WO2005100793A1 - 傾転制御信号の補正方法、傾転制御装置、建設機械および傾転制御信号補正用プログラム - Google Patents

傾転制御信号の補正方法、傾転制御装置、建設機械および傾転制御信号補正用プログラム Download PDF

Info

Publication number
WO2005100793A1
WO2005100793A1 PCT/JP2005/002578 JP2005002578W WO2005100793A1 WO 2005100793 A1 WO2005100793 A1 WO 2005100793A1 JP 2005002578 W JP2005002578 W JP 2005002578W WO 2005100793 A1 WO2005100793 A1 WO 2005100793A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
tilt
tilt control
control signal
target
Prior art date
Application number
PCT/JP2005/002578
Other languages
English (en)
French (fr)
Inventor
Saimon Otaka
Yoshinori Ohwada
Gen Yasuda
Kenji Kakizawa
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to KR1020067019818A priority Critical patent/KR101056135B1/ko
Priority to JP2006516878A priority patent/JP4422723B2/ja
Priority to US10/594,083 priority patent/US7979229B2/en
Priority to AU2005233407A priority patent/AU2005233407B2/en
Priority to EP05710411.9A priority patent/EP1757810B1/en
Priority to CN2005800097612A priority patent/CN1938518B/zh
Publication of WO2005100793A1 publication Critical patent/WO2005100793A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/05Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by internal-combustion engines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers

