KR101814657B1 - 작업 기계 - Google Patents

작업 기계 Download PDF

Info

Publication number
KR101814657B1
KR101814657B1 KR1020160021711A KR20160021711A KR101814657B1 KR 101814657 B1 KR101814657 B1 KR 101814657B1 KR 1020160021711 A KR1020160021711 A KR 1020160021711A KR 20160021711 A KR20160021711 A KR 20160021711A KR 101814657 B1 KR101814657 B1 KR 101814657B1
Authority
KR
South Korea
Prior art keywords
pressure
valve
proportional
pilot pressure
pilot
Prior art date
Application number
KR1020160021711A
Other languages
English (en)
Other versions
KR20160149139A (ko
Inventor
마리코 미즈오치
아키노리 이시이
가즈요시 하나카와
Original Assignee
히다치 겡키 가부시키 가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다치 겡키 가부시키 가이샤 filed Critical 히다치 겡키 가부시키 가이샤
Publication of KR20160149139A publication Critical patent/KR20160149139A/ko
Application granted granted Critical
Publication of KR101814657B1 publication Critical patent/KR101814657B1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/06Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road
    • E01C23/12Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor
    • E01C23/122Devices or arrangements for working the finished surface; Devices for repairing or reconditioning the surface of damaged paving; Recycling in place or on the road for taking-up, tearing-up, or full-depth breaking-up paving, e.g. sett extractor with power-driven tools, e.g. oscillated hammer apparatus
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • E02F9/2207Arrangements for controlling the attitude of actuators, e.g. speed, floating function for reducing or compensating oscillations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2253Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2271Actuators and supports therefor and protection therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • E02F9/267Diagnosing or detecting failure of vehicles
    • E02F9/268Diagnosing or detecting failure of vehicles with failure correction follow-up actions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/08Wrecking of buildings
    • E04G23/082Wrecking of buildings using shears, breakers, jaws and the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/963Arrangements on backhoes for alternate use of different tools
    • E02F3/964Arrangements on backhoes for alternate use of different tools of several tools mounted on one machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/575Pilot pressure control

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Operation Control Of Excavators (AREA)
  • Architecture (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)

Abstract

(과제) 작업 기계를 안정적으로 유지하기 위해 필요한 동작 제한을 종래의 조작성을 유지 가능한 구성으로 실현하고, 조작성 및 안정성이 높은 작업 기계를 제공한다.
(해결 수단) 작업 기계(1)의 안정 상태에 따라서 구동 액추에이터를 완만하게 정지시키는 완정지 지령 및 상한 동작 속도를 제한하는 동작 속도 제한 지령을 연산·출력하는 안정화 제어 연산부(60a)와, 조작 레버의 정지 조작시에 구동 액추에이터를 완만하게 정지시키도록 파일럿압을 보정하는 정지 특성 변경부(210)와, 구동 액추에이터의 동작 속도를 제한하도록 파일럿압을 보정하는 동작 속도 제한부(240)를 갖고, 안정화 제어 연산부(60a)로부터 완정지 지령 및 동작 속도 제한 지령이 입력된 경우는 비례 감압 밸브로부터 출력되는 파일럿압을 보정하고, 완정지 지령 및 동작 속도 제한 지령이 입력되지 않는 경우에는 비례 감압 밸브로부터 출력되는 파일럿압을 보정하는 일 없이 유량 제어 밸브에 공급한다.

