標推力演算部C2が行う演算処理の内容について示す図である。目標推力演算部C2は、操作信号、姿勢情報、並びに、慣性モーメント補正比率演算部C1で演算された慣性モーメント補正比率Cr及び作業装置10の重力モーメントMgに基づいて、油圧シリンダの目標推力を演算する。なお、以下では、ブームシリンダ11aに対する目標推力の演算方法を一例に説明する。
 目標推力演算部C2は、演算部O2a,O2b,O2c,O2d,O2e,O2f、最小値選択部O2g、演算部O2h、判定部O2i、選択部O2j、演算部O2k、及び推力成分演算部O2lとして機能する。ROM102は、操作信号と最大トルクとが対応付けられた最大トルクテーブルT2a及び操作信号と加速トルク目標値とが対応付けられた加速トルクテーブルT2bが記憶されている。
 最大トルクテーブルT2aは、操作レバー23aの操作量の絶対値が大きくなるほど、最大トルクの絶対値が大きくなる特性である。演算部O2aは、最大トルクテーブルT2aを参照し、ブーム操作装置23から入力される操作信号に基づいて、最大トルクを演算する。最大トルクは、押し当て時などで作業装置10が止まっている状態でのトルクの最大値である。
 加速トルクテーブルT2bは、操作レバー23aの操作量の絶対値が大きくなるほど、加速トルク目標値の絶対値が大きくなる特性である。演算部O2aは、加速トルクテーブルT2bを参照し、ブーム操作装置23から入力される操作信号に基づいて、加速トルク目標値を演算する。加速トルク目標値は、空中などで作業装置10を動作させた場合の加速トルクの目標値である。
 演算部O2cは、ブームピン11b回りの慣性モーメント補正比率Crから1を減算し、演算部O2dは、演算部O2cでの演算結果にゲインGmを乗算する。演算部O2eは、演算部O2dでの演算結果に1を加算し、トルク調整ゲインを演算する。ゲインGmは、0(ゼロ)から1までの値であり(0≦Gm≦1)、予めROM102に記憶されている。
 演算部O2fは、演算部O2bでの演算結果である加速トルク目標値に、演算部O2eでの演算結果であるトルク調整ゲインを乗算することにより、補正加速トルク目標値を演算する。これにより、慣性モーメント実測値Iaが慣性モーメント基準値Ibに比べて大きい場合には加速トルクの大きさが大きくなるように補正され、慣性モーメント実測値Iaが慣性モーメント基準値Ibに比べて小さい場合には加速トルクの大きさが小さくなるように補正される。慣性モーメント実測値Iaと慣性モーメント基準値Ibとが同じ値である場合には、加速トルク目標値には1が乗算されることにより、補正加速トルク目標値が演算される(加速トルク目標値=補正加速トルク目標値)。
 なお、ゲインGmは、タッチパネル等の入力装置(不図示)に対するオペレータの操作によって変更できるようにしてもよい。ゲインGmが0に設定された場合、慣性モーメント実測値Iaと慣性モーメント基準値Ibとが異なる場合であっても、加速トルク目標値には1が乗算される。つまり、慣性モーメント補正比率に応じた加速トルク目標値の補正が行われないこととなる。ゲインGmが大きくなるほど、慣性モーメント補正比率による加速トルク目標値の補正の影響が大きくなる。オペレータは、入力装置を用いてゲインGmの大きさを設定することにより、アクチュエータの加速度の大きさを調整することができる。
 最小値選択部O2gは、演算部O2aで演算された最大トルクと、演算部O2fでの演算結果である補正加速トルク目標値(加速トルク目標値×トルク調整ゲイン)のうちで小さい方を選択する。
 演算部O2hは、ブームシリンダ11aの操作信号(操作レバー23aの操作量)の絶対値を演算する。判定部O2iは、操作信号の絶対値が予め設定されている閾値Th2よりも大きいか否かを判定する。選択部O2jは、判定部O2iで肯定判定されると、すなわち操作信号の絶対値が閾値Th2よりも大きいと判定されると、最小値選択部O2gで選択された最小値を選択する。選択部O2jは、判定部O2iで否定判定されると、すなわち操作信号の絶対値が閾値Th2以下であると判定されると、0(ゼロ)を選択する。
 演算部O2kは、選択部O2jで選択された値から作業装置10の重力モーメントMgを減算することにより、ブーム目標トルクを演算する。つまり、演算部O2kは、作業装置10に作用する重力による回転モーメントMgを打ち消す方向のトルクを選択部O2jで選択された値に加算することにより、目標トルクを演算する。推力成分演算部O2lは、演算部O2kで演算されたブーム目標トルク、姿勢情報及びROM102に記憶されている寸法データに基づいて、ブームシリンダ11aの軸方向の推力成分を目標推力として演算する。つまり、推力成分演算部O2lは、ブーム目標トルクを発生させるために必要なブームシリンダ11aの推力をブームシリンダ11aの目標推力として演算する。
 このように、目標推力演算部C2は、操作信号、姿勢情報、慣性モーメント補正比率Cr及び重力モーメントMgに基づいて、目標推力を演算する。なお、ブームシリンダ11aの目標推力の演算を例に説明したが、アームシリンダ12aの目標推力、及びバケットシリンダ13aの目標推力についても同様の演算が行われる。
 図12及び図13は、目標圧演算部C3が行う演算処理の内容について示す図である。図12は、メータイン目標圧及びメータアウト目標圧を演算するための処理について示し、図13は、ポンプ目標圧を演算するための処理について示す。図12に示すように、目標圧演算部C3は、油圧シリンダの目標推力及び操作信号に基づいて、メータイン目標圧及びメータアウト目標圧を演算する。以下では、ブームシリンダ11aの目標推力及び操作信号に基づいて、ブームシリンダ11aのメータイン目標圧及びメータアウト目標圧を演算する例を代表して説明する。
 目標圧演算部C3は、演算部O3a,O3b、判定部O3c、選択部O3d,O3e、最大値選択部O3f,O3gとして機能する。
 演算部O3aは、目標推力演算部C2で演算されたブームシリンダ11aの目標推力に(1/Sbot)を乗算し、ボトム側目標圧を演算する。演算部O3bは、目標推力演算部C2で演算されたブームシリンダ11aの目標推力に(-1/Srod)を乗算し、ロッド側目標圧を演算する。
 判定部O3cは、ブームシリンダ11aの操作信号に基づき、ブーム操作量が正の値であるか否かを判定する。選択部O3dは、ブーム操作量が正の値である場合、ボトム側目標圧を選択し、ブーム操作量が正の値でない場合、ロッド側目標圧を選択する。選択部O3eは、ブーム操作量が正の値である場合、ロッド側目標圧を選択し、ブーム操作量が負の値である場合、ボトム側目標圧を選択する。
 最大値選択部O3fは、選択部O3dで選択された目標圧と予めROM102に記憶されている所定値P1(例えば、1MPa程度)とを比較し、大きい方を選択し、選択した値をメータイン目標圧として決定する。最大値選択部O3gは、選択部O3eで選択された目標圧と0(ゼロ)とを比較し、大きい方を選択し、選択した値をメータアウト目標圧として決定する。
 このように、目標圧演算部C3は、操作信号及び目標推力に基づいて、油圧シリンダのメータイン目標圧及びメータアウト目標圧を演算する。例えば、ブームシリンダ11aを伸長方向に加速動作させるように操作レバー23aが最大操作位置に操作されると、目標推力演算部C2によって正の値の目標推力が演算され、判定部O3cで肯定判定される。このため、選択部O3dは、正の値の目標推力に(1/Sbot)が乗算されたボトム側目標圧を選択する。したがって、最大値選択部O3fは、選択部O3dで選択されたボトム側目標圧をメータイン目標圧として選択する。なお、選択部O3eは、正の値の目標推力に(-1/Srod)が乗算されたロッド側目標圧を選択するが、選択された値は0(ゼロ)よりも小さい値であるので、最大値選択部O3gは、0(ゼロ)をメータアウト目標圧として選択する。
 なお、ブームリンダ11aのメータイン目標圧及びメータアウト目標圧の演算を例に説明したが、アームシリンダ12aのメータイン目標圧及びメータアウト目標圧、バケットシリンダ13aのメータイン目標圧及びメータアウト目標圧についても同様の演算が行われる。
 図13に示すように、目標圧演算部C3は、最大値選択部O3hとしても機能する。最大値選択部O3hは、最大値選択部O3fで演算された各油圧シリンダのメータイン目標圧のうちで最も大きいものを選択し、選択したメータイン目標圧をポンプ目標圧として決定する。
 図14は、アクチュエータ目標速度演算部C4が行う演算処理の内容について示す図である。アクチュエータ目標速度演算部C4は、各アクチュエータの操作信号に基づき、各アクチュエータの目標速度を演算する。以下では、ブームシリンダ(アクチュエータ)11aの操作信号に基づき、ブームシリンダ(アクチュエータ)11aの目標速度を演算する例を代表して説明する。