Definitions

  • the present invention relates to a tilt control signal correction method for correcting a pump tilt of a hydraulic pump, a tilt control device, a construction machine, and a tilt control signal correction program.
  • Patent Document 1 JP-A-8-302755
  • a tilt control signal correction method is a correction method for correcting a tilt control signal output based on predetermined reference characteristics of tilt change means.
  • the tilt control pressure corresponding to the tilt is calculated, and the procedure of deriving the characteristic of the correction pressure based on the deviation between the tilt control pressure and the corresponding measured pressure, and the procedure based on the characteristic of the correction pressure Calculating a correction pressure corresponding to the target tilt, and correcting the tilt control signal according to the corrected pressure.
  • the method of correcting a tilt control signal provides a target tilt based on a reference characteristic.
  • the method includes calculating a corresponding tilt control pressure, and correcting the tilt control signal by feedback control so as to reduce a deviation between the tilt control pressure and a corresponding measured pressure.
  • the method of correcting a limit control signal includes the steps of: setting a reference tilt control signal and a reference tilt control pressure corresponding to a reference tilt based on a reference characteristic; And a relationship between the measured pressure when the displacement control signal is output and the measured pressure.
  • the displacement control signal for generating the reference displacement control pressure is calculated based on the derived relationship.
  • a tilt control device includes a tilt change unit that generates a tilt control pressure according to a tilt control signal, an input unit that inputs a target tilt, and reference characteristics of a predetermined tilt change unit.
  • Pressure calculating means for calculating a tilt control pressure corresponding to the target tilt based on the pressure
  • pressure detecting means for detecting a pressure corresponding to the tilt control pressure
  • a tilt control pressure calculated by the pressure calculating means for correcting a tilt control signal corresponding to the target tilt input by the input means based on the actually measured pressure detected by the pressure detecting means.
  • the tilt control signal is corrected based on the corresponding second measured pressure.
  • Pressure characteristic setting means for setting a corrected pressure characteristic for the target displacement based on a deviation between the displacement control pressure calculated by the pressure calculating means and the actually measured pressure detected by the pressure detecting means; and Correction pressure calculating means for calculating a correction pressure corresponding to the target tilt input by the input means, and a tilt control signal such that the actual tilt becomes the target tilt in accordance with the calculated correction pressure. You may try to compensate for.
  • the tilt control signal is corrected by feedback control so as to reduce the deviation between the tilt control pressure calculated by the pressure calculating means and the measured pressure detected by the pressure detecting means. I'm sorry.
  • a tilt control device detects a tilt corresponding to a tilt control pressure, a tilt change unit that generates a tilt control pressure according to a tilt control signal, an input unit that inputs a target tilt.
  • Pressure detection means for outputting a tilt control signal corresponding to the target tilt to the tilt change means based on predetermined reference characteristics of the tilt change means, and a reference signal based on the reference characteristics.
  • Setting means for setting a reference tilt control signal and a reference tilt control pressure corresponding to the tilt, and an actual measured pressure detected by the pressure detecting means when the tilt control signal is output from the signal output means. Based on the calculated deviation, a tilt control signal for generating the reference tilt control pressure is calculated, and a deviation between the tilt control signal and the reference tilt control signal is calculated.
  • the above-described displacement control device may further include a filtering unit that performs a filtering process on a value detected by the pressure detection unit so that a vibration component is removed from the measured pressure.
  • Such a control device is preferably applied to a construction machine.
  • a tilt control signal correction program is a program for executing, on a computer, a process of correcting a tilt control signal output based on a predetermined reference characteristic of a tilt change unit, the reference characteristic being a reference characteristic.
  • a tilt control pressure corresponding to a reference tilt is calculated based on the calculated tilt pressure, and a process of deriving a characteristic of the correction pressure based on a deviation between the tilt control pressure and a corresponding measured pressure; and
  • a correction pressure corresponding to the target displacement is calculated based on the characteristic, and a process of correcting the displacement control signal in accordance with the corrected pressure is executed on the computer device.
  • the tilt control signal correction program calculates a tilt control pressure corresponding to a target tilt based on the reference characteristic, and calculates the tilt control pressure and the actually measured pressure corresponding thereto.
  • the tilt control signal correcting program further comprises: setting a reference tilt control signal and a reference tilt control pressure corresponding to a reference tilt based on the reference characteristic; The relationship between the tilt control signal and the measured pressure when the tilt control signal is output is derived, and based on the derived relationship, a tilt control signal for generating the reference tilt control pressure is calculated, and the tilt control signal is calculated.
  • the tilt control can be accurately performed without using the tilt angle sensor, and the tilt control device can be configured at low cost.
  • FIG. 1 is a diagram showing a configuration of a tilt control device according to a first embodiment of the present invention.
  • FIG. 2 is a side view of a hydraulic shovel to which the present invention is applied.
  • FIG. 3 is a characteristic diagram of the proportional solenoid valve of FIG. 1.
  • FIG. 4 is a diagram showing the relationship between the command pressure of the proportional solenoid valve and the displacement of the pump.
  • FIG. 5 is a flowchart showing an example of processing in the controller according to the first embodiment.
  • FIG. 6 is a flowchart showing details of a pump displacement learning calculation process in FIG. 5;
  • FIG. 7 is a flowchart showing details of a learning value calculation value check process in FIG. 6;
  • FIG. 8 is a flowchart showing details of a pump displacement correction formula calculation process in FIG. 5;
  • FIG. 9 is a view showing a relationship between a target pump displacement and a target command pressure according to the present invention.
  • FIG. 10 is a graph showing a relationship between a target command pressure and a target drive current according to the present invention.
  • FIG. 11 is a diagram showing a relationship between a target pump displacement and a corrected pressure according to the present invention.
  • FIG. 12 is a graph showing a relationship between a positive pump pressure and a target pump displacement according to the present invention.
  • FIG. 13 is a block diagram showing processing in a controller according to the second embodiment.
  • FIG. 16 is a flowchart showing an example of processing (sampling processing) in the controller according to the third embodiment.
  • FIG. 17 is a view showing the relationship between the secondary pressure of the proportional solenoid valve and the drive current.
  • FIG. 18 is a graph showing reference characteristics of pump displacement and current.
  • FIG. 19 is a view showing the relationship between the reference characteristic and the correction characteristic in FIG. 18.
  • FIG. 20 is a view showing current-pressure characteristics of a proportional solenoid valve according to a fourth embodiment.
  • FIG. 21 is a diagram showing a timing chart at the time of learning control by the displacement control device according to the fourth embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a tilt control device according to a first embodiment of the present invention.
  • This tilt control device is mounted on, for example, a hydraulic excavator shown in FIG.
  • the hydraulic excavator includes a traveling body 101, a revolving revolving body 102, and a working device 103 including a boom BM, an arm AM, and a packet BK rotatably supported by the revolving body.
  • pressure oil from a variable displacement hydraulic pump 1 driven by an engine (not shown) is supplied to a hydraulic actuator such as a cylinder for driving the working device 103 via a control valve 11.
  • the control valve 11 is driven by operating the operation lever 12, and the flow of the pressure oil to the hydraulic actuator is controlled according to the operation amount of the operation lever 12.
  • the operating lever 12 also commands the target pump displacement 0 of the hydraulic pump 1 as described later.
  • the pressure oil from the pumps 1 and 2 is guided to one oil chamber (rod chamber 3a) of the regulator 3 and the other oil chamber (bottom chamber 3b) from the pumps 1 and 2 via the hydraulic switching valve 6. Pressure oil is led.
  • the regulator 3 is driven in accordance with the hydraulic pressure acting on the rod chamber 3a and the bottom chamber 3b, and the tilting of the hydraulic pump 1 is controlled.
  • a pilot pressure (secondary pressure Pa) from the sub-pump 2 acts on the hydraulic switching valve 6 via the proportional solenoid valve 4, and the hydraulic switching valve 6 is switched according to the secondary pressure Pa. That is, when the secondary pressure Pa of the proportional solenoid valve 4 increases, the hydraulic switching valve 6 switches to the position i. As a result, the hydraulic pressure acting on the bottom chamber 3b increases, and the tilt of the pump increases. On the other hand, when the secondary pressure Pa decreases, the hydraulic switching valve 6 switches to the position opening side. As a result, the hydraulic pressure acting on the bottom chamber 3b decreases, and the tilting of the pump decreases.
  • the secondary pressure Pa of the proportional solenoid valve 4 is detected by the pressure sensor 5.
  • FIG. 3 shows an example of the input / output characteristics of the proportional solenoid valve 4
  • FIG. 4 shows an example of the characteristics of the pump tilt with respect to the command pressure P (secondary pressure Pa) of the proportional solenoid valve 4.
  • the characteristic AO is a reference characteristic
  • the command pressure P increases as the drive current i to the proportional solenoid valve 4 increases.
  • the characteristics of such a proportional solenoid valve 4 vary within the allowable tolerance ⁇ with respect to the reference characteristic AO. Therefore, the actual characteristic ⁇ is shifted from the reference characteristic AO as shown in the figure.
  • the control signal i output to the proportional solenoid valve 4 is corrected as follows.
  • the controller 10 includes a pressure sensor 5, a key switch 7, and a learning mode Z normal mode described later.
  • a mode switch 8 for switching the mode and a pressure sensor 9 for detecting a control pressure (for example, a positive control pressure Pn) according to the operation amount of the operation lever 12 are connected.
  • the controller 10 executes the following processing according to these input signals, and outputs a control signal to the proportional solenoid valve 4. That is, in the present embodiment, the displacement of the pump is controlled based on the signals from the pressure sensors 5 and 9 without using the displacement angle sensor.
  • FIG. 5 is a flowchart illustrating an example of processing in the controller 10 according to the first embodiment. This flowchart starts when the power switch is turned on by turning on the key switch 7.
  • step S1 the signal (mode signal) from the mode switch 8 is read.
  • step S2 it is determined whether or not the mode signal is an on-force force, that is, whether or not the learning mode is selected. If step S2 is affirmed, the process corresponding to the learning mode (learning control) is executed, and if negative, the process corresponding to the normal mode (normal control) is executed.
  • the learning mode is a mode in which a correction formula for pump displacement control is calculated. After the correction formula is calculated, the normal mode is executed by switching the mode switch 8. Instead of switching the mode switch 8, the mode may be switched to the normal mode a fixed time after the start of the learning mode.
  • step S200 the process waits until the engine speed reaches a predetermined stable speed. This prevents learning control from being performed in an unstable state immediately after the engine is started.
  • step S300 a control signal is output to the proportional solenoid valve 4 so that the pump displacement becomes the minimum displacement. This is a process for performing a constant initial state force learning control so that the pump tilt does not vary due to rattling of the swash plate of the hydraulic pump 1.
  • step S400 a pump displacement learning calculation process of step S400 is executed.
  • FIG. 6 is a flowchart showing a pump displacement learning calculation process.
  • step S401 the reference displacement ⁇ 01 for learning control is substituted for the target pump displacement ⁇ 0, and the initial value 0 is substituted for the execution counter C3.
  • 001 and 002 shown in FIG. 9 are preset as reference tilts.
  • the execution counter C3 counts the number of executions of a series of processes from step S402 to step S500.
  • step S402 the initial value 0 is substituted for the waiting time counter C4.
  • step S405 a drive current i corresponding to the target drive current iO is output to the proportional solenoid valve 4.
  • step S406 1 is added to the waiting time counter C4, and in step S407, it is determined whether or not the waiting time counter C4 has reached a predetermined set value R4.
  • the set value R4 is set to the time required for the pump displacement to become the target pump displacement ⁇ 0 (for example, 2 seconds). If the result in step S407 is negative, the process returns to step S405, and the same processing is repeated until C4 ⁇ R4.
  • step S407 When step S407 is affirmed, the process proceeds to step S408, and the initial value 0 is substituted for the reading counter C5.
  • step S409 the secondary pressure Pa of the proportional solenoid valve 4 detected by the pressure sensor 5 is read and stored in the memory of the controller 10.
  • step S410 1 is added to the reading number counter C5, and in step S411, it is determined whether the reading number counter C5 has reached a predetermined number of times R5 (for example, 10 times). If step S411 is denied, the process returns to step S409, and the same processing is repeated until C5 ⁇ R5.
  • step S411 If step S411 is affirmed, the process proceeds to step S412, in which the sum of the secondary pressure Pa stored in step S409 is divided by R5 to calculate an average value (average secondary pressure) Paa of the secondary pressure Pa.
  • step S500 a learning calculation value check process for checking whether or not the force for which the deviation ⁇ has been properly calculated is performed.
  • FIG. 7 is a flowchart showing a learning operation value check process.
  • step S501 the reference displacement ⁇ 01 is substituted for the target pump displacement ⁇ 0.
  • step S502 the initial value 0 is substituted for the waiting time counter C6.
  • step S505 Calculates the target drive current iO according to the target command pressure PO based on the target drive current characteristic in FIG.
  • step S507 1 is added to the holding time counter C6, and in step S508, it is determined whether the waiting time counter C6 has reached a predetermined set value R6 (for example, 2 seconds) or not.
  • step S508 When step S508 is affirmed, the process proceeds to step S509, and the secondary pressure Pa detected by the pressure sensor 5 is read. Then, in step S510, the difference between the secondary pressure Pa and the target command pressure PO in step S504 is determined whether the force is within a predetermined allowable value Px, that is, whether PO—Px ⁇ Pa ⁇ P0 + Px is satisfied. Is determined. If step S510 is affirmed, the process proceeds to step S511, in which a predetermined control signal is output to a display device (for example, an LED) (not shown) to display that learning is successful. If step S510 is denied, the process proceeds to step S512, where a predetermined control signal is output to the display device to display that learning has failed.
  • a predetermined control signal is output to the display device to display that learning has failed.
  • step S500 when the learning process in step S500 starts, the LED blinks. When the learning process is successful, the LED is turned off, and when the learning process fails, the LED is turned on. If the learning process succeeds, the process proceeds to step S414 in FIG. 6, and if the learning process fails, the process ends. If the learning process has failed, the worker issues a command to restart the learning control, or checks whether the pressure sensors 5, 9 and the proportional solenoid valve 6 are out of order.
  • step S414 1 is added to the execution counter C3.
  • step S415 it is determined whether or not the force has reached the predetermined number R3 of C3.
  • step S415 is affirmed, the pump displacement learning calculation processing is terminated, and the pump displacement correction in step S600 (FIG. 5) is performed. Performs formula operation processing.
  • FIG. 8 is a flowchart showing a pump displacement correction formula calculation process.
  • the correction equation is a linear equation that passes through two points, a point P (001, ⁇ 1) and a point Q (0O2, ⁇ 2), and is expressed by the following equation (I).
  • ⁇ 0 (( ⁇ 02- ⁇ 01) / ( ⁇ 02- ⁇ 01)) ⁇ 0 + C (I)
  • the correction equation (I) is stored in the controller 10 in step S602.
  • the constant of proportionality ( ⁇ 02- ⁇ ⁇ 01) ⁇ (002-001) and the constant C should be stored instead of being stored in the form of a linear expression.