Description

작업 기계{WORKING MACHINE}
본 발명은, 구조물 해체 공사, 폐기물 처리, 스크랩 처리, 도로 공사, 건설 공사, 토목 공사 등에 사용되는 작업 기계에 관한 것이다.
구조물 해체 공사, 폐기물 처리, 스크랩 처리, 도로 공사, 건설 공사, 토목 공사 등에 사용되는 작업 기계로서, 동력계에 의해 주행하는 주행체의 상부에 선회체를 선회가 자유롭게 장착함과 동시에, 선회체에 다관절형의 작업 프론트를 상하 방향으로 요동이 자유롭게 장착하고, 작업 프론트를 구성하는 각 프론트 부재를 액추에이터로 구동하는 작업 기계가 알려져 있다. 이러한 작업 기계의 일 예로서, 유압 셔블을 베이스로 하고, 일단이 선회체에 요동이 자유롭게 연결된 붐과, 일단이 붐의 선단에 요동이 자유롭게 연결된 아암과, 아암의 선단에 장착된 그래플, 버킷, 브레이커, 크러셔 등의 어태치먼트를 구비하고, 소망하는 작업을 행할 수 있도록 한 작업 기계가 있다.
이 종류의 작업 기계는, 작업 프론트를 구성하는 붐, 아암 및 어태치먼트를 선회체의 외방에 돌출된 상태에서 여러 가지 자세를 바꾸면서 작업을 행한다. 이 때문에, 과도한 작업 부하를 거는, 과부하이고 또한 프론트를 늘린 상태에서 급동작을 행하는 등의 무리한 조작을 행한 경우에 작업 기계가 밸런스를 무너뜨리는 경우가 있다. 따라서, 이 종류의 작업 기계에 대해서는, 종래 여러 가지 전도 방지 기술이 제안되고 있다.
예를 들면, 특허문헌 1에는, 작업 기계의 붐 및 아암에 각각 각도 센서를 설치하고, 이들 각 각도 센서의 검출 신호를 제어 장치에 입력하고, 제어 장치가, 상기 검출 신호에 의거하여 작업 기계 전체의 무게 중심 위치와, 주행체의 접지면에 있어서의 안정 지지점의 지지력을 연산하여, 그 연산 결과에 의거하는 안정 지지점에 있어서의 지지력값을 표시 장치에 표시함과 동시에, 후방 안정 지지점에 있어서의 지지력이 안전 작업 확보 상의 한계값 이하가 되었을 때에는 경보를 발하도록 한 기술이 개시되어 있다.
한편, 전술한 해체 작업 기계와 같은 작업 기계는, 대질량의 주행체, 선회체 및 작업 프론트를 구동함으로써 작업을 행하기 때문에, 어떠한 이유에 의해 조작자가 동작 중의 주행체, 선회체 또는 작업 프론트의 구동을 급정지시키는 조작을 행한 경우, 작업 기계에 큰 관성력이 작용하여, 안정성에 큰 영향을 미친다. 특히, 탑재된 경보 장치로부터 전도의 가능성을 통지하는 경보가 발해진 경우에, 조작자가 당황하여 동작 중의 주행체, 선회체 또는 작업 프론트의 구동을 정지시키는 조작을 행하면, 전도 방향으로 큰 관성력이 중첩되어, 오히려 전도의 가능성이 높아질 우려가 있다.
이러한 과제에 대해서는, 특허문헌 2에 있어서, 작업 프론트를 포함하는 본체 및 주행체의 각 가동부의 위치 정보와 급정지 모델을 이용하여, 조작 레버가 조작 상태로부터 순시(瞬時)에 정지 지령 상태로 되돌려진 경우의 작업 기계가 완전하게 정지에 이르기까지의 안정성 변화를 예측하고, 정지에 이르기까지의 어느 시각에 있어서도 불안정해지지 않도록 구동 액추에이터의 동작 제한을 행하는 제어 기술이 개시되어 있다.
일본국 특허 제2871105호 공보 국제공개 제2012/169531호
작업 기계에 대하여 특허문헌 2에 나타나는 기술을 적용함으로써, 무리한 조작이나 조작 미스에 의해 갑자기 동작을 정지시키는 경우라도, 작업 기계가 전도하는 것을 미연에 회피하고, 안정적으로 작업을 계속시킬 수 있다. 특허문헌 2에 나타나는 기술은, 제어 연산 결과에 의거하여, 작업 기계의 구동 액추에이터의 동작을 제한하는 기술이다.
일반적으로, 작업 기계의 구동 액추에이터는, 구동 액추에이터로의 압유의 공급을 제어하는 파일럿식 유량 제어 밸브와 조작 레버의 조작에 의거하여 유량 제어 밸브에 파일럿 압유를 출력하는 비례 감압 밸브를 구비하여 구성되는 유압 파일럿식 구동 유압 회로에 의해 구동 제어된다.
이러한 작업 기계에 특허문헌 2에 나타나는 기술을 적용하여, 구동 액추에이터에 대하여 동작 제한을 행하기 위해서는, 제어 연산 결과에 따라서 액추에이터로의 압유의 공급을 변경하는 제어 수단을 구동 유압 회로에 포함할 필요가 있다. 그러나, 종래예에서는, 유압 파일럿식 구동 유압 회로를 구비한 작업 기계에 있어서, 동작 제한을 실현하기 위한 구성이 나타나 있지 않다. 또한, 구동 유압 회로에 제어 수단을 포함할 때에, 구동 유압 회로의 구성을 대폭으로 변경하면, 응답성 등이 변화하고, 종래의 조작성이 손상될 우려가 있다.
본 발명은, 상기의 과제를 해결하기 위해 이루어진 것으로서, 작업 기계를 안정적으로 유지하기 위해 필요한 동작 제한을 종래의 조작성을 유지 가능한 구성으로 실현하고, 조작성 및 안정성이 높은 작업 기계를 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해, 예를 들면 특허청구의 범위에 기재된 구성을 채용한다.
본 발명은, 상기 과제를 해결하는 수단을 복수 포함하고 있지만, 그 일 예를 들면, 작업 기계 본체와, 이 작업 기계 본체에 대하여 상하 방향으로 요동이 자유롭게 장착되어 복수의 가동부를 갖는 작업 프론트와, 이 작업 프론트의 각 가동부를 구동하는 구동 액추에이터와, 이 구동 액추에이터의 구동을 제어하는 제어 연산을 행하는 연산 장치와, 상기 구동 액추에이터로의 압유의 공급을 제어하는 유량 제어 밸브 및 조작 레버의 조작에 의거하여 상기 유량 제어 밸브에 공급하는 파일럿 압유를 출력하는 비례 감압 밸브를 갖는 액추에이터 구동 유압 회로를 구비한 작업 기계에 있어서, 상기 연산 장치는, 작업 기계의 속도를 추정하는 속도 추정부와, 상기 속도 추정부에 의해 추정된 속도와 작업 기계의 자세에 의거하여, 작업 기계가 급정지한다고 가정한 경우의 작업 기계의 거동을 예측하는 급정지시 거동 예측부와, 상기 급정지시 거동 예측부에 의해 예측된 거동에 의거하여 상기 작업 기계의 안정성을 판정하는 안정성 판정부와, 상기 안정성 판정부의 판정 결과에 의거하여 상기 구동 액추에이터의 감속도를 제한하고 상기 구동 액추에이터를 완만하게 정지시키는 완정지(緩停止) 지령 및 상기 구동 액추에이터의 상한 동작 속도를 제한하는 동작 속도 제한 지령을 연산하고, 출력하는 동작 제한 결정부를 갖고, 상기 액추에이터 구동 유압 회로는, 상기 동작 제한 결정부로부터의 상기 완정지 지령 및 상기 동작 속도 제한 지령에 따라서 상기 비례 감압 밸브로부터 출력되는 파일럿압을 보정하는 파일럿압 보정부를 갖고, 이 파일럿압 보정부는, 상기 조작 레버의 정지 조작시에 상기 구동 액추에이터를 완만하게 정지시키도록 파일럿압을 보정하는 정지 특성 변경부와, 상기 구동 액추에이터의 동작 속도를 제한하도록 파일럿압을 보정하는 동작 속도 제한부로 구성되고, 상기 정지 특성 변경부 및 상기 동작 속도 제한부는, 상기 동작 제한 결정부로부터의 상기 완정지 지령 및 상기 동작 속도 제한 지령에 의해 각각 구동되고, 상기 동작 제한 결정부로부터 상기 완정지 지령 및 상기 동작 속도 제한 지령이 입력된 경우는 상기 비례 감압 밸브로부터 출력되는 파일럿압을 보정하고, 상기 동작 제한 결정부로부터 상기 완정지 지령 및 상기 동작 속도 제한 지령이 입력되지 않는 경우에는, 상기 비례 감압 밸브로부터 출력되는 파일럿압을 보정하는 일 없이 상기 유량 제어 밸브에 공급하는 것을 특징으로 한다.
본 발명에 의하면, 작업 기계의 안정 상태에 따른 동작 제한이 종래의 액추에이터 구동 회로를 살린 구성으로 행해지고, 조작성을 손상시키는 일 없이 동작 제한을 행할 수 있고, 작업 기계를 안정적으로 유지할 수 있다.
도 1은, 제1 실시 형태에 따른 작업 기계의 측면도이다.
도 2a는, 일반적인 작업 기계의 구동 액추에이터의 구동 유압 회로의 개념도이다.
도 2b는, 일반적인 작업 기계의 붐 실린더의 구동 유압 회로의 개략 구성도이다.
도 3은, 제1 실시 형태에 따른 안정화 제어 장치의 개략 구성도이다.
도 4a는, 제1 실시 형태에 따른 파일럿압 보정부에 있어서의 완정지를 행하기 위한 파일럿압 보정예를 나타내는 도면이다.
도 4b는, 제1 실시 형태에 따른 파일럿압 보정부에 있어서의 동작 속도 제한을 행하기 위한 파일럿압 보정예를 나타내는 도면이다.
도 5a는, 제1 실시 형태에 따른 작업 기계의 구동 액추에이터의 구동 유압 회로의 개념도이다.
도 5b는, 제1 실시 형태에 따른 작업 기계의 붐 실린더의 구동 유압 회로의 개략 구성도이다.
도 6은, 제1 실시 형태에 따른 안정성 평가 방법의 설명도이다.
도 7은, 제1 실시 형태에 따른 동작 제한 결정부에 있어서의 연산 순서를 나타내는 플로우 차트이다.
도 8a는, 제1 실시 형태에 따른 파일럿압 보정부로의 구동 지령 중, 지령 신호와 전자 밸브 설정압의 관계의 일 예를 나타내는 도면이다.
도 8b는, 제1 실시 형태에 따른 파일럿압 보정부에 있어서의 완정지 및 동작 속도 제한을 행하기 위한 파일럿압 보정의 예를 나타내는 도면이다.
도 8c는, 제1 실시 형태에 따른 완정지용 전자 비례 밸브로의 구동 지령값과 시간의 관계의 일 예를 나타내는 도면이다.
도 8d는, 제1 실시 형태에 따른 속도 제한용 전자 비례 밸브로의 구동 지령값과 시간의 관계의 일 예를 나타내는 도면이다.
도 9a는, 제1 실시 형태에 따른 파일럿압 보정부의 변경예의 개략 구성도이다.
도 9b는, 제1 실시 형태에 따른 파일럿압 보정부의 변경예의 개략 구성도이다.
도 10은, 제2 실시 형태에 따른 파일럿압 보정부의 개략 구성도이다.
도 11은, 제3 실시 형태에 따른 파일럿압 보정부의 개략 구성도이다.
이하에 본 발명의 작업 기계의 실시 형태를, 도면을 이용하여 설명한다.
<제1 실시 형태>
본 발명의 작업 기계의 제1 실시 형태를, 도 1 내지 도 9b를 이용하여 설명한다.
<대상 장치>
도 1에 나타내는 바와 같이, 본 실시 형태에 따른 작업 기계(1)는, 주행체(2)와, 주행체(2)의 상부에 선회 가능하게 장착된 선회체(3)와, 일단이 선회체(3)에 연결된 다관절형의 링크 기구로 이루어지는 작업 프론트(6)를 구비하고 있다.
선회체(3)는 선회 모터(7)에 의해 중심축(3c)을 중심으로 선회 구동된다. 선회체(3) 상에는 운전실(4) 및 카운터 웨이트(8)가 설치되어 있다. 또한, 이 선회체(3) 상의 소요의 부분에는, 동력계를 구성하는 엔진(5)과, 구동 액추에이터(후술)의 구동 유압 회로(100) 등으로 구성되고, 작업 기계(1)의 기동 정지 및 동작 전반을 제어하는 운전 제어 장치(9)가 구비되어 있다.
또한, 도면 중의 부호 29는 지표면을 나타내고 있다.
작업 프론트(6)는, 일단이 선회체(3)에 연결된 붐(10)(가동부)과, 일단이 붐(10)의 타단에 연결된 아암(12)(가동부)과, 일단이 아암(12)의 타단에 연결된 어태치먼트(23)(가동부)를 갖고 있으며, 이들 각 부재는, 각각 상하 방향으로 회전 운동하도록 구성되어 있다.
붐 실린더(11)는, 붐(10)을 지지점(40)의 둘레로 회전 운동하는 구동 액추에이터이며, 선회체(3)와 붐(10)에 연결되어 있다. 아암 실린더(13)는, 아암(12)을 지지점(41)의 둘레로 회전 운동하는 구동 액추에이터이며, 붐(10)과 아암(12)에 연결되어 있다. 어태치먼트 실린더(15)는 어태치먼트(23)를 지지점(42)의 둘레로 회전 운동하는 구동 액추에이터이며, 링크(16)를 통하여 어태치먼트(23)와 연결되고, 링크(17)를 통하여 아암(12)에 연결되어 있다. 어태치먼트(23)는, 마그넷, 그래플, 커터, 브레이커, 버킷 등의 도시하지 않는 작업구에 임의로 교환 가능하다. 선회 모터(7)는, 선회체(3)를 구동하는 구동 액추에이터이다.
운전실(4) 내에는, 오퍼레이터가 각 구동 액추에이터에 대한 움직임의 지시를 입력하기 위한 복수의 조작 레버(50)가 구비되어 있다.
<구동 액추에이터의 구동 유압 회로>
도 2a에 유압 파일럿식 조작 장치를 갖는 일반적인 작업 기계에 있어서의 구동 액추에이터의 구동 유압 회로의 개념도를 나타낸다.
도 2a에 있어서, 작업 기계(1)의 각 구동 액추에이터(7, 11, 13, 15)는 메인 펌프(101)로부터 공급되는 압유에 의해 구동된다. 구동 유압 회로(100A)는, 각 구동 액추에이터(7, 11, 13, 15)에 압유를 공급하기 위한 회로이며, 주로, 엔진(5)에 의해 구동되는 메인 펌프(101) 및 파일럿 펌프(102)와, 메인 펌프(101)와 접속되고, 구동 액추에이터로의 공급 유량을 제어하는 파일럿식 유량 제어 밸브군(110)과, 파일럿 펌프(102)와 접속되고, 조작 레버(50)의 조작에 따라서 유량 제어 밸브군(110)에 공급하는 파일럿 압유를 생성하는 비례 감압 밸브군(120)으로 구성된다.
유량 제어 밸브군(110)은, 붐 유량 제어 밸브(111), 아암 유량 제어 밸브(113), 어태치먼트 유량 제어 밸브(115), 선회 유량 제어 밸브(117)로 구성된다. 비례 감압 밸브군(120)은, 붐 신장 비례 감압 밸브(121), 붐 축소 비례 감압 밸브(122), 아암 신장 비례 감압 밸브(123), 아암 축소 비례 감압 밸브(124), 어태치먼트 신장 비례 감압 밸브(125), 어태치먼트 축소 비례 감압 밸브(126), 우(右)선회 비례 감압 밸브(127), 좌(左)선회 비례 감압 밸브(128)로 구성된다.
또한, 구동 액추에이터의 구동 방법은 어느 쪽의 구동 액추에이터에서도 동일하기 때문에, 이하에서는, 붐 실린더(11)를 예로 들어 설명한다.
도 2b에 유압 파일럿식 조작 장치를 갖는 일반적인 작업 기계에 있어서의 붐 실린더(11)의 구동 유압 회로(100A)의 개략 구성도를 나타낸다.
도 2b에 있어서, 붐 비례 감압 밸브는, 붐 신장 비례 감압 밸브(121)와, 붐 축소 비례 감압 밸브(122)로 구성된다. 이들 비례 감압 밸브(121, 122)는, 붐 조작 레버(50b)를 신장측 또는 축소측으로 조작함으로써 구동되고, 파일럿 펌프(102)의 토출되는 압유로부터 붐 조작 레버(50b)의 조작량에 대응하는 압력의 파일럿 압유를 생성한다.
붐 신장 비례 감압 밸브(121)는, 제1 포트(121a), 제2 포트(12lb), 및 제3 포트(121c)를 구비하고 있으며, 제1 포트(121a)는 작동유 탱크(103)와, 제2 포트(12lb)는 파일럿 펌프(102)와, 제3 포트(121c)는 후술하는 붐 유량 제어 밸브(111)의 붐 신장측 파일럿 포트(111e)와 접속된다. 붐 조작 레버(50b)를 신장측으로 조작하고 있지 않은 경우에는, 제1 포트(121a)와 제3 포트(121c)를 연통하는 밸브로가 전개, 제2 포트(12lb)가 전폐가 되어, 파일럿 펌프(102)로부터의 압유는 제3 포트(121c)로 공급되지 않는다. 붐 조작 레버(50b)가 신장측으로 조작되면, 그 조작에 의해, 제2 포트(12lb)와 제3 포트(121c)를 연통하는 밸브로가 열리도록 구동되고, 파일럿 펌프(102)로부터 제3 포트(121c)로 파일럿 압유가 공급되고, 레버 조작량에 따른 압력의 압유가 제3 포트(121c)로부터 출력된다. 붐 조작 레버(50b)를 조작 상태로부터 비조작 상태로 되돌리는 방향으로 조작하면, 붐 신장 비례 감압 밸브(121)는, 제2 포트(12lb)와 제3 포트(121c)를 연통하는 밸브로를 닫고, 제1 포트(121a)와 제3 포트(121c)를 연통하는 밸브로를 여는 방향으로 구동되고, 비조작 상태까지 되돌려지면, 제1 포트(121a)와 제3 포트(121c)를 연통하는 밸브로가 전개가 된다. 이때, 제3 포트(121c)에 접속되는 파일럿 유로의 압유는, 제1 포트(121a)와 제3 포트(121c)를 연통하는 밸브로를 유통하여 작동유 탱크(103)에 배출된다.
붐 축소 비례 감압 밸브(122)는 붐 신장 비례 감압 밸브(121)와 동일한 구성을 갖고 있다. 붐 조작 레버(50b)가 축소측으로 조작된 경우에는, 붐 신장 비례 감압 밸브(121) 대신에 붐 축소 비례 감압 밸브(122)가 구동되고, 레버 조작량에 따른 압력의 압유가 붐 축소 비례 감압 밸브(122)의 제3 포트(122c)로부터 출력된다. 또한, 붐 조작 레버(50b)를 축소측으로 조작한 상태로부터 비조작 상태로 되되돌아가는 방향으로 조작하면, 붐 축소 비례 감압 밸브(122)의 제3 포트(122c)에 접속되는 파일럿 유로의 압유는, 제1 포트(122a)와 제3 포트(122c)를 연통하는 밸브로를 유통하여 작동유 탱크(103)에 배출된다.
붐 유량 제어 밸브(111)는, 붐 신장측 파일럿 포트(111e)와 붐 축소측 파일럿 포트(111s)를 갖는 파일럿식의 3위치 전환 밸브이다. 붐 신장측 파일럿 포트(111e)에는, 붐 신장 비례 감압 밸브(121)가 붐 신장측 파일럿 유로를 통하여 접속되고, 붐 축소측 파일럿 포트(111s)에는, 붐 축소 비례 감압 밸브(122)가 붐 축소측 파일럿 유로를 통하여 접속된다. 또한, 붐 유량 제어 밸브(111)의 액추에이터측 포트(111a, 111b)는, 각각 붐 신장측 메인 유로 및 붐 축소측 메인 유로를 통하여 붐 실린더(11)의 보텀측 유실(11b) 및 로드측 유실(11r)에 접속된다. 붐 유량 제어 밸브(111)의 펌프 포트(111p)는 메인 펌프(101)와, 탱크 포트(111t)는 작동유 탱크(103)와 각각 접속되어 있다.
붐 유량 제어 밸브(111)의 붐 신장측 파일럿 포트(111e)와 붐 축소측 파일럿 포트(111s)의 어느 쪽에도 파일럿 압유가 공급되어 있지 않은 경우에는, 붐 유량 제어 밸브(111)는 중립 위치가 되고, 붐 실린더(11)로의 압유의 공급 및 붐 실린더(11)로부터의 압유의 배출은 행해지지 않는다. 붐 조작 레버(50b)가 신장측으로 조작되고, 붐 신장측 파일럿 포트(111e)에 파일럿 압유가 공급되면, 붐 유량 제어 밸브(111)는 신장 구동 위치로 전환되고, 메인 펌프(101)로부터의 압유가 붐 실린더(11)의 보텀측 유실(11b)에 공급된다. 이에 따라, 붐 실린더(11)는 신장 구동된다. 한편, 붐 조작 레버(50b)가 축소측으로 조작된 경우에는, 붐 축소측 파일럿 포트(111s)에 파일럿 압유가 공급되고, 붐 유량 제어 밸브(111)가 축소 구동 위치로 전환되고, 메인 펌프(101)로부터의 압유가 붐 실린더(11)의 로드측 유실(11r)에 공급된다. 이에 따라, 붐 실린더(11)는 축소 구동된다. 이때, 붐 유량 제어 밸브(111)의 개구 면적은, 각 파일럿 포트(111e, 111s)에 공급되는 파일럿 압유의 압력에 의해 결정되고, 붐 실린더(11)는 파일럿 압유의 압력에 따른 속도로 신축 구동된다.
≪안정화 제어≫
본 실시 형태에 따른 작업 기계(1)에는, 작업 중의 불안정화를 방지하는 안정화 제어 장치(190)가 탑재되어 있다. 작업 기계(1)에서는, 오퍼레이터가 조작 레버(50)를 조작함으로써, 여러 가지 작업이 행해지지만, 작업 프론트(6)를 늘린 자세로 작업을 행하는 경우나 어태치먼트(23)에 가해지는 부하가 큰 경우에는 안정성이 저하된다. 또한, 급조작을 행한 경우에는, 급격한 속도 변화에 수반하여 큰 관성력이 작용하고, 그 영향에 의해, 작업 기계(1)의 안정성이 크게 변화한다. 특히, 조작 레버(50)를 조작 상태로부터 순시에 정지 지령 상태로 되돌리는 바와 같은 급정지 조작시에는, 전도 방향으로 큰 관성력이 작용하고, 작업 기계(1)가 불안정해지기 쉽다.
본 실시 형태의 안정화 제어 장치(190)는, 무리한 조작이나 잘못된 조작을 행한 경우라도 작업 기계(1)가 불안정해지지 않도록, 안정성 평가에 의거하여 구동 액추에이터의 동작을 제한하는 장치이다. 또한, 본 실시 형태의 안정화 제어 장치(190)는, 급정지 조작에 의해 안정성이 큰폭으로 저하되는 것을 고려하여, 작업 기계(1)를 안정적으로 유지하기 위한 동작 제한으로서, 완정지와 동작 속도 제한을 행한다.
여기에서, 완정지는 정지 조작시의 가동부의 감속 가속도를 제한하고, 가동부를 완만하게 정지시키는 작용이며, 동작 속도 제한은 구동 액추에이터의 최대속도를 제한하는 작용이다. 완정지를 도입함으로써, 급정지 조작시에 발생하는 관성력을 억제할 수 있고, 급정지에 수반하여 발생하는 큰 관성력에 의해 작업 기계(1)가 불안정해지는 것을 방지할 수 있다. 한편, 완정지를 행하면, 제동 거리가 증대하기 때문에, 미리 허용 제동 거리를 정하고, 허용 제동 거리 내에서 정지할 수 있도록 정지 특성을 설정할 필요가 있다. 그래서, 본 실시 형태의 안정화 제어 장치(190)는, 미리 정해진 허용 제동 거리의 범위 내에서 필요에 따라서 완정지를 행하고, 또한 어떠한 동작 상태에 있어서도 허용 제동 거리 내에서 안정적으로 작업할 수 있도록 동작 속도를 제한한다.
안정화 제어 장치(190)는, 작업 기계(1)에 구비된 모든 구동 액추에이터에 대하여 동작 제한을 행하도록 구성되어 있다. 그러나, 이하에서는, 작업 기계(1)의 안정성에 특별히 큰 영향을 미치는 붐 실린더(11)와 아암 실린더(13)에 대해서만, 동작 제한을 적용하도록 구성한 경우를 예로 들어 설명한다.
도 3에 본 실시 형태의 안정화 제어 장치(190)의 개략 구성도를 나타낸다.