 図14に示すように、アクチュエータ目標速度演算部C4は、ブームシリンダ11aの操作信号に基づいて、ブームシリンダ11aの目標速度を演算する。ROM102には、操作信号とブームシリンダ11aの目標速度とが対応付けられたテーブルT4が記憶されている。テーブルT4は、操作レバー23aの操作量の絶対値が大きくなるほど、目標速度の絶対値が大きくなる特性である。
 アクチュエータ目標速度演算部C4は、テーブルT4を参照し、ブーム操作装置23から入力される操作信号に基づいて、ブームシリンダ11aの目標速度を演算する。なお、目標速度は、正の場合にはブームシリンダ11aの伸長方向の目標速度を表し、負の場合にはブームシリンダ11aの収縮方向の目標速度を表している。
 なお、図示しないが、アクチュエータ目標速度演算部C4は、アームシリンダ12a、バケットシリンダ13a、走行用油圧モータ2a及び旋回用油圧モータ3aの目標速度も演算する。
 図15は、圧力制御フラグ設定部C5が行う演算処理の内容について示す図である。圧力制御フラグ設定部C5は、アクチュエータ目標速度及び実速度に基づいて、圧力制御フラグをオンまたはオフに設定する。以下では、ブームシリンダ(アクチュエータ)11aの目標速度及び実速度に基づき、ブームシリンダ(アクチュエータ)11aの圧力制御フラグを設定する例を代表して説明する。
 なお、ブームシリンダ11aの実速度は、図4に示すアクチュエータ実速度演算部C18によって演算される。アクチュエータ実速度演算部C18は、姿勢検出装置15で検出された姿勢情報に基づいて、ブームシリンダ11a、アームシリンダ12a及びバケットシリンダ13aの実速度を演算する。例えば、アクチュエータ実速度演算部C18は、図9に示す線分(OA)の長さLa、線分(OB)の長さLb、姿勢検出装置15で検出されたブーム角α、及び、なす角αt,αuに基づいて、ブームシリンダ11aの実速度を演算する。
 図15に示すように、圧力制御フラグ設定部C5は、演算部O5a,O5b,O5e、最大値選択部O5f、演算部O5g、判定部O5h、及び選択部O5iとして機能する。
 演算部O5aは、ブームシリンダ11aの目標速度から実速度を減算して、シリンダ速度差を演算する。演算部O5bは、演算部O5aで演算されたシリンダ速度差の絶対値を演算する。演算部O5eは、ブームシリンダ11aの目標速度の絶対値を演算する。最大値選択部O5fは、演算部O5eで演算されたブームシリンダ11aの目標速度の絶対値と、予めROM102に記憶されているシリンダ最小速度Vminとを比較し、大きい方を選択する。なお、シリンダ最小速度Vminは、油圧シリンダがほぼ停止しているとみなせる速度であり、例えば5[mm/s]程度の値が設定される。
 演算部O5gは、演算部O5bで演算されたシリンダ速度差の絶対値を最大値選択部O5fで選択された値で除算することにより、速度偏差比率を演算する。速度偏差比率は、ブームシリンダ11aの目標速度と実速度の乖離度合いを表す指標であり、数値が大きいほど、目標速度と実速度とが乖離していることを表す。判定部O5hは、速度偏差比率が予めROM102に記憶されている所定値Rwよりも大きいか否かを判定する。所定値Rwは、予め定められた閾値であり、例えば、0.2程度の値が設定される。この場合、判定部O5hは、ブームシリンダ11aの目標速度に対する実速度の速度偏差が20%を超えているか否かを判定する判定処理を実行しているといえる。
 選択部O5iは、判定部O5hで肯定判定されると、すなわち速度偏差比率が所定値Rwよりも大きいと判定されると、圧力制御フラグをオンに設定する。選択部O5iは、判定部O5hで否定判定されると、すなわち速度偏差比率が所定値Rw以下であると判定されると、圧力制御フラグをオフに設定する。圧力制御フラグは、後述するように、油圧シリンダの制御方法を圧力制御または流量制御に切り替えるためのフラグである。後述するように、圧力制御フラグがオンに設定されると、メインコントローラ100は、油圧シリンダ(11a,12a)の圧力(メータイン圧力及びメータアウト圧力)を目標圧(メータイン目標圧及びメータアウト目標圧)とするための圧力制御を実行する。また、圧力制御フラグがオフに設定されると、メインコントローラ100は、油圧シリンダ(11a,12a)に供給される流量を目標流量とするための流量制御を実行する。
 図16は、メータイン圧演算部C6が行う演算処理の内容について示す図である。メータイン圧演算部C6は、シリンダ圧に基づいて、各油圧シリンダの実メータイン圧及び複数の実メータイン圧のうちの最大値である実メータイン最大圧を演算する。
 図16に示すように、メータイン圧演算部C6は、判定部O6a、選択部O6b及び最大値選択部O6cとして機能する。判定部O6aは、ブームシリンダ11aの操作信号に基づき、ブーム操作量が正の値であるか否かを判定する。選択部O6bは、ブーム操作量が正の値である場合、圧力センサ26で検出されたブームボトム圧を実ブームメータイン圧として選択し、ブーム操作量が正の値でない場合、圧力センサ27で検出されたブームロッド圧を実ブームメータイン圧として選択する。なお、図示は省略するが、同様の処理により、圧力センサ28で検出されたアームボトム圧及び圧力センサ29で検出されたアームロッド圧のいずれかが実アームメータイン圧として選択され、バケットシリンダ13aのボトム圧及びロッド圧のいずれかが実バケットメータイン圧として選択される。
 最大値選択部O6cは、実ブームメータイン圧、実アームメータイン圧及び実バケットメータイン圧のうち、最も大きいものを選択し、選択したものを実メータイン最大圧として決定する。
 図17は、圧力制御用メータイン制御弁指令演算部C7が行う演算処理の内容について示す図である。圧力制御用メータイン制御弁指令演算部C7は、実メータイン圧及びメータイン目標圧に基づいて、圧力制御用メータイン制御弁指令値を演算する。以下では、ブームシリンダ11aの実メータイン圧及びメータイン目標圧に基づき、ブームシリンダ11aの圧力制御用メータイン制御弁指令値を演算する例を代表して説明する。
 図17に示すように、圧力制御用メータイン制御弁指令演算部C7は、演算部O7a,O7b,O7cとして機能する。演算部O7aは、ブームシリンダ11aの実メータイン圧からブームシリンダ11aのメータイン目標圧を減算することにより、メータイン圧力偏差を演算する。
 演算部O7bは、メータイン圧力偏差に基づいて、メータイン制御弁41の目標開口面積を演算する。ROM102には、メータイン圧力偏差とメータイン制御弁41の目標開口面積とが対応づけられたテーブルT7bが記憶されている。テーブルT7bは、メータイン圧力偏差が0(ゼロ)以上の場合には、目標開口面積が最小値Aimin(>0)となり、メータイン圧力偏差が0(ゼロ)未満の場合には、目標開口面積が最大値Aimax(>Aimin)となる特性である。演算部O7bは、テーブルT7bを参照し、メータイン圧力偏差に基づいて、メータイン制御弁41の目標開口面積を演算する。
 演算部O7cは、ROM102に記憶されている電流変換テーブルT7cを参照し、メータイン制御弁41の目標開口面積に基づいて、メータイン制御弁41の電磁駆動部(ソレノイド)に供給する制御電流の目標値を圧力制御用メータイン制御弁指令値として演算する。
 なお、圧力制御用メータイン制御弁指令演算部C7は、アームシリンダ12aのメータイン制御弁42及びバケットシリンダ13aのメータイン制御弁(不図示)に対する圧力制御用メータイン制御弁指令値も演算する。
 図18は、圧力制御用方向制御弁指令演算部C8が行う演算処理の内容について示す図である。圧力制御用方向制御弁指令演算部C8は、シリンダ圧、操作信号、目標圧演算部C3で演算されたメータアウト目標圧及び目標推力演算部C2で演算された目標推力に基づいて、圧力制御用方向制御弁指令値を演算する。以下では、ブームシリンダ11aのシリンダ圧(ロッド圧及びボトム圧)、操作信号及びメータアウト目標圧に基づき、ブームシリンダ11aの圧力制御用方向制御弁指令値を演算する例を代表して説明する。
 図18に示すように、圧力制御用方向制御弁指令演算部C8は、演算部O8a,O8b,O8c,O8d、判定部O8e,O8f、選択部O8g,O8h、及び演算部O8i,O8jとして機能する。
 演算部O8aは、メータアウト目標圧からブームロッド圧を減算することにより、メータアウト圧力偏差を演算する。演算部O8bは、メータアウト目標圧からブームボトム圧を減算することにより、メータアウト圧力偏差を演算する。
 演算部O8c,O8dは、メータアウト圧力偏差に基づいて、方向制御弁45の目標開口面積を演算する。ROM102には、メータアウト圧力偏差と方向制御弁45の目標開口面積とが対応づけられたテーブルT8c,T8dが記憶されている。テーブルT8c,T8dは、メータアウト圧力偏差が0(ゼロ)以上の場合には、目標開口面積が最小値Aomin(>0)となり、メータアウト圧力偏差が0(ゼロ)未満の場合には、目標開口面積が最大値Aomax(>Aomin)となる特性である。演算部O8c,O8dは、テーブルT8c,T8dを参照し、メータアウト圧力偏差に基づいて、方向制御弁45の目標開口面積を演算する。