  • the target command pressures P01 and, 02 corresponding to the predetermined reference tilts 001 and 002 are obtained (step S403), and the target drive current iOl, corresponding to the target command pressures P01 and P02 is obtained.
  • i02 is output to the proportional solenoid valve 4 (step S405), the secondary pressure Paa at that time is detected (step S409), and the differences ⁇ ⁇ and ⁇ 02 between the target command pressures P01 and P02 and the secondary pressure Paa are respectively determined. Ask for it (step S413).
  • step S101 the positive control pressure Pn detected by the pressure sensor 9 is read. In the following description, it is assumed that the positive control pressure detection value is Pn3.
  • step S104 a correction pressure ⁇ 0 ( ⁇ 03 in FIG.
  • the secondary pressure of the proportional solenoid valve 4 becomes P3c as shown in FIG. This is equal to the secondary pressure corresponding to the drive current i3 based on the reference characteristic AO.
  • the secondary pressure P3c corresponding to the positive control pressure Pn3 can be generated regardless of the variation in the characteristics of the proportional solenoid valve 4.
  • the pump displacement can be controlled to the target pump displacement 3c as shown in FIG.
  • the correction formula (I) for pump displacement control is obtained using the detection value of the pressure sensor 5, and during normal control, the target drive current i is corrected based on the correction formula (I), and the proportional electromagnetic Valve 4 was controlled.
  • the pump tilt can be controlled accurately regardless of the variation in the characteristics of each proportional solenoid valve 4.
  • the fine operability and operation feeling of the hydraulic working machine can be improved, and the working efficiency can be improved.
  • the secondary pressure Pa of the proportional solenoid valve 4 is detected by the pressure sensor 5 and the correction formula (I) is calculated according to the deviation ⁇ PO between the secondary pressure Pa (average value Paa) and the target command pressure PO. Is obtained, the correction formula (I) can be obtained without using the tilt angle sensor, and the tilt control device can be configured at low cost.
  • FIG. 13 is a block diagram showing the contents of calculations performed in the controller 10 according to the second embodiment.
  • the positive control pressure Pn detected by the pressure sensor 9 is taken into the target pump displacement calculating circuit 21.
  • the target pump displacement calculation circuit 21 computes a target pump displacement ⁇ 0 corresponding to the positive control pressure Pn based on the previously set characteristics similar to FIG.
  • the target pump displacement ⁇ 0 is taken into the target command pressure calculating circuit 22, and the target command pressure calculating circuit 22 sets the target command pressure corresponding to the target pump displacement ⁇ 0 based on the same characteristics as previously set in FIG. 9.
  • Calculate PO The target command pressure PO is taken into the target drive current calculation circuit 23 and the subtraction circuit 24.
  • the target drive current calculation circuit 23 calculates the target drive current iO corresponding to the target command pressure PO based on the previously set characteristics similar to those in FIG.
  • the deviation ⁇ is taken into the current value correction operation circuit 25, and the current value correction operation circuit 25 calculates the correction current ⁇ i corresponding to the deviation ⁇ P based on the previously set characteristics similar to FIG.
  • the target drive current iO and the correction current Ai are taken into the addition circuit 26, and the addition circuit 26 calculates the corrected target drive current ix by adding the correction current ⁇ i to the target drive current iO.
  • the amplifier 27 amplifies the target drive current ix and outputs it to the proportional solenoid valve 4.
  • the proportional solenoid valve 4 is feedback-controlled so that the secondary pressure Pa becomes equal to the target command pressure PO.
  • the deviation ⁇ is larger than 0 and the target drive current ix is larger than the target drive current iO.
  • the proportional solenoid valve 4 is feedback-controlled so that the secondary pressure Pa becomes equal to the target command pressure PO.
  • the proportional solenoid valve 4 is feedback-controlled so that the secondary pressure Pa becomes equal to the target command pressure PO, so that the characteristics of the proportional solenoid valve 4 vary.
  • the displacement of the pump can be controlled with high accuracy even if there is a problem.
  • the tilt control device can be configured at low cost. In the case of feedback control, there is no need to perform learning control before performing normal control. It is possible.
  • the proportional solenoid valve 4 is configured to always vibrate to prevent the spool from sticking (so-called dither vibration). For this reason, the secondary pressure Pa detected by the pressure sensor 5 varies, and this variation causes a deterioration in the accuracy of the pump tilt correction.
  • the third embodiment takes this point into consideration.
  • the third embodiment differs from the first embodiment in the processing in the controller 10, and the following mainly describes the differences from the first embodiment.
  • the controller 10 includes a design secondary pressure (reference control pressure Pmin) of the proportional solenoid valve 4 corresponding to the pump minimum displacement ⁇ min and a corresponding drive current (reference control signal) of the proportional solenoid valve 4.
  • iAmin, the secondary pressure (reference control pressure Pmax) and the drive current (reference control signal) iAmax corresponding to the maximum displacement ⁇ max of the pump are stored in advance (see FIGS. 17 and 18).
  • FIG. 14 is a flowchart illustrating an example of learning control executed in the controller 10 of the tilt control device according to the third embodiment
  • FIG. 15 is a flowchart illustrating an example of normal control.
  • learning control is started when the mode switch 8 is turned on. That is, first, the drive current il l (for example, iAmin) corresponding to the pump minimum tilt ⁇ min or tilt ⁇ ⁇ near the pump is determined by the design characteristic (fO in FIG. 18) of the proportional solenoid valve 4 determined in advance in step S701. And outputs the driving current il to the proportional solenoid valve 4. Next, in step S702, a predetermined time (for example, 5 seconds) is counted until the secondary pressure data is stabilized, and after the predetermined time has elapsed, the secondary pressure Pas obtained by the following sampling processing is read.
  • a predetermined time for example, 5 seconds
  • FIG. 16 is a flowchart showing a sampling process of the secondary pressure. This flowchart is always executed after the power switch is turned on.
  • step S801 the secondary pressure Pa of the proportional solenoid valve 4 detected by the pressure sensor 5 is read.
  • step S802 a moving average value of the secondary pressure Pa is determined.
  • the moving average is a predetermined number (for example, 4) of newly read secondary pressures. The sum of the data can be obtained by dividing the sum by the predetermined number.
  • the moving average value is (Pal + Pa2 + Pa3 + Pa4) Z4, and when Pa5 is sampled at the next moment, the moving average value is (Pa2 + Pa3 + Pa4 + Pa5) / 4.
  • step S803 the moving average value is subjected to a low-pass filter (low-pass filter processing), and the filtered value is set as the secondary pressure Pas after the sampling processing in step S804. Thereby, the data force vibration component detected by the pressure sensor 5 is removed.
  • the secondary pressure Pas thus obtained is read in step S703 in FIG. 14 and stored in the memory as the measured secondary pressure P11.
  • step S704 the drive current il2 (eg, iAmax) corresponding to the pump maximum displacement ⁇ max or the displacement ⁇ max in the vicinity thereof obtained from the design characteristics (fO in FIG. 18) of the proportional solenoid valve 4 is calculated. Output to proportional solenoid valve 4.
  • step S705 a predetermined time (for example, 5 seconds) is counted until the secondary pressure data is stabilized.
  • step S706 after a lapse of a predetermined time, the secondary pressure Pas obtained by the above-described sampling processing is read and stored in the memory as the measured secondary pressure P12. As a result, the relationship (actually measured value) between the secondary pressure and the control signal (current) is obtained as shown in FIG.
  • step S707 the driving currents imin, imax corresponding to the predetermined reference control pressures Pmin, Pmax are calculated using the relationship in FIG.
  • the operation expression is as follows (II).
  • the imin, imax obtained here means a drive current corresponding to the minimum tilt ⁇ min and the maximum tilt ⁇ max of each proportional solenoid valve 4. That is, when the current imin, imax is output to the proportional solenoid valve 4, the actual pump displacement becomes 0 min, ⁇ max.
  • step S708 predetermined drive currents iAmin and iAmax are subtracted from imin and imax, respectively, to calculate current correction values A imin and A imax shown in FIG. 18 and stored in the memory. I do.
  • the correction characteristic fl of the proportional solenoid valve 4 can be obtained as shown in FIG.
  • the learning control is completed.
  • a lamp in the driver's seat may be turned on to notify the worker of the end of the learning control.
  • Target pump The deviation (correction value A ia) between the reference characteristic fO and the correction characteristic fl with respect to the tilt ⁇ 0 can be calculated by the following equation (III).
  • ⁇ ia ⁇ imin + ( ⁇ a— ⁇ min) X, ⁇ imax— ⁇ imin no / ( ⁇ max— ⁇ mm no (III)
  • step S751 the positive control pressure Pn (for example, Pn3 in FIG. 12) detected by the pressure sensor 9 is read.
  • step S753 the drive current iO corresponding to the target pump displacement ⁇ 0 is calculated based on the reference characteristic fO of the proportional solenoid valve 4 (FIG. 19).
  • step S754 a current correction value ⁇ ) corresponding to the target pump displacement ⁇ 0 is calculated by the above equation (III) using the current correction values ⁇ imin and ⁇ imax obtained by the learning control.
  • step S755 the target drive current i is calculated by adding the current correction value ⁇ iO to the drive current iO, and this target drive current i is output to the proportional solenoid valve 4 in step S756. The above processing is repeated under normal control.
  • the moving average of the detected value Pa of the pressure sensor 5 is obtained, and the low-pass filter is used to remove the vibration component of the detected value Pa (sampling process).
  • the current correction values ⁇ i min and ⁇ imax serving as the references of the proportional solenoid valve 4 are obtained (learning control), and the current correction value ⁇ iO corresponding to the target pump displacement ⁇ 0 is calculated. (Normal control). That is, the value Pas after the sampling process is read instead of directly reading the detection value Pa of the pressure sensor 5 in the learning control.
  • the secondary pressure Pas during learning control is stabilized, and the current correction value ⁇ imin, ⁇ imax can be accurately obtained, and the pump displacement can be accurately controlled to the target pump displacement ⁇ 0.
  • the influence of the dither vibration of the proportional solenoid valve 4 is considered.
  • the influence of the hysteresis of the proportional solenoid valve 4 is further considered. That is, the current pressure characteristic of the proportional solenoid valve 4 has a hysteresis as shown in FIG. 20, and the secondary pressure detected in the process of increasing the current, for example, the secondary pressure P11 a corresponding to the minimum displacement ⁇ min of the pump. And the secondary pressure P12a corresponding to the pump maximum displacement ⁇ max is smaller than the secondary pressure (PI lb, P12b) detected in the process of decreasing the current.
  • the value of the measured secondary pressure as a reference depends on how to output the drive current il l, il2 to the proportional solenoid valve 4 during the learning control, that is, how the current is output in steps S701 and S704 in FIG. Differently, the current correction values A imin and A imax are affected.
  • step S701 after the learning control starts, the drive current is increased to il 1 as shown in FIG. 21! ] And output.
  • the actual measured pressure PI1 step S703 after the elapse of the predetermined time (time point tl) becomes the minimum secondary pressure PIla corresponding to the pump minimum displacement ⁇ min.
  • step S704 the drive current is set to a maximum value exceeding ⁇ 2 and then reduced to il2 for output.
  • the measured pressure P12 step S706 after the elapse of the predetermined time (time point t2) becomes the maximum secondary pressure P12b corresponding to the maximum pump displacement ⁇ max.
  • the drive current to the proportional solenoid valve 4 is increased to output the current ill corresponding to the pump minimum displacement ⁇ min, and the drive current is set to the maximum value. After that, the current was decreased to output a current il 2 corresponding to the maximum displacement ⁇ max of the pump.
  • the pressures Pl l and P12 which are reference values actually measured during the learning control, correspond well to the pump minimum displacement 0 min and the pump maximum displacement ⁇ max, and the hysteresis of the proportional solenoid valve 4 is reduced.
  • the pump displacement can be accurately corrected in consideration of the characteristics.
  • the measured pressure P11 (first measured pressure) corresponding to the minimum displacement ⁇ min detected in the process of increasing the displacement and the displacement in the process of decreasing the displacement are detected.
  • the displacement control signal imin, i max was calculated based on the measured pressure P12 (second measured pressure) corresponding to the maximum displacement ⁇ max.
  • Pressure Pa ( Step S409) may be detected! That is, the displacement control signal i may be corrected based on the measured pressure Pa detected in the process of increasing the displacement and the measured pressure Pa detected in the process of decreasing the displacement.
  • the pressure detection value Pa may be subjected to the filtering process as in the third embodiment. This eliminates the need for the processing in step S410 and step S413.
  • the tilt control device that controls the tilt of the hydraulic pump 1 has been described.
  • other hydraulic devices eg, a hydraulic motor
  • the pump displacement is controlled by the secondary pressure Pa from the proportional solenoid valve 4
  • other displacement changing means for generating a displacement control pressure may be used. Therefore, the reference characteristics of the proportional solenoid valve 4 as the tilt changing means are not limited to those shown in FIGS.
  • the target pump displacement ⁇ 0 is set at two points ( ⁇ 01, 002), and the characteristic of the correction pressure ⁇ P0 is obtained by the linear equation (I).
  • the characteristic of the correction pressure ⁇ ⁇ which can be set by setting ⁇ 0 at only one point or three or more points, is not always the linear equation (I).
  • the target pump displacement ⁇ 0 may be set to only one point or three or more points.
  • a force for generating the positive control pressure Pn by operating the operation lever 12 and inputting the target pump tilt ⁇ 0 as a command value or other input means may be used.
  • the pressure Pa corresponding to the target command pressure PO is detected by the pressure sensor 5, other pressure detecting means may be used.
  • the target command pressure PO corresponding to the target pump displacement ⁇ 0 is calculated based on the predetermined characteristics of FIG. 9, and the target pump displacement ⁇ 0 is calculated based on the characteristics of FIG.
  • the corresponding target drive current iO is calculated, but the configurations of the pressure calculation means and the signal calculation means are not limited thereto. If the target drive current iO is corrected based on the target command pressure PO and the actually measured pressure Pa, the processing in the controller 10 as the correction means is not limited to the above. In addition, the controller 10 performs learning control to set the correction formula (I) and calculates the correction pressure ⁇ based on the correction formula (I) during normal control. The configuration of the means is not limited to this.
  • the controller 10 is controlled based on the predetermined reference characteristic fO of FIG.
  • the control signals il l and il2 are output according to the target pump displacement ⁇ 0, the configuration of the signal output means is not limited to this.
  • the reference control signals iAmin, iAmax and the reference control pressures Pmin, Pmax corresponding to the reference pump displacement ⁇ min, ⁇ max are stored in the memory in advance, but the reference control signals iAmin, iAmax, and the reference control pressures Pmin, Pmax are set. Is not limited to this.
  • the controller 10 will set the current (design value) and pressure (design value) corresponding to this pump displacement based on the reference characteristic fO. May be calculated, and these may be used as a reference control signal and a reference control pressure. If the control signal is corrected based on the deviation ⁇ imin, A imax (current correction value) between the current imin, imax obtained from the measured pressures P11, P12 and the reference control signals iAmin, iAmax, the configuration of the correction means is also described above. It is not limited to what you have done.
  • the present invention is not limited to the tilt control device of the embodiment as long as the features and functions of the present invention can be realized.
  • the above description is merely an example, and the interpretation of the invention is not limited or restricted by the correspondence between the items described in the above embodiment and the items described in the claims.
  • the present invention can also be applied to other construction machines having a variable displacement hydraulic pump, a hydraulic motor, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Fluid Pressure (AREA)
  • Feedback Control In General (AREA)