도 3에 있어서, 안정화 제어 장치(190)는, 주로, 상태량 검출부(30)와, 연산 장치(60)와, 파일럿압 보정부(200)로 구성된다.
상태량 검출부(30)는, 작업 기계(1)의 상태량을 검출하기 위해 작업 기계(1)의 각 곳에 장착된 센서이다.
연산 장치(60)는, 도시하지 않는 CPU(Central Processing Unit), 기억 장치 등으로 구성되고, 상태량 검출부(30)의 검출 신호에 의거하여, 안정화 제어 연산을 행하고, 작업 기계(1)를 안정적으로 유지하기 위해 필요한 붐 실린더(11) 및 아암 실린더(13)의 동작 제한을 산출하고, 파일럿압 보정부(200)로의 구동 지령을 출력한다.
파일럿압 보정부(200)는, 오퍼레이터로부터의 레버 조작에 의해 생성되는 파일럿 압유의 압력을, 연산 장치(60)에 있어서 산출된 동작 제한을 충족하도록 보정하는 유압 장치이며, 유량 제어 밸브군(110)과 비례 감압 밸브군(120)을 접속하는 파일럿 유로에 설치되어 있다.
이하, 각 부의 상세를 설명한다.
<상태량 검출부>
작업 기계(1)의 주요 부분에는, 상태량 검출부(30)로서, 기계의 상태량을 검출하는 센서가 구비된다. 이하, 본 실시 형태에 따른 작업 기계(1)에 구비되는 상태량 검출부(30)의 상세에 대해서, 도 1 및 도 3을 참조하여 설명한다.
본 실시 형태의 상태량 검출부(30)는, 작업 기계(1)의 자세를 검출하는 자세 검출부(49)와, 각 구동 액추에이터에 대한 오퍼레이터로부터의 동작 지령량을 검출하는 레버 조작량 검출부(50a)로 구성된다.
자세 검출부(49)는, 작업 기계(1)의 자세를 검출하는 기능 블록이고, 자세 센서(3b), 각 각도 센서(3s, 40a, 41a, 42a)로 구성된다. 선회체(3)에는, 작업 기계(1)의 기울기를 검출하기 위한 자세 센서(3b)가 설치된다. 또한, 선회체(3)의 중심축(3c) 상에는, 주행체(2)와 선회체(3)의 선회 각도를 검출하기 위한 선회 각도 센서(3s)가 설치된다. 선회체(3)와 붐(10)의 지지점(40)에는, 붐(10)의 회전 운동 각도를 계측하기 위한 붐 각도 센서(40a)가 설치된다. 붐(10)과 아암(12)의 지지점(41)에는, 아암(12)의 회전 운동 각도를 계측하기 위한 아암 각도 센서(41a)가 설치된다. 아암(12)과 어태치먼트(23)의 지지점(42)에는, 어태치먼트 각도 센서(42a)가 설치된다.
레버 조작량 검출부(50a)는, 작업 기계(1)의 각 구동 액추에이터에 대한 오퍼레이터로부터의 동작 지령량을 검출하는 기능 블록이고, 조작 레버(50)의 조작량을 검출하는 레버 조작량 센서가 설치된다. 전술의 유압 파일럿식 조작 장치에서는, 조작 레버(50)를 조작하면 비례 감압 밸브군(120) 중 대응하는 비례 감압 밸브가 구동되고, 레버 조작량에 따른 압력의 파일럿 압유가 출력된다. 따라서, 각 비례 감압 밸브가 출력하는 압유의 압력을 검출하는 압력 센서를 설치함으로써, 오퍼레이터로부터의 동작 지령량을 검출할 수 있다.
더욱 구체적으로는, 붐 신장 비례 감압 밸브(121)가 출력하는 압유의 압력을 검출하는 붐 신장 조작량 센서(51)와, 붐 축소 비례 감압 밸브(122)가 출력하는 압유의 압력을 검출하는 붐 축소 조작량 센서(52)와, 아암 신장 비례 감압 밸브(123)가 출력하는 압유의 압력을 검출하는 아암 신장 조작량 센서(53)와, 아암 축소 비례 감압 밸브(124)가 출력하는 압유의 압력을 검출하는 아암 축소 조작량 센서(54)와, 어태치먼트 신장 비례 감압 밸브(125)가 출력하는 압유의 압력을 검출하는 어태치먼트 신장 조작량 센서(55)와, 어태치먼트 축소 비례 감압 밸브(126)가 출력하는 압유의 압력을 검출하는 어태치먼트 축소 조작량 센서(56)와, 우선회 비례 감압 밸브(127)가 출력하는 압유의 압력을 검출하는 우선회 조작량 센서(57)와, 좌선회 비례 감압 밸브(128)가 출력하는 압유의 압력을 검출하는 좌선회 조작량 센서(58)가 설치된다.
<파일럿압 보정부>
파일럿압 보정부(200)는, 오퍼레이터의 레버 조작에 따라서 비례 감압 밸브군으로부터 출력되는 파일럿 압유의 압력을, 후술하는 연산 장치(60) 내의 안정화 제어 연산부(60a)로부터 지령되는 동작 제한을 충족하는 압력으로 보정하는 기능 블록이다. 본 실시 형태의 안정화 제어 장치(190)에서는, 안정화를 위한 동작 제한으로서, 정지 특성을 변경하여 완만하게 정지시키는 완정지와, 동작 속도에 상한을 설정하는 동작 속도 제한을 행한다. 파일럿압 보정부(200)는, 이 2종류의 동작 제한을 행하기 위해, 정지 특성 변경부(210)와 동작 속도 제한부(240)를 구비하고 있다.
도 5a에, 본 실시 형태의 안정화 제어 장치(190)에 있어서의 파일럿압 보정부(200)를 구비한 구동 액추에이터의 구동 유압 회로의 개념도를 나타낸다.
안정화 제어 연산에 의거하는 동작 제한을 붐 실린더(11) 및 아암 실린더(13)에 대하여 적용하는 경우, 작업 기계(1)는 파일럿압 보정부(200)로서, 도 5a 에 나타내는 바와 같이 붐 신장 파일럿압 보정부(201), 붐 축소 파일럿압 보정부(202), 아암 신장 파일럿압 보정부(203), 아암 축소 파일럿압 보정부(204)가 설치된다.
붐 신장 파일럿압 보정부(201)는 붐 신장 정지 특성 변경부(211)와 붐 신장 동작 속도 제한부(241)를, 붐 축소 파일럿압 보정부(202)는 붐 축소 정지 특성 변경부(212)와 붐 축소 동작 속도 제한부(242)를, 아암 신장 파일럿압 보정부(203)는 아암 신장 정지 특성 변경부(213)와 아암 신장 동작 속도 제한부(243)를, 아암 축소 파일럿압 보정부(204)는 아암 축소 정지 특성 변경부(214)와 아암 축소 동작 속도 제한부(244)를 각각 구비하고 있다. 각 파일럿압 보정부(201, 202, 203, 204)의 구성은 어느 쪽에 대해서도 동일하기 때문에, 이하에서는, 붐 신장 파일럿 압유의 보정을 예로 들어, 도 5b를 참조하여 붐 신장 파일럿압 보정부(201)의 상세를 설명한다.
전술한 바와 같이, 붐 실린더(11)의 동작은, 붐 유량 제어 밸브(111)의 각 파일럿 포트(111e, 111s)에 공급되는 파일럿 압유의 압력에 의해 결정된다. 따라서, 어떠한 제어를 도입하고, 제어 연산 결과에 의거하여 붐 실린더(11)를 신장 구동하기 위해서는, 붐 유량 제어 밸브(111)의 붐 신장측 파일럿 포트(111e)에 파일럿 압유를 공급하는 파일럿 유로에, 레버 조작에 따라서 비례 감압 밸브(121)로부터 출력되는 파일럿 압유의 압력을 보정하고, 제어 연산 결과를 충족하는 압력의 압유를 생성하는 파일럿압 보정부(201)를 설치하면 된다. 이하에서는, 레버 조작 에 따라서 비례 감압 밸브(121)로부터 출력되는 파일럿 압유를 레버 조작 파일럿 압유, 레버 조작 파일럿 압유의 압력을 레버 조작 파일럿압이라고 부르고, 파일럿압 보정부(201)에 의해 보정된 파일럿 압유를 보정 파일럿 압유, 보정 파일럿 압유의 압력을 보정 파일럿압이라고 부른다.
제어 연산 결과에 의거하는 소망하는 파일럿압을 생성하는 방법으로서는, 파일럿 펌프(102)와 붐 유량 제어 밸브(111)를 접속하는 파일럿 유로에 전기 지령에 의거하여 파일럿 펌프(102)가 토출되는 압유를 감압하여 출력하는 전자 비례 밸브를 설치하는 구성을 생각할 수 있다. 전자 비례 밸브를 제어 연산 결과에 의거하여 구동하고, 전자 비례 밸브로부터 출력되는 파일럿 압유를 예를 들면 비례 감압 밸브(121)로부터 출력되는 파일럿 압유 대신에 붐 유량 제어 밸브(111)로 공급하는 구성으로 함으로써, 소망하는 압력의 파일럿 압유를 붐 유량 제어 밸브(111)에 공급할 수 있다. 이러한 구성으로 한 경우에는, 레버 조작 파일럿 압유에 대한 보정의 여부에 관계 없이, 추가한 전자 비례 밸브로부터의 압유가 붐 유량 제어 밸브(111)에 공급된다.
한편, 파일럿압 보정부(201)를 설치함에 있어서는, 종래의 조작성을 손상하지 않도록 구성할 필요가 있다. 전술한 바와 같이 전자 비례 밸브를 설치하는 구성에서는, 항상 종래와는 상이한 구성으로 붐 유량 제어 밸브(111)로 파일럿 압유를 공급하기 때문에, 응답성 등이 변화하고, 조작의 위화감을 발생시킬 우려가 있다. 종래의 조작성을 유지하기 위해서는, 보정의 필요가 없는 경우에는, 파일럿압 보정부(201)를 설치하지 않는 경우와 동일하게, 예를 들면 비례 감압 밸브(121)로부터 출력되는 레버 조작 파일럿 압유를 붐 유량 제어 밸브(111)의 파일럿 포트(111e)에 공급하고, 보정이 필요한 경우에만, 레버 조작 파일럿압을 보정하는 구성으로 하는 것이 바람직하다. 그래서, 본 실시 형태에서는, 비례 감압 밸브(121)를 이용한 종래의 파일럿 압유 공급 회로를 살리면서, 안정화 제어 연산에 의해 동작 제한이 필요하다고 판단된 경우에만, 레버 조작 파일럿압에 대하여 보정을 행하도록 파일럿압 보정부(201)를 구성한다.
본 실시 형태의 안정화 제어 장치(190)에 있어서 행해지는 동작 제한은, 정지 특성을 변경하여 완만하게 정지시키는 완정지와, 동작 속도에 상한을 설치하는 동작 속도 제한이다. 완정지를 행하기 위해서는, 레버 조작 파일럿압이 급격하게 저하되는 경우에, 압력의 저하가 완만해지도록 보정할 필요가 있다. 한편, 동작 속도 제한을 행하기 위해서는, 레버 조작 파일럿압에 대하여 상한압을 설정할 필요가 있다. 완정지를 행하기 위한 보정예를 도 4a에, 동작 속도 제한을 행하기 위한 보정예를 도 4b에 나타냈다.
본 실시 형태의 파일럿압 보정부(201)는, 전술의 2종류의 동작 제한(완정지와 동작 속도 제한)을 행하기 위해, 정지 특성 변경부(211)와 동작 속도 제한부(241)를 구비하고 있다. 비례 감압 밸브(121)로부터 출력된 레버 조작 파일럿 압유는, 우선, 정지 특성 변경부(211)에 입력되고, 연산 장치(60) 내에서 행해지는 안정화 제어 연산에 의해 지령된 완정지의 정지 특성을 충족하도록 보정된다. 이 정지 특성 변경부(211)에 의해 보정된 파일럿 압유는 동작 속도 제한부(241)에 입력되고, 연산 장치(60) 내에서 행해지는 안정화 제어 연산에 의해 지령된 동작 속도 제한을 충족하도록 보정된다. 이 동작 속도 제한부(241)에 의해 보정된 파일럿 압유는, 대응하는 붐 유량 제어 밸브(111)의 붐 신장측 파일럿 포트(111e)에 입력된다.
본 실시 형태의 파일럿압 보정부(201)에 있어서, 정지 특성 변경부(211)는, 완정지용 전자 비례 밸브(221)와 완정지용 고압 선택부(231)로 구성되고, 동작 속도 제한부(241)는 속도 제한용 전자 비례 밸브(251)로부터 구성된다. 완정지용 전자 비례 밸브(221) 및 속도 제한용 전자 비례 밸브(251)는 후술하는 연산 장치(60)로부터 출력되는 지령 신호에 의해 구동된다.
·정지 특성 변경부
본 실시 형태의 붐 신장 정지 특성 변경부(211)는, 전술한 바와 같이 완정지용 전자 비례 밸브(221)와 완정지용 고압 선택부(231)로 구성된다.
완정지용 전자 비례 밸브(221)는, 연산 장치(60)로부터의 지령에 의해 구동되고, 파일럿 펌프(102)로부터 토출되는 압유로부터 연산 장치(60) 내의 안정화 제어 연산부(60a)에 의해 지령된 완정지를 행하기 위한 파일럿 압유(완정지 파일럿 압유)를 생성하는 밸브이다. 또한, 완정지용 고압 선택부(231)는, 레버 조작 파일럿 압유와, 완정지 파일럿 압유 중 고압측의 압유를 선택하여 출력하는 블록이다.
완정지용 전자 비례 밸브(221)는, 제1 포트(221a), 제2 포트(221b), 제3 포트(221c), 및 솔레노이드(221d)를 구비하고 있다. 제1 포트(221a)에는 작동유 탱크(103)가, 제2 포트(221b)에는 파일럿 펌프(102)가 각각 접속된다. 연산 장치(60)로부터의 지령 신호에 의해 솔레노이드(221d)가 여자되면, 지령 신호에 따른 압력의 완정지 파일럿 압유가 제3 포트(221c)에 출력된다. 완정지용 전자 비례 밸브(221)는 솔레노이드(221d)가 여자되어 있지 않을 때에, 제1 포트(221a)와 제3 포트(221c)를 연통하는 밸브로가 전개, 제2 포트(221b)가 전폐가 되어, 파일럿 펌프(102)로부터의 압유의 공급이 차단되는 상시 폐쇄식의 특성을 갖는다. 따라서, 솔레노이드(221d)가 비여자 상태인 경우에는, 제3 포트(221c)측의 압력은 탱크압이 된다. 연산 장치(60)로부터의 지령 신호에 의해 솔레노이드(221d)가 여자되면, 제2 포트(221b)와 제3 포트(221c)가 연통하는 밸브로가 열리는 방향으로 구동되고, 파일럿 펌프(102)로부터의 압유가 제3 포트(221c)에 출력된다. 완정지용 전자 비례 밸브(221)는, 솔레노이드(221d)에 부여되는 지령 신호가 커짐에 따라, 제3 포트(221c)로부터 출력되는 압유의 압력이 높아지는 바와 같은 특성을 갖는다. 따라서, 제3 포트(221c)로부터 출력되는 압유의 압력을 안정화 제어 연산부(60a)에 의해 지령된 완정지의 정지 특성을 충족하는 압력으로 하도록, 연산 장치(60)로부터 솔레노이드(221d)에 대하여 구동 지령을 행하면 된다.
완정지용 고압 선택부(231)는, 예를 들면 셔틀 밸브이며, 비례 감압 밸브(121)로부터 출력되는 레버 조작 파일럿 압유와 완정지용 전자 비례 밸브로부터 출력되는 완정지 파일럿 압유가 입력된다. 완정지용 고압 선택부(231)는, 입력된 레버 조작 파일럿 압유와 완정지 파일럿 압유 중 고압측의 압유를 선택하여, 정지 특성 변경부(211)의 출력으로 한다.
레버 조작 파일럿압이 안정화 제어 연산부(60a)에 의해 지령된 완정지의 정지 특성보다도 급격하게 저하되는 경우에는, 완정지 파일럿압이 레버 조작 파일럿압보다도 높아지고, 완정지용 고압 선택부(231)에 의해 완정지용 파일럿 압유가 선택되고, 지령된 정지 특성의 완정지가 실현된다. 한편, 안정화 제어 연산부(60a)에 의해 지령된 정지 특성보다도 완만하게 정지하는 바와 같은 조작이 행해진 경우에는, 레버 조작 파일럿압이 완정지 파일럿압보다도 완만하게 저하되기 때문에, 완정지 파일럿압에 대하여 레버 조작 파일럿압이 높고, 완정지용 고압 선택부(231)에 있어서 레버 조작 파일럿 압유가 선택된다. 따라서, 이 경우에는, 정지 특성 변경부(211)에 있어서 레버 조작 파일럿 압유는 보정되는 일 없이 출력된다. 또한, 정지 특성 변경부(211)에 있어서의 파일럿 압유의 압력의 보정은, 급격하게 동작 속도가 저하되는 바와 같은 조작이 행해진 경우를 대상으로 하고 있으며, 그것 이외의 정상적인 동작 지령 조작시나 증속 조작시 등에는 완정지용 전자 비례 밸브(221)는 구동되지 않는다. 따라서, 이러한 조작시에도, 완정지용 고압 선택부(231)에 있어서 레버 조작 파일럿 압유가 선택되고, 레버 조작 파일럿 압유는 보정되는 일 없이 출력된다.
·동작 속도 제한부
본 실시 형태에서는, 전술한 바와 같이, 붐 신장 동작 속도 제한부(241)로서 속도 제한용 전자 비례 밸브(251)를 구비하고 있다. 속도 제한용 전자 비례 밸브(251)는, 붐 유량 제어 밸브(111)에 공급되는 파일럿 압유에 대하여, 연산 장치(60) 내의 안정화 제어 연산부(60a)에 의해 지령된 동작 속도 제한을 충족하도록 상한압을 설정한다.
도 5b에 나타내는 바와 같이, 속도 제한용 전자 비례 밸브(251)는, 제1 포트(251a), 제2 포트(251b), 제3 포트(251c), 및 솔레노이드(251d)를 구비하고 있다. 제1 포트(251a)에는 작동유 탱크(103)가, 제2 포트(251b)에는 완정지용 고압 선택부(231)의 출력 포트가, 제3 포트(251c)에는 붐 유량 제어 밸브(111)의 붐 신장측 파일럿 포트(111e)가 각각 접속된다. 제3 포트(251c)로부터 출력되는 압유가, 파일럿압 보정부(201)에 의한 보정 파일럿 압유이다.
속도 제한용 전자 비례 밸브(251)는, 완정지용 전자 비례 밸브(221)와 동일하게, 솔레노이드(251d)가 여자되어 있지 않은 경우에는, 속도 제한용 전자 비례 밸브(251)의 제1 포트(251a)와 제3 포트(251c)를 연통하는 밸브로가 전개, 제2 포트(251b)가 전폐가 되는 상시 폐쇄식의 특성을 갖고 있다. 따라서, 솔레노이드(251d)가 여자되어 있지 않은 경우에는, 붐 유량 제어 밸브(111)의 붐 신장측 파일럿 포트(111e)는 작동유 탱크(103)와 연통되어, 보정 파일럿압은 탱크압이 된다. 한편, 연산 장치(60)로부터의 지령 신호에 의해 솔레노이드(251d)가 여자되면, 제2 포트(251b)와 제3 포트(251c)를 연통하는 밸브로가 열리는 방향으로 구동되고, 정지 특성 변경부(211)로부터 제2 포트(251b)에 공급되는 파일럿 압유가, 제3 포트(251c)에 출력된다. 제2 포트(251b)와 제3 포트(251c)를 연통하는 밸브로를 유통하는 압유의 압력은, 솔레노이드(251d)에 주어지는 지령 신호의 크기에 의해 결정된다. 여기에서, 지령 신호에 의해 결정되는 것은 유통하는 압유의 상한압이며, 보정 파일럿압은, 제2 포트(251b)에 공급되는 압유의 압력과, 솔레노이드(251d)에 주어지는 지령 신호에 의해 결정되는 상한압의 낮은 쪽이 된다. 또한, 솔레노이드(251d)에 대하여 최대의 지령 신호를 준 경우에는, 제2 포트(251b)에 공급되는 압유의 압력에 관계 없이, 제2 포트(251b)와 제3 포트(251c)를 연통하는 밸브로가 전개가 되고, 보정 파일럿압은 정지 특성 변경부(211)의 출력압과 동일해진다. 정지 특성 변경부(211)의 출력압이 안정화 제어 연산부(60a)에 의해 지령된 동작 속도 제한을 충족하는 상한압보다도 높은 경우에는, 파일럿 압유는 속도 제한용 전자 비례 밸브(251)에 의해 감압되고, 지령된 동작 속도 제한이 실현된다. 한편, 정지 특성 변경부(211)의 출력압이 상한압보다도 낮은 경우에는, 파일럿 압유는 속도 제한용 전자 비례 밸브(251)에 의해 보정되지 않고, 정지 특성 변경부(211)가 출력하는 파일럿 압유가 붐 유량 제어 밸브(111)의 붐 신장측 파일럿 포트(111e)에 공급된다. 또한, 안정화 제어 연산부(60a)에 있어서 동작 속도 제한 지령이 행해지지 않는 경우도, 파일럿 압유는 속도 제한용 전자 비례 밸브(251)에 의해 보정되지 않는다.
이상으로 설명한 바와 같이, 본 실시 형태의 정지 특성 변경부(211)는 지령된 완정지를 행하기 위해, 레버 조작 파일럿 압유의 보정이 필요한 경우에만, 완정지용 전자 비례 밸브(221)에 의해 완정지 파일럿 압유를 출력하고, 보정의 필요가 없는 경우에는, 종래의 파일럿 압유 공급 회로와 동일하게, 비례 감압 밸브(121)로부터 출력되는 레버 조작 파일럿 압유를 출력한다.
본 실시 형태의 동작 속도 제한부(241)는, 지령된 동작 속도 제한을 행하기 위해 정지 특성 변경부(211)로부터 공급되는 파일럿 압유를 보정할 필요가 있는 경우에만, 속도 제한용 전자 비례 밸브(251)에 의해 파일럿 압유를 감압하고, 보정의 필요가 없는 경우에는, 정지 특성 변경부(211)로부터 공급되는 파일럿 압유를 그대로 출력한다. 즉, 완정지 지령 및 동작 속도 제한 지령의 어느 쪽의 지령도 행해지지 않는 경우나, 레버 조작 파일럿압이 완정지 지령 및 동작 속도 제한 지령을 충족하고 있는 경우에는, 정지 특성 변경부(211) 및 동작 속도 제한부(241)에 있어서, 레버 조작 파일럿압은 보정되지 않고, 종래의 파일럿 압유 공급 회로와 동일하게, 비례 감압 밸브(121)로부터 출력되는 레버 조작 파일럿 압유가 붐 유량 제어 밸브(111)의 붐 신장측 파일럿 포트(111e)에 공급된다. 이와 같이, 종래의 파일럿 압유 공급 회로를 살린 구성으로 함으로써, 종래의 조작성에 영향을 미치는 일 없이, 동작 제한을 행할 수 있다.
<연산 장치>
연산 장치(60)는 도시하지 않는 CPU, ROM(Read Only Memory), RAM(Random Access Memory), 및 플래시 메모리 등으로 이루어지는 기억부, 및 이들을 구비하고 있는 마이크로 컴퓨터 그리고 도시하지 않는 주변 회로 등으로 구성되고, 예를 들면 ROM에 저장되는 프로그램에 따라서 작동한다.
연산 장치(60)는, 작업 기계(1)의 각 부에 장착된 각 센서로부터의 신호가 입력되는 입력부(60x), 입력부(60x)에 입력되는 신호를 받아 소정의 연산을 행하는 연산부(60z), 연산부(60z)로부터의 출력 신호를 받아 파일럿압 보정부(200)로의 구동 지령을 출력하는 출력부(60y)를 구비하고 있다.
<연산부>
이하, 도 3을 참조하여 연산부(60z)의 상세를 설명한다.
연산부(60z)는, 상태량 검출부(30)로부터 취입되는 신호에 따라서 작업 기계(1)를 안정적으로 유지하기 위해 필요한 동작 제한을 산출하는 안정화 제어 연산부(60a)와, 안정화 제어 연산부(60a)로부터의 출력에 의거하여 파일럿압 보정부(200)로의 구동 지령을 산출하는 지령값 생성부(60i)로 구성된다.
<안정화 제어 연산부>