 判定部O8eは、ブーム操作量が正の値であり、かつ、ブームシリンダ11aの目標推力が正の値であるか否かを判定する。判定部O8fは、ブーム操作量が負の値であり、かつ、ブームシリンダ11aの目標推力が負の値であるか否かを判定する。
 選択部O8gは、判定部O8eで肯定判定されると、すなわちブーム操作量が正の値であり、かつ、ブームシリンダ11aの目標推力が正の値であると判定されると、予めROM102に記憶されている最大値Aomaxを目標開口面積として選択する。選択部O8gは、判定部O8eで否定判定されると、すなわちブーム操作量が正の値でない、あるいは、ブームシリンダ11aの目標推力が正の値でないと判定されると、演算部O8cで演算された目標開口面積を選択する。
 選択部O8hは、判定部O8fで肯定判定されると、すなわちブーム操作量が負の値であり、かつ、ブームシリンダ11aの目標推力が負の値であると判定されると、予めROM102に記憶されている最大値Aomaxを目標開口面積として選択する。選択部O8hは、判定部O8fで否定判定されると、すなわちブーム操作量が負の値でない、あるいは、ブームシリンダ11aの目標推力が負の値でないと判定されると、演算部O8dで演算された目標開口面積を選択する。
 演算部O8iは、ROM102に記憶されている電流変換テーブルT8iを参照し、選択部O8gで選択された方向制御弁45の目標開口面積に基づいて、方向制御弁45をシリンダ伸長側に駆動させるための電磁弁45aのソレノイドに供給する制御電流の目標値を圧力制御用方向制御弁指令値として演算する。なお、演算部O8iは、ブームシリンダ11aが伸長側に操作された場合にのみ、テーブルT8iに基づいて制御電流を演算する。演算部O8iは、ブームシリンダ11aが収縮側に操作された場合には、テーブルT8iに基づいた演算を行わず、制御電流を最小値(待機電流)に設定する。
 演算部O8jは、ROM102に記憶されている電流変換テーブルT8jを参照し、選択部O8hで選択された方向制御弁45の目標開口面積に基づいて、方向制御弁45をシリンダ収縮側に駆動させるための電磁弁45bのソレノイドに供給する制御電流の目標値を圧力制御用方向制御弁指令値として演算する。なお、演算部O8jは、ブームシリンダ11aが収縮側に操作された場合にのみ、テーブルT8jに基づいて制御電流を演算する。演算部O8jは、ブームシリンダ11aが伸長側に操作された場合には、テーブルT8jに基づいた演算を行わず、制御電流を最小値(待機電流)に設定する。
 なお、圧力制御用方向制御弁指令演算部C8は、アームシリンダ12aの方向制御弁45及びバケットシリンダ13aの方向制御弁(不図示)に対する圧力制御用方向制御弁指令値も演算する。
 図19は、圧力制御用ポンプ容積指令演算部C9が行う演算処理の内容について示す図である。圧力制御用ポンプ容積指令演算部C9は、ポンプ目標圧及び実ポンプ吐出圧に基づいて、圧力制御用ポンプ容積指令値を演算する。
 図19に示すように、圧力制御用ポンプ容積指令演算部C9は、演算部O9a,O9bとして機能する。演算部O9aは、ポンプ目標圧から実ポンプ吐出圧を減算することにより、ポンプ圧力偏差を演算する。
 演算部O9bは、ポンプ圧力偏差に基づいて、ポンプ81の吐出容量を演算する。ROM102には、ポンプ圧力偏差とポンプ81の吐出容量とが対応づけられたテーブルT9bが記憶されている。テーブルT9bは、ポンプ圧力偏差が0(ゼロ)未満の場合には、吐出容量が最小値qmin(>0)となり、ポンプ圧力偏差が0(ゼロ)以上の場合には、吐出容量が最大値qmax(>qmin)となる特性である。演算部O9bは、テーブルT9bを参照し、ポンプ圧力偏差に基づいて、ポンプ81の吐出容量を圧力制御用ポンプ容積指令値として演算する。
 図20は、ブリードオフ弁指令生成部C10が行う演算処理の内容について示す図である。図20に示すように、ブリードオフ弁指令生成部C10は、アクチュエータの操作信号に基づいて、ブリードオフ弁18の電磁駆動部(ソレノイド)に供給される制御電流を制御するためのブリードオフ弁指令を生成する。
 ブリードオフ弁指令生成部C10は、演算部O10a、最小値選択部O10b及び演算部O10cとして機能する。ROM102には、アクチュエータの操作信号(ブームシリンダ11aの操作信号、アームシリンダ12aの操作信号等)とブリードオフ弁18の操作要求開口面積とが対応付けられたテーブルT10a1,T10a2が記憶されている。演算部O10aは、各アクチュエータのそれぞれに対応する操作信号に基づき、操作要求開口面積を演算する。以下では、ブームシリンダ11aの操作信号に基づき、操作要求開口面積を演算する例を代表して説明する。
 演算部O10aは、ブームシリンダ11aの操作信号に基づいて、ブリードオフ弁18の操作要求開口面積を演算する。テーブルT10a1は、操作レバー23aの操作量の絶対値が大きくなるほど、操作要求開口面積が小さくなる特性である。本実施形態では、操作レバー23aが中立位置を含む不感帯に位置しているときには、操作要求開口面積が最大開口面積となるように設定されている。
 演算部O10aは、テーブルT10a1を参照し、ブーム操作装置23から入力される操作信号に基づいて、操作要求開口面積を演算する。また、演算部O10aは、テーブルT10a2を参照し、アーム操作装置24から入力される操作信号に基づいて、操作要求開口面積を演算する。さらに、図示しないが、演算部O10aは、バケットシリンダ13aの操作信号、走行用油圧モータ2aの操作信号及び旋回用油圧モータ3aの操作信号に基づいて、操作要求開口面積を演算する。
 最小値選択部O10bは、演算部O10aで演算された複数の操作要求開口面積のうち、最も小さいものを選択し、選択したものをブリードオフ弁18の目標開口面積Atとして設定する。最小値選択部O10bは、ブリードオフ弁18の目標開口面積Atを演算部O10cに出力する。なお、最小値選択部O10bは、ブリードオフ弁18の目標開口面積Atを流量制御用ポンプ容積指令演算部C14にも出力する(図8参照)。
 演算部O10cは、ROM102に記憶されている電流変換テーブルT10cを参照し、最小値選択部O10bから入力された目標開口面積Atに基づいて、ブリードオフ弁18の電磁駆動部(ソレノイド)に供給する制御電流の目標値を演算する。演算部O10cは、ブリードオフ弁18の電磁駆動部に供給される制御電流を目標値に制御するためのブリードオフ弁指令を生成し、生成したブリードオフ弁指令を電流制御部(不図示)に出力する。電流制御部は、ブリードオフ弁指令に基づいて、ブリードオフ弁18の電磁駆動部に供給される制御電流が、目標値となるように制御電流を制御する。
 図21は、流量制御用方向制御弁指令演算部C11が行う演算処理の内容について示す図である。図21に示すように、流量制御用方向制御弁指令演算部C11は、方向制御弁45,46を駆動させる電磁弁45a,45b,46a,46bに供給される制御電流の目標値を演算する。流量制御用方向制御弁指令演算部C11は、ROM102に記憶されているテーブルT11aを参照し、アクチュエータ(ブームシリンダ11a、アームシリンダ12a)の操作信号に基づいて、電磁弁45a,46aに供給する制御電流の目標値を流量制御用方向制御弁指令値として演算する。流量制御用方向制御弁指令演算部C11は、ROM102に記憶されているテーブルT11bを参照し、アクチュエータ(ブームシリンダ11a、アームシリンダ12a)の操作信号に基づいて、電磁弁45b,46bに供給する制御電流の目標値を流量制御用方向制御弁指令値として演算する。
 図22は、アクチュエータ目標流量演算部C12が行う演算処理の内容について示す図である。アクチュエータ目標流量演算部C12は、各アクチュエータのそれぞれに対応する情報(目標速度及び操作信号)に基づき、アクチュエータの目標流量を演算する。以下では、ブームシリンダ11aの目標速度及び操作信号に基づき、ブームシリンダ11aの目標流量を演算する例を代表して説明する。
 図22に示すように、アクチュエータ目標流量演算部C12は、乗算部O12a,O12b、判定部O12c及び選択部O12dとして機能する。
 乗算部O12aは、アクチュエータ目標速度演算部C4で演算されたブームシリンダ11aの目標速度(正の値)に(Sbot)を乗算し、ボトム側流入目標流量を演算する。乗算部O12bは、アクチュエータ目標速度演算部C4で演算されたブームシリンダ11aの目標速度(負の値)に(-Srod)を乗算し、ロッド側流入目標流量を演算する。