Abstract

 本発明は、傾転制御信号iに応じた傾転制御圧力Pを発生する傾転変更手段4と、目標傾転θを入力する入力手段12と、予め設定された傾転変更手段4の基準特性に基づき目標傾転θに応じた傾転制御圧力Pを演算する圧力演算手段10と、この傾転制御圧力Pに対応した圧力Paを検出する圧力検出手段5と、所定の傾転制御信号特性に基づき、入力された目標傾転θに対応する傾転制御信号iを演算する信号演算手段10と、圧力演算手段10で演算された制御圧力Pと圧力検出手段5で検出された実測圧力Paとに基づき信号演算手段10で演算された傾転制御信号iを補正する補正手段10とを備える。

Description

明 細 書
傾転制御信号の補正方法、傾転制御装置、建設機械および傾転制御信 号補正用プログラム
技術分野
[0001] 本発明は、油圧ポンプのポンプ傾転等を補正する傾転制御信号の補正方法、傾 転制御装置、建設機械および傾転制御信号補正用プログラムに関する。
背景技術
[0002] 従来より、操作レバーの操作量に応じた傾転制御信号を比例電磁弁に出力し、比 例電磁弁の駆動によりポンプ傾転を制御するようにした装置が知られて 、る(例えば 特許文献 1参照)。これによれば個々の比例電磁弁の制御特性のばらつきを考慮す るため、目標ポンプ傾転と実ポンプ傾転との偏差に応じてポンプ傾転の補正式を求 め、この補正式に基づ!/、て比例電磁弁を制御する。
[0003] 特許文献 1:特開平 8— 302755号公報
発明の開示
発明が解決しょうとする課題
[0004] 上述した特許文献 1記載の装置では、目標ポンプ傾転と実ポンプ傾転との偏差に 応じてポンプ傾転の補正式を求めるため、実ポンプ傾転を検出するためのポンプ傾 転角センサが必要となる。し力しながら、ポンプ傾転角センサは高価であり、装置の 価格上昇を招く。
課題を解決するための手段
[0005] 本発明による傾転制御信号の補正方法は、予め定められた傾転変更手段の基準 特性に基づき出力される傾転制御信号を補正する補正方法であって、基準特性に 基づき、基準となる傾転に対応した傾転制御圧力を演算し、この傾転制御圧力とこれ に対応する実測圧力との偏差に基づき、補正圧力の特性を導出する手順と、補正圧 力の特性に基づき目標傾転に対応した補正圧力を演算し、この補正圧力に応じて傾 転制御信号を補正する手順とを含むことを特徴とする。
また、本発明による傾転制御信号の補正方法は、基準特性に基づき、目標傾転に 対応した傾転制御圧力を演算し、この傾転制御圧力とこれに対応する実測圧力との 偏差を減少させるようにフィードバック制御により傾転制御信号を補正する手順を含 むことを特徴とする。
さらに、本発明による制限制御信号の補正方法は、基準特性に基づき、基準となる 傾転に対応した基準傾転制御信号および基準傾転制御圧力を予め設定し、予め定 めた傾転制御信号とこの傾転制御信号を出力したときの実測圧力との関係を導出し て、この導出された関係に基づき、基準傾転制御圧力を発生するための傾転制御信 号を演算するとともに、この傾転制御信号と基準傾転制御信号との偏差を演算する 手順と、演算された偏差に基づき、目標傾転に応じて出力される傾転制御信号を補 正する手順とを含むことを特徴とする。
本発明による傾転制御装置は、傾転制御信号に応じた傾転制御圧力を発生する 傾転変更手段と、目標傾転を入力する入力手段と、予め定められた傾転変更手段の 基準特性に基づき目標傾転に応じた傾転制御圧力を演算する圧力演算手段と、こ の傾転制御圧力に対応した圧力を検出する圧力検出手段と、圧力演算手段で演算 された傾転制御圧力と、圧力検出手段で検出された実測圧力とに基づき、入力手段 により入力された目標傾転に対応する傾転制御信号を補正する補正手段とを備える ことを特徴とする。
圧力演算手段で演算された傾転制御圧力と、傾転を増加させる過程で検出された 最小傾転に対応した第 1の実測圧力および傾転を減少させる過程で検出された最 大傾転に対応した第 2の実測圧力とに基づき傾転制御信号を補正することが好まし い。
圧力演算手段で演算された傾転制御圧力と圧力検出手段で検出された実測圧力 との偏差に基づき、目標傾転に対する補正圧力特性を設定する圧力特性設定手段 と、この補正圧力特性に基づき、入力手段により入力された目標傾転に対応する補 正圧力を演算する補正圧力演算手段とを有し、演算された補正圧力に応じて実傾転 が目標傾転となるように傾転制御信号を補正するようにしてもょ 、。
圧力演算手段で演算された傾転制御圧力と前記圧力検出手段で検出された実測 圧力との偏差を減少させるようにフィードバック制御により傾転制御信号を補正するこ とちでさる。
本発明による傾転制御装置は、傾転制御信号に応じた傾転制御圧力を発生する 傾転変更手段と、目標傾転を入力する入力手段と、傾転制御圧力に対応した圧力を 検出する圧力検出手段と、予め定められた傾転変更手段の基準特性に基づき、傾 転変更手段に対し目標傾転に応じた傾転制御信号を出力する信号出力手段と、基 準特性に基づき、基準となる傾転に対応した基準傾転制御信号および基準傾転制 御圧力を設定する設定手段と、信号出力手段により傾転制御信号が出力されたとき に圧力検出手段によって検出される実測圧力に基づき、基準傾転制御圧力を発生 するための傾転制御信号を演算するとともに、この傾転制御信号と基準傾転制御信 号との偏差を演算し、演算された偏差に基づき、傾転変更手段に出力される傾転制 御信号を補正する補正手段とを備えることを特徴とする。
傾転を増加させる過程で圧力検出手段により検出された最小傾転に対応した第 1 の実測圧力と傾転を減少させる過程で検出された最大傾転に対応した第 2の実測圧 力に基づき、基準傾転制御圧力を発生するための傾転制御信号を演算することが好 ましい。
上述した傾転制御装置に、実測圧力から振動成分が除去されるように圧力検出手 段による検出値をフィルタリング処理するフィルタリング手段をさらに備えることもでき る。
このような制御装置は、建設機械に適用することが好ましい。
本発明による傾転制御信号補正用プログラムは、予め定められた傾転変更手段の 基準特性に基づき出力される傾転制御信号を補正する処理をコンピュータ装置上で 実行させるプログラムであって、基準特性に基づき、基準となる傾転に対応した傾転 制御圧力を演算し、この傾転制御圧力とこれに対応する実測圧力との偏差に基づき 、補正圧力の特性を導出する処理と、補正圧力の特性に基づき目標傾転に対応した 補正圧力を演算し、この補正圧力に応じて傾転制御信号を補正する処理とをコンビ ユータ装置上で実行させることを特徴とする。
また、本発明による傾転制御信号補正用プログラムは、基準特性に基づき、目標傾 転に対応した傾転制御圧力を演算し、この傾転制御圧力とこれに対応する実測圧力 との偏差を減少させるようにフィードバック制御により傾転制御信号を補正する処理を コンピュータ装置上で実行させることを特徴とする手順。
さらに、本発明による傾転制御信号補正用プログラムは、基準特性に基づき、基準 となる傾転に対応した基準傾転制御信号および基準傾転制御圧力を予め設定し、 予め定めた傾転制御信号とこの傾転制御信号を出力したときの実測圧力との関係を 導出して、この導出された関係に基づき、基準傾転制御圧力を発生するための傾転 制御信号を演算するとともに、この傾転制御信号と基準傾転制御信号との偏差を演 算する処理と、演算された偏差に基づき、目標傾転に応じて出力される傾転制御信 号を補正する処理とをコンピュータ装置上で実行させることを特徴とする。
発明の効果
[0006] 本発明によれば、目標傾転に応じて演算された傾転制御圧力と実測圧力とに基づ き、あるいは予め定めた基準傾転制御信号とこれに対応する実測圧力との関係に基 づき、傾転変更手段に出力される傾転制御信号を補正するようにした。これにより傾 転角センサを用いることなく精度よく傾転制御を行うことができ、傾転制御装置を安価 に構成することができる。
図面の簡単な説明
[0007] [図 1]本発明の第 1の実施の形態に係る傾転制御装置の構成を示す図。
[図 2]本発明が適用される油圧ショベルの側面図。
[図 3]図 1の比例電磁弁の特性図。
[図 4]比例電磁弁の指令圧力とポンプ傾転の関係を示す図。
[図 5]第 1の実施の形態に係るコントローラ内での処理の一例を示すフローチャート。
[図 6]図 5のポンプ傾転学習演算処理の詳細を示すフローチャート。
[図 7]図 6の学習値演算値チ ック処理の詳細を示すフローチャート。
[図 8]図 5のポンプ傾転補正式演算処理の詳細を示すフローチャート。
[図 9]本発明による目標ポンプ傾転に対する目標指令圧力の関係を示す図。
[図 10]本発明による目標指令圧力に対する目標駆動電流の関係を示す図。
[図 11]本発明による目標ポンプ傾転に対する補正圧力の関係を示す図。
[図 12]本発明によるポジコン圧に対する目標ポンプ傾転の関係を示す図。 [図 13]第 2の実施の形態に係るコントローラ内の処理を示すブロック図。
[図 14]第 3の実施の形態に係るコントローラ内での処理 (学習処理)の一例を示すフ 口1 ~~チヤ1 ~~卜。
[図 15]第 3の実施の形態に係るコントローラ内での処理 (通常処理)の一例を示すフ 口1 ~~チヤ1 ~~卜。
[図 16]第 3の実施の形態に係るコントローラ内での処理 (サンプリング処理)の一例を 示すフローチャート。
[図 17]比例電磁弁の二次圧と駆動電流の関係を示す図。
[図 18]ポンプ傾転と電流の基準特性を示す図。
[図 19]図 18の基準特性と補正特性との関係を示す図。
[図 20]第 4の実施の形態に係る比例電磁弁の電流圧力特性を示す図。
[図 21]第 4の実施の形態に係る傾転制御装置による学習制御時のタイミングチャート を示す図。
符号の説明
[0008] 2 油圧ポンプ
4 電磁比例弁
5 圧力センサ(二次圧 Pa)
9 圧力センサ(ポジコン圧 Pn)
10 コントローラ
12 操作レバー
発明を実施するための最良の形態
[0009] 第 1の実施の形態
以下、図 1一図 12を参照して本発明による傾転制御装置の第 1の実施の形態につ いて説明する。
図 1は、本発明の第 1の実施の形態に係る傾転制御装置の構成を示す図である。 この傾転制御装置は、例えば図 2の油圧ショベルに搭載される。図 2に示すように油 圧ショベルは、走行体 101と、旋回可能な旋回体 102と、旋回体に回動可能に軸支 されたブーム BM,アーム AM,パケット BKからなる作業装置 103とを有する。 [0010] 図 1において、エンジン(不図示)により駆動される可変容量形の油圧ポンプ 1から の圧油は、制御弁 11を介し作業装置 103駆動用のシリンダ等の油圧ァクチユエータ に供給される。制御弁 11は操作レバー 12の操作により駆動され、操作レバー 12の 操作量に応じて油圧ァクチユエータへの圧油の流れが制御される。なお、操作レバ 一 12は後述するように油圧ポンプ 1の目標ポンプ傾転 Θ 0も指令する。レギユレータ 3の一方の油室(ロッド室 3a)にはポンプ 1, 2からの圧油が導かれ、他方の油室(ボト ム室 3b)には油圧切換弁 6を介してポンプ 1, 2からの圧油が導かれる。このロッド室 3 aとボトム室 3bに作用する油圧力に応じてレギユレータ 3が駆動され、油圧ポンプ 1の 傾転が制御される。
[0011] 油圧切換弁 6には比例電磁弁 4を介してサブポンプ 2からのパイロット圧(二次圧 Pa )が作用し、二次圧 Paに応じて油圧切換弁 6が切り換わる。すなわち比例電磁弁 4の 二次圧 Paが増加すると油圧切換弁 6は位置ィ側に切り換わる。これによりボトム室 3b に作用する圧油力が増加し、ポンプ傾転が増加する。一方、二次圧 Paが減少すると 油圧切換弁 6は位置口側に切り換わる。これによりボトム室 3bに作用する圧油力が減 少し、ポンプ傾転が減少する。比例電磁弁 4の二次圧 Paは圧力センサ 5により検出さ れる。
[0012] 比例電磁弁 4の入出力特性の一例を図 3に、比例電磁弁 4の指令圧力 P (二次圧 P a)に対するポンプ傾転 Θの特性の一例を図 4に示す。図 3において、特性 AOは基 準特性であり、比例電磁弁 4への駆動電流 iの増加に伴い、指令圧力 Pは増加する。 このような比例電磁弁 4の特性には個体差があり、基準特性 AOに対して許容公差士 Δ α内でばらつく。したがって、図示のように実際の特性 Αは基準特性 AOに対して ずれる。このため、例えば目標指令圧力 P3cを発生させようとして基準特性 AOに基 づき比例電磁弁 4に駆動電流 i3を出力すると実際の指令圧力は P3となり、 目標指令 圧力 P3cと実際の指令圧力 P3とが乖離する。その結果、図 4に示すように実際のポ ンプ傾転 Θ 3と目標ポンプ傾転 Θ 3cとが異なり、操作レバー 12の操作に応じた良好 な作業を行うことができなくなる。そこで、本実施の形態では、比例電磁弁 4へ出力す る制御信号 iを以下のように補正する。
[0013] コントローラ 10には圧力センサ 5と、キースィッチ 7と、後述する学習モード Z通常モ ードを切り換えるモードスィッチ 8と、操作レバー 12の操作量に応じた制御圧力(例え ばポジコン圧 Pn)を検出する圧力センサ 9が接続されている。コントローラ 10ではこ れらの入力信号に応じて以下のような処理を実行し、比例電磁弁 4に制御信号を出 力する。すなわち本実施の形態では、傾転角センサを用いることなぐ圧力センサ 5, 9からの信号に基づきポンプ傾転を制御する。
[0014] 図 5は、第 1の実施の形態に係るコントローラ 10での処理の一例を示すフローチヤ ートである。このフローチャートはキースィッチ 7のオンにより電源スィッチがオンされ るとスタートする。まず、ステップ S1でモードスィッチ 8からの信号 (モード信号)を読 み込む。ステップ S2ではモード信号がオン力否力、すなわち学習モードが選択され た力否かを判定する。ステップ S2が肯定されると学習モードに対応した処理 (学習制 御)を実行し、否定されると通常モードに対応した処理 (通常制御)を実行する。ここ で、学習モードとはポンプ傾転制御用の補正式を演算するモードであり、補正式を演 算した後、モードスィッチ 8の切換により通常モードが実行される。なお、モードスイツ チ 8の切換によらず、学習モードの開始から一定時間後に通常モードに切り換わるよ うにしてもよい。