전술한 바와 같이, 본 실시 형태의 안정화 제어 장치(190)에서는, 작업 기계(1)를 안정적으로 유지하기 위한 동작 제한으로서, 완정지와 동작 속도 제한을 행한다. 안정화 제어 연산부(60a)는, 상태량 검출부(30)의 검출 결과에 의거하여 작업 기계(1)의 안정성을 평가하고, 이 안정성 평가 결과에 의거하여 동작 제한의 여부를 판정하고, 동작 제한이 필요한 경우에는 완정지 지령값 및 동작 속도 제한값을 출력한다.
작업 기계(1)의 안정성의 평가 방법 및 동작 제한의 결정 방법은, 여러 가지 방법을 생각할 수 있지만, 본 실시 형태에서는, 안정성 평가 지표로서 ZMP(Zero Moment Point)을 이용하여, 급정지시의 거동 예측에 의거하여 동작 제한을 산출하는 방법을 적용하는 경우를 예로 들어 설명한다.
전술한 바와 같이, 조작 레버(50)를 조작 상태로부터 순시에 정지 지령 상태로 되돌리는 바와 같은 급정지 조작시에는, 전도 방향으로 큰 관성력이 작용하고, 작업 기계(1)가 불안정해지기 쉽다. 그 때문에, 본 실시 형태의 안정화 제어 연산부(60a)에서는, 급정지 조작이 행해진다고 가정한 경우의 작업 기계(1)의 거동을 예측하고, 급정지 조작시에도 안정 상태가 유지되도록 동작 제한을 결정한다.
작업 기계(1)를 안정적으로 유지하기 위한 동작 제한을 산출하는 방법은, 안정 조건으로부터의 역연산에 의한 방법과, 적용하는 동작 제한을 바꾸어 거동 예측 및 안정성 평가를 복수회 반복하는 순연산에 의한 방법이 있다. 전자는 한번의 연산으로 최적인 동작 제한을 산출할 수 있지만, 복잡한 연산식을 도출할 필요가 있다. 한편, 후자는, 복수회의 시행이 필요하지만, 비교적 간이한 연산식을 이용할 수 있다. 이하에서는, 후자의 수법을 예로 들어 설명한다.
도 3에 나타내는 바와 같이, 안정화 제어 연산부(60a)는, 속도 추정부(60b)와, 급정지시 거동 예측부(60c)와, 안정성 판정부(60d)와, 동작 제한 결정부(60h)의 각 기능 블록으로 구성된다. 속도 추정부(60b)에서는, 상태량 검출부(30)의 검출 결과로부터 각 구동 액추에이터의 동작 속도를 추정한다. 급정지시 거동 예측부(60c)에서는, 급정지 조작이 행해진다고 가정하고, 작업 기계(1)가 완전하게 정지할 때까지의 작업 기계(1)의 거동을 예측한다. 안정성 판정부(60d)에서는, 급정지시 거동 예측부(60c)의 예측 결과에 의거하여, 급정지 과정의 ZMP 궤적을 산출하여, 안정성을 판정한다. 그리고, 동작 제한 결정부(60h)에서는, 안정성 판정부(60d)의 판단 결과에 의거하여, 동작 제한의 여부를 판단하고, 완정지 지령 및 동작 속도 제한 지령을 출력한다.
·ZMP에 의거하는 안정성 평가
안정화 제어 연산부(60a)의 각 기능 블록의 상세를 설명하기 전에, 본 실시 형태에 있어서 작업 기계(1)의 안정성의 평가에 이용하는 ZMP와, ZMP를 이용한 안정성 판정 방법(ZMP 안정 판별 규범)에 대해서 설명한다. 또한, ZMP의 개념 및 ZMP 안정 판별 규범에 대해서는 「LEGGED LOCOMOTION ROBOTS: Miomir Vukobratovic저 (「보행 로봇과 인공의 발: 카토 이치로 번역, 일간공업신문사」)에 의해 상세하게 기재되어 있다.
ZMP는, 대상물에 추가되는 모멘트가 0이 되는 노면 상의 점을 의미한다. 작업 기계(1)로부터 지표면(29)에는 중력, 관성력, 외력 및 이들 모멘트가 작용하지만, 달랑베르의 원리에 의하면 이들은 지표면(29)으로부터의 작업 기계(1)로의 반작용으로서의 상반력(床反力) 및 상반력 모멘트와 균형을 이룬다. 따라서, 작업 기계(1)가 지표면(29)에 안정적으로 접지하고 있는 경우, 작업 기계(1)와 지표면(29)의 접지점을 오목해지지 않도록 연결한 지지 다각형의 변 상 또는 그 내측에 피치 축 및 롤축 방향의 모멘트가 0이 되는 점이 존재한다. 이 점을 ZMP라고 부른다. 반대로 말하면, ZMP가 지지 다각형 내에 존재하고, 작업 기계(1)로부터 지표면(29)에 작용하는 힘이 지표면(29)을 누르는 방향이면 작업 기계(1)는 안정적으로 접지하고 있다고 할 수 있다.
ZMP가 지지 다각형의 중심에 가까울수록 안정성은 높고, 지지 다각형의 내측에 있으면 작업 기계(1)은 안정 상태를 유지하고, 전도하는 일 없이 작업을 행할 수 있다. 한편, ZMP가 지지 다각형 상에 존재하는 경우에는 작업 기계(1)는 전도를 개시한다. 따라서, ZMP와 작업 기계(1)와 지표면(29)이 형성하는 지지 다각형을 비교함으로써 안정성을 판정할 수 있다.
ZMP는, 중력, 관성력, 외력에 의해 발생하는 모멘트의 균형으로부터 도출되는 이하의 방정식의 식 (1)을 이용하여 산출된다.
[수학식 1]
Figure 112016018067856-pat00001
rzmp: ZMP 위치 벡터
mi: i번째의 질점의 질량
ri: i번째의 질점의 위치 벡터
r"i: i번째의 질점에 가해지는 가속도 벡터(중력 가속도 포함함)
Mj: j번째의 외력 모멘트
sk: k번째의 외력 작용점 위치 벡터
Fk: k번째의 외력 벡터
또한, 각 벡터는 X성분, Y성분, Z성분으로 구성되는 3차원 벡터이다.
작업 기계(1)가 정지 상태에 있으며, 작업 기계(1)에 대하여 중력만이 작용하는 경우의 ZMP는, 작업 기계(1)의 무게 중심(질량 중심)의 지표면(29)으로의 투영점과 일치한다. 따라서, ZMP는 동적 상태와 정적 상태의 양쪽을 고려한 무게 중심의 지표면(29)으로의 투영점으로서 취급하는 것이 가능하고, ZMP를 지표로서 이용함으로써, 작업 기계(1)가 정지하고 있는 경우와 동작을 행하고 있는 경우의 양쪽을 통일적으로 취급할 수 있다.
<속도 추정부>
속도 추정부(60b)에서는, 상태량 검출부(30)의 검출 결과를 바탕으로, 현재의 레버 조작에 의해 발생하는 각 구동 액추에이터의 동작 속도를 추정한다. 일반적으로, 작업 기계(1)의 각 구동 액추에이터의 동작 속도는, 작업 상황이나 부하 상태에 따라 변화하기는 하지만, 대응하는 조작 레버(50)의 조작량, 즉 레버 조작 파일럿압에 대체로 비례하여 변화한다. 조작 레버(50)의 조작과 동작 속도의 사이에는 유압 및 기구에 의한 지연이 존재하기 때문에, 레버 조작 정보를 이용함으로써 가까운 미래의 동작 속도를 예측할 수 있다. 그래서, 속도 추정부(60b)에서는, 과거의 레버 조작 파일럿압과 현재의 레버 조작 파일럿압과 현재의 동작 속도를 이용하여 가까운 미래의 동작 속도를 예측한다.
구체적으로는, 속도 추정부(60b)에서는, 우선, 과거의 레버 조작 파일럿압과 현재의 동작 속도로부터 속도 산출 모델을 동정한다. 다음으로, 동정된 속도 산출 모델에 현재의 레버 조작 파일럿압을 입력함으로써, 가까운 미래의 동작 속도를 예측한다. 속도 산출 모델은 엔진 회전수, 부하의 크기, 자세, 유온 등에 의해 시시각각 변화하는 것이 예상되지만, 미소한 시각 사이에서는 작업 상황의 변화가 작기 때문에, 모델의 변화도 작은 것으로 생각해도 된다. 속도 추정부(60b)의 보다 간이한 실현부로서, 조작 레버(50)를 조작하고 나서 구동 액추에이터가 움직이기 시작할 때까지의 낭비 시간 TL과, 레버 조작 파일럿압과 동작 속도의 비례 계수αv를 이용하는 방법이 있다. 여기에서, 낭비 시간 TL은 변화하지 않는 것으로 가정하고, 미리 구해둔다. TL초 후의 속도는, 이하의 순서로 산출한다.
(단계 1)
TL초 전의 레버 조작 파일럿압 Plev(t-TL)과 현재의 속도 V(t)로부터 이하의 식 (2)를 이용하여 비례 계수 αv를 산출한다.
[수학식 2]
Figure 112016018067856-pat00002
(단계 2)
산출한 비례 계수 αv와 현재의 레버 조작 파일럿압 Plev(t)로부터 이하의 식 (3)을 이용하여 TL초 후의 속도의 추정 값 v(t+TL)을 산출한다.
[수학식 3]
Figure 112016018067856-pat00003
·급정지시 거동 예측부
급정지시 거동 예측부(60c)에서는, 급정지 지령이 행해진다고 가정하고, 급정지 지령시의 작업 기계(1)의 거동을 예측한다. 현재의 자세 정보와 속도 추정부(60b)의 속도 추정 결과와 급정지 모델로부터, 급정지 지령이 행해지고 나서 구동 액추에이터가 완전하게 정지할 때까지의 위치 궤적, 속도 궤적, 가속도 궤적을 산출한다. 급정지 모델로서는, 예를 들면, 급정지시의 속도 궤적을 모델화하고, 그 속도 궤적으로부터 위치 궤적 및 가속도 궤적을 산출하는 방법을 생각할 수 있다. 미리 급정지 지령시의 속도 궤적을 모델화하고, 시각 t에 있어서 급정지 지령이 행해졌을 때의 시각(조작 레버 개방 시각)으로부터 te초 후의 실린더 속도를 Vstop(t,te)로서 주었을 때, te초 후의 실린더 길이 lstop(t,te)와 실린더 가속도 astop(t,te)는, 급정지 개시시의 실린더, 길이 lstop(t,0)을 이용하여 이하의 식 (4)로 산출할 수 있다.
[수학식 4]
Figure 112016018067856-pat00004
실시간으로 급정지시 거동 예측을 행하기 위해서는, 급정지시의 속도 궤적을 간이한 모델로 모델화하면 된다. 급정지시의 속도 궤적의 간이 모델로서는, 일차 지연계나 다차 지연계나 다항식 함수를 생각할 수 있다. 본 실시 형태의 안정화 제어에서는 완정지를 행하기 위해, 급정지 지령에 추가하여, 완정지 지령시의 거동에 대해서도 동일한 모델화를 행한다.
안정성 판정부(60d)는, 이 급정지시 거동 예측부(60c)에 있어서 산출된 급정지시 궤적을 이용하여, 급정지 과정에 있어서의 ZMP 궤적을 산출하고, 안정성을 판정한다.
구체적으로는, 안정성 판정부(60d)에서는, 우선, 급정지시 거동 예측부(60c)의 예측 결과를 이용하여, 작업 기계(1)의 주요 구성 부재의 무게 중심의 위치 벡터 궤적과 가속도 벡터 궤적을 산출한다. 그리고, 식 (1)로부터 도출되는 이하의 식 (5) 및 식 (6)을 이용하여 ZMP 궤적을 산출한다.
[수학식 5]
Figure 112016018067856-pat00005
[수학식 6]
Figure 112016018067856-pat00006
상기 식의 r에 각 주요 구성 부재의 무게 중심의 급정지시 위치 벡터 궤적을, r"에 급정지시 가속도 벡터 궤적을 대입함으로써, 급정지시의 ZMP 궤적을 산출할 수 있다.
다음으로, 산출된 급정지시의 ZMP 궤적을 이용하여 급정지시의 안정성을 판정한다. 전술한 바와 같이 ZMP가 작업 기계(1)와 지표면(29)에서 형성하는 지지 다각형 L의 충분히 내측의 영역에 존재하는 경우에는, 작업 기계(1)는 불안정해질 가능성은 거의 없고, 안정적으로 작업을 행할 수 있다. 주행체(2)가 지표면(29)에 성립하고 있는 경우, 지지 다각형 L은, 주행체(2)의 평면 형상과 동일하다. 따라서, 주행체(2)의 평면 형상이 직사각형인 경우, 지지 다각형 L은 도 6에 나타내는 바와 같이 직사각형이 된다. 보다 구체적으로는, 주행체(2)로서 크롤러를 갖고 있는 경우의 지지 다각형 L은 좌우의 스프로킷의 중심점을 연결한 선을 전방 경계선, 좌우의 아이들러의 중심점을 연결한 선을 후방 경계선, 좌우 각각의 트랙 링크 외측단을 좌우의 경계선으로 한 사각형이다. 또한, 전방 및 후방의 경계는, 가장 전방의 하부 롤러 및 가장 후방의 하부 롤러를 접지점으로 해도 된다.
안정성 판정부(60d)에서는, 지지 다각형 L을 작업 기계(1)가 불안정해질 가능성이 충분히 낮은 통상 영역 J와 불안정해질 가능성이 높은 안정 경고 영역 N으로 나누고, ZMP가 어느 쪽의 영역에 있는지를 판정함으로써 안정성을 판정한다. 통상, 영역 J와 안정 경고 영역 N의 경계 K는, 안전율을 따라 결정되는 비율에 따라서 지지 다각형 L을 중심점측으로 축소한 다각형, 또는, 안전율을 따라 결정되는 길이만큼 지지 다각형 L을 내측으로 이동한 다각형으로 설정된다. 안정성 판정부(60d)에서는, 급정지시의 ZMP 궤적 상의 모든 점이 통상 영역 J에 있는 경우에, 안정성 판정 결과를 「안정」으로 하여 출력한다. 한편, 급정지시의 ZMP 궤적이 안정 경고 영역 N에 침입하는 경우, 즉, 급정지 과정의 어느 시점에서 ZMP가 안정 경고 영역 N에 침입하는 경우에는, 판정 결과를 「불안정」으로 하여 출력한다.
·동작 제한 결정부
동작 제한 결정부(60h)에서는, 안정성 판정부(60d)의 판정 결과를 바탕으로 동작 제한의 여부를 판정하고, 동작 제한 지령을 산출한다. 본 실시 형태의 안정화 제어 장치(190)에서는, 작업 기계(1)를 안정적으로 유지하기 위해 완정지와 동작 속도 제한을 행한다. 따라서, 동작 제한 결정부(60h)는, 동작 제한 지령으로서 완정지 지령과 동작 속도 제한 지령을 산출하고, 지령값 생성부(60i)에 출력한다.
전술한 바와 같이, 본 실시 형태의 안정화 제어 연산부(60a)에서는, 거동 예측 및 안정성 평가를 필요에 따라서 복수회 반복함으로써, 안정화에 필요한 동작 제한을 산출한다. 동작 제한 및 반복 연산의 여부 판정 방법에 대해서, 도 7을 이용하여 설명한다.
도 7에 있어서, 제1회째의 시행에 있어서는, 속도 추정부(60b)의 추정 결과 및 급정지 모델을 이용하는 설정으로 하고(단계 S71), 거동 예측(단계 S72) 및 안정성의 판정을 행한다(단계 S73).
단계 S73에 있어서의 판정 결과가 「안정」이었던 경우에는, 동작 제한을 행하지 않는다(단계 S73의 OK). 이 경우에는, 「완정지 없음」, 「동작 속도 제한 게인=1」을 출력한다(단계 S710).
한편, 안정성 판정부(60d)의 판정 결과가 「불안정」이었던 경우(단계 S73의 NG)는, 급정지 모델을 대신하여 완정지 모델을 이용하는 설정으로 하고(단계 S74), 설정 변경 후에서의 거동 예측(단계 S75) 및 안정성 판정을 행한다(단계 S76).
단계 S76에 있어서의 안정성 판정부(60d)의 판정 결과가 「안정」이었던 경우(단계 S76의 OK)는, 동작 속도 제한 게인을 1로 하고, 완정지만을 행하도록 동작 제한 지령을 행한다(단계 S711).
한편, 안정성 판정부(60d)의 판정 결과가 「불안정」이었던 경우(단계 S76의 NG)는, 속도 추정값에 동작 속도 제한 게인 α(<1)를 곱한 것과, 완정지 모델을 이용하는 설정으로 하고(단계 S77), 설정 변경 후에서의 거동 예측(단계 S78) 및 안정성 판정(단계 S79)을 행한다.
안정성 판정부(60d)의 판정 결과가 「안정」이었던 경우(단계 S79의 OK)는, 완정지 지령 및 동작 속도 제한 게인 α의 동작 속도 제한을 행하도록 동작 제한 지령을 행한다(단계 S712).
한편, 안정성 판정부(60d)의 판정 결과가 「불안정」이었던 경우(단계 S79의 NG)는, 동작 속도 제한 게인 α를 서서히 작게 하고, 안정성 판정부(60d)의 판정 결과가 「안정」이 될 때까지, 거동 예측(단계 S78)과 안정성 판정(단계 S79)을 반복한다.
또한, 상기에서는, 완정지 지령시에 선택되는 정지 특성이 한가지인 경우를 예로 들어 설명했지만, 복수의 정지 특성을 설정하고, 안정 상태에 따라서 완정지의 정도를 변경하도록 구성해도 된다. 완정지의 정도를 나타내는 지표로서는, 정지에 요하는 시간(정지 시간), 정지에 요하는 거리(제동 거리), 감속 가속도, 단위 시간당의 파일럿압의 저하량(파일럿압 변화율) 등을 예로서 들 수 있고, 복수의 설정을 설치하는 경우에는, 미리 각각의 설정에 있어서 충족해야 하는 정지 특성을 정한다. 또한, 동작 제한 결정부(60h)에서는, 모든 완정지 설정에 있어서 안정성 판정 결과가 불안정해진 경우에 처음으로 동작 속도를 제한하도록 동작 제한 지령을 산출한다.
<지령값 생성부>
지령값 생성부(60i)는, 안정화 제어 연산부(60a)로부터 출력된 완정지 지령 및 동작 속도 제한 지령에 의거하여 파일럿압 보정부(200)의 구동 지령값을 생성하고, 연산 장치(60)의 출력부(60y)에 출력한다.
보다 구체적으로는, 지령값 생성부(60i)는, 완정지 지령값으로부터 정지 특성 변경부(210)의 구동 지령값을, 동작 속도 제한 게인으로부터 동작 속도 제한부(240)의 구동 지령값을 산출한다. 본 실시 형태의 안정화 제어 장치(190)에서는, 도 5a에 나타낸 바와 같이, 붐 신장, 붐 축소, 아암 신장, 아암 축소의 각각의 파일럿 유로에, 각 정지 특성 변경부(211, 212, 213, 214) 및 각 동작 속도 제한부(241, 242, 243, 244)가 설치되어 있고, 지령값 생성부(60i)는, 각 정지 특성 변경부(211, 212, 213, 214) 및 각 동작 속도 제한부(241, 242, 243, 244)에 대하여 구동 지령값을 산출한다. 이하에서는, 붐 신장 파일럿 압유의 보정을 예로 들어, 붐 신장 정지 특성 변경부(211) 및 붐 신장 동작 속도 제한부(241)의 구동 지령값의 산출 방법을 설명한다. 우선, 붐 신장 정지 특성 변경부(211)의 구동 지령값의 산출 방법에 대해서 설명한다.
도 5b를 이용하여 설명한 바와 같이, 본 실시 형태의 정지 특성 변경부(211)는, 완정지용 전자 비례 밸브(221)와 완정지용 고압 선택부(231)로 구성되어 있다. 정지 특성 변경부(211)에서는, 급감속 조작 또는 정지 조작이 행해진 경우에, 동작 제한 결정부(60h)로부터 출력된 완정지 지령을 충족하는 파일럿 압유를 생성하도록 완정지용 전자 비례 밸브(221)를 구동함으로써, 구동 액추에이터를 완만하게 정지시킨다. 마찬가지로, 정지 특성 변경부(212)는, 완정지용 전자 비례 밸브(222)와 완정지용 고압 선택부(232)로 구성되고, 동작 속도 제한부(242)는 속도 제한용 전자 비례 밸브(252)로부터 구성된다. 완정지용 전자 비례 밸브(222) 및 속도 제한용 전자 비례 밸브(252)는 후술하는 연산 장치(60)로부터 출력되는 지령 신호에 의해 구동된다.
완정지를 행하기 위한 구동 지령의 산출 방법은, 완정지시의 정지 특성의 설정 방법에 의해 여러 가지 생각할 수 있지만, 이하에서는, 정지 특성으로서 붐 유량 제어 밸브(111)에 공급하는 파일럿 압유의 압력의 변화율을 지령하고, 레버 조작 파일럿압을 도 4a에 나타내는 보정 곡선을 이용하여 보정하는 경우를 예로 들어 설명한다.
전술한 바와 같이, 붐 유량 제어 밸브(111)에 공급하는 파일럿 압유의 압력과 구동 액추에이터의 동작 속도는 비례의 관계에 있다. 이 때문에, 감속 및 정지 조작시의 레버 조작 파일럿압의 변화율이 지령값보다도 큰 경우는 지령된 정지 특성보다도 신속하게 감속하고, 지령값보다도 작은 경우는, 지령된 정지 특성보다도 완만하게 감속한다. 본 실시 형태의 안정화 제어 장치(190)에 있어서 동작 제한을 행할 필요가 있는 것은, 지령된 정지 특성보다도 신속하게 정지하는 경우이다.
이 때문에, 지령값 생성부(60i)에서는, 우선, 레버 조작 파일럿압의 변화율과 변화율 지령값을 비교한다. 그리고, 레버 조작 파일럿압의 변화율이 변화율 지령값보다도 큰 경우에는, 도 4a에 나타내는 보정 곡선을 이용하여, 파일럿압이 변화율 지령값을 충족하는 단조(單調) 감소가 되도록 보정한다. 즉, 정지 특성 변경부(211)가 출력하는 파일럿 압유의 압력을 이하의 식 (7)과 같이 한다.
[수학식 7]
Figure 112016018067856-pat00007
여기에서, Plev(t)는 시각 t에 있어서의 레버 조작 파일럿압, P211(t)는 시각 t에 있어서 정지 특성 변경부(211)가 출력하는 파일럿 압유의 압력, k는 파일럿압 변화율 지령값이다. 정지 특성 변경부(211)에 있어서 레버 조작 파일럿 압유를 보정하지 않고 출력하는 경우에는, 완정지용 전자 비례 밸브(221)를 구동할 필요는 없고, 레버 조작 파일럿압의 변화율이 변화율 지령값보다도 큰 경우에만, 식 (7)에서 산출되는 압력의 완정지 파일럿 압유를 생성하도록 완정지용 전자 비례 밸브(221)를 구동하면 된다. 따라서, 완정지용 전자 비례 밸브(221)의 지령압은 이하의 식 (8)과 같이 산출한다.
[수학식 8]
Figure 112016018067856-pat00008
여기에서, P221c(t)는 시각 t에 있어서의 완정지용 전자 비례 밸브(221)의 지령압이다.
완정지용 전자 비례 밸브(221)가 출력하는 압유의 압력은 지령 신호의 크기에 의해 결정되고, 지령 신호와 압력의 관계는, 밸브의 출력 특성으로서, 예를 들면, 도 8a와 같이 주어진다. 완정지용 전자 비례 밸브(221)로의 구동 지령값은, 식 (8)에서 산출되는 지령압과 완정지용 전자 비례 밸브(221)의 출력 특성을 이용하여 결정한다. 예를 들면, 도 8b에 나타낸 보정을 행하는 경우의 완정지용 전자 비례 밸브(221)로의 구동 지령값은 도 8c와 같이 산출된다.
본 실시 형태의 안정화 제어 장치(190)에서는, 붐 실린더(11) 및 아암 실린더(13)에 대하여 동작 제한을 행하기 때문에, 붐 신장 완정지용 전자 비례 밸브(221), 붐 축소 완정지용 전자 비례 밸브(222), 아암 신장 완정지용 전자 비례 밸브, 아암 축소 완정지용 전자 비례 밸브의 4개의 완정지용 전자 비례 밸브가 구비되어 있다. 지령값 생성부(60i)는, 각각의 완정지용 전자 비례 밸브에 대하여, 각각의 대응하는 레버 조작 파일럿압을 이용하여 구동 지령값을 산출한다.