 判定部O12cは、ブームシリンダ11aの操作信号に基づき、ブーム操作量が正の値であるか否かを判定する。判定部O12cは、ブーム操作量が正の値である場合、ボトム側流入目標流量をブームシリンダ11aの目標流量として決定する。判定部O12cは、ブーム操作量が正の値でない場合、ロッド側流入目標流量をブームシリンダ11aの目標流量として決定する。
 なお、アクチュエータ目標流量演算部C12は、アームシリンダ12aの操作信号及び目標速度、バケットシリンダ13aの操作信号及び目標速度、走行用油圧モータ2aの操作信号及び目標速度、並びに、旋回用油圧モータ3aの操作信号及び目標速度に基づいて、それぞれの目標流量を演算する。
 図23は、流量制御用メータイン制御弁指令演算部C13が行う演算処理の内容について示す図である。図23に示すように、流量制御用メータイン制御弁指令演算部C13は、アクチュエータ目標流量演算部C12で演算された目標流量、圧力センサ25で検出されるポンプ吐出圧、メータイン圧演算部C6で演算された実メータイン圧及び実メータイン最大圧に基づいて、流量制御用メータイン制御弁指令値を演算する。以下では、ブームシリンダ11aの目標流量及び実メータイン圧及び実メータイン最大圧、並びにポンプ吐出圧に基づき、ブームシリンダ11aのメータイン制御弁41に対する流量制御用メータイン制御弁指令値を演算する例を代表して説明する。
 流量制御用メータイン制御弁指令演算部C13は、演算部O13a,O13b,O13c,O13d,O13e,判定部O13f、選択部O13g、演算部O13hとして機能する。
 演算部O13aは、実メータイン最大圧から実メータイン圧を減算する。演算部O13bは、ポンプ吐出圧から実メータイン圧を減算する。演算部O13cは、演算部O13bでの演算結果の平方根をとる。演算部O13dは、演算部O13cでの演算結果にROM102に記憶されている流量係数cを乗算する。演算部O13eは、ブームシリンダ11aの目標流量から演算部O13dでの演算結果を除算し、メータイン制御弁41の目標開口面積を演算する。
 判定部O13fは、演算部O13aでの演算結果である実メータイン最大圧と実メータイン圧との差が0よりも大きいか否かを判定する。選択部O13gは、判定部O13fで肯定判定されると、すなわち実メータイン最大圧と実メータイン圧との差が0よりも大きいと判定されると、演算部O13eで演算された目標開口面積を選択する。選択部O13gは、判定部O13fで否定判定されると、すなわち実メータイン最大圧と実メータイン圧との差が0以下であると判定されると、ROM102に予め記憶されている最大値Aimaxを目標開口面積として選択する。
 演算部O13hは、ROM102に記憶されている電流変換テーブルT7cを参照し、選択部O13gで選択されたメータイン制御弁41の目標開口面積に基づいて、メータイン制御弁41の電磁駆動部(ソレノイド)に供給する制御電流の目標値を流量制御用メータイン制御弁指令値として演算する。
 なお、流量制御用メータイン制御弁指令演算部C13は、アームシリンダ12aのメータイン制御弁42及びバケットシリンダ13aのメータイン制御弁(不図示)に対する流量制御用メータイン制御弁指令値も演算する。
 図24は、流量制御用ポンプ容積指令演算部C14が行う演算処理の内容について示す図である。図24に示すように、流量制御用ポンプ容積指令演算部C14は、ポンプ81の吐出容量を制御するレギュレータ81aに出力するポンプ容積指令を生成する。流量制御用ポンプ容積指令演算部C14は、積算部O14a、演算部O14b、乗算部O14c,O14d、加算部O14e、除算部O14fとして機能する。
 積算部O14aは、アクチュエータ目標流量演算部C12で演算された各アクチュエータ(ブームシリンダ11a、アームシリンダ12a等)の目標流量を積算し、目標流量合計値を算出する。演算部O14bは、圧力センサ25で検出されたポンプ吐出圧Pの平方根をとる。乗算部O14cは、演算部O14bでの演算結果(ポンプ吐出圧Pの平方根)にブリードオフ弁指令生成部C10で演算されたブリードオフ弁18の目標開口面積Atを乗算する。乗算部O14dは、乗算部O14cでの演算結果にROM102に記憶されている流量係数cを乗算して、ブリードオフ流量(ブリードオフ弁18を通過する作動油の流量)を算出する。加算部O14eは、積算部O14aでの演算結果である目標流量合計値に、乗算部O14dでの演算結果であるブリードオフ流量を加算して、ポンプ目標流量Qtを演算する。
 除算部O14fは、加算部O14eでの演算結果であるポンプ目標流量Qtをエンジン回転速度センサ80aで検出された実エンジン回転速度で除算し、吐出容量(押しのけ容積)の目標値をポンプ容積指令値として演算する。
 図7に示すように、方向制御弁指令生成部C15は、圧力制御フラグがオンに設定されているか否かを判定する。方向制御弁指令生成部C15は、圧力制御フラグがオンに設定されている場合、圧力制御用方向制御弁指令演算部C8で演算された圧力制御用方向制御弁指令値を選択し、電磁弁45a,45b,46a,46bに供給される制御電流を圧力制御用方向制御弁指令値(目標値)に制御するための方向制御弁指令を生成し、生成した方向制御弁指令を電流制御部(不図示)に出力する。方向制御弁指令生成部C15は、圧力制御フラグがオフに設定されている場合、流量制御用方向制御弁指令演算部C11で演算された流量制御用方向制御弁指令値を選択し、電磁弁45a,45b,46a,46bに供給される制御電流を流量制御用方向制御弁指令値(目標値)に制御するための方向制御弁指令を生成し、生成した方向制御弁指令を電流制御部(不図示)に出力する。電流制御部は、方向制御弁指令に基づいて、電磁弁45a,45b,46a,46bのソレノイドに供給される制御電流が、目標値となるように制御電流を制御する。
 メータイン制御弁指令生成部C16は、圧力制御フラグがオンに設定されているか否かを判定する。メータイン制御弁指令生成部C16は、圧力制御フラグがオンに設定されている場合、圧力制御用メータイン制御弁指令演算部C7で演算された圧力制御用メータイン制御弁指令値を選択し、メータイン制御弁41,42の電磁駆動部(ソレノイド)に供給される制御電流を圧力制御用メータイン制御弁指令値(目標値)に制御するためのメータイン制御弁指令を生成し、生成したメータイン制御弁指令を電流制御部(不図示)に出力する。メータイン制御弁指令生成部C16は、圧力制御フラグがオフに設定されている場合、流量制御用メータイン制御弁指令演算部C13で演算された流量制御用メータイン制御弁指令値を選択し、メータイン制御弁41,42の電磁駆動部(ソレノイド)に供給される制御電流を流量制御用メータイン制御弁指令値(目標値)に制御するためのメータイン制御弁指令を生成し、生成したメータイン制御弁指令を電流制御部(不図示)に出力する。電流制御部は、メータイン制御弁指令に基づいて、メータイン制御弁41,42の電磁駆動部(ソレノイド)に供給される制御電流が、目標値となるように制御電流を制御する。
 ポンプ容積指令生成部C17は、圧力制御用ポンプ容積指令演算部C9で演算された圧力制御用ポンプ容積指令値と、流量制御用ポンプ容積指令演算部C14で演算された流量制御用ポンプ容積指令値と、を比較し、大きい方を選択する。ポンプ容積指令生成部C17は、ポンプ81の吐出容量を選択したポンプ容積指令値に制御するためのポンプ容積指令を生成し、生成したポンプ容積指令をレギュレータ81aに出力する。
 次に、図25を参照して、本実施形態に係る油圧ショベル1において、ブーム上げ単独操作を行った場合の動作の一例について説明する。図25は、ブーム上げ単独操作を行ったときのポンプ目標流量、ブーム実流量、ポンプ吐出圧及びブームボトム圧の変化について示すタイムチャートである。
 図25の横軸は、時間(時刻)を示している。図25(A)の縦軸は、ブームシリンダ11aの操作信号(ブーム上げ操作量)を示し、図25(B)の縦軸は、ブームシリンダ11aの目標速度と実速度を示し、図25(C)の縦軸は、圧力制御フラグのオンオフ状態を示し、図25(D)の縦軸は、ブームシリンダ11aの目標推力を示し、図25(E)の縦軸は、ブームメータイン目標圧及びポンプ目標圧を示している。なお、ブーム上げ単独操作の場合のタイムチャートであるため、ブームメータイン目標圧とポンプ目標圧とは一致している。図25(F)の縦軸は、方向制御弁45のブーム上げ側の制御弁信号(制御電流値)を示し、図25(G)の縦軸は、ブームメータイン制御弁41の制御弁信号(制御電流値)を示し、図25(H)は、ブームシリンダ11aの目標流量(ブーム目標流量)及び実流量(ブーム実流量)並びにポンプ81の目標流量(ポンプ目標流量)を示し、図25(I)は、圧力センサ25で検出されるポンプ吐出圧(ポンプ圧)及び圧力センサ26で検出されるブームボトム圧を示している。
 時点t0において、操作レバー23aは中立位置で保持されている。時点t1において、操作レバー23aが最大操作位置に向かって操作されると、その操作量の増加に伴って、シリンダ目標速度が増加する。シリンダ実速度は、シリンダ目標速度に追従して増加する。時点t2において、速度偏差率が所定値Rwよりも大きいと判定されると、圧力制御フラグがオフからオンに切り換えられる(図15参照)。