[0015] (1)学習制御
学習制御が開始されると、まず、ステップ S200でエンジン回転数が所定の安定回 転数に達するまで待機する。これによりエンジン始動直後の不安定状態で学習制御 を行うことを避ける。次いで、ステップ S300でポンプ傾転が最小傾転となるように比 例電磁弁 4に制御信号を出力する。これは油圧ポンプ 1の斜板のガタツキによりボン プ傾転がばらっかないように一定の初期状態力 学習制御を行うための処理である 。次いで、ステップ S400のポンプ傾転学習演算処理を実行する。
[0016] 図 6は、ポンプ傾転学習演算処理を示すフローチャートである。図 6では、まずステ ップ S401で目標ポンプ傾転 Θ 0に学習制御用の基準傾転 Θ 01を代入し、実行回数 カウンタ C3に初期値 0を代入する。なお、本実施の形態では、図 9に示す 0 01と 0 0 2が基準傾転として予め設定されて 、る。実行回数カウンタ C3はステップ S402—ス テツプ S500までの一連の処理の実行回数をカウントするものである。次いで、ステツ プ S402で待ち時間カウンタ C4に初期値 0を代入する。ステップ S403では予め定め た図 9に示す目標指令圧特性に基づき目標ポンプ傾転 0 0 (= 0 01)に応じた目標 指令圧力 PO ( = P01)を算出する。次いで、ステップ S404で、図 10に示す目標駆動 電流特性に基づき目標指令圧力 PO ( = P01)に応じた目標駆動電流 iO (=i01)を求 める。
[0017] ステップ S405では目標駆動電流 iOに応じた駆動電流 iを比例電磁弁 4へ出力する 。次いで、ステップ S406で待ち時間カウンタ C4に 1をカ卩算し、ステップ S407で待ち 時間カウンタ C4が予め定めた設定値 R4に達したカゝ否かを判定する。ここで、設定値 R4はポンプ傾転が目標ポンプ傾転 Θ 0となるまでに要する時間(例えば 2秒)に設定 される。ステップ S407力否定されるとステップ S405〖こ戻り、 C4≥R4となるまで同様 な処理を繰り返す。
[0018] ステップ S407が肯定されるとステップ S408に進み、読み取り回数カウンタ C5に初 期値 0を代入する。次いで、ステップ S409で圧力センサ 5で検出した比例電磁弁 4の 二次圧 Paを読み取り、コントローラ 10のメモリに記憶する。ステップ S410では読み取 り回数カウンタ C5に 1を加算し、ステップ S411で読み取り回数カウンタ C5が予め定 めた所定回数 R5 (例えば 10回)に達したか否かを判定する。ステップ S411が否定さ れるとステップ S409に戻り、 C5≥R5となるまで同様な処理を繰り返す。
[0019] ステップ S411が肯定されるとステップ S412に進み、ステップ S409で記憶した二次 圧 Paの和を R5で除算し、二次圧 Paの平均値(平均二次圧) Paaを算出する。次いで 、ステップ S413でステップ S403の目標指令圧力 PO ( = P01)力も平均二次圧 Paa を減算して圧力の偏差 Δ PO ( = PO-Paa)を求め、この偏差 Δ POをコントローラ 9に 記憶する。次いで、ステップ S500で偏差 Δ ΡΟが適正に算出された力否かをチェック するための学習演算値チ ック処理を行う。
[0020] 図 7は、学習演算値チェック処理を示すフローチャートである。図 7では、まず、ステ ップ S501で目標ポンプ傾転 Θ 0に基準傾転 Θ 01を代入する。次いで、ステップ S50 2で待ち時間カウンタ C6に初期値 0を代入する。ステップ S503では、図 9の目標指 令圧特性に基づき目標ポンプ傾転 0 0 (= 0 01)に応じた目標指令圧力 PO ( = P01 )を算出する。次いで、ステップ S504で、 目標指令圧力 POにステップ S413の偏差 Δ ΡΟ ( = ΡΟ— Paa)を加算し、これを目標指令圧力 POに代入する。ステップ S505で は図 10の目標駆動電流特性に基づき目標指令圧力 POに応じた目標駆動電流 iOを 算出し、ステップ S506で目標駆動電流 iOに応じた駆動電流 iを比例電磁弁 4に出力 する。次いで、ステップ S507で持ち時間カウンタ C6に 1を加算し、ステップ S508で 待ち時間カウンタ C6が予め定めた設定値 R6 (例えば 2秒)に達した力否かを判定す る。
[0021] ステップ S508が肯定されるとステップ S509に進み、圧力センサ 5で検出した 2次 圧 Paを読み取る。そして、ステップ S510でこの 2次圧 Paとステップ S504の目標指令 圧力 POとの差力 予め定めた許容値 Px内にあるか否力、すなわち PO— Px≤Pa≤P 0 + Pxを満たすか否かを判定する。ステップ S510が肯定されるとステップ S 511に進 み、図示しない表示装置 (例えば LED)に所定の制御信号を出力し、学習が成功し た旨の表示を行う。ステップ S510が否定されるとステップ S512に進み、表示装置に 所定の制御信号を出力し、学習が失敗した旨の表示を行う。例えばステップ S500の 学習処理が開始されると LEDを点滅させ、学習処理が成功すると LEDを消灯し、失 敗すると LEDを点灯する。学習処理が成功すると図 6のステップ S414に進み、失敗 すると処理を終了する。なお、学習処理が失敗した場合には、作業員は学習制御の やり直しを指令する、あるいは圧力センサ 5, 9や比例電磁弁 6等が故障していない か等を点検する。
[0022] ステップ S414では、実行回数カウンタ C3に 1をカ卩算する。次いで、ステップ S415 で C3が予め定めた所定回数 R3に達した力否かを判定する。ここで、 R3は基準傾転 の数に相当し、本実施の形態では基準傾転を Θ 01, Θ 02の 2点設定するため、 R3 = 2である。ステップ S415が否定されるとステップ S416に進み、 目標ポンプ傾転 Θ 0 に他の基準傾転 Θ 02を代入する。次いで、この傾転 Θ 02に基づき上述したのと同 様にステップ S402—ステップ S414の処理を実行する。基準傾転 Θ 01, Θ 02につ いてそれぞれ偏差 Δ ΡΟΙ, Δ Ρ02が算出されるとステップ S415が肯定され、ポンプ 傾転学習演算処理を終了し、ステップ S600 (図 5)のポンプ傾転補正式演算処理を 行う。
[0023] 図 8は、ポンプ傾転補正式演算処理を示すフローチャートである。図 8ではステップ S601で、基準傾転 Θ 01, Θ 02について求めた圧力の偏差 Δ Ρ01 ( = Ρ01— Paa) , ΔΡ02( = Ρ02— Paa)を用いて目標指令圧力 POの補正式を求める。ここで、補正式 は図 11に示すように点 P( 001, ΔΡ1)と点 Q(0O2, ΔΡ2)の 2点を通る直線の一 次式であり、次式 (I)で表される。
ΔΡ0=((ΔΡ02-ΔΡ01)/( θ 02-Θ 01)) Θ 0 + C (I)
次いで、ステップ S602で上記補正式 (I)をコントローラ 10に記憶する。この場合、一 次式の形で記憶するのではなぐ比例定数(ΔΡ02— ΔΡ01)Ζ( 002— 001)と定 数 Cをそれぞれ記憶すればょ ヽ。
[0024] 以上の学習制御では、予め定めた基準傾転 001, 002に対応した目標指令圧力 P01, Ρ02をそれぞれ求め(ステップ S403)、これら目標指令圧力 P01, P02に対応 する目標駆動電流 iOl, i02をそれぞれ比例電磁弁 4に出力し (ステップ S405)、そ のときの二次圧 Paaをそれぞれ検出し (ステップ S409)、目標指令圧力 P01, P02と 二次圧 Paaの差 ΔΡΟΙ, ΔΡ02をそれぞれ求める(ステップ S413)。そして、目標指 令圧力 P01, P02〖こそれぞれ偏差 ΔΡΟΙ, ΔΡ02を加算した補正後の目標指令圧 力 P0と、この目標指令圧力 P0に対応した目標駆動電流 iを出力したときの二次圧 Pa aとの差 (絶対値)が許容値 Px以内力否かをチェックし (S510)、許容値 Px以内であ れば学習制御が正しく行われたとして補正式 (I)を求める(ステップ S601)。このように して求めた補正式 (I)を用い、以下のように通常制御が行われる。
[0025] (2)通常制御
図 5のステップ S2でモード信号がオフと判定されると通常制御が開始される。まず、 ステップ S101で圧力センサ 9で検出したポジコン圧 Pnを読みとる。なお、以下では、 ポジコン圧の検出値が Pn3であったとして説明する。次いで、ステップ S 102で、予め 定められた図 12に示す目標ポンプ傾転の特性によりポジコン圧 Pn( = Pn3)に対応 する目標ポンプ傾転 00(= 003)を求める。次いで、ステップ S 103で、前述した図 9の特性に基づき目標ポンプ傾転 00 (= 003)に対応した目標指令圧力 PO ( = P0 3)を求める。ステップ S 104ではステップ S602で記憶した補正式 (I)から目標ポンプ 傾転 00(= 003)に対応した補正圧力 ΔΡ0 (図 11の ΔΡ03)を算出する。次いで、 ステップ S105で補正圧力 ΔΡ0( = ΔΡ03)を目標指令圧力 P0( = P03)に加算した ものを目標指令圧力 P0に代入し、ステップ S 106で、前述した図 10の特性により補 正後の目標指令圧力 PO ( = P03c)に応じた目標駆動電流 iO (=i03c)を算出する。 次いで、ステップ S107でこの目標駆動電流 iO (=i03c)を比例電磁弁 4に出力する
[0026] ポジコン圧が Pn3のときに比例電磁弁 4に目標駆動電流 i03cが出力されると、図 3 に示すように比例電磁弁 4の二次圧は P3cとなる。これは基準特性 AOに基づく駆動 電流 i3に対応する二次圧と等しい。これにより比例電磁弁 4の特性のばらつきに拘わ らず、ポジコン圧 Pn3に対応した二次圧 P3cを発生することができる。その結果、図 4 に示すようにポンプ傾転を目標ポンプ傾転 Θ 3cに制御することができる。
[0027] 以上の第 1の実施の形態によれば、以下のような作用効果を奏する。
(1)学習制御時に圧力センサ 5の検出値を用いてポンプ傾転制御用の補正式 (I)を 求め、通常制御時に補正式 (I)に基づいて目標駆動電流 iを補正し、比例電磁弁 4を 制御するようにした。これにより比例電磁弁 4毎の特性のばらつきに拘わらず、ポンプ 傾転を精度よく制御することができる。その結果、油圧作業機械の微操作性や操作 フィーリングを向上することができ、作業効率を向上することができる。
(2)学習制御時に圧力センサ 5により比例電磁弁 4の二次圧 Paを検出し、二次圧 Pa (平均値 Paa)と目標指令圧 POとの偏差 Δ POに応じて補正式 (I)を求めるようにしたの で、傾転角センサを用いることなく補正式 (I)を求めることができ、傾転制御装置を安 価に構成することができる。
(3)圧力センサ 5は傾転角センサに比べて温度特性がよいので、高温条件下で作業 をした場合であってもポンプ傾転を精度よく補正することができる。
(4)通常制御時にフィードバック制御を行わずにオープンループでポンプ傾転を制 御するので、ポンプ傾転制御の応答遅れを防止できる。
[0028] 第 2の実施の形態
図 13を参照して本発明による傾転制御装置の第 2の実施の形態について説明す る。
第 2の実施の形態が第 1の実施の形態と異なるのは、コントローラ 10内における処 理である。すなわち第 2の実施の形態では、フィードバック制御によりポンプ傾転 Θを 制御する。 [0029] 図 13は、第 2の実施の形態に係るコントローラ 10内で行われる演算内容を示すブ ロック図である。圧力センサ 9で検出したポジコン圧 Pnは目標ポンプ傾転演算回路 2 1に取り込まれる。目標ポンプ傾転演算回路 21は、予め設定された図 12と同様の特 性に基づきポジコン圧 Pnに対応した目標ポンプ傾転 Θ 0を演算する。目標ポンプ傾 転 Θ 0は目標指令圧演算回路 22に取り込まれ、目標指令圧演算回路 22は、予め設 定された図 9と同様の特性に基づき目標ポンプ傾転 Θ 0に対応した目標指令圧 POを 演算する。目標指令圧 POは目標駆動電流演算回路 23と減算回路 24に取り込まれ る。
[0030] 目標駆動電流演算回路 23は、予め設定された図 10と同様の特性に基づき目標指 令圧 POに対応した目標駆動電流 iOを演算する。減算回路 24は、目標指令圧 POか ら圧力センサ 5で検出した二次圧 Paを減算し、圧力の偏差 Δ P ( = PO-Pa)を演算す る。偏差 Δ Ρは電流値補正演算回路 25に取り込まれ、電流値補正演算回路 25は、 予め設定された図 10と同様の特性に基づき偏差 Δ Pに対応した補正電流 Δ iを演算 する。目標駆動電流 iOと補正電流 A iは加算回路 26に取り込まれ、加算回路 26は目 標駆動電流 iOに補正電流 Δ iを加算して補正後の目標駆動電流 ixを演算する。増幅 器 27は目標駆動電流 ixを増幅し、比例電磁弁 4に出力する。
[0031] 第 2の実施の形態では、圧力センサ 5で検出した二次圧 Paが目標指令圧 POよりも 大きいときは、偏差 Δ Ρは 0より小さく、目標駆動電流 ixは目標駆動電流 iOよりも小さく なる。これにより二次圧 Paが目標指令圧力 POと等しくなるように比例電磁弁 4がフィ ードバック制御される。また、圧力センサ 5で検出した二次圧 Paが目標指令圧 POより も小さいときは、偏差 Δ Ρは 0より大きく、目標駆動電流 ixは目標駆動電流 iOよりも大 きくなる。これにより二次圧 Paが目標指令圧力 POと等しくなるように比例電磁弁 4がフ イードバック制御される。
[0032] このように第 2の実施の形態では、二次圧 Paが目標指令圧力 POと等しくなるように 比例電磁弁 4をフィードバック制御するようにしたので、比例電磁弁 4の特性にばらつ きがあってもポンプ傾転を精度よく制御することができる。また、傾転角センサを用い ることなく傾転制御を行うので、傾転制御装置を安価に構成できる。フィードバック制 御の場合には、通常制御を行う前に学習制御を行う必要がないので、迅速な作業が 可能である。
[0033] 第 3の実施の形態
図 14一図 19を参照して本発明による傾転制御装置の第 3の実施の形態について 説明する。