다음으로, 붐 신장 동작 속도 제한부(241)의 구동 지령값의 산출 방법에 대해서 설명한다. 전술한 바와 같이, 본 실시 형태에서는 동작 속도 제한부(241)로서 속도 제한용 전자 비례 밸브(251)를 구비하고 있으며, 속도 제한용 전자 비례 밸브(251)로의 구동 지령값에 의해, 붐 유량 제어 밸브(111)의 파일럿 포트에 공급되는 파일럿 압유의 상한압이 결정된다. 구동 액추에이터의 동작 속도는 파일럿압에 대략 비례하기 때문에, 동작 제한 결정부(60h)로부터 출력된 동작 속도 제한 게인에 의거하여 속도 제한용 전자 비례 밸브(251)의 구동 지령값을 산출하면 된다.
구체적으로는, 속도 제한용 전자 비례 밸브(251)에 대하여 최대의 구동 지령을 준 경우에는, 정지 특성 변경부(211)로부터 속도 제한용 전자 비례 밸브(251)에 입력되는 파일럿 압유의 압력이 아닌, 입력된 압유가 보정되는 일 없이 출력된다. 따라서, 동작 속도 제한 게인이 1인 경우는, 속도 제한용 전자 비례 밸브(251)에 대하여, 최대의 구동 지령을 행한다.
한편, 동작 속도 제한 게인이 1 미만인 경우는, 레버 조작 파일럿압을 줄일 필요가 있기 때문에, 동작 속도 제한 게인에 따라서, 레버 조작 파일럿압을 감압하도록 구동 지령을 행한다. 여기에서, 동작 속도 제한 게인은, 레버 조작에 의해 지령된 동작 속도로부터의 필요한 감속률을 나타내고 있으며, 레버 조작 파일럿압에 대하여 행해야 하는 감압률이라고 생각해도 된다. 즉, 속도 제한용 전자 비례 밸브(251)로부터 출력되는 보정 파일럿 압유의 압력을, 레버 조작 파일럿압에 동작 속도 제한 게인을 곱한 압력 이하로 하도록, 속도 제한용 전자 비례 밸브(251)를 구동하면 된다. 따라서, 속도 제한용 전자 비례 밸브(251)의 지령압은 이하와 같이 산출된다.
[수학식 9]
Figure 112016018067856-pat00009
여기에서, P251c(t)는 시각 t에 있어서의 속도 제한용 전자 비례 밸브(251)의 지령압이며, PMAX는 속도 제한용 전자 비례 밸브(251)의 정격 압력이다.
완정지용 전자 비례 밸브(221)의 경우와 동일하게, 속도 제한용 전자 비례 밸브(251)가 출력하는 압유의 압력은 지령 신호의 크기에 의해 결정되고, 지령 신호와 압력의 관계는, 밸브의 출력 특성으로서, 예를 들면 도 8a와 같이 주어진다. 속도 제한용 전자 비례 밸브(251)로의 구동 지령값은, 식 (9)에서 산출되는 지령압과 속도 제한용 전자 비례 밸브(251)의 출력 특성을 이용하여 결정한다. 예를 들면, 도 8b에 나타낸 보정을 행하는 경우의 속도 제한용 전자 비례 밸브(251)로의 구동 지령값은 도 8d와 같이 산출된다.
본 실시 형태의 안정화 제어 장치(190)에서는, 붐 실린더(11) 및 아암 실린더(13)에 대하여 동작 제한을 행하기 때문에, 붐 신장 속도 제한용 전자 비례 밸브(251), 붐 축소 속도 제한용 전자 비례 밸브(252), 아암 신장 속도 제한용 전자 비례 밸브(도시하지 않음), 아암 축소 속도 제한용 전자 비례 밸브(도시하지 않음)의 4개의 속도 제한용 전자 비례 밸브가 구비되어 있으며, 지령값 생성부(60i)는, 각각의 전자 비례 밸브에 대하여 구동 지령값을 산출한다. 구동 지령값은, 각각 대응하는 레버 조작 파일럿압으로부터 식 (9)를 이용하여 산출한다. 이와 같이 레버 조작 파일럿압에 의거하여 구동 지령을 산출함으로써, 작업 상태에 따라서 파일럿압과 동작 속도의 관계가 변화하는 경우라도, 속도 제한용 전자 비례 밸브(251)에 의해, 안정화 제어 연산부(60a)로부터 지령된 동작 속도 제한을 확실하게 실현할 수 있다.
<작용>
이상으로 설명한 바와 같이, 본 실시 형태에 의하면, 작업 기계(1)에 대하여 무리한 조작이나 잘못된 조작을 행한 경우에도, 작업 기계(1)를 안정적으로 유지하기 위해 필요한 동작 제한이 행해지고, 안정성을 손상시키는 일 없이, 작업을 계속시킬 수 있다. 또한, 본 실시 형태에서는, 동작 제한이 필요한 경우에만, 파일럿압 보정부(200)에 있어서의 보정을 행하고, 동작 제한의 필요가 없는 경우에는 종래와 동일하게 비례 감압 밸브군으로부터 출력되는 파일럿 압유를 이용하여 구동 액추에이터를 구동하는 구성을 갖고 있으며, 종래의 조작성을 손상하는 일 없이, 동작 제한을 행할 수 있다. 따라서, 본 실시 형태의 안정화 제어 장치(190)에 의해, 조작성 및 안정성이 높은 작업 기계를 제공할 수 있다.
<제1 실시 형태의 변경예>
<센서 구성>
상기의 실시 형태에서는, 자세 검출부(49)로서 작업 기계(1)의 기울기를 검출하기 위한 자세 센서(3b)를 설치하는 예를 나타냈지만, 작업 중에 작업 기계(1)의 기울기가 변화하지 않는 경우에는, 작업 기계(1)의 기울기를 일정값으로 하고, 자세 센서(3b)를 설치하지 않는 구성으로 해도 된다.
또한, 상기 실시 형태에서는, 레버 조작량 검출부(50a)로서, 붐 신장 조작량 센서(51)와, 붐 축소 조작량 센서(52)와, 아암 신장 조작량 센서(53)와, 아암 축소 조작량 센서(54)와, 어태치먼트 신장 조작량 센서(55)와, 어태치먼트 축소 조작량 센서(56)와, 우선회 조작량 센서(57)와, 좌선회 조작량 센서(58)를 설치하는 예를 나타냈지만, 동작 제한을 적용하는 구동 액추에이터로의 레버 조작에 대해서만 센서를 설치하는 구성으로 해도 된다. 예를 들면, 붐 실린더(11) 및 아암 실린더(13)에 대하여 동작 제한을 행하는 경우에는, 어태치먼트 신장 조작량 센서(55)와, 어태치먼트 축소 조작량 센서(56)와, 우선회 조작량 센서(57)와, 좌선회 조작량 센서(58)를 생략하는 구성으로 해도 된다.
<대상으로 하는 구동 액추에이터>
상기의 실시 형태에서는, 붐 실린더(11), 및 아암 실린더(13)에 대하여 동작 제한을 행하는 경우를 예로 들어 설명했지만, 붐 실린더(11), 아암 실린더(13)에 추가하여, 선회 모터(7)나 어태치먼트 실린더(15)에 대하여 동작 제한을 행하도록 구성해도 된다.
이 경우에는, 붐 신장, 붐 축소 아암 신장, 아암 축소의 각 파일럿 유로에 추가하여, 우선회, 좌선회, 어태치먼트 신장, 어태치먼트 축소의 각 파일럿 유로에 각 파일럿압 보정부를 설치하고, 지령값 생성부(60i)에 있어서, 붐 신장, 붐 축소, 아암 신장, 아암 축소의 각 파일럿압 보정부(201, 202, 203, 204)로의 구동 지령에 추가하여, 우선회, 좌선회, 어태치먼트 신장, 어태치먼트 축소의 각 파일럿압 보정부로의 구동 지령을 생성하도록 구성하면 된다.
<동작 속도 제한부의 변경예>
이하에서는, 파일럿압 보정부의 변경예에 대해서, 붐 신장 파일럿 압유의 보정을 예로 들어 설명한다.
상기의 실시 형태에서는, 붐 신장 동작 속도 제한부(241)로서, 상시 폐쇄식의 특성을 갖는 속도 제한용 전자 비례 밸브(251)를 이용하는 예를 나타냈지만, 속도 제한용 전자 비례 밸브(251)는, 붐 유량 제어 밸브(111)의 붐 신장측 파일럿 포트(111e)에 공급하는 파일럿 압유의 압력을 지령압까지 감압하는 기능을 가지면 되고, 반드시 상기의 특성을 갖는 밸브일 필요는 없다. 예를 들면, 속도 제한용 전자 비례 밸브(251)의 다른 예로서는, 도 9a에 나타나는 바와 같은 상시 개방식의 특성을 갖는 전자 비례 밸브를 들 수 있다.
구체적으로는, 도 9a에 나타내는 바와 같이, 속도 제한용 전자 비례 밸브(251)를 상시 개방식의 전자 비례 밸브로 한다. 이 경우, 솔레노이드(251d)가 여자되어 있지 않을 때에는, 제2 포트(251b)와 제3 포트(251c)를 연통하는 밸브로가 전개, 제1 포트(251a)가 전폐가 되고, 정지 특성 변경부(211)로부터의 파일럿 압유가 감압되는 일 없이 붐 유량 제어 밸브(111)의 붐 신장측 파일럿 포트(111e)에 공급된다. 이에 대하여, 연산 장치(60)로부터의 지령 신호에 의해 솔레노이드(251d)가 여자되면, 제2 포트(251b)와 제3 포트(251c)를 연통하는 밸브로가 닫히는 방향으로 구동되고, 정지 특성 변경부(211)로부터의 파일럿 압유가 지령압까지 감압된다. 또한, 솔레노이드(251d)로의 지령 신호가 최대인 경우에는, 제1 포트(251a)와 제3 포트(251c)를 연통하는 밸브로가 전개, 제2 포트(251b)가 전폐가 된다. 이때, 붐 유량 제어 밸브(111)로의 파일럿 압유의 공급은 정지되고, 붐 유량 제어 밸브(111)의 파일럿 포트에 접속되는 파일럿 유로의 압유는 작동유 탱크(103)에 배출된다.
이러한 특성을 갖는 전자 비례 밸브를 이용하는 경우에는, 지령값 생성부(60i)에 있어서, 동작 제한 결정부(60h)로부터 출력되는 동작 속도 제한 게인이 1인 경우는 솔레노이드(251d)를 비여자 상태로 하고, 동작 속도 제한 게인이 1 미만인 경우는 속도 제한용 전자 비례 밸브(251)의 지령압을 식 (9)에 의해 산출되는 압력으로 하도록 구동 지령을 행한다.
속도 제한용 전자 비례 밸브(251)로서 상시 폐쇄식의 전자 비례 밸브를 이용하는 경우와 상시 개방식을 이용하는 경우의 특징을 설명한다.
도 5b에 나타내는 바와 같은 상시 폐쇄식으로 하는 경우에는, 연산 장치(60)나, 연산 장치(60)와 속도 제한용 전자 비례 밸브(251)를 접속하는 전기 회로에 문제가 발생하고, 솔레노이드(251d)로의 지령 신호가 주어지지 않는 경우에, 솔레노이드(251d)가 비여자 상태가 되어, 붐 유량 제어 밸브(111)로의 파일럿 압유의 공급이 정지되고, 구동 액추에이터는 정지 상태가 된다. 한편, 속도 제한용 전자 비례 밸브(251)를 상시 개방식으로 하면, 솔레노이드(251d)로의 지령 신호가 주어지지 않은 경우에는, 정지 특성 변경부(211)가 출력하는 파일럿 압유가 붐 유량 제어 밸브(111)로 공급되기 때문에, 동작 속도가 제한되지 않은 채, 구동 액추에이터의 동작이 계속된다.
또한, 상시 폐쇄식의 속도 제한용 전자 비례 밸브(251)를 이용하는 경우에는, 동작 속도 제한부(241)에 있어서 보정의 필요가 없을 때에, 항상 연산 장치(60)로부터 최대의 지령 신호를 출력할 필요가 있지만, 상시 개방식을 이용하는 경우에는 지령 신호를 0으로 하면 되고, 필요한 전류량은 상시 개방식을 이용하는 쪽이 적어지는 경향이 있다.
따라서, 안전성의 관점에서는 상시 폐쇄식이, 편리성, 전류량의 관점에서는 상시 개방식이 우수하다. 어느 쪽의 특성의 전자 비례 밸브를 이용하는지는, 적용하는 작업 기계에 있어서 요구되는 안전성, 편리성, 및 연산 장치의 성능을 고려하여 결정하면 된다.
또한, 상기의 실시 형태에서는, 동작 속도 제한부(241)로서 속도 제한용 전자 비례 밸브(251)를 설치하는 예를 나타냈지만, 동작 속도 제한부(241)는, 붐 유량 제어 밸브(111)에 공급하는 파일럿 압유의 압력을 지령압까지 감압하는 기능을 가지면 되고, 전자 비례 밸브 이외의 다른 구성을 이용해도 된다. 다른 구성예로서, 속도 제한용 전자 비례 밸브(251)를 대신하여 속도 제한용 전자 비례 릴리프 밸브(261)를 구비하고 있는 구성을 생각할 수 있다. 동작 속도 제한부로서 속도 제한용 전자 비례 릴리프 밸브(261)를 구비하고 있는 경우의 붐 신장 파일럿압 보정부(201)의 개략 구성을 도 9b에 나타냈다.
구체적으로는, 도 9b에 나타내는 바와 같이, 속도 제한용 전자 비례 릴리프 밸브(261)는, 입력 포트(261a)와 탱크 포트(261b)와 솔레노이드(261c)를 구비하고 있으며, 입력 포트(261a)는 정지 특성 변경부(211)와 붐 유량 제어 밸브(111)의 붐 신장측 파일럿 포트(111e)를 접속하는 파일럿 유로에, 탱크 포트(261b)는 작동유 탱크(103)에 각각 접속된다. 솔레노이드(261c)는 연산 장치(60)로부터의 지령 신호에 의해 여자되어, 그 지령 신호의 크기에 의해, 속도 제한용 전자 비례 릴리프 밸브(261)의 설정압이 결정된다.
속도 제한용 전자 비례 릴리프 밸브(261)에서는, 입력 포트(261a)측의 압력이 설정압보다도 높은 경우에는, 입력 포트(261a)와 탱크 포트(261b)를 연통하는 밸브로가 열리고, 입력 포트(261a)에 접속되는 유로의 압유가 작동유 탱크(103)에 배출된다. 이에 따라, 입력 포트(261a)측의 압력, 즉, 정지 특성 변경부(211)로부터 붐 유량 제어 밸브(111)의 붐 신장측 파일럿 포트(111e)에 공급되는 파일럿 압유의 압력은, 설정압 이하로 유지된다. 또한, 입력 포트(261a)와 탱크 포트(261b)를 연통하는 밸브로가 전폐인 경우에는, 파일럿 압유는 속도 제한용 전자 비례 릴리프 밸브(261)에 의해 보정되지 않는다. 따라서, 속도 제한용 전자 비례 릴리프 밸브(261)의 설정압을, 안정화 제어 연산부(60a)에 의해 지령된 동작 속도 제한을 충족하는 상한압으로 함으로써, 속도 제한용 전자 비례 밸브(251)를 이용하는 경우와 동일하게, 동작 속도 제한을 행할 수 있다.
동작 속도 제한부(241)로서 속도 제한용 전자 비례 릴리프 밸브(261)를 이용하는 경우에는, 지령값 생성부(60i)에 있어서, 동작 제한 결정부(60h)로부터 출력되는 동작 속도 제한 게인이 1인 경우는, 설정압이 최대가 되도록 구동 지령값을 산출하면 된다. 또한, 동작 속도 제한 게인이 1 미만인 경우에는, 설정압이 식 (9)에 의해 산출되는 지령압이 되도록 구동 지령값을 산출하면 된다.
<완정지용 전자 비례 밸브의 구동 지령>
상기의 실시 형태에서는, 지령값 생성부(60i)에 있어서, 레버 조작 파일럿압이 지령된 정지 특성보다도 급격하게 저하되는 경우에만, 완정지용 전자 비례 밸브(221)로 구동 지령을 행하는 예를 나타냈다. 그리고, 상기의 예에서는, 레버 조작 파일럿압이 저하되지 않는 경우나, 지령된 정지 특성보다도 완만하게 저하되는 경우에는 지령 신호를 0으로 했다.
그러나, 일반적으로 전자 비례 전자 밸브로 구동 신호를 행하고 나서 출력되는 압유가 지령압이 될 때까지는, 어느 정도의 지연이 있다. 완정지용 전자 비례 밸브(221)의 응답성이 낮은 경우에는, 지령압까지의 상승의 타임 래그에 의해, 압력이 일시적으로 저하되고, 정확하게 완정지가 행해지지 않을 가능성이 있다. 이러한 문제를 회피하기 위해, 완정지용 전자 비례 밸브(221)에 대하여, 항상 대기 신호를 주도록 구성해도 된다. 이 경우의 대기 신호의 크기는, 완정지 파일럿압이 레버 조작 파일럿압을 초과하지 않는 크기로 하고, 완정지용 전자 비례 밸브(221)의 응답성을 고려하여 결정하면 된다.
<동작 속도 제한 지령 산출 방법의 변경예>
상기의 실시 형태에서는, 동작 제한 결정부(60h)에 있어서 동작 속도 제한 게인을 산출하고, 지령값 생성부(60i)에 있어서, 동작 속도 제한 게인과 레버 조작 파일럿압을 이용하여 속도 제한용 전자 비례 밸브(251)의 구동 지령값을 산출하는 예를 나타냈다. 이러한 구성으로 함으로써, 파일럿압과 동작 속도의 관계가 작업 상태에 의해 변화하는 경우에 있어서도, 적절하게 동작 속도 제한을 행할 수 있다.
한편, 작업 상태에 관계 없이, 파일럿압으로부터 동작 속도가 오로지 결정되는 경우에는, 이하와 같이 구성해도 된다. 동작 제한 결정부(60h)에 있어서, 동작 속도 제한 게인을 산출하는 대신에, 동작 속도의 상한값을 산출한다. 또한, 지령값 생성부(60i)에 있어서, 파일럿압과 동작 속도의 관계식을 이용하여, 동작 속도 상한값으로부터 파일럿압 상한값을 산출하고, 이 파일럿압 상한값을 속도 제한용 전자 비례 밸브(251)의 지령압으로 하여, 구동 지령을 행한다.
<제2 실시 형태>
본 발명의 작업 기계의 제2 실시 형태를 도 10을 이용하여 설명한다.
본 실시 형태에서는, 정지 특성 변경부(210)로서, 제1 실시 형태에서 이용한 완정지용 전자 비례 밸브(221, 222)를 포함하는 완정지용 전자 비례 밸브군과 완정지용 고압 선택부(231, 232)를 포함하는 완정지용 고압 선택부군을 대신하여, 완정지용 전자 비례 압력 유지 밸브(271, 272)를 포함하는 전자 비례 압력 유지 밸브군과 완정지용 역지 밸브(281, 282)를 포함하는 역지 밸브군을 이용한다. 이하에서는, 도 10을 참조하여, 주로 제1 실시 형태와의 차이점을 설명한다. 또한, 도 1 내지 도 9b와 동일한 구성에는 동일한 부호를 나타내고, 설명은 생략한다. 이하의 실시 형태에 있어서도 동일한 것으로 한다.
<파일럿압 보정부>
본 실시 형태의 파일럿압 보정부(200)는, 제1 실시 형태와 동일하게 정지 특성 변경부(210)와 동작 속도 제한부(240)로 구성된다. 안정화 제어 연산에 의거하는 동작 제한을 붐 실린더(11) 및 아암 실린더(13)에 대하여 적용하기 위해, 작업 기계(1)에는, 파일럿압 보정부(200)로서, 붐 신장 파일럿압 보정부(201), 붐 축소 파일럿압 보정부(202), 아암 신장 파일럿압 보정부(도시하지 않음), 아암 축소 파일럿압 보정부(도시하지 않음)가 설치된다. 각 파일럿압 보정부(201, 202)의 구성은 어느 것에 대해서도 동일한 구성이고, 붐 신장 파일럿압 보정부(201)는 붐 신장 정지 특성 변경부(211)와 붐 신장 동작 속도 제한부(241)를 구비하고, 붐 축소 파일럿압 보정부(202)는 붐 축소 정지 특성 변경부(212)와 붐 축소 동작 속도 제한부(242)를 구비하고 있다. 도시하지 않는 아암 신장 파일럿압 보정부도 동일하게 아암 신장 정지 특성 변경부와 아암 신장 동작 속도 제한부를 구비하고, 아암 축소 파일럿압 보정부도 아암 축소 정지 특성 변경부와 아암 축소 동작 속도 제한부를 구비하고 있다. 본 실시 형태의 각 동작 속도 제한부(241, 242…)의 구성은 제1 실시 형태와 동일하다. 이하에서는, 붐 신장 파일럿 압유의 보정을 예로 들어, 붐 신장 정지 특성 변경부(211)에 대해서만 설명한다.
<정지 특성 변경부>
본 실시 형태의 붐 신장 정지 특성 변경부(211)는, 전자 비례 압력 유지 밸브군으로서의 완정지용 전자 비례 압력 유지 밸브(271)와 역지 밸브군으로서의 완정지용 역지 밸브(281)로 구성된다.
완정지용 역지 밸브(281)는, 압유의 흐름 방향을 제한하는 밸브이고, 완정지용 전자 비례 압력 유지 밸브(271)는, 파일럿 압유의 작동유 탱크(103)로의 배출을 제어하는 밸브이다. 완정지용 역지 밸브(281) 및 완정지용 전자 비례 압력 유지 밸브(271)는, 비례 감압 밸브(121)와 동작 속도 제한부(241)를 접속하는 유로에 병렬로 설치된다. 즉, 비례 감압 밸브(121)와 동작 속도 제한부(241)의 사이에는, 완정지용 역지 밸브(281)를 구비한 파일럿 유로와 완정지용 전자 비례 압력 유지 밸브(271)를 구비한 파일럿 유로가 설치되어 있고, 압유는 어느 쪽의 유로를 유통한다. 이하에서는 완정지용 역지 밸브(281)와 완정지용 전자 비례 압력 유지 밸브(271)의 상세를 설명한다.
완정지용 역지 밸브(281)는, 압유의 흐름 방향을 제한하는 밸브이고, 입력 포트(281a) 및 출력 포트(281b)를 구비하고 있다. 완정지용 역지 밸브(281)의 입력 포트(281a)에는 비례 감압 밸브(121)의 제3 포트(121c)가, 출력 포트(281b)에는 동작 속도 제한부(241)를 구성하는 속도 제한용 전자 비례 밸브(251)의 제2 포트(251b)가 접속되고, 비례 감압 밸브(121)로부터 동작 속도 제한부(241)로의 압유의 흐름을 자유 흐름으로 하고, 동작 속도 제한부(241)로부터 비례 감압 밸브(121)로의 압유의 흐름을 차단한다. 따라서, 압유는, 비례 감압 밸브(121)로부터 동작 속도 제한부(241)로 유통하는 경우에는, 완정지용 역지 밸브(281)를 구비한 파일럿 유로를 지나, 동작 속도 제한부(241)로부터 비례 감압 밸브(121)에 유통하는 경우에는 완정지용 전자 비례 압력 유지 밸브(271)를 구비한 파일럿 유로를 유통한다.
전술한 바와 같이, 파일럿 유로의 압유의 흐름의 방향은, 조작 레버(50)의 조작 상태에 의해 결정된다. 조작 레버(50)를, 비례 감압 밸브(121)로부터 출력되는 레버 조작 파일럿압을 증대시키는 방향으로 조작한 경우에는, 비례 감압 밸브(121)로부터 파일럿 유로로 파일럿 압유가 공급되고, 레버 조작 파일럿압을 저하시키는 방향으로 조작한 경우에는, 파일럿 유로의 압유가 비례 감압 밸브(121)의 제1 포트(121a)와 제3 포트(121c)를 연통하는 밸브로를 유통하여 작동유 탱크(103)에 배출된다. 따라서, 본 실시 형태의 정지 특성 변경부(211)는, 레버 조작 파일럿압을 증대시키는 경우의 압유의 공급을 자유 흐름으로 하고, 레버 조작 파일럿압을 저하시키는 경우, 즉, 구동 액추에이터를 감속시키는 경우의 압유의 유통을 완정지용 전자 비례 압력 유지 밸브(271)에 의해 제어하는 구성이다.
완정지용 전자 비례 압력 유지 밸브(271)는, 제1 포트(271a), 제2 포트(271b), 및 솔레노이드(271c)를 구비하고 있으며, 제1 포트(271a)는 속도 제한용 전자 비례 밸브(251)의 제2 포트(251b)와, 제2 포트(271b)는 비례 감압 밸브(121)의 제3 포트(121c)와 각각 접속된다. 솔레노이드(271c)는 연산 장치(60)로부터의 지령 신호에 의해 여자되고, 그 지령 신호의 크기에 의해, 완정지용 전자 비례 압력 유지 밸브(271)의 유지압이 결정된다.