 圧力制御フラグがオンに設定されると、ポンプ吐出圧が、ポンプ目標圧で保持されるように、ポンプ流量が制御される。図19に示すように、メインコントローラ100は、ポンプ目標圧と実ポンプ吐出圧との差を監視しており、実ポンプ吐出圧がポンプ目標圧で保持されるように、ポンプ81の吐出容量を制御する。
 ブーム上げ単独操作の場合、ポンプ目標圧はブームメータイン目標圧に一致する(図13参照)。このため、メータイン制御弁41は全開位置(開口面積=Aimax)で保持され(図23参照)、実メータイン圧(実ポンプ吐出圧)がメータイン目標圧(ポンプ目標圧)で保持されるように、ポンプ81の流量が制御される。これにより、ブームシリンダ11aに供給される作動油の流量(ブーム実流量)が、時点t2から時点t3にかけて、徐々に増加することになる。
 時点t3において、ブームシリンダ11aの目標速度と実速度の速度偏差率が所定値Rw以下であると判定されると、圧力制御フラグがオンからオフに切り換えられる(図15参照)。これにより、圧力制御から通常の流量制御へと制御状態が遷移する。その結果、ブームシリンダ11aの伸長速度が一定となるように、ブームシリンダ11aに供給される作動油の流量が制御される。
 図26は、本実施形態の比較例に係る油圧ショベルにおいて、ブーム上げ単独操作を行った場合の動作の一例について示すタイムチャートである。この比較例では、本実施形態で説明した圧力制御を実行しない。つまり、ブームシリンダ11aの目標速度と実速度とが乖離していたとしても流量制御が実行される。このため、例えば、操作レバー23aが中立位置からブーム上げ側の最大操作位置へ急に操作されると、ポンプ目標流量及びブーム目標流量が操作レバー23aの操作量に応じて、最大流量まで急激に増加する。その結果、ブーム実流量が急激に増加し、ブームシリンダ11aの動作が不安定になる場合がある。
 これに対して、本実施形態では、図25に示すように、ブーム上げ操作後に、ブームシリンダ11aの目標速度と実速度とが乖離しているときには、ブームシリンダ11aのメータイン圧が一定となるようにブームシリンダ11aへ供給される作動油の流量が徐々に増加するように制御される。したがって、本実施形態によれば、ブーム実流量が急激に増加することがなく、ブーム11の動作が不安定になることが抑制され、略一定の加速度でブーム11を加速させることができる。
 図示しないが、ブーム上げ単独動作に代えて、例えば、ブーム上げ動作とアームダンプ動作の複合動作を行う場合についても同様に、安定してブーム上げ動作及びアームダンプ動作を行うことができる。ここで、ブームメータイン目標圧よりもアームメータイン目標圧の方が大きい場合、アームメータイン目標圧がポンプ目標圧として設定される(図13参照)。
 この場合、圧力制御フラグがオンに設定されると、アームメータイン制御弁42は、全開位置に制御され、ポンプ流量によってアームシリンダ12aのメータイン圧が制御される。一方、メインコントローラ100は、メータイン目標圧と実メータイン圧との差を監視しており、その差が小さくなるようにブームメータイン制御弁41の開度を制御する。つまり、メインコントローラ100は、ブームメータイン制御弁41の開度を制御することによってポンプ圧を減圧し、実メータイン圧がメータイン目標圧で保持されるように、実メータイン圧を制御する(図17参照)。
 これにより、ブーム上げ及びアームダンプの複合動作の開始直後に、ブームシリンダ11a及びアームシリンダ12aに供給される作動油が急激に増加することによりショックが発生することが防止され、ブームシリンダ11a及びアームシリンダ12aを滑らかに動作させることができる。
 次に、図27を参照して、本実施形態に係る油圧ショベル1において、アーム引き単独操作を行った場合の動作の一例について説明する。図27は、アーム引き単独動作の停止操作を行ったときのポンプ目標流量、アーム実流量及びアームロッド圧の変化について示すタイムチャートである。
 図27の横軸は、時間(時刻)を示している。図27(A)の縦軸は、アームシリンダ12aの操作信号(アームクラウド操作量)を示し、図27(B)の縦軸は、アームシリンダ12aの目標速度と実速度を示し、図27(C)の縦軸は、圧力制御フラグのオンオフ状態を示し、図27(D)の縦軸は、アームシリンダ12aの目標推力を示し、図27(E)の縦軸は、アームメータアウト目標圧を示している。図27(F)の縦軸は、方向制御弁46のアーム引き側の制御弁信号(制御電流値)を示し、図27(G)の縦軸は、アームメータイン制御弁42の制御弁信号(制御電流値)を示し、図27(H)は、アームシリンダ12aの目標流量(アーム目標流量)及び実流量(アーム実流量)並びにポンプ81の目標流量(ポンプ目標流量)を示し、図27(I)は、圧力センサ25で検出されるポンプ吐出圧及び圧力センサ29で検出されるアームシリンダ12aのロッド圧を示している。なお、アーム引き単独操作の場合のタイムチャートであるため、アームボトム圧とポンプ圧とは一致している。
 時点t4において、操作レバー24aは最大操作位置で保持されている。時点t5において、操作レバー24aが中立位置に向かって操作されると、その操作量の減少に伴ってシリンダ目標速度が減少する。シリンダ実速度は、シリンダ目標速度に追従して減少する。時点t6において、速度偏差率が所定値Rwよりも大きいと判定されると、圧力制御フラグがオフからオンに切り換えられる(図15参照)。
 圧力制御フラグがオンに設定されると、アームロッド圧が、アームメータアウト目標圧で保持されるように、メータアウト制御弁としての方向制御弁46が制御される。図18に示すように、メインコントローラ100は、メータアウト目標圧とアームロッド圧との差を監視しており、アームロッド圧がメータアウト目標圧で保持されるように方向制御弁46の開度を制御する。なお、メインコントローラ100は、メータイン圧が所定値P1(例えば、1MPa程度)で保持されるように、メータイン制御弁42の開度を制御し、キャビテーションの発生を防止する。
 図28は、本実施形態の比較例に係る油圧ショベルにおいて、アーム引き単独操作を行った場合の動作の一例を示すタイムチャートである。この比較例では、本実施形態で説明した圧力制御を実行しない。つまり、アームシリンダ12aの目標速度と実速度とが乖離していたとしても流量制御が実行される。このため、例えば、操作レバー24aがアーム引き側の最大操作位置から中立位置へ急に操作されると、ポンプ目標流量及びアーム目標流量が操作レバー24aの操作量に応じて、最小流量まで急激に減少する。その結果、アーム実流量が急激に減少し、アームシリンダ12aの動作が不安定になる場合がある。
 これに対して、本実施形態では、図27に示すように、アーム引き単独動作の停止操作後に、アームシリンダ12aの目標速度と実速度とが乖離しているときには、アームシリンダ12aのメータアウト圧が一定となるようにアームシリンダ12aへ供給される作動油の流量が徐々に減少するように制御される。したがって、本実施形態によれば、アーム実流量が急激に減少することがなく、アーム12の動作が不安定になることが抑制され、略一定の減速度でアーム12を減速させることができる。
 上述した実施形態によれば、次の作用効果を奏する。
 (1)油圧ショベル(作業機械)1は、作動流体を吐出するポンプ81と、ポンプ81から吐出される作動流体によって駆動される複数の流体圧シリンダ(ブームシリンダ11a、アームシリンダ12a及びバケットシリンダ13a)及び流体圧シリンダ(ブームシリンダ11a、アームシリンダ12a及びバケットシリンダ13a)によって駆動される複数の被駆動部材(ブーム11、アーム12及びバケット13)を有する作業装置10と、流体圧シリンダ(ブームシリンダ11a、アームシリンダ12a及びバケットシリンダ13a)の操作信号(操作指令)を出力する操作装置23,24と、操作装置23,24の操作信号に基づき作業装置10の動作を制御するメインコントローラ(制御装置)100と、作業装置10の姿勢を検出する姿勢検出装置15と、を備える。
 メインコントローラ100は、操作装置23,24からの操作信号に基づいて、ブームシリンダ(流体圧シリンダ)11a及びアームシリンダ(流体圧シリンダ)12aのメータイン目標圧及びメータアウト目標圧(図12参照)並びに目標速度(図14参照)を演算する。メインコントローラ100は、油圧シリンダ(11a,12a)の目標速度に基づいて、油圧シリンダ(11a,12a)の目標流量を演算する(図22参照)。メインコントローラ100は、姿勢検出装置15の検出結果に基づいて、油圧シリンダ11a,12aの実速度を演算し(図4参照)、油圧シリンダ(11a,12a)の目標速度と実速度の乖離度合いを表す速度偏差率を演算する(図15参照)。
 メインコントローラ100は、速度偏差率が予め定められた所定値Rwよりも大きいときには、油圧シリンダ11a,12aの圧力(メータイン圧力及びメータアウト圧力)を目標圧(メータイン目標圧及びメータアウト目標圧)とするための圧力制御を実行する(図7、図15等参照)。メインコントローラ100は、速度偏差率が予め定められた所定値Rwよりも小さいときには、油圧シリンダ11a,12aの流量(供給流量)を目標流量とするための流量制御を実行する(図7、図15等参照)。
 この構成では、速度偏差率(乖離度合い)が所定値Rwよりも大きいときに、圧力制御を実行することにより、作業装置10の急動作を防止しつつ、安定した加減速度で作業装置10を動作させることができる。なお、速度偏差率(乖離度合い)が所定値Rwよりも小さいときには、流量制御を実行することにより、オペレータの意図する速度で作業装置10を動作させることができる。その結果、掘削、整地等の作業精度の向上を図ることができる。
 (2)油圧ショベル1は、油圧シリンダ(11a,12a)へ供給される作動流体の流れを制御するメータイン制御弁41,42を備える。ポンプ81は、吐出容量の変更が可能な可変容量型のポンプである。メインコントローラ100は、油圧シリンダ(11a,12a)が加速している場合、圧力制御において、ポンプ81の吐出容量及びメータイン制御弁41の開度を制御することにより、油圧シリンダ(11a,12a)のメータイン圧を制御する(図12、図13、図17、図19及び図25等参照)。これにより、圧力制御において、安定した加速度で作業装置10を動作させることができる。
 (3)油圧ショベル1は、油圧シリンダ(11a,12a)から排出される作動流体の流れを制御する方向制御弁(メータアウト制御弁)45,46を備える。メインコントローラ100は、油圧シリンダ(11a,12a)が減速している場合、圧力制御において、方向制御弁(メータアウト制御弁)45,46の開度を制御することにより、油圧シリンダ(11a,12a)のメータアウト圧を制御する(図12、図18及び図27等参照)。これにより、圧力制御において、安定した減速度で作業装置10を動作させることができる。
 (4)本実施形態では、メータアウト制御弁が、ポンプ81から油圧シリンダ(11a,12a)に供給される作動流体の流れを制御する方向制御弁45,46である。つまり、方向制御弁45,46がメータアウト制御弁としての機能を備えている。このため、方向制御弁45,46とは別に専用のメータアウト制御弁を設ける必要がないので、専用のメータアウト制御弁を設ける場合に比べて、油圧ショベル1のコストを低減することができる。
 (5)油圧ショベル1は、油圧シリンダ(11a,12a)の圧力を検出する圧力センサ26,27,28,29を備える。メインコントローラ100は、圧力センサ26,27,28,29の検出結果に基づいて、油圧シリンダ(11a,12a)の推力Fを演算し(図8参照)、姿勢検出装置15の検出結果に基づいて、油圧シリンダ(11a,12a)の加減速度(速度変化率)α″を演算する(図8参照)。メインコントローラ100は、油圧シリンダ(11a,12a)の推力F及び加速度α″を加味して、油圧シリンダ(11a,12a)の目標圧を決定する(図11及び図12参照)。
 多関節型の作業装置10では、油圧シリンダ(11a,12a)が一定の加減速度で駆動されている場合であっても、作業装置10の姿勢によっては、被駆動部材(11,12)の加減速度が大きく変化する場合がある。本実施形態では、実際に発生している油圧シリンダ(11a,12a)の推力Fと、被駆動部材の加減速度α″を実測して、加速トルク目標値をトルク調整ゲインで補正し、目標トルク及び目標推力を算出し、この算出結果に基づいて目標圧を演算するようにした。これにより、作業装置10の姿勢によって、加減速度が変化することを抑制することができる。
 (6)メインコントローラ100は、姿勢検出装置15の検出結果に基づいて、作業装置10に作用する重力による回転モーメントMgを演算し、重力による回転モーメントMgを打ち消すように、油圧シリンダ(11a,12a)の目標圧を決定する(図11及び図12参照)。これにより、作業装置10の姿勢が変化したときの重力の影響によって、作業装置10の加減速度が変化することを抑制することができる。換言すれば、作業装置10の姿勢にかかわらず、適切な加減速度で作業装置10を動作させることができる。
 (7)本実施形態では、メインコントローラ100は、姿勢検出装置15の検出結果及び油圧シリンダ(11a,12a)の推力Fに基づいて、作業装置10に作用する油圧シリンダ(11a,12a)の推力による回転モーメントMfを演算する。メインコントローラ100は、推力による回転モーメントMg、重力による回転モーメントMg及び加減速度α″に基づいて、慣性モーメント実測値Iaを演算し、慣性モーメント実測値Iaを加味して、油圧シリンダ(11a,12a)の目標圧を決定する(図8、図11及び図12等参照)。これにより、掘削作業、整地作業等の作業中に、地山からバケット13に作用する反力、バケット13に積み込まれた掘削物に作用する重力等の影響によって作業装置10の加減速度が変化してしまうことを抑制できる。
 以上のとおり、本実施形態によれば、操作指令が急激に変化した場合に、作業装置10が急加速したり急減速したりすることを防止するとともに、オペレータの意図した加減速度で作業装置10を動作させることのできる油圧ショベル1を提供することができる。このような油圧ショベル1によれば、目標面に沿った精度の高い掘削、整地等の作業を容易に行うことができる。
 次のような変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせたりすることも可能である。
 <変形例1> 
 上記実施形態では、方向制御弁45,46をメータアウト制御弁として用いて、油圧シリンダ(11a,12a)から排出される作動油の通路の開度を調整する例について説明したが、本発明はこれに限定されない。方向制御弁45,46とは別にメータアウト制御弁を設けるようにしてもよい。この場合、方向制御弁45,46によるメータアウト側の通路の開度の調整が不要になる。したがって、方向制御弁45,46によるメータアウト側の通路の調整に伴って方向制御弁45,46のメータイン側の通路を通過する作動流体の圧損の影響を低減することができる。さらに、メータアウト側の通路の開度の調整に特化した専用のメータアウト制御弁を設ける場合、メータアウト制御弁のサイズを小さくするなどして、制御精度を向上させることができる。
 <変形例2> 
 上記実施形態では、操作装置23,24がオペレータによって操作される装置を例に説明したが、本発明はこれに限定されない。操作装置23,24に代えて、自動操縦装置からの操作指令に基づいて、作業装置10を動作させる場合についても本発明を適用することができる。また、オペレータによる作業装置10の操作を補助するように操作指令を出力する半自動操縦装置を設けている場合には、半自動操縦装置からの操作指令に基づいて、作業装置10を動作させる場合についても本発明を適用することができる。
 <変形例3> 
 上記実施形態では、作業装置10に作用する重力の回転モーメントを都度演算して、目標圧に反映させる例について説明したが、本発明はこれに限定されない。所定の姿勢において作業装置10に作用する重力の回転モーメントに相当する値をROM102に記憶させておき、この値を加味して目標圧を決定するようにしてもよい。
 <変形例4> 
 上記実施形態では、作業機械がクローラ式の油圧ショベル1である場合を例に説明したが、本発明はこれに限定されない。ホイール式の油圧ショベル、ホイールローダ等、複数の被駆動部材を流体圧シリンダで駆動する種々の作業機械に本発明を適用することができる。
 <変形例5> 
 上記実施形態で説明した制御装置(メインコントローラ100)の機能は、それらの一部または全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現してもよい。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 1…油圧ショベル(作業機械)、10…作業装置、11…ブーム(被駆動部材)、11a…ブームシリンダ(流体圧シリンダ)、12…アーム(被駆動部材)、12a…アームシリンダ(流体圧シリンダ)、13…バケット(被駆動部材)、13a…バケットシリンダ(流体圧シリンダ)、15…姿勢検出装置、18…ブリードオフ弁、19…タンク、20…機体、23,24…操作装置、26~29…圧力センサ、41,42…メータイン制御弁、45,46…方向制御弁(メータアウト制御弁)、81…ポンプ、81a…レギュレータ、100…メインコントローラ(制御装置)

Claims (7)

  1.  作動流体を吐出するポンプと、前記ポンプから吐出される作動流体によって駆動される複数の流体圧シリンダ及び前記流体圧シリンダによって駆動される複数の被駆動部材を有する作業装置と、前記流体圧シリンダの操作指令を出力する操作装置と、前記操作装置の操作指令に基づき前記作業装置の動作を制御する制御装置と、を備える作業機械において、
     前記作業装置の姿勢を検出する姿勢検出装置を備え、
     前記制御装置は、
     前記操作装置からの操作指令に基づいて、前記流体圧シリンダの目標圧及び目標速度を演算し、
     前記流体圧シリンダの目標速度に基づいて、前記流体圧シリンダの目標流量を演算し、
     前記姿勢検出装置の検出結果に基づいて、前記流体圧シリンダの実速度を演算し、
     前記流体圧シリンダの目標速度と前記流体圧シリンダの実速度の乖離度合いを演算し、
     前記乖離度合いが予め定められた所定値よりも大きいときには、前記流体圧シリンダの圧力を前記目標圧とするための圧力制御を実行し、
     前記乖離度合いが予め定められた所定値よりも小さいときには、前記流体圧シリンダの流量を前記目標流量とするための流量制御を実行する、
     ことを特徴とする作業機械。
  2.  請求項1に記載の作業機械において、
     前記流体圧シリンダへ供給される作動流体の流れを制御するメータイン制御弁を備え、
     前記ポンプは、吐出容量の変更が可能な可変容量型のポンプであり、
     前記制御装置は、
     前記圧力制御において、前記ポンプの吐出容量及び前記メータイン制御弁の開度を制御することにより、前記流体圧シリンダのメータイン圧を制御する、
     ことを特徴とする作業機械。
  3.  請求項1に記載の作業機械において、
     前記流体圧シリンダから排出される作動流体の流れを制御するメータアウト制御弁を備え、
     前記制御装置は、
     前記圧力制御において、前記メータアウト制御弁の開度を制御することにより、前記流体圧シリンダのメータアウト圧を制御する、
     ことを特徴とする作業機械。
  4.  請求項3に記載の作業機械において、
     前記メータアウト制御弁は、前記ポンプから前記流体圧シリンダに供給される作動流体の流れを制御する方向制御弁である、
     ことを特徴とする作業機械。
  5.  請求項1に記載の作業機械において、
     前記流体圧シリンダの圧力を検出する圧力センサを備え、
     前記制御装置は、
     前記圧力センサの検出結果に基づいて、前記流体圧シリンダの推力を演算し、
     前記姿勢検出装置の検出結果に基づいて、前記被駆動部材の加減速度を演算し、
     前記流体圧シリンダの推力及び加速度を加味して、前記流体圧シリンダの前記目標圧を決定する、
     ことを特徴とする作業機械。
  6.  請求項1に記載の作業機械において、
     前記制御装置は、
     前記姿勢検出装置の検出結果に基づいて、前記作業装置に作用する重力による回転モーメントを演算し、
     前記重力による回転モーメントを打ち消すように、前記流体圧シリンダの前記目標圧を決定する、
     ことを特徴とする作業機械。
  7.  請求項1に記載の作業機械において、
     前記流体圧シリンダの圧力を検出する圧力センサを備え、
     前記圧力センサの検出結果に基づいて、前記流体圧シリンダの推力を演算し、
     前記姿勢検出装置の検出結果に基づいて、前記作業装置に作用する重力による回転モーメントを演算し、
     前記姿勢検出装置の検出結果及び前記流体圧シリンダの推力に基づいて、前記作業装置に作用する前記流体圧シリンダの推力による回転モーメントを演算し、
     前記姿勢検出装置の検出結果に基づいて、前記被駆動部材の加減速度を演算し、
     前記推力による回転モーメント、前記重力による回転モーメント及び前記加減速度に基づいて、慣性モーメントを演算し、
     前記慣性モーメントを加味して、前記流体圧シリンダの前記目標圧を決定する、
     ことを特徴とする作業機械。
PCT/JP2021/013702 2021-03-30 2021-03-30 作業機械 WO2022208694A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023509991A JPWO2022208694A1 (ja) 2021-03-30 2021-03-30
PCT/JP2021/013702 WO2022208694A1 (ja) 2021-03-30 2021-03-30 作業機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/013702 WO2022208694A1 (ja) 2021-03-30 2021-03-30 作業機械

Publications (1)

Publication Number Publication Date
WO2022208694A1 true WO2022208694A1 (ja) 2022-10-06

Family

ID=83458429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013702 WO2022208694A1 (ja) 2021-03-30 2021-03-30 作業機械

Country Status (2)

Country Link
JP (1) JPWO2022208694A1 (ja)
WO (1) WO2022208694A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346647B1 (ja) 2022-03-31 2023-09-19 日立建機株式会社 作業機械

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173904A (ja) * 1992-12-08 1994-06-21 Komatsu Ltd 旋回用油圧回路
JPH0814207A (ja) * 1994-06-27 1996-01-16 Kayaba Ind Co Ltd 油圧制御装置
JPH08128406A (ja) * 1994-10-31 1996-05-21 Hitachi Constr Mach Co Ltd 油圧駆動装置
JP2000009102A (ja) * 1998-06-22 2000-01-11 Kobe Steel Ltd 油圧アクチュエータの制御装置
JP2003172302A (ja) * 2001-12-06 2003-06-20 Yuken Kogyo Co Ltd インバータ駆動油圧ユニット
JP2003184811A (ja) * 2001-12-21 2003-07-03 Toyooki Kogyo Co Ltd 液圧駆動装置
JP2007064446A (ja) * 2005-09-01 2007-03-15 Kobelco Contstruction Machinery Ltd 建設機械の油圧制御装置
JP2012007694A (ja) * 2010-06-25 2012-01-12 Caterpillar Sarl 作業機械の制御装置
WO2013171801A1 (ja) * 2012-05-18 2013-11-21 Yamaji Kenpei 油圧制御システム
WO2018092582A1 (ja) * 2016-11-16 2018-05-24 日立建機株式会社 作業機械
WO2018164263A1 (ja) * 2017-03-10 2018-09-13 住友建機株式会社 ショベル
JP2019027009A (ja) * 2017-07-25 2019-02-21 住友重機械工業株式会社 ショベル
JP2019120024A (ja) * 2017-12-28 2019-07-22 日立建機株式会社 ホイール式作業車両
WO2020039834A1 (ja) * 2018-08-23 2020-02-27 株式会社神戸製鋼所 掘削作業機械の油圧駆動装置
WO2020067326A1 (ja) * 2018-09-27 2020-04-02 住友重機械工業株式会社 ショベル
WO2020203851A1 (ja) * 2019-03-29 2020-10-08 住友重機械工業株式会社 ショベル

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06173904A (ja) * 1992-12-08 1994-06-21 Komatsu Ltd 旋回用油圧回路
JPH0814207A (ja) * 1994-06-27 1996-01-16 Kayaba Ind Co Ltd 油圧制御装置
JPH08128406A (ja) * 1994-10-31 1996-05-21 Hitachi Constr Mach Co Ltd 油圧駆動装置
JP2000009102A (ja) * 1998-06-22 2000-01-11 Kobe Steel Ltd 油圧アクチュエータの制御装置
JP2003172302A (ja) * 2001-12-06 2003-06-20 Yuken Kogyo Co Ltd インバータ駆動油圧ユニット
JP2003184811A (ja) * 2001-12-21 2003-07-03 Toyooki Kogyo Co Ltd 液圧駆動装置
JP2007064446A (ja) * 2005-09-01 2007-03-15 Kobelco Contstruction Machinery Ltd 建設機械の油圧制御装置
JP2012007694A (ja) * 2010-06-25 2012-01-12 Caterpillar Sarl 作業機械の制御装置
WO2013171801A1 (ja) * 2012-05-18 2013-11-21 Yamaji Kenpei 油圧制御システム
WO2018092582A1 (ja) * 2016-11-16 2018-05-24 日立建機株式会社 作業機械
WO2018164263A1 (ja) * 2017-03-10 2018-09-13 住友建機株式会社 ショベル
JP2019027009A (ja) * 2017-07-25 2019-02-21 住友重機械工業株式会社 ショベル
JP2019120024A (ja) * 2017-12-28 2019-07-22 日立建機株式会社 ホイール式作業車両
WO2020039834A1 (ja) * 2018-08-23 2020-02-27 株式会社神戸製鋼所 掘削作業機械の油圧駆動装置
WO2020067326A1 (ja) * 2018-09-27 2020-04-02 住友重機械工業株式会社 ショベル
WO2020203851A1 (ja) * 2019-03-29 2020-10-08 住友重機械工業株式会社 ショベル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346647B1 (ja) 2022-03-31 2023-09-19 日立建機株式会社 作業機械
WO2023191084A1 (ja) * 2022-03-31 2023-10-05 日立建機株式会社 作業機械

Also Published As

Publication number Publication date
JPWO2022208694A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
JP5271082B2 (ja) 独立した計量弁制御システム及び方法
EP3184700B1 (en) Hydraulic control system for construction machine
KR101814657B1 (ko) 작업 기계
WO2019049248A1 (ja) 作業機械
KR20180102137A (ko) 작업 기계
CN111032969B (zh) 作业机械
WO2022208694A1 (ja) 作業機械
WO2015151776A1 (ja) 作業機械の油圧制御装置
WO2020054507A1 (ja) 建設機械
JP6605316B2 (ja) 作業機械の駆動装置
EP3591239B1 (en) Hydraulic drive device for construction machine
JP6692568B2 (ja) 建設機械
KR102413519B1 (ko) 작업 기계
JP6518318B2 (ja) 作業機械の油圧制御装置
EP3581717B1 (en) Hydraulic drive device of construction machine
WO2022202898A1 (ja) ショベル
JP6591370B2 (ja) 建設機械の油圧制御装置
US20140032057A1 (en) Feedforward control system
JP2009155901A (ja) 作業機械のフロント制御方法
JP7346647B1 (ja) 作業機械
JP2009155903A (ja) 作業機械のフロント制御方法
WO2024070588A1 (ja) 作業機械
JP7314404B2 (ja) 作業機械
JP2024020791A (ja) 旋回制御装置及びこれを備えた旋回式作業機械
JP2023172765A (ja) 作業機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934863

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023509991

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934863

Country of ref document: EP

Kind code of ref document: A1