一般に、比例電磁弁 4はスプールの固着を防ぐために常に振動するように構成され ている(いわゆるディザ振動)。このため、圧力センサ 5が検出する二次圧 Paにはばら つきがあり、このばらつきがポンプ傾転補正の精度を悪ィ匕させる要因となる。この点を 考慮したのが第 3の実施の形態である。なお、第 3の実施の形態が第 1の実施の形態 と異なるのはコントローラ 10内における処理であり、以下では第 1の実施の形態との 相違点を主に説明する。
[0034] コントローラ 10には、ポンプ最小傾転 Θ minに対応した比例電磁弁 4の設計上の二 次圧 (基準制御圧 Pmin)およびこれに対応する比例電磁弁 4の駆動電流 (基準制御 信号) iAminと、ポンプ最大傾転 Θ maxに対応した二次圧 (基準制御圧 Pmax)および 駆動電流 (基準制御信号) iAmaxとが予め記憶されている(図 17, 18参照)。図 14は 、第 3の実施の形態に係る傾転制御装置のコントローラ 10内で実行される学習制御 の一例を示すフローチャートであり、図 15は通常制御の一例を示すフローチャートで ある。
[0035] 第 3の実施の形態でも第 1の実施の形態と同様、モードスィッチ 8がオンされると学 習制御を開始する。すなわち、まず、ステップ S701で予め定めた比例電磁弁 4の設 計特性(図 18の fO)によりポンプ最小傾転 Θ minもしくはその近傍の傾転 Θに対応し た駆動電流 il l (例えば iAmin)を演算し、この駆動電流 il lを比例電磁弁 4に出力す る。次いで、ステップ S 702で二次圧データが安定するまで所定時間(例えば 5秒)を カウントし、所定時間の経過後に、以下のサンプリング処理により求めた二次圧 Pas を読み込む。
[0036] 図 16は二次圧のサンプリング処理を示すフローチャートである。このフローチャート は電源スィッチのオン後に常時実行される。まず、ステップ S801で圧力センサ 5が検 出した比例電磁弁 4の二次圧 Paを読み取る。次いで、ステップ S802で二次圧 Paの 移動平均値を求める。移動平均値は所定数 (例えば 4つ)の新しく読み取った二次圧 データの和を、その所定数で割ることにより求めることができる。例えば二次圧 Pal, Pa2, Pa3, Pa4が順次サンプリングされた場合、移動平均値は(Pal + Pa2 + Pa3 + Pa4) Z4であり、次の瞬間に Pa5がサンプリングされた場合、移動平均値は(Pa2 + Pa3 + Pa4 + Pa5) /4となる。
[0037] ステップ S803では、移動平均値をローパスフィルタにかけ(ローパスフィルタ処理) 、そのフィルタリングした値を、ステップ S804でサンプリング処理後の二次圧 Pasとし て設定する。これにより圧力センサ 5が検出したデータ力 振動成分が除去される。こ のようにして求めた二次圧 Pasを図 14のステップ S703で読み込み、実測二次圧 P1 1としてメモリに記憶する。
[0038] 次いで、ステップ S704で、比例電磁弁 4の設計特性(図 18の fO)から得られるポン プ最大傾転 Θ maxもしくはその近傍の傾転 Θに対応した駆動電流 il2 (例えば iAmax )を比例電磁弁 4に出力する。次いで、ステップ S705で二次圧データが安定するま で所定時間(例えば 5秒)をカウントする。ステップ S706では所定時間の経過後に、 上述したサンプリング処理により求めた二次圧 Pasを読み込み、実測二次圧 P12とし てメモリに記憶する。これにより図 17に示すように二次圧と制御信号 (電流)との関係 (実測値)が求まる。
[0039] ステップ S707では図 17の関係を用いて、予め定めた基準制御圧 Pmin, Pmaxに対 応する駆動電流 imin, imaxを演算する。演算式は次式 (II)となる。
imin=il l-(Pl l-Pmin) X (il2-il l) / (P12-Pl l)
imax=il2+ (Pmax— P12) X (il2-il l) / (P12-Pl l) (II)
ここで求めた imin,imaxは、個々の比例電磁弁 4の最小傾転 Θ min,最大傾転 Θ max に対応する駆動電流を意味する。すなわち比例電磁弁 4に電流 imin,imaxを出力す ると実ポンプ傾転は 0 min, Θ maxとなる。
[0040] 次!、で、ステップ S708で、 imin,imaxから予め定めた駆動電流 iAmin,iAmaxをそれ ぞれ減算して図 18に示す電流補正値 A imin, A imaxを演算し、メモリに記憶する。こ れにより図 19に示すように比例電磁弁 4の補正特性 flを求めることができる。以上に より学習制御を終了する。なお、学習制御の終了時に例えば運転席のランプなどを 点灯させ、学習制御が終了した旨を作業員に報知するようにしてもよい。 目標ポンプ 傾転 θ 0に対する基準特性 fOと補正特性 flとの偏差 (補正値 A ia)は、次式 (III)によ り算出することができる。
Δ ia = Δ imin + ( Θ a— Θ min) X、 Δ imax— Δ iminノ / ( Θ max— Θ mmノ (III)
[0041] 学習制御が終了し、モードスィッチ 8がオフされると図 15の通常制御を開始する。ま ず、ステップ S751で圧力センサ 9で検出したポジコン圧 Pn (例えば図 12の Pn3)を 読みとる。次いで、ステップ S752で、図 12に示す目標ポンプ傾転の特性によりポジ コン圧 Pn ( = Pn3)に対応する目標ポンプ傾転 0 0 (= 0 03)を求める。ステップ S75 3では、比例電磁弁 4の基準特性 fO (図 19)に基づき、 目標ポンプ傾転 Θ 0に対応す る駆動電流 iOを演算する。
[0042] ステップ S754では学習制御で求めた電流補正値 Δ imin, Δ imaxを用いて上式 (III) により目標ポンプ傾転 Θ 0に対応した電流補正値 Δ )を演算する。次いで、ステップ S755で駆動電流 iOに電流補正値 Δ iOを加算して目標駆動電流 iを演算し、ステップ S756でこの目標駆動電流 iを比例電磁弁 4に出力する。以上の処理を通常制御で 繰り返す。
[0043] このように第 3の実施の形態では、圧力センサ 5の検出値 Paの移動平均を求めると ともにローパスフィルタにかけて検出値 Paの振動成分を除去し (サンプリング処理)、 サンプリング処理後の二次圧 Pasを基準に比例電磁弁 4の基準となる電流補正値 Δ i min, Δ imaxを求め(学習制御)、 目標ポンプ傾転 Θ 0に対応した電流補正値 Δ iOを演 算するようにした (通常制御)。すなわち学習制御で圧力センサ 5の検出値 Paを直接 読み込むのではなぐサンプリング処理後の値 Pasを読み込むようにした。これにより 比例電磁弁 4のディザ振動の影響により圧力検出値 Paにばらつきがあっても学習制 御の際の二次圧 Pasは安定し、比例電磁弁 4の基準となる電流補正値 Δ imin, Δ imax を精度よく求めることができ、ポンプ傾転を精度よく目標ポンプ傾転 Θ 0に制御するこ とがでさる。
[0044] 第 4の実施の形態
図 20,図 21を参照して本発明による傾転制御装置の第 4の実施の形態について 説明する。
上記第 3の実施の形態では、比例電磁弁 4のディザ振動の影響を考慮したが、第 4 の実施の形態では、さらに比例電磁弁 4のヒステリシスの影響も考慮する。すなわち 比例電磁弁 4の電流圧力特性は図 20に示すようにヒステリシスを有し、電流を増加さ せる過程で検出される二次圧、例えばポンプ最小傾転 Θ minに対応する二次圧 P11 aおよびポンプ最大傾転 Θ maxに対応する二次圧 P12aは電流を減少させる過程で 検出される二次圧 (PI lb, P12b)よりも小さい。したがって、学習制御時に比例電磁 弁 4への駆動電流 il l, il2の出力のさせ方、つまり図 14のステップ S701,ステップ S704でいかに電流を出力するかによって基準となる実測二次圧の値が異なり、電流 補正値 A imin, A imaxが影響を受ける。
[0045] この場合、 Pl la< Pl lb、 P12a< P12bであるため、最小二次圧 PI laがポンプ最 小傾転 Θ minに良好に対応し、最大二次圧 P12bがポンプ最大傾転 Θ maxに良好に 対応する。この点を考慮して第 4の実施の形態では、図 14のステップ S701, S704 にお 、て以下のように比例電磁弁 4に電流 il 1, il2を出力する。
[0046] すなわち、ステップ S701では、学習制御開始後に図 21に示すように駆動電流を il 1まで増力!]させて出力する。これにより所定時間経過後(時点 tl)の実測圧力 PI 1 (ス テツプ S703)は、ポンプ最小傾転 Θ minに対応した最小二次圧 PI laとなる。これに 対し、ステップ S704では、駆動電流をー且 il2を越えて最大とした後、 il2まで減少 させて出力する。これにより所定時間経過後(時点 t2)の実測圧力 P12 (ステップ S7 06)は、ポンプ最大傾転 Θ maxに対応した最大二次圧 P 12bとなる。
[0047] このように第 4の実施の形態では、比例電磁弁 4への駆動電流を増加させてポンプ 最小傾転 Θ minに対応した電流 il lを出力するとともに、駆動電流をー且最大とした 後に減少させてポンプ最大傾転 Θ maxに対応した電流 il 2を出力するようにした。こ れにより学習制御時に実測される基準となる圧力 Pl l, P12が、ポンプ最小傾転 0 minおよびポンプ最大傾転 Θ maxに良好に対応したものとなり、比例電磁弁 4が有す るヒステリシスの特性を考慮して精度よくポンプ傾転補正を行うことができる。
[0048] なお、第 4の実施の形態では、傾転を増加させる過程で検出した最小傾転 Θ minに 対応した実測圧力 P11 (第 1の実測圧力)と傾転を減少させる過程で検出した最大傾 転 Θ maxに対応した実測圧力 P12 (第 2の実測圧力)に基づき、傾転制御信号 imin, i maxを演算したが、第 1の実施の形態でも同様にして補正の基準となる実測圧力 Pa ( ステップ S409)を検出するようにしてもよ!、。すなわち傾転を増加させる過程で検出 した実測圧力 Paおよび傾転を減少させる過程で検出した実測圧力 Paに基づき傾転 制御信号 iを補正するようにしてもよい。また、第 1の実施の形態でも第 3の実施の形 態と同様に圧力検出値 Paをフィルタリング処理してもよい。これによりステップ S410 一ステップ S413の処理が不要となる。
[0049] なお、上記実施の形態では、油圧ポンプ 1の傾転を制御する傾転制御装置につい て説明したが、傾転を変更可能な他の油圧機器 (例えば油圧モータ)においても同 様に適用可能である。比例電磁弁 4からの二次圧 Paによりポンプ傾転を制御するよう にしたが、傾転制御圧力を発生する他の傾転変更手段を用いてもよい。したがって、 傾転変更手段としての比例電磁弁 4の基準特性は図 9,図 18のものに限らない。第 1 の実施の形態では、目標ポンプ傾転 Θ 0を 2点設定し( Θ 01, 0 02)、補正圧力 Δ P 0の特性を一次式 (I)で求めたが、基準となる傾転 Θ 0を 1点だけ設定しても、あるいは 3点以上設定してもよぐ補正圧力 Δ ΡΟの特性も一次式 (I)とは限らない。同様に、第 3の実施の形態でも目標ポンプ傾転 Θ 0を 1点だけ設定しても 3点以上設定してもよ い。
[0050] 操作レバー 12の操作によりポジコン圧 Pnを発生させて指令値としての目標ポンプ 傾転 Θ 0を入力するようにした力 他の入力手段を用いてもよい。圧力センサ 5により 目標指令圧力 POに対応した圧力 Paを検出したが、他の圧力検出手段を用いてもよ い。
[0051] 第 1の実施の形態では予め定めた図 9の特性に基づき目標ポンプ傾転 Θ 0に応じ た目標指令圧力 POを演算するとともに、図 10の特性に基づき目標ポンプ傾転 Θ 0に 対応した目標駆動電流 iOを演算するようにしたが、圧力演算手段および信号演算手 段の構成はこれに限らない。目標指令圧力 POと実測圧力 Paとに基づき目標駆動電 流 iOを補正するのであれば、補正手段としてのコントローラ 10内における処理は上 述したものに限らない。また、コントローラ 10により学習制御を行って補正式 (I)を設定 するとともに、通常制御時に補正式 (I)に基づき補正圧力 Δ Ρを演算するようにしたが 、圧力特性設定手段および補正圧力演算手段の構成はこれに限らな ヽ。
[0052] 第 3の実施の形態では、予め定めた図 18の基準特性 fOに基づきコントローラ 10が 目標ポンプ傾転 Θ 0に応じた制御信号 il l, il2を出力するようにしたが、信号出力 手段の構成はこれに限らない。基準となるポンプ傾転 Θ min, Θ maxに対応する基準 制御信号 iAmin, iAmaxおよび基準制御圧 Pmin, Pmaxを予めメモリに記憶したが、 基準制御信号 iAmin, iAmax,基準制御圧 Pmin, Pmaxの設定はこれに限らない。例 えば任意のポンプ傾転を基準となるポンプ傾転として手動入力すると、コントローラ 1 0が基準特性 fOに基づ ヽてこのポンプ傾転に対応する電流 (設計値)および圧力(設 計値)を演算し、これを基準制御信号および基準制御圧としてもよい。実測圧力 P11 , P12より求められた電流 imin, imaxと基準制御信号 iAmin, iAmaxとの偏差 Δ imin, A imax (電流補正値)に基づき制御信号を補正するのであれば、補正手段の構成も 上述したものに限らない。
[0053] すなわち、本発明の特徴、機能を実現できる限り、本発明は実施の形態の傾転制 御装置に限定されない。なお、以上の説明はあくまで一例であり、発明を解釈する際 、上記実施形態の記載事項と特許請求の範囲の記載事項の対応関係になんら限定 も拘束もされない。
産業上の利用可能性
[0054] 本発明は、可変容量形の油圧ポンプや油圧モータ等を有する他の建設機械にも 適用することができる。
本出願は日本国特許出願 2004— 91228号を基礎とし、その内容は引用文としてこ こに含まれる。