완정지용 전자 비례 압력 유지 밸브(271)에서는, 제1 포트(271a)측의 압력이 유지압보다도 높은 경우에는, 제1 포트(271a)와 제2 포트(271b)를 연통하는 밸브로가 열리고, 제1 포트(271a)로부터 제2 포트(271b)로 압유가 공급된다. 전술한 바와 같이, 압유가 완정지용 전자 비례 압력 유지 밸브(271)를 통과하는 것은, 동작 속도 제한부(241)로부터 비례 감압 밸브(121)로 압유가 유통하는 경우뿐이며, 이때, 비례 감압 밸브(121)에 공급된 압유는, 비례 감압 밸브(121)의 제1 포트(121a)와 제3 포트(121c)를 연통하는 밸브로를 유통하여 작동유 탱크(103)로 배출된다. 즉, 완정지용 전자 비례 압력 유지 밸브(271)는, 완정지용 전자 비례 압력 유지 밸브(271)와 동작 속도 제한부(241)를 연결하는 파일럿 유로의 압유의 압력이 유지 압보다도 높은 경우에는 압유를 작동유 탱크(103)에 배출하고, 유지압보다도 낮은 경우에는 작동유 탱크(103)로의 배출을 차단한다. 이에 따라, 파일럿 압유의 압력을 유지압으로 유지한다.
솔레노이드(271c)가 여자되어 있지 않은 경우에는, 파일럿 유로의 압유의 압력에 관계 없이, 제1 포트(271a)와 제2 포트(271b)를 연통하는 밸브로가 전개가 되어, 작동유 탱크(103)로의 배출이 자유롭게 행해진다.
한편, 완정지용 전자 비례 압력 유지 밸브(271)에 대하여 최대의 구동 지령을 행하면, 제1 포트(271a)와 제2 포트(271b)를 연통하는 밸브로가 닫힌 상태가 되고, 구동 액추에이터를 감속 또는 정지시키도록 조작 레버(50)를 조작한 경우에 있어서도, 파일럿 유로의 압유가 작동유 탱크(103)에 배출되지 않는다. 이때, 동작 속도 제한부(241)에 공급되는 파일럿 압유의 압력은 레버 조작에 의해 비례 감압 밸브(121)로부터 출력된 레버 조작 파일럿압의 최대압으로 유지되어, 구동 액추에이터는 감속되는 일 없이 동작을 계속한다.
이와 같이, 완정지용 전자 비례 압력 유지 밸브(271)의 유지압을 완만하게 저하시킴으로써, 파일럿 압유의 압력을 완만하게 저하시켜, 구동 액추에이터를 완만하게 감속시킬 수 있다. 따라서, 완정지용 전자 비례 압력 유지 밸브(271)의 유지압을, 안정화 제어 연산부(60a)에 의해 지령된 완정지의 정지 특성을 충족하는 압력으로 함으로써, 완정지용 전자 비례 밸브(221)를 이용하는 경우와 동일하게, 지령된 완정지를 행할 수 있다.
<연산 장치>
연산 장치(60)는, 제1 실시 형태와 동일하게, 작업 기계(1)의 각 부에 장착된 각 센서로부터의 신호가 입력되는 입력부(60x), 입력부(60x)에 입력되는 신호를 받아 소정의 연산을 행하는 연산부(60z), 연산부(60z)로부터의 출력 신호를 받아 파일럿압 보정부(200)로의 구동 지령을 출력하는 출력부(60y)를 구비하고 있다. 연산부(60z)는, 작업 기계(1)를 안정적으로 유지하기 위한 동작 제한을 산출하는 안정화 제어 연산부(60a)와, 파일럿압 보정부(200)로의 구동 지령을 산출하는 지령값 생성부(60i)로 구성된다.
제2 실시 형태의 연산 장치(60)에 있어서, 제1 실시 형태와 상이한 것은, 지령값 생성부(60i)에 있어서의 정지 특성 변경부(210)로의 구동 지령의 산출 방법뿐이다. 이하에서는, 붐 신장 파일럿 압유의 보정을 예로 들어, 지령값 생성부(60i)에 있어서의 완정지용 전자 비례 압력 유지 밸브(271)로의 구동 지령의 산출 방법에 대해서만 설명한다.
<지령값 생성부>
본 실시 형태의 붐 신장 정지 특성 변경부(211)는, 완정지용 역지 밸브(281)와 완정지용 전자 비례 압력 유지 밸브(271)로 구성되어 있으며, 정지 특성 변경부(211)가 출력하는 파일럿 압유가 동작 제한 결정부(60h)로부터 출력된 완정지 지령을 충족하는 압력이 되도록, 완정지용 전자 비례 압력 유지 밸브(271)를 구동함으로써, 구동 액추에이터를 완만하게 정지시킨다.
이하에서는, 제1 실시 형태와 동일하게, 정지 특성으로서 붐 유량 제어 밸브(111)로 공급하는 파일럿 압유의 압력의 변화율을 지령하고, 레버 조작 파일럿압을 도 4a에 나타내는 보정 곡선을 이용하여 보정하는 경우를 예로 들어, 완정지용 전자 비례 압력 유지 밸브(271)로의 구동 지령값의 산출 방법을 설명한다.
본 실시 형태에 있어서 지령된 완정지를 행하기 위해서는, 정지 특성 변경부(211)의 출력압을 식 (7)에서 산출되는 압력으로 할 필요가 있다. 완정지용 전자 비례 압력 유지 밸브(271)를 압유가 유통하지 않는 경우나, 완정지용 전자 비례 압력 유지 밸브(271)에 있어서 출력압을 보정할 필요가 없는 경우에는, 완정지용 전자 비례 압력 유지 밸브(271)를 구동할 필요는 없다. 즉, 레버 조작 파일럿압의 변화율이 변화율 지령값보다도 큰 경우만, 유지압을 식 (7)에서 산출되는 압력으로 하도록 구동하면 된다. 따라서, 완정지용 전자 비례 압력 유지 밸브(271)의 유지압은, 제1 실시 형태의 완정지용 전자 비례 밸브(221)의 지령압과 동일하게 식 (8)을 이용하여 산출되는 압력으로 하면 된다. 또한, 완정지용 전자 비례 압력 유지 밸브(271)의 유지압은 솔레노이드(271c)에 주어지는 지령 신호의 크기에 의해 결정되고, 지령 신호와 압력의 관계는, 밸브의 출력 특성으로서 미리 주어진다. 따라서, 완정지용 전자 비례 압력 유지 밸브(271)로의 구동 지령값은 식 (8)에서 산출되는 유지압과, 밸브의 출력 특성을 이용하여 산출한다.
<특장(特長)>
본 실시 형태와 같은 태양의 정지 특성 변경부(211)를 이용하면, 정상적인 동작 지령 조작시나 증속 조작시 등, 레버 조작 파일럿압을 저하시키지 않는 바와 같은 조작시에는, 레버 파일럿 압유는 완정지용 역지 밸브(281)를 구비한 유로를 유통하고, 보정되는 일 없이 출력된다. 또한, 안정화 제어 연산부(60a)에 의해 지령된 완정지의 정지 특성보다도 완만하게 정지시키는 바와 같은 조작이 행해진 경우에도, 완정지용 전자 비례 압력 유지 밸브(271)에 의한 보정은 행해지지 않는다.
한편, 레버 조작 파일럿압이 안정화 제어 연산부(60a)로부터 지령된 완정지의 정지 특성보다도 급격하게 저하되는 경우에는, 완정지용 전자 비례 압력 유지 밸브(271)는, 정지 특성 변경부(211)의 출력압이 지령된 완정지의 정지 특성을 충족하는 압력이 되도록 구동되고, 완정지용 전자 비례 압력 유지 밸브(271)에 의해 파일럿 압유의 작동유 탱크(103)로의 배출이 제어되어, 지령된 정지 특성의 완정지가 실현된다.
따라서, 본 실시 형태의 정지 특성 변경부(211)는 제1 실시 형태의 정지 특성 변경부(211)와 동일하게, 레버 조작 파일럿 압유의 압력이 안정화 제어 연산부(60a)로부터 지령된 완정지 지령을 충족하지 않는 경우에만 보정을 행하는 구성이며, 종래의 조작성에 영향을 주는 일 없이, 동작 제한을 행할 수 있다.
또한, 본 실시 형태의 정지 특성 변경부(211)는, 완정지용 역지 밸브(281)에 의해, 비례 감압 밸브(121)로부터 붐 유량 제어 밸브(111)로의 파일럿 압유의 흐름을 자유 흐름으로 하고 있는 점에서, 완정지용 전자 비례 압력 유지 밸브(271)는, 솔레노이드(271c)의 구동 상태에 의하지 않고, 구동 액추에이터를 구동하는 방향의 압유의 유통에 영향을 미치지 않는다.
또한, 제1 실시 형태의 정지 특성 변경부(211)에서는, 파일럿 펌프(102)의 토출되는 압유를 이용하여 완정지 파일럿압을 생성하는 것에 대하여, 제2 실시 형태의 정지 특성 변경부(211)에서는, 파일럿 압유의 작동유 탱크로의 배출을 제어함으로써 파일럿압의 저하를 완만하게 하여 완정지를 실현한다. 즉, 제2 실시 형태에서는, 완정지를 파일럿 유로로 새롭게 압유를 유입하는 일 없이 실현하고 있으며, 완정지용 전자 비례 압력 유지 밸브(271)에 대하여 잘못된 지령 신호가 주어진 경우에도, 조작 레버가 비조작 상태에 있어서 구동 액추에이터가 동작할 우려가 없고, 안전성이 높다는 이점을 갖고 있다.
<제3 실시 형태>
본 발명의 작업 기계의 제3 실시 형태를 도 11을 이용하여 설명한다.
제2 실시 형태에서는, 정지 특성 변경부(210)로서 완정지용 역지 밸브(281, 282)를 포함하는 역지 밸브군과 완정지용 전자 비례 압력 유지 밸브(271, 272)를 포함하는 전자 비례 압력 유지 밸브군을 이용했지만, 본 실시 형태에서는 완정지용 전자 비례 압력 유지 밸브(271, 272)를 포함하는 전자 비례 압력 유지 밸브군 대신에, 완정지용 전자 비례 유량 제어 밸브(291, 292)를 포함하는 전자 비례 유량 제어 밸브군을 이용한다. 이하에서는, 도 11을 참조하여, 주로 제1 및 제2 실시 형태와의 차이점을 설명한다.
<파일럿압 보정부>
본 실시 형태의 파일럿압 보정부(200)는, 제1 및 제2 실시 형태와 동일하게, 정지 특성 변경부(210)와 동작 속도 제한부(240)로 구성된다. 작업 기계(1)에는, 파일럿압 보정부(200)로서, 붐 신장 파일럿압 보정부(201), 붐 축소 파일럿압 보정부(202), 아암 신장 파일럿압 보정부(도시하지 않음), 아암 축소 파일럿압 보정부 (도시하지 않음)가 설치된다. 각 파일럿압 보정부(201, 202)의 구성은 어느 쪽에 대해서도 동일한 구성이며, 붐 신장 파일럿압 보정부(201)는 붐 신장 정지 특성 변경부(211)와 붐 신장 동작 속도 제한부(241)를 구비하고, 붐 축소 파일럿압 보정부(202)는 붐 축소 정지 특성 변경부(212)와 붐 축소 동작 속도 제한부(242)를 구비하고 있다. 도시하지 않는 아암 신장 파일럿압 보정부는 아암 신장 정지 특성 변경부와 아암 신장 동작 속도 제한부를 구비하고, 아암 축소 파일럿압 보정부도 아암 축소 정지 특성 변경부와 아암 축소 동작 속도 제한부를 구비하고 있다. 본 실시 형태의 각 동작 속도 제한부(241, 242…)는 제1 실시 형태와 동일하다. 이하에서는, 붐 신장 파일럿 압유의 보정을 예로 들어, 붐 신장 정지 특성 변경부(211)에 대해서만 설명한다.
<정지 특성 변경부>
본 실시 형태의 붐 신장 정지 특성 변경부(211)는, 완정지용 역지 밸브(281)와 완정지용 전자 비례 유량 제어 밸브(291)로 구성된다. 완정지용 역지 밸브(281)는, 압유의 흐름 방향을 제한하는 밸브이며, 완정지용 전자 비례 유량 제어 밸브(291)는, 파일럿 유로의 압유의 작동유 탱크(103)로의 배출을 제어하는 밸브이다.
완정지용 전자 비례 유량 제어 밸브(291)는, 제2 실시 형태의 완정지용 전자 비례 압력 유지 밸브(271) 대신에 설치되는 밸브이고, 완정지용 역지 밸브(281) 및 완정지용 전자 비례 유량 제어 밸브(291)는, 비례 감압 밸브(121)와 동작 속도 제한부(241)를 접속하는 유로에 병렬로 설치된다.
완정지용 역지 밸브(281)의 구성 및 작용은 제2 실시 형태와 동일하고, 본 실시 형태의 정지 특성 변경부(211)는, 레버 조작 파일럿압을 증대시키는 경우의 압유의 공급을 자유 흐름으로 하고, 레버 조작 파일럿압을 저하시키는 경우, 즉, 구동 액추에이터를 감속시키는 경우의 압유의 유통을 완정지용 전자 비례 유량 제어 밸브(291)에 의해 제어하는 구성이다. 이하에서는, 완정지용 전자 비례 유량 제어 밸브(291)의 상세를 설명한다.
완정지용 전자 비례 유량 제어 밸브(291)는, 제1 포트(291a), 제2 포트(291b), 및 솔레노이드(291c)를 구비하고 있고, 제1 포트(291a)는 속도 제한용 전자 비례 밸브(251)의 제2 포트(251b)와, 제2 포트(291b)는 비례 감압 밸브(121)의 제3 포트(121c)와 각각 접속된다. 제1 포트(291a)와 제2 포트(291b)를 연통하는 밸브로에는 개도를 변경 가능한 스로틀(291d)이 설치되어 있다. 솔레노이드(291c)는 연산 장치(60)로부터의 지령 신호에 의해 여자되어, 그 지령 신호의 크기에 의해, 스로틀(291d)의 개도가 결정된다.
전술한 바와 같이, 압유가 완정지용 전자 비례 유량 제어 밸브(291)를 통과하는 것은, 동작 속도 제한부(241)로부터 비례 감압 밸브(121)로 압유가 유통하는 경우뿐이며, 완정지용 전자 비례 유량 제어 밸브(291)는, 구동 액추에이터를 감속시키는 조작이 행해진 경우의 파일럿 압유의 작동유 탱크(103)로의 배출을 제어하는 기능을 갖는다. 스로틀(291d)의 개도에 의해 제1 포트(291a)와 제2 포트(291b)를 연통하는 밸브로를 유통하는 압유의 유량이 결정된다.
구체적으로는, 스로틀(291d)의 개도가 큰 경우에는, 밸브로를 유통할 수 있는 유량이 크고, 파일럿 압유는 작동유 탱크(103)로 신속하게 배출된다. 그것에 수반하여, 파일럿 압유의 압력은 신속하게 저하된다. 스로틀(291d)의 개도를 최대로 한 경우에는, 압유의 유통은 자유 흐름이 된다. 한편, 스로틀(291d)의 개도를 작게 하면, 제1 포트(291a)로부터 제2 포트(291b)로 유통하는 압유의 유량이 제한되고, 파일럿 압유의 작동유 탱크(103)로의 배출이 완만해지기 때문에, 파일럿 압유의 압력은 완만하게 저하된다. 따라서, 완정지용 전자 비례 유량 제어 밸브(291)의 스로틀(291d)의 개도를 적절하게 조정함으로써, 지령된 정지 특성의 완정지를 행할 수 있다.
<연산 장치>
연산 장치(60)는, 제1 및 제2 실시 형태와 동일하게, 작업 기계(1)의 각 부에 장착된 각 센서로부터의 신호가 입력되는 입력부(60x), 입력부(60x)에 입력되는 신호를 받아 소정의 연산을 행하는 연산부(60z), 연산부(60z)로부터의 출력 신호를 받아, 파일럿압 보정부(200)로의 구동 지령을 출력하는 출력부(60y)를 구비하고 있다. 연산부(60z)는, 작업 기계(1)를 안정적으로 유지하기 위한 동작 제한을 산출하는 안정화 제어 연산부(60a)와, 파일럿압 보정부(200)로의 구동 지령을 산출하는 지령값 생성부(60i)로 구성된다.
제3 실시 형태의 연산 장치에 있어서, 제1 및 제2 실시 형태와 상이한 것은, 지령값 생성부(60i)에 있어서의 정지 특성 변경부(210)로의 구동 지령의 산출 방법뿐이다. 이하에서는, 붐 신장 파일럿 압유의 보정을 예로 들어, 지령값 생성부(60i)에 있어서의 완정지용 전자 비례 유량 제어 밸브(291)로의 구동 지령의 산출 방법에 대해서 설명한다.
<지령값 생성부>
본 실시 형태의 붐 신장 정지 특성 변경부(211)는, 완정지용 역지 밸브(281)와 완정지용 전자 비례 유량 제어 밸브(291)로 구성되어 있으며, 완정지용 전자 비례 유량 제어 밸브(291)의 내부에 설치된 스로틀(291d)의 개도를 적절하게 조정함으로써, 구동 액추에이터의 정지 특성을 소망하는 특성으로 변경한다.
전술한 바와 같이, 구동 액추에이터를 감속시키는 조작을 행한 경우, 동작 속도 제한부(241)로 공급되는 파일럿 압유의 압력은, 스로틀(291d)의 개도를 크게 할수록 급격하게 저하되고, 개도를 작게 할수록 완만하게 저하된다. 이 정지 특성과 스로틀(291d)의 개도의 관계는, 밸브의 유량 특성으로서 미리 주어진다. 그리고 스로틀(291d)의 개도를 최대로 한 경우에는, 압유의 유통은 자유 흐름이 된다. 따라서, 정지 특성 변경부(211)에 있어서, 레버 조작 파일럿압의 보정이 필요가 없는 경우에는 스로틀(291d)의 개도를 최대로 한다.
한편, 레버 조작 파일럿압이 안정화 제어 연산부(60a)로부터 출력된 완정지 지령을 충족하지 않는 경우에는, 지령된 완정지의 정지 특성과 밸브의 유량 특성을 이용하여, 스로틀(291d)의 개도를 결정한다. 완정지용 전자 비례 유량 제어 밸브(291)의 스로틀(291d)의 개도는 솔레노이드(291d)에 주어지는 지령 신호의 크기에 의해 결정되고, 이 지령 신호와 개도의 관계도 미리 밸브의 특성으로서 주어진다. 따라서, 완정지용 전자 비례 유량 제어 밸브(291)로의 구동 지령값은, 전술한 바와 같이 결정되는 스로틀(291d)의 개도와, 밸브의 출력 특성을 이용하여 산출한다.
<특장>
본 실시 형태의 정지 특성 변경부(211)를 이용하면, 정상적인 동작 지령 조작시나 증속 조작시 등, 레버 조작 파일럿압을 저하시키지 않는 바와 같은 조작시에는, 레버 파일럿 압유는 완정지용 역지 밸브(281)를 구비한 유로를 유통하고, 보정되는 일 없이 출력된다. 또한, 안정화 제어 연산부(60a)에 의해 지령된 완정지의 정지 특성보다도 완만하게 정지하는 바와 같은 조작이 행해진 경우에는, 완정지용 전자 비례 유량 제어 밸브(291)의 스로틀(291d)에 의한 유량 제한의 영향을 받지 않고, 레버 조작 파일럿 압유는 보정되지 않는다.
한편, 레버 조작 파일럿압이 안정화 제어 연산부(60a)로부터 지령된 완정지의 정지 특성보다도 급격하게 저하되는 경우에는, 완정지용 전자 비례 유량 제어 밸브(291)의 스로틀(291d)에 의해, 파일럿 압유의 작동유 탱크로의 배출이 제어되고, 지령된 정지 특성의 완정지가 실현된다.
따라서, 본 실시 형태의 정지 특성 변경부(211)는 제1 및 제2 실시 형태의 정지 특성 변경부(211)와 동일하게, 레버 조작 파일럿 압유의 압력이 안정화 제어 연산부(60a)로부터 지령된 완정지 지령을 충족하지 않는 경우에만 보정을 행하는 구성이며, 종래의 조작성에 영향을 주는 일 없이, 동작 제한을 행할 수 있다.
또한, 본 실시 형태의 정지 특성 변경부(211)는, 완정지용 역지 밸브(281)에 의해 비례 감압 밸브(121)로부터 붐 유량 제어 밸브(111)로의 파일럿 압유의 흐름을 자유 흐름으로 하고 있으며, 완정지용 전자 비례 유량 제어 밸브(291)는, 솔레노이드(291c)의 구동 상태에 관계 없이, 구동 액추에이터를 구동하는 방향의 압유의 유통에 영향을 미치지 않는다. 또한, 본 실시 형태에서는, 제2 실시 형태와 동일하게, 파일럿 압유의 작동유 탱크로의 배출을 제어함으로써 파일럿압의 저하를 완만하게 하여 완정지를 실현하기 때문에, 완정지를 행하기 위해 파일럿 펌프로부터 파일럿 유로로 새롭게 압유를 유입시킬 필요가 없다. 따라서, 완정지용 전자 비례 유량 제어 밸브(291)에 대하여 잘못된 지령 신호가 주어진 경우에도, 조작 레버가 비조작 상태에 있어서 구동 액추에이터가 동작할 우려가 없고, 안전성이 높다는 이점을 갖고 있다.
또한, 완정지용 전자 비례 유량 제어 밸브(291)를 이용하는 경우, 연산부(60z)로부터의 지령 신호에 의해 결정되는 것은, 완정지용 전자 비례 유량 제어 밸브(291)의 스로틀(291d)의 개도, 즉, 파일럿 압유의 유통 유량이며, 붐 유량 제어 밸브(111)에 공급하는 파일럿 압유의 압력은 아니다. 그 때문에, 붐 유량 제어 밸브(111)에 공급하는 파일럿 압유의 압력을 정밀하게 제어할 수는 없다. 한편, 연산 장치(60)의 지령값 생성부(60i)에 있어서의 지령 신호의 연산은 간이해진다. 연산 장치(60)로부터의 지령 신호에 의해 정지 특성 변경부(211)로부터 출력되는 압력을 결정하는 경우에는 정지 과정에 있어서, 지령 신호를 시시각각 변화시킬 필요가 있지만, 완정지용 전자 비례 유량 제어 밸브(291)를 이용하는 경우에는, 지령된 정지 특성에 따라서 스로틀(291d)의 개도를 결정하면 되고, 급정지 조작 중인지 여부의 판정의 필요가 없으며, 또한 정지 과정에 있어서 지령 신호를 변화시킬 필요가 없다. 따라서, 지령 신호 산출의 연산 처리가 간이해진다는 이점을 갖고 있다.
<그 외>
또한, 본 발명은, 상기의 실시 형태로 한정되는 것이 아니고, 여러 가지 변형예가 포함된다. 상기의 실시 형태는 본 발명을 알기 쉽게 설명하기 위해 상세하게 설명한 것이며, 반드시 설명한 모든 구성을 구비하고 있는 것으로 한정되는 것은 아니다. 또한, 어떠한 실시 형태의 구성의 일부를 다른 실시 형태의 구성으로 치환하는 것도 가능하고, 또한, 어떠한 실시 형태의 구성에 다른 실시 형태의 구성을 추가하는 것도 가능하다. 또한, 각 실시 형태의 구성의 일부에 대해서, 다른 구성의 추가·삭제·치환을 하는 것도 가능하다.
예를 들면, 안정 판별 방식은, ZMP만으로 행하는 태양으로 한정되지 않으며, ZMP와 역학적 에너지의 2개의 평가 지표를 이용하여 판별할 수 있다.
또한, 완정지를 행하기 위한 파일럿압의 보정예는, 도 4a에 나타내는 바와 같은 파일럿압이 변화율 지령값을 충족하는 단조 감소가 되도록 보정하는 태양으로 한정되지 않고, 감소량에 변화를 붙인 보정으로 할 수 있다.
3 : 선회체(작업 기계 본체)
6 : 작업 프론트
7 : 선회 모터(구동 액추에이터)
11 : 붐 실린더(구동 액추에이터)
13 : 아암 실린더(구동 액추에이터)
15 : 어태치먼트 실린더(구동 액추에이터)
50 : 조작 레버
60 : 연산 장치
60b : 속도 추정부
60c : 급정지시 거동 예측부
60d : 안정성 판정부
60h : 동작 제한 결정부
100 : 액추에이터 구동 유압 회로
111 : 붐 유량 제어 밸브(유량 제어 밸브)
121 : 붐 신장 비례 감압 밸브
122 : 붐 축소 비례 감압 밸브
200 : 파일럿압 보정부
210 : 정지 특성 변경부
240 : 동작 속도 제한부

Claims (7)

  1. 주행체와,
    상기 주행체의 상부에 선회 가능하게 장착된 선회체와,
    상기 선회체에 대하여 상하 방향으로 요동이 자유롭게 장착되고, 복수의 가동부를 갖는 작업 프론트와,
    상기 선회체 및 상기 작업 프론트의 각 가동부를 구동하는 구동 액추에이터와,
    상기 구동 액추에이터를 구동하기 위한 압유를 공급하는 유압 펌프와,
    상기 구동 액추에이터를 구동하기 위한 구동 지령을 연산하여 산출하는 연산 장치와,
    상기 유압 펌프로부터 상기 구동 액추에이터에 공급되는 압유의 양을 제어하는 유량 제어 밸브와,
    조작 레버의 조작에 의거하여 상기 유량 제어 밸브를 제어하기 위한 파일럿 압유를 제어하는 비례 감압 밸브를 구비한 작업 기계에 있어서,
    상기 작업 기계의 자세를 검출하는 자세 검출부를 구비하며,
    상기 연산 장치는,
    상기 구동 액추에이터의 구동 속도를 추정하는 속도 추정부와,
    상기 속도 추정부에 의해 추정된 속도와 상기 자세 검출부의 검출 결과에 의거하여, 상기 작업 기계의 급정지시의 거동을 예측하는 급정지시 거동 예측부와,
    상기 급정지시 거동 예측부에 의해 예측된 상기 작업 기계의 거동에 의거하여 상기 작업 기계의 안정성을 판정하는 안정성 판정부와,
    상기 안정성 판정부의 판정 결과에 의거하여, 상기 구동 액추에이터의 감속 가속도를 제한하고 상기 구동 액추에이터를 완만하게 정지시키는 완정지 지령 및 상기 구동 액추에이터의 상한 동작 속도를 제한하는 동작 속도 제한 지령을 연산하고, 출력하는 동작 제한 결정부를 가지며,
    상기 작업 기계는,
    상기 동작 제한 결정부로부터의 상기 완정지 지령에 의거하여, 상기 구동 액추에이터의 감속 가속도를 제한하고 상기 구동 액추에이터를 완만하게 정지시키도록 상기 비례 감압 밸브로부터 출력되는 파일럿압을 보정하는 정지 특성 변경부와,
    상기 동작 제한 결정부로부터의 상기 동작 속도 제한 지령에 의거하여, 상기 구동 액추에이터의 동작 속도를 제한하도록 상기 비례 감압 밸브로부터 출력되는 상기 파일럿압을 보정하는 동작 속도 제한부를 더 가지고,
    상기 정지 특성 변경부는, 상기 동작 제한 결정부로부터 출력되는 상기 완정지 지령의 정지 특성보다도 신속하게 정지시키는 조작이 행해진 경우에, 상기 비례 감압 밸브로부터 출력되는 파일럿압보다도 높은 압력을 생성하여 출력하는 밸브 장치이고,
    상기 동작 속도 제한부는, 상기 파일럿압이 상기 동작 제한 결정부로부터 출력되는 동작 속도 제한을 충족하기 위한 상한압보다 높은 경우에, 상기 파일럿압을 상기 상한압까지 감압하는 밸브 장치인 것을 특징으로 하는 작업 기계.
  2. 삭제
  3. 제1항에 있어서,
    상기 동작 속도 제한부는, 전자 비례 밸브 또는 전자 비례 릴리프 밸브 중 어느 하나를 갖는 것을 특징으로 하는 작업 기계.
  4. 제1항에 있어서,
    상기 정지 특성 변경부는, 전자 비례 밸브와 고압 선택부로 구성되고,
    상기 전자 비례 밸브는, 상기 비례 감압 밸브 이외의 파일럿 압유 공급부와 접속되어 있으며, 상기 동작 제한 결정부로부터 지령되는 설정압의 파일럿압을 생성하고,
    상기 고압 선택부는, 상기 비례 감압 밸브로부터 출력되는 파일럿압과 상기 전자 비례 밸브로부터 출력되는 파일럿압 중 고압측의 파일럿압을 선택하여 출력하는 것을 특징으로 하는 작업 기계.
  5. 제1항에 있어서,
    상기 정지 특성 변경부는, 역지 밸브와 전자 비례 압유 배출 제어 밸브로 구성되고,
    상기 역지 밸브 및 상기 전자 비례 압유 배출 제어 밸브는, 상기 비례 감압 밸브와 상기 유량 제어 밸브를 접속하는 파일럿 유로에 병렬로 설치되어 있고,
    상기 역지 밸브는, 상기 비례 감압 밸브로부터 상기 유량 제어 밸브로의 압유의 유통을 허용하고, 상기 유량 제어 밸브로부터 상기 비례 감압 밸브로의 압유의 유통을 차단하고,
    상기 전자 비례 압유 배출 제어 밸브는, 상기 연산 장치로부터의 지령 신호 에 의거하여 상기 유량 제어 밸브로부터 상기 비례 감압 밸브로의 압유의 유통을 제어하는 것을 특징으로 하는 작업 기계.
  6. 제5항에 있어서,
    상기 전자 비례 압유 배출 제어 밸브는, 상기 유량 제어 밸브에 공급되는 파일럿압이 상기 연산 장치로부터의 지령 신호에 의해 설정되는 유지압보다 낮은 경우에는 압유의 유통을 차단하고, 높은 경우에는 압유의 유통을 가능하게 하는 전자 비례 압력 유지 밸브를 갖는 것을 특징으로 하는 작업 기계.
  7. 제5항에 있어서,
    상기 전자 비례 압유 배출 제어 밸브는, 상기 연산 장치로부터의 지령 신호에 의해 개도를 변경 가능한 스로틀을 갖는 전자 비례 유량 제어 밸브를 갖고,
    상기 연산 장치는, 상기 동작 제한 결정부로부터 출력되는 완정지 지령에 의거하여 상기 전자 비례 유량 제어 밸브의 스로틀 개도를 결정하는 것을 특징으로 하는 작업 기계.
KR1020160021711A 2015-06-17 2016-02-24 작업 기계 KR101814657B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2015-122306 2015-06-17
JP2015122306A JP6619163B2 (ja) 2015-06-17 2015-06-17 作業機械