Claims

請求の範囲
[1] 予め定められた傾転変更手段の基準特性に基づき出力される傾転制御信号を補 正する補正方法であって、
前記基準特性に基づき、基準となる傾転に対応した傾転制御圧力を演算し、この 傾転制御圧力とこれに対応する実測圧力との偏差に基づき、補正圧力の特性を導 出する手順と、
前記補正圧力の特性に基づき目標傾転に対応した補正圧力を演算し、この補正 圧力に応じて前記傾転制御信号を補正する手順とを含むことを特徴とする傾転制御 信号の補正方法。
[2] 予め定められた傾転変更手段の基準特性に基づき出力される傾転制御信号を補 正する補正方法であって、
前記基準特性に基づき、目標傾転に対応した傾転制御圧力を演算し、この傾転制 御圧力とこれに対応する実測圧力との偏差を減少させるようにフィードバック制御に より前記傾転制御信号を補正する手順を含むことを特徴とする傾転制御信号の補正 方法。
[3] 予め定められた傾転変更手段の基準特性に基づき出力される傾転制御信号を補 正する補正方法であって、
前記基準特性に基づき、基準となる傾転に対応した基準傾転制御信号および基準 傾転制御圧力を予め設定し、予め定めた傾転制御信号とこの傾転制御信号を出力 したときの実測圧力との関係を導出して、この導出された関係に基づき、前記基準傾 転制御圧力を発生するための傾転制御信号を演算するとともに、この傾転制御信号 と前記基準傾転制御信号との偏差を演算する手順と、
前記演算された偏差に基づき、目標傾転に応じて出力される傾転制御信号を補正 する手順とを含むことを特徴とする傾転制御信号の補正方法。
[4] 傾転制御信号に応じた傾転制御圧力を発生する傾転変更手段と、
目標傾転を入力する入力手段と、
予め定められた前記傾転変更手段の基準特性に基づき目標傾転に応じた傾転制 御圧力を演算する圧力演算手段と、 この傾転制御圧力に対応した圧力を検出する圧力検出手段と、
前記圧力演算手段で演算された傾転制御圧力と、前記圧力検出手段で検出され た実測圧力とに基づき、前記入力手段により入力された目標傾転に対応する傾転制 御信号を補正する補正手段とを備えることを特徴とする傾転制御装置。
[5] 請求項 4に記載の傾転制御装置にお 、て、
前記補正手段は、前記圧力演算手段で演算された傾転制御圧力と、傾転を増加さ せる過程で検出された最小傾転に対応した第 1の実測圧力および傾転を減少させる 過程で検出された最大傾転に対応した第 2の実測圧力とに基づき傾転制御信号を 補正することを特徴とする傾転制御装置。
[6] 請求項 4または 5に記載の傾転制御装置にお 、て、
前記補正手段は、
前記圧力演算手段で演算された傾転制御圧力と前記圧力検出手段で検出された 実測圧力との偏差に基づき、目標傾転に対する補正圧力特性を設定する圧力特性 設定手段と、
この補正圧力特性に基づき、前記入力手段により入力された目標傾転に対応する 補正圧力を演算する補正圧力演算手段とを有し、
演算された補正圧力に応じて実傾転が目標傾転となるように傾転制御信号を補正 することを特徴とする傾転制御装置。
[7] 請求項 4に記載の傾転制御装置にお 、て、
前記補正手段は、前記圧力演算手段で演算された傾転制御圧力と前記圧力検出 手段で検出された実測圧力との偏差を減少させるようにフィードバック制御により傾 転制御信号を補正することを特徴とする傾転制御装置。
[8] 傾転制御信号に応じた傾転制御圧力を発生する傾転変更手段と、
目標傾転を入力する入力手段と、
前記傾転制御圧力に対応した圧力を検出する圧力検出手段と、
予め定められた前記傾転変更手段の基準特性に基づき、前記傾転変更手段に対 し目標傾転に応じた傾転制御信号を出力する信号出力手段と、
前記基準特性に基づき、基準となる傾転に対応した基準傾転制御信号および基準 傾転制御圧力を設定する設定手段と、
前記信号出力手段により傾転制御信号が出力されたときに前記圧力検出手段によ つて検出される実測圧力に基づき、前記基準傾転制御圧力を発生するための傾転 制御信号を演算するとともに、この傾転制御信号と前記基準傾転制御信号との偏差 を演算し、演算された偏差に基づき、前記傾転変更手段に出力される傾転制御信号 を補正する補正手段とを備えることを特徴とする傾転制御装置。
[9] 請求項 8に記載の傾転制御装置にお 、て、
前記補正手段は、傾転を増加させる過程で前記圧力検出手段により検出された最 小傾転に対応した第 1の実測圧力と傾転を減少させる過程で検出された最大傾転に 対応した第 2の実測圧力に基づき、前記基準傾転制御圧力を発生するための傾転 制御信号を演算することを特徴とする傾転制御装置。
[10] 請求項 4一 9のいずれか 1項に記載の傾転制御装置において、
前記実測圧力から振動成分が除去されるように前記圧力検出手段による検出値を フィルタリング処理するフィルタリング手段をさらに有することを特徴とする傾転制御 装置。
[11] 請求項 4一 10のいずれか 1項に記載の傾転制御装置を備えたことを特徴とする建 設機械。
[12] 予め定められた傾転変更手段の基準特性に基づき出力される傾転制御信号を補 正する処理をコンピュータ装置上で実行させるプログラムであって、
前記基準特性に基づき、基準となる傾転に対応した傾転制御圧力を演算し、この 傾転制御圧力とこれに対応する実測圧力との偏差に基づき、補正圧力の特性を導 出する処理と、
前記補正圧力の特性に基づき目標傾転に対応した補正圧力を演算し、この補正 圧力に応じて前記傾転制御信号を補正する処理とをコンピュータ装置上で実行させ ることを特徴とする傾転制御信号補正用プログラム。
[13] 予め定められた傾転変更手段の基準特性に基づき出力される傾転制御信号を補 正する処理をコンピュータ装置上で実行させるプログラムであって、
前記基準特性に基づき、目標傾転に対応した傾転制御圧力を演算し、この傾転制 御圧力とこれに対応する実測圧力との偏差を減少させるようにフィードバック制御に より前記傾転制御信号を補正する処理をコンピュータ装置上で実行させることを特徴 とする手順を含むことを特徴とする傾転制御信号補正用プログラム。
予め定められた傾転変更手段の基準特性に基づき出力される傾転制御信号を補 正する処理をコンピュータ装置上で実行させるプログラムであって、
前記基準特性に基づき、基準となる傾転に対応した基準傾転制御信号および基準 傾転制御圧力を予め設定し、予め定めた傾転制御信号とこの傾転制御信号を出力 したときの実測圧力との関係を導出して、この導出された関係に基づき、前記基準傾 転制御圧力を発生するための傾転制御信号を演算するとともに、この傾転制御信号 と前記基準傾転制御信号との偏差を演算する処理と、
前記演算された偏差に基づき、目標傾転に応じて出力される傾転制御信号を補正 する処理とをコンピュータ装置上で実行させることを特徴とする傾転制御信号補正用 プログラム。
PCT/JP2005/002578 2004-03-26 2005-02-18 傾転制御信号の補正方法、傾転制御装置、建設機械および傾転制御信号補正用プログラム WO2005100793A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020067019818A KR101056135B1 (ko) 2004-03-26 2005-02-18 경전제어방법, 경전제어장치, 경전제어프로그램을 기록한 컴퓨터로 판독가능한 기록매체 및 건설기계
JP2006516878A JP4422723B2 (ja) 2004-03-26 2005-02-18 傾転制御方法、傾転制御装置、傾転制御プログラム、および建設機械
US10/594,083 US7979229B2 (en) 2004-03-26 2005-02-18 Displacement control signal correction method, displacement control device, construction machine and displacement control signal correction program
AU2005233407A AU2005233407B2 (en) 2004-03-26 2005-02-18 Method for correcting tilt control signal, tilt controller, construction machine, and program for correcting tilt control signal
EP05710411.9A EP1757810B1 (en) 2004-03-26 2005-02-18 Method for correcting tilt control signal, tilt controller and construction machine
CN2005800097612A CN1938518B (zh) 2004-03-26 2005-02-18 倾转控制信号的校正方法、倾转控制设备和工程机械

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004091228 2004-03-26
JP2004-091228 2004-03-26

Publications (1)

Publication Number Publication Date
WO2005100793A1 true WO2005100793A1 (ja) 2005-10-27

Family

ID=35150063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002578 WO2005100793A1 (ja) 2004-03-26 2005-02-18 傾転制御信号の補正方法、傾転制御装置、建設機械および傾転制御信号補正用プログラム

Country Status (7)

Country Link
US (1) US7979229B2 (ja)
EP (1) EP1757810B1 (ja)
JP (1) JP4422723B2 (ja)
KR (1) KR101056135B1 (ja)
CN (1) CN1938518B (ja)
AU (1) AU2005233407B2 (ja)
WO (1) WO2005100793A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177635A (ja) * 2005-12-27 2007-07-12 Hitachi Constr Mach Co Ltd 傾転制御信号の補正方法、傾転制御装置、建設機械および傾転制御信号補正用プログラム
JP2012513575A (ja) * 2008-12-23 2012-06-14 キャタピラー インコーポレイテッド 流体力を補償する油圧制御システム
JP2013040487A (ja) * 2011-08-16 2013-02-28 Hitachi Constr Mach Co Ltd 作業機械
WO2014010222A1 (ja) * 2012-07-10 2014-01-16 川崎重工業株式会社 傾転角制御装置
WO2020162377A1 (ja) * 2019-02-08 2020-08-13 川崎重工業株式会社 液圧ポンプ流量較正システム

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502006003019D1 (de) * 2006-08-31 2009-04-16 Integrated Dynamics Eng Gmbh Aktives Schwingungsisolationssystem mittels hysteresefreier pneumatischer Lagerung
DE102007024794A1 (de) * 2007-05-26 2008-11-27 Zf Friedrichshafen Ag Verfahren und Einrichtung zum Steuern des Einrückgrades einer automatischen oder automatisierten Kraftfahrzeugkupplung
DE102008027076A1 (de) * 2007-07-03 2009-01-08 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren und Anordnung zum Ansteuern von Getriebefunktionen bei einem Getriebe eines Fahrzeuges
WO2009114003A1 (en) * 2008-03-10 2009-09-17 Deere & Company Hydraulic system calibration method and apparatus
US20110262125A1 (en) * 2010-04-22 2011-10-27 Facevsion Technology Inc. Camera
CN102582540A (zh) * 2012-03-09 2012-07-18 三一重机有限公司 一种智能行走马达控制装置及其控制方法
JP6147564B2 (ja) * 2013-05-14 2017-06-14 住友重機械工業株式会社 建設機械用油圧システム
KR20160000009A (ko) 2014-06-23 2016-01-04 (주)위너스라이팅 광 반도체 조명장치
KR20160000010A (ko) 2014-06-23 2016-01-04 (주)위너스라이팅 광 반도체 조명장치
WO2015030265A1 (ja) * 2014-09-05 2015-03-05 株式会社小松製作所 油圧ショベル
WO2016103032A1 (en) * 2014-12-22 2016-06-30 Smith & Nephew Plc Negative pressure wound therapy apparatus and methods
JP2022076550A (ja) * 2020-11-10 2022-05-20 キャタピラー エス エー アール エル 可変容量型油圧ポンプの較正システム
IT202100004760A1 (it) * 2021-03-01 2022-09-01 Cnh Ind Italia Spa Metodo di controllo di una trasmissione idraulica di un veicolo agricolo o una macchina movimento terra e veicolo agricolo o macchina movimento terra implementante il metodo
IT202100009980A1 (it) * 2021-04-20 2022-10-20 Cnh Ind Italia Spa Metodo ed apparato per controllare la portata di una pompa di veicolo

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149602A (ja) * 1989-09-25 1991-06-26 Mannesmann Rexroth Gmbh 電気的に調整可能な操作要素用の電子制御装置
JPH04220701A (ja) * 1990-12-21 1992-08-11 Tokimec Inc 流体制御システム
JPH06307409A (ja) * 1993-04-27 1994-11-01 Amada Co Ltd バルブのオーバーラップ部補正方法
JPH08302755A (ja) 1995-03-07 1996-11-19 Hitachi Constr Mach Co Ltd 制御装置の出力補正方法、制御装置及び油圧ポンプ制御装置
JPH11303760A (ja) * 1998-04-17 1999-11-02 Yuken Kogyo Co Ltd 可変容量形ポンプ
JPH11311203A (ja) 1998-04-24 1999-11-09 Yutani Heavy Ind Ltd 油圧回路の調整方法および同装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234727A (ja) * 1994-02-21 1995-09-05 Komatsu Ltd 作業機の振動抑制装置およびその方法
US5553481A (en) * 1994-03-04 1996-09-10 Nissei Plastic Industrial Co., Ltd. Pressure detecting apparatus of injection molding machine
JP3549989B2 (ja) * 1996-12-10 2004-08-04 日立建機株式会社 油圧作業機の油圧回路装置
JPH10230539A (ja) * 1997-02-19 1998-09-02 Mitsubishi Heavy Ind Ltd 比例電磁制御弁の作動特性測定方法,油圧シリンダの作動制御方法および比例電磁制御弁の作動特性修正方法
US6671641B1 (en) * 2000-11-15 2003-12-30 Delphi Technologies, Inc. Method for calibrating hydraulic actuators
US7710587B2 (en) * 2004-10-18 2010-05-04 Microsoft Corporation Method and system for configuring an electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149602A (ja) * 1989-09-25 1991-06-26 Mannesmann Rexroth Gmbh 電気的に調整可能な操作要素用の電子制御装置
JPH04220701A (ja) * 1990-12-21 1992-08-11 Tokimec Inc 流体制御システム
JPH06307409A (ja) * 1993-04-27 1994-11-01 Amada Co Ltd バルブのオーバーラップ部補正方法
JPH08302755A (ja) 1995-03-07 1996-11-19 Hitachi Constr Mach Co Ltd 制御装置の出力補正方法、制御装置及び油圧ポンプ制御装置
JPH11303760A (ja) * 1998-04-17 1999-11-02 Yuken Kogyo Co Ltd 可変容量形ポンプ
JPH11311203A (ja) 1998-04-24 1999-11-09 Yutani Heavy Ind Ltd 油圧回路の調整方法および同装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1757810A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177635A (ja) * 2005-12-27 2007-07-12 Hitachi Constr Mach Co Ltd 傾転制御信号の補正方法、傾転制御装置、建設機械および傾転制御信号補正用プログラム
JP2012513575A (ja) * 2008-12-23 2012-06-14 キャタピラー インコーポレイテッド 流体力を補償する油圧制御システム
JP2013040487A (ja) * 2011-08-16 2013-02-28 Hitachi Constr Mach Co Ltd 作業機械
WO2014010222A1 (ja) * 2012-07-10 2014-01-16 川崎重工業株式会社 傾転角制御装置
JP2014015903A (ja) * 2012-07-10 2014-01-30 Kawasaki Heavy Ind Ltd 傾転角制御装置
US10066610B2 (en) 2012-07-10 2018-09-04 Kawasaki Jukogyo Kabushiki Kaisha Tilting angle control device
WO2020162377A1 (ja) * 2019-02-08 2020-08-13 川崎重工業株式会社 液圧ポンプ流量較正システム
JP2020128733A (ja) * 2019-02-08 2020-08-27 川崎重工業株式会社 液圧ポンプ流量較正システム
GB2595184A (en) * 2019-02-08 2021-11-17 Kawasaki Heavy Ind Ltd Hydraulic-pump flow-rate calibration system
GB2595184B (en) * 2019-02-08 2022-11-16 Kawasaki Heavy Ind Ltd Hydraulic-pump flow-rate calibration system

Also Published As

Publication number Publication date
AU2005233407A1 (en) 2005-10-27
CN1938518A (zh) 2007-03-28
KR20070010134A (ko) 2007-01-22
US20070193263A1 (en) 2007-08-23
KR101056135B1 (ko) 2011-08-10
JP4422723B2 (ja) 2010-02-24
US7979229B2 (en) 2011-07-12
CN1938518B (zh) 2012-05-09
EP1757810A4 (en) 2010-07-21
AU2005233407B2 (en) 2009-06-04
JPWO2005100793A1 (ja) 2007-08-16
EP1757810A1 (en) 2007-02-28
EP1757810B1 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
WO2005100793A1 (ja) 傾転制御信号の補正方法、傾転制御装置、建設機械および傾転制御信号補正用プログラム
JP3510114B2 (ja) 作業機の制御方法およびその制御装置
JP3434514B2 (ja) 油圧作業機の油圧駆動装置
JP5106705B2 (ja) 作業車両及び作業車両の制御方法
JP4746750B2 (ja) 流体系の不感帯を制御する方法および装置
WO2008075568A1 (ja) 作業車両のステアリングシステム
CN112639300B (zh) 工程机械
KR100225422B1 (ko) 제어장치의 출력보정방법과 이를 사용한 제어장치 및 유압펌프 제어장치
EP2439344B1 (en) Device for controlling swing of construction equipment
JP3497031B2 (ja) 油圧ポンプ制御装置
JP2013040487A (ja) 作業機械
KR20110054739A (ko) 건설기계의 유압펌프 제어장치 및 제어방법
WO2015141132A1 (ja) 操作装置
JPH07127493A (ja) 油圧建設機械の原動機回転数制御装置
JP2007177635A (ja) 傾転制御信号の補正方法、傾転制御装置、建設機械および傾転制御信号補正用プログラム
JPH07127605A (ja) 油圧建設機械の駆動制御装置
JP4376047B2 (ja) 油圧建設機械の制御装置
JPH08135475A (ja) 建設機械の駆動制御装置
JP5350125B2 (ja) 油圧作業機のポンプ傾転制御装置
JP2010203339A (ja) 傾転制御方法、傾転制御装置、建設機械および傾転制御用プログラム
JP2006046292A (ja) 傾転制御信号の補正方法、傾転制御装置、建設機械および傾転制御信号補正用プログラム
JP3308073B2 (ja) 油圧建設機械の原動機回転数制御装置
JP2023174096A (ja) 可変容量型ポンプの制御較正装置およびその方法
CN117916432A (zh) 液压控制系统以及液压控制系统中释放时的目标发动机扭矩的设定方法和校准方法
JP2016151174A (ja) 液圧駆動システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580009761.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006516878

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005233407

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10594083

Country of ref document: US

Ref document number: 2007193263

Country of ref document: US

Ref document number: 1020067019818

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

ENP Entry into the national phase

Ref document number: 2005233407

Country of ref document: AU

Date of ref document: 20050218

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005233407

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005710411

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067019818

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005710411

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10594083

Country of ref document: US