Publications (2)

Publication Number Publication Date
KR20160149139A KR20160149139A (ko) 2016-12-27
KR101814657B1 true KR101814657B1 (ko) 2018-01-04

Family

ID=56132871

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160021711A KR101814657B1 (ko) 2015-06-17 2016-02-24 작업 기계

Country Status (5)

Country Link
US (1) US10024032B2 (ko)
EP (1) EP3106572B1 (ko)
JP (1) JP6619163B2 (ko)
KR (1) KR101814657B1 (ko)
CN (1) CN106256966B (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2943939C (en) * 2015-09-30 2021-10-19 Deere & Company Stability warning and control intervention system for a forestry vehicle
CN109689980B (zh) * 2016-09-30 2022-04-08 住友重机械工业株式会社 挖土机
WO2018131063A1 (ja) 2017-01-10 2018-07-19 株式会社小松製作所 作業車両および制御方法
JP6731365B2 (ja) * 2017-03-09 2020-07-29 日立建機株式会社 作業機械の操作支援装置
US10900502B2 (en) * 2017-08-25 2021-01-26 Parker-Hannifin Corporation Direct input pilot operated servo valve
JP6687993B2 (ja) * 2017-09-13 2020-04-28 日立建機株式会社 作業機械
JP6860458B2 (ja) * 2017-09-15 2021-04-14 日立建機株式会社 作業機械
JP6807293B2 (ja) 2017-09-26 2021-01-06 日立建機株式会社 作業機械
US11149404B2 (en) 2018-03-28 2021-10-19 Hitachi Construction Machinery Co., Ltd. Work machine
JP6957414B2 (ja) * 2018-06-11 2021-11-02 日立建機株式会社 作業機械
JP7269143B2 (ja) * 2019-09-26 2023-05-08 日立建機株式会社 作業機械
CN110925255A (zh) * 2019-11-19 2020-03-27 宜昌宜硕塑业有限公司 一种比例流量阀
JP7169318B2 (ja) * 2020-05-29 2022-11-10 株式会社竹内製作所 作業用車両
CN113211429A (zh) * 2021-04-07 2021-08-06 新兴际华科技发展有限公司 消防机器人高精度稳定控制方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2871105B2 (ja) 1990-12-03 1999-03-17 油谷重工株式会社 解体作業機の安全装置
JP2871909B2 (ja) * 1991-08-26 1999-03-17 日立建機株式会社 建設機械のアクチュエータ制御装置
JP3363608B2 (ja) * 1994-09-19 2003-01-08 日立建機株式会社 建設機械の操作システム
JP3091667B2 (ja) * 1995-06-09 2000-09-25 日立建機株式会社 建設機械の領域制限掘削制御装置
JP3679848B2 (ja) * 1995-12-27 2005-08-03 日立建機株式会社 建設機械の作業範囲制限制御装置
JP3550260B2 (ja) * 1996-09-30 2004-08-04 コベルコ建機株式会社 アクチュエータ作動特性制御装置
JPH11182674A (ja) * 1997-12-17 1999-07-06 Komatsu Ltd 油圧駆動車両の前後進切換制御装置および制御方法
JP3124962B2 (ja) * 1998-12-02 2001-01-15 新キャタピラー三菱株式会社 作業用機械の油圧制御回路
JP2001199676A (ja) * 2000-01-17 2001-07-24 Hitachi Constr Mach Co Ltd 建設機械の操作系油圧回路
JP2006220193A (ja) * 2005-02-09 2006-08-24 Shin Caterpillar Mitsubishi Ltd パイロット制御装置
JP2006291647A (ja) * 2005-04-14 2006-10-26 Shin Caterpillar Mitsubishi Ltd 作業機械の干渉回避制御装置
DE102006018706A1 (de) * 2006-04-21 2007-10-25 Robert Bosch Gmbh Hydraulische Steueranordnung
KR100791105B1 (ko) * 2006-05-23 2008-01-02 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 굴삭기 붐 속도 증속장치
JP4931048B2 (ja) * 2006-07-31 2012-05-16 キャタピラー エス エー アール エル 作業機械の制御装置
KR101189632B1 (ko) * 2008-03-31 2012-10-11 가부시키가이샤 고마쓰 세이사쿠쇼 건설 기계의 선회 구동 제어 시스템
JP5492229B2 (ja) * 2010-01-28 2014-05-14 日立建機株式会社 油圧作業機
JP5363430B2 (ja) * 2010-07-23 2013-12-11 日立建機株式会社 ハイブリッド式建設機械
CN103597147B (zh) * 2011-06-10 2016-05-25 日立建机株式会社 作业机械
JP5529241B2 (ja) * 2012-11-20 2014-06-25 株式会社小松製作所 作業機械および作業機械の作業量計測方法
CN104919190B (zh) * 2013-01-17 2017-03-15 日立建机株式会社 作业机械的液压油能量回收装置
JP6053714B2 (ja) * 2014-03-31 2016-12-27 日立建機株式会社 油圧ショベル
US20170121930A1 (en) * 2014-06-02 2017-05-04 Komatsu Ltd. Construction machine control system, construction machine, and method of controlling construction machine
KR101769225B1 (ko) * 2014-06-04 2017-08-17 가부시키가이샤 고마쓰 세이사쿠쇼 건설 기계의 제어 시스템, 건설 기계, 및 건설 기계의 제어 방법
WO2015186214A1 (ja) * 2014-06-04 2015-12-10 株式会社小松製作所 作業機械の姿勢演算装置、作業機械及び作業機械の姿勢演算方法
DE102014214441B4 (de) * 2014-07-23 2016-02-18 Danfoss Power Solutions Gmbh & Co. Ohg Verfahren und Anordnung zum Verzögern eines Hydrostatischen Antriebs
US9765499B2 (en) * 2014-10-22 2017-09-19 Caterpillar Inc. Boom assist management feature
CN104452849B (zh) * 2014-11-07 2017-04-05 中联重科股份有限公司渭南分公司 一种动臂优先控制设备、系统、方法及挖掘机

Also Published As

Publication number Publication date
US20160369480A1 (en) 2016-12-22
EP3106572A1 (en) 2016-12-21
JP2017008501A (ja) 2017-01-12
EP3106572B1 (en) 2018-06-06
KR20160149139A (ko) 2016-12-27
JP6619163B2 (ja) 2019-12-11
US10024032B2 (en) 2018-07-17
CN106256966B (zh) 2018-08-03
CN106256966A (zh) 2016-12-28

Similar Documents

Publication Publication Date Title
KR101814657B1 (ko) 작업 기계
KR101871396B1 (ko) 작업 기계의 구동 제어 장치
JP6775089B2 (ja) 作業機械
KR101934017B1 (ko) 작업 기계
KR101887276B1 (ko) 건설 기계의 유압 제어 장치
KR102006517B1 (ko) 제어 장치 및 이것을 구비한 건설 기계
CN104755770B (zh) 作业机械
KR20180102137A (ko) 작업 기계
JPH05195554A (ja) 土工機における油圧アクチュエータ制御装置
WO2022208694A1 (ja) 作業機械
JP6591370B2 (ja) 建設機械の油圧制御装置
US11946492B2 (en) Work machine
CN111032967B (zh) 作业机械
JP2024052373A (ja) 作業機械
JP2023172765A (ja) 作業機械
JPH05306531A (ja) バックホーの油圧シリンダ制御装置
JPH05195553A (ja) 土工機における油圧アクチュエータ制御装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant