WO2020158496A1 - 繊維パッケージ - Google Patents

繊維パッケージ Download PDF

Info

Publication number
WO2020158496A1
WO2020158496A1 PCT/JP2020/001851 JP2020001851W WO2020158496A1 WO 2020158496 A1 WO2020158496 A1 WO 2020158496A1 JP 2020001851 W JP2020001851 W JP 2020001851W WO 2020158496 A1 WO2020158496 A1 WO 2020158496A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber bundle
carbon fiber
width
bobbin
bundles
Prior art date
Application number
PCT/JP2020/001851
Other languages
English (en)
French (fr)
Inventor
惇二 金羽木
由貴廣 水鳥
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202080011105.0A priority Critical patent/CN113365933B/zh
Priority to JP2020569525A priority patent/JP7238908B2/ja
Priority to EP20748420.5A priority patent/EP3919425B1/en
Publication of WO2020158496A1 publication Critical patent/WO2020158496A1/ja
Priority to MX2022008924A priority patent/MX2022008924A/es
Priority to EP21744794.5A priority patent/EP4094914B1/en
Priority to PCT/JP2021/001014 priority patent/WO2021149578A1/ja
Priority to CN202180009443.5A priority patent/CN114981054A/zh
Priority to EP23206395.8A priority patent/EP4292802A3/en
Priority to JP2021573105A priority patent/JP7115648B2/ja
Priority to TW110102139A priority patent/TWI823049B/zh
Priority to US17/383,838 priority patent/US20210347600A1/en
Priority to JP2022066594A priority patent/JP2022087260A/ja
Priority to US17/865,288 priority patent/US20220347890A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/06Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers for making cross-wound packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H55/00Wound packages of filamentary material
    • B65H55/04Wound packages of filamentary material characterised by method of winding
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments
    • B65H2701/314Carbon fibres

Definitions

  • the present invention relates to fiber packages.
  • the present application claims priority based on Japanese Patent Application No. 2019-011966 filed in Japan on January 28, 2019, the content of which is incorporated herein.
  • a carbon fiber bundle having a fineness of 25,000 to 35,000 denier has a winding angle of 13 to 14° at the start of winding, a winding angle of 3° or more at the end of winding, and a fraction below the decimal point of the wind ratio.
  • a square end type carbon fiber package wound on a bobbin is disclosed as 0.07 to 0.08.
  • Patent Document 2 a carbon fiber bundle drawn out from a bobbin is widened, further partially split into two sub-bundles, and then wound on another bobbin to form a fiber package, and the carbon fiber bundle is extracted from the fiber package. It is described that the sheet molding compound (SMC) was manufactured by feeding the sheet.
  • SMC sheet molding compound
  • An object of the present invention is to provide a fiber package in which a partially split carbon fiber bundle is wound around a bobbin and has no unwinding problem.
  • the present invention has the following configurations.
  • [1] A square end type fiber package in which a carbon fiber bundle is traversed around a bobbin, wherein the carbon fiber bundle is partially split into sub-bundles, and the width of the carbon fiber bundle is the width of the sub-bundle. Fiber package characterized by being smaller than the sum.
  • [2] A square end type fiber package in which a carbon fiber bundle is traversely wound on a bobbin, and the carbon fiber bundle is partially split into sub-bundles, and the bobbin is formed so that the sub-bundles overlap each other.
  • a method of manufacturing a square end type fiber package in which a carbon fiber bundle is traverse-wound around a bobbin which comprises a splitting step of partially splitting the carbon fiber bundle into sub-bundles and a partial splitting into sub-bundles. And a winding step of winding the formed carbon fiber bundle around a bobbin, wherein in the winding step, the carbon fiber bundle is wound around the bobbin so that the width of the carbon fiber bundle becomes smaller than the total width of the sub bundles.
  • a method of manufacturing a square end type fiber package in which a carbon fiber bundle is traverse-wound around a bobbin which comprises a split step of partially splitting the carbon fiber bundle into sub-bundles and a partial splitting into sub-bundles. And a winding step of winding the formed carbon fiber bundle around a bobbin, wherein the carbon fiber bundle is wound around the bobbin so that the sub bundles overlap each other in the winding step.
  • the positions of the center lines are displaced by a gap width of 0.8 times or more the width of the carbon fiber bundle at least between the carbon fiber bundles wound on the bobbin in the traverse cycle that is not separated by 5 cycles or more.
  • the position of the center line is displaced by a gap width of 1.0 times or more of the width of the carbon fiber bundle at least between the carbon fiber bundles wound on the bobbin in the traverse cycle not separated by more than 5 cycles.
  • the positions of the center lines are displaced by a gap width of 1.3 times or more of the width of the carbon fiber bundle between the carbon fiber bundles wound on the bobbin in the traverse cycle that is not separated by 5 cycles or more.
  • [16] The production method according to any one of [10] to [15], wherein the carbon fiber bundle is partially split into three or more sub-bundles in the splitting step.
  • [17] The production method according to any one of [10] to [16], wherein the number of filaments in the sub-bundle is 5000 or less.
  • the production method according to any one of [10] to [17] wherein the total number of filaments of the carbon fiber bundle is 12,000 or more.
  • FIG. 1 is a schematic diagram showing the structure of a fiber package.
  • FIG. 2A is a schematic diagram showing a partially split carbon fiber bundle, and is a plan view.
  • FIG. 2B is a schematic view showing a partially split carbon fiber bundle, and is a cross-sectional view taken along a plane perpendicular to the fiber direction.
  • FIG. 3 is a conceptual diagram showing a fiber package manufacturing apparatus.
  • FIG. 4 is a cross-sectional view of a carbon fiber bundle wound around a bobbin so that the sub-bundles are overlapped with each other when the carbon fiber bundle is cut along a plane perpendicular to the fiber direction.
  • FIG. 1 is a schematic view of the fiber package 10 of the present embodiment as seen from a direction perpendicular to the rotation axis of the bobbin 14. As shown in FIG. 1, the fiber package 10 is a square end type fiber package in which a fiber bundle 12 having a width W is traversed around a bobbin 14.
  • the fiber package 10 can be manufactured using, but not limited to, the manufacturing apparatus 100 whose conceptual diagram is shown in FIG.
  • the manufacturing apparatus 100 includes a spreader 110 for deforming and flattening the fiber bundle 12 (or widening it to make it flatter), a splitter 120 for partially splitting the fiber bundle 12, and a fiber bundle 12 And a winder 130 for winding the bobbin on the bobbin 14.
  • the spreader 110 includes a spreader bar 112.
  • the spreader bar 112 may be heated or may be reciprocated in a direction perpendicular to the traveling direction of the fiber bundle 12, and the mechanism therefor can be referred to a known technique.
  • the fiber bundle 12 supplied from the supply bobbin 102 and traveling in the fiber direction is rubbed against the spreader bar 112 to be flattened or widened to have a thickness of about 0.05 to 0.2 mm.
  • the spreader 110 can be omitted when the fiber bundle 12 supplied from the supply bobbin 102 is already sufficiently flat. For example, when the width is 50 times or more the thickness, the fiber bundle 12 may be sufficiently flat.
  • the splitter 120 includes a rotary blade 122 for forming slits in the fiber bundle 12 and a plurality of godet rolls 124 for controlling the traveling speed of the fiber bundle 12.
  • the rotation axis of the rotary blade 122 is parallel to the width direction of the fiber bundle 12.
  • a plurality of blades 123 are circumferentially arranged at regular intervals on the outer circumference of the rotary blade 122 so that slits having a constant length are formed intermittently along the fiber direction (longitudinal direction) of the fiber bundle 12 at a constant cycle. Is set up.
  • the length of the slit formed in the fiber bundle 12 by the splitter 120 can be controlled by adjusting the peripheral speed of the rotary blade 122 and the traveling speed of the fiber bundle 12.
  • FIG. 2A and 2B show a partially split fiber bundle 12 having a width W 0 obtained by using a splitter 120 arranged in the width direction of the fiber bundle running on four rotary blades 122.
  • the fiber direction of the fiber bundle be the x direction
  • the width direction be the y direction
  • the thickness direction be the z direction
  • FIG. 2A is a plan view of the fiber bundle 12 viewed from the z direction
  • FIG. 2B is the fiber.
  • a cross section of the bundle 12 perpendicular to the x direction is shown.
  • the fiber bundle 12 is formed with four slit rows: a first slit row 13A, a second slit row 13B, a third slit row 13C, and a fourth slit row 13D.
  • the first slit row 13A includes a plurality of first slits 13a arranged in the x direction.
  • the second slit row 13B includes a plurality of second slits 13b arranged in the x direction.
  • the third slit row 13C includes a plurality of third slits 13c arranged in the x direction.
  • the fourth slit row 13D includes a plurality of fourth slits 13d arranged in the x direction. Since these four slit rows are formed by different rotary blades, their positions in the y direction are different.
  • the slit length L S and the inter-slit gap length L G are constant in any slit row and are common between different slit rows.
  • the ratio L S /(L S +L G ) of the slit length L S to the sum of the slit length L S and the inter-slit gap length L G is usually 90% or more, preferably 95% or more, and even 99%, for example. Good. Therefore, most of the fiber bundle 12 is split into five sub-bundles 11 as shown in FIG. 2B.
  • the slit length L S is preferably 25 mm or more, more preferably more than 50 mm, even more preferably more than 500 mm. This is because when the fiber bundle 12 is chopped into a chopped fiber bundle for use in a sheet molding compound, the fiber length of the chopped fiber bundle is usually about 25 to 50 mm. The longer the slit length L S, the more chopped fiber bundles having a bundle size equal to or smaller than the sub-bundle 11 can be obtained.
  • the slit length L S is, for example, 25 mm or more and 50 mm or less, 50 mm or more and 100 mm or less, 100 mm or more and 200 mm or less, 200 mm or more and 500 mm or less, 500 mm or more and 1000 mm or less, 1000 mm or more, 1500 mm or less, 1500 mm or more and 2000 mm or less, and 2000 mm or more and 3000 mm or less.
  • the inter-slit gap length L G is, for example, 5 to 10 mm, but may be shorter than this range.
  • the positions of the inter-slit gaps G S in the x direction are different between the first slit row 13A and the second slit row 13B. The same is true between the second slit row 13B and the third slit row 13C and between the third slit row 13C and the fourth slit row 13D.
  • the positions of the inter-slit gaps G S in the x direction may be the same between adjacent slit rows.
  • the number of sub-bundles in which the fiber bundle 12 is partially split by the splitter 120 can be appropriately determined depending on the number of rotary blades provided in the splitter 120, but is preferably 3 or more, more preferably 5 or more. It may be 10 or more.
  • the number of filaments of the sub-bundle formed by partial splitting of the fiber bundle 12 is preferably 5000 or less, more preferably 3000 or less, and may be 2000 or less.
  • the winder 130 includes a traverse guide 132 and a press roll 134 that presses the fiber bundle 12 wound around the bobbin 14.
  • the fiber package 10 is obtained by traversing the fiber bundle 12 on the bobbin 14 using the winder 130.
  • the width W of the fiber bundle 12 in the fiber package 10 is smaller than the total width W S of the sub-bundles 11. This means that the fiber bundle 12 is wound around the bobbin 14 so that the sub-bundles 11 overlap with each other as shown in FIG.
  • the mode of overlapping the sub-bundles 11 shown in FIG. 4 is an example, and the sub-bundles 11 may overlap with each other in another mode. When the sub-bundles 11 overlap with each other, biting between the fiber bundles 12 is less likely to occur, so that the unravelability of the fiber bundles 12 when the fiber package 10 is used is good.
  • the width W of the fiber bundle 12 when wound around the bobbin 14 may be made narrower than the total width W S of the sub-bundle 11 by adjusting the groove width of the attached roll.
  • the width W of the fiber bundle 12 is narrowed by passing the grooved roll having a narrow groove width.
  • the width W of the fiber bundle 12 is preferably 90% or less of the sum of the width W S of the sub-bundle 11, and more preferably less 86%. Because of deformation experienced until wound on a bobbin, the width W S of the sub-bundle 11, it may be not the same as that immediately after the split of the fiber bundle 12.
  • the width W of the fiber bundle 12 is not limited, but is, for example, 2 to 15 mm, and may be 3 to 12 mm.
  • the winding angle at the beginning of winding is preferably 5 to 30°, and the winding angle at the end of winding is preferably 2 to 17°.
  • the wind ratio R W 2L T /( ⁇ Dtan ⁇ )
  • the traverse length L T is the stroke of the traverse guide that reciprocates in the axial direction of the bobbin.
  • the wind ratio R W represents the number of revolutions of the bobbin during one traverse of the traverse guide. It may be rephrased as the number of turns per traverse cycle.
  • the winding diameter D is the diameter D B of the bobbin at the beginning of winding.
  • the fiber bundle 12 is wound around the bobbin 14 with a constant wind ratio.
  • the wind ratio is an integer
  • ribbon winding it is known that the thread is wound at the same position on the bobbin in all traverse cycles, so-called ribbon winding, and unwindability deteriorates.
  • the fraction after the decimal point of the wind ratio is a multiple of 1/n (n is an integer of 2 or more)
  • the thread is wound at the same position on the bobbin every n cycles of traverse.
  • the ratio is an integer, there is a problem in unwindability.
  • the fractional part of the wind ratio is set so that the position of the center line always shifts between the fiber bundles 12 wound on the bobbin 14 in a traverse cycle that is not more than 5 cycles apart.
  • the center line is the center line of the fiber bundle, and refers to a line that extends in the longitudinal direction of the fiber bundle and divides the fiber bundle into two when viewed from the thickness direction (also in the following. The same).
  • the unwinding Sex may deteriorate. Therefore, more preferably, between the fiber bundles 12 wound around the bobbin 14 in a traverse cycle that is not separated by 5 cycles or more, at least 0.8 times the width W of the fiber bundles 12, preferably 1.0 times or more, More preferably, the position of the center line is displaced with a deviation width of 1.3 times or more.
  • the deviation width here means the deviation width when the direction orthogonal to the center line of the fiber bundle 12 is the deviation direction.
  • the traverse cycle 5 cycles away from the Nth traverse cycle is the (N-5)th traverse cycle and the (N+5)th traverse cycle. It is a traverse cycle.
  • the total number of filaments of the fiber bundle 12 is not limited, but is, for example, 6000 or more, and may be 12,000 to 15,000, 15,000 to 24,000, 24,000 to 40,000, 40,000 to 60,000, and the like.
  • the bobbin 14 is not particularly limited and is, for example, a paper tube.
  • the diameter D B of the bobbin 14 can be set appropriately and can be set to, for example, 50 to 150 mm.
  • the fiber package 10 can also be used by removing the bobbin 14.
  • a splitter with four rotating blades was used for partial splitting of the carbon fiber bundle.
  • the carbon fiber bundle was split into five 1.6 mm wide sub-bundles partially connected to each other.
  • the position of the inter-slit gap in the fiber direction was the same for all slit rows.
  • the winding angle of the winding start was 9.9°
  • the winding angle of the winding end was 5°
  • the wind ratio was 11.30
  • the winding amount was 5.0 kg.
  • the deviation width of the position of the center line between the carbon fiber bundles wound in the traverse cycle not separated by 5 cycles or more was 10 mm or more.
  • Example 2 A fiber package was produced in the same manner as in Experiment 1 except for the following changes.
  • -The carbon fiber bundle initially prepared had a total number of filaments of 50,000, an initial width of 14 mm, and a thickness of 0.2 mm.
  • -A splitter with 16 rotary blades was used for partial splitting of the carbon fiber bundle.
  • the carbon fiber bundle was split into 17 sub-bundles of 0.8 mm width, which were partially connected to each other.
  • the winding angle at the end of winding was set to 3° and the winding amount was set to 9.5 kg.
  • the deviation width of the position of the center line between the carbon fiber bundles wound in the traverse cycle not separated by 5 cycles or more was 10 mm or more, as in Experiment 1.
  • the width of the carbon fiber bundle wound on the bobbin was 12 mm, which was 86% of the total width of the sub-bundle. Therefore, the above-mentioned deviation width was at least 0.8 times the width of the carbon fiber bundle.
  • Example 3 A fiber package was produced in the same manner as in Experiment 1 except for the following changes.
  • the winding angle at the beginning of winding was 14°
  • the winding angle at the end of winding was 10°
  • the winding ratio was 7.91.
  • the deviation width of the position of the center line between the carbon fiber bundles wound in the traverse cycle not separated by 5 cycles or more was 4 mm or more.
  • the width of the carbon fiber bundle wound on the bobbin was 3 mm, which is 38% of the total width of the sub bundle. Therefore, the above-mentioned deviation width was at least 1.3 times the width of the carbon fiber bundle.
  • Example 4 A fiber package was produced in the same manner as in Experiment 3 except for the following changes.
  • the width of the carbon fiber bundle wound on the bobbin was 6 mm, which is 75% of the total width of the sub-bundles. Therefore, the deviation width of the position of the center line between the carbon fiber bundles wound in the traverse cycle not separated by 5 cycles or more was 0.7 times the width of the carbon fiber bundle at the minimum.
  • Example 5 A fiber package was produced in the same manner as in Experiment 1 except for the following changes. -The width of the carbon fiber bundle wound on the bobbin was set to 8 mm, which is the same as the total width of the sub-bundles. Therefore, the deviation width of the position of the center line between the carbon fiber bundles wound in the traverse cycle not separated by 5 cycles or more was 1.3 times the minimum width of the carbon fiber bundle.
  • Example 6 A fiber package was produced in the same manner as in Experiment 2 except for the following changes.
  • the winding angle at the start of winding was 14°
  • the winding angle at the end of winding was 10°
  • the winding ratio was 7.91
  • the winding amount was 9.5 kg.
  • the deviation width of the position of the center line between the carbon fiber bundles wound in the traverse cycle not separated by 5 cycles or more was 4 mm or more.
  • the width of the carbon fiber bundle wound on the bobbin was 12 mm, which was 86% of the total width of the sub-bundle. Therefore, the deviation width of the position of the center line between the carbon fiber bundles wound in the traverse cycle not separated by 5 cycles or more was 0.3 times the width of the carbon fiber bundle at the minimum.
  • the unwinding property when the bobbin was pulled out from the fiber package produced in each of the above experiments and the carbon fiber bundle was pulled out from the inside was evaluated according to the following criteria. ⁇ : The carbon fiber bundle was not entangled or cut. X: The carbon fiber bundle was entangled or broken.
  • Table 1 shows the conditions used in each of the above experiments and the evaluation results of the fiber package.
  • the reason why the unwinding property of the carbon fiber bundle in the fiber package manufactured in Experiment 5 was not good is that the carbon fiber bundle was wound around the bobbin in a state where the sub-bundles were not overlapped with each other.
  • the unwinding property of the carbon fiber bundles was not good because the displacement of the center line between the carbon fiber bundles wound in traverse cycles not separated by 5 cycles or more. It is considered that the width was partly smaller than the width of the carbon fiber bundle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Filamentary Materials, Packages, And Safety Devices Therefor (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

本発明は、部分的にスプリットされた炭素繊維束がボビンに巻き取られてなる繊維パッケージであって、解舒性に問題のない繊維パッケージを提供することを目的とする。繊維束(12)がボビンにトラバース巻きされてなるスクエアエンド型の繊維パッケージであって、繊維束(12)が部分的にサブ束(11)にスプリットされており、繊維束(12)の幅Wがサブ束(12)の幅Wの総和よりも小さいことを特徴とする繊維パッケージ。また、繊維束(12)がボビンにトラバース巻きされてなるスクエアエンド型の繊維パッケージであって、繊維束(12)は部分的にサブ束(11)にスプリットされており、サブ束(11)同士の重なり合いが生じるようにボビンに巻かれていることを特徴とする繊維パッケージ。

Description

繊維パッケージ
 本発明は、繊維パッケージに関する。
 本願は、2019年1月28日に、日本に出願された特願2019-011966号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1には、繊度25,000~35,000デニールの炭素繊維束が、巻き始めの綾角を13~14°、巻き終わりの綾角を3°以上、ワインド比の小数点以下の端数を0.07~0.08としてボビン上に巻き取られたスクエアエンド型の炭素繊維パッケージが開示されている。
 特許文献2には、ボビンから引き出した炭素繊維束を拡幅し、更に、部分的に2つのサブ束にスプリットしたうえで、別のボビンに巻き取って繊維パッケージとし、その繊維パッケージから炭素繊維束を繰り出してシートモールディングコンパウンド(SMC)を製造したことが記されている。
国際公開第2008/029740号 国際公開第2017/111056号
 本発明は、部分的にスプリットされた炭素繊維束がボビンに巻き取られてなる繊維パッケージであって、解舒性に問題のない繊維パッケージを提供することを目的とする。
 本発明は、以下の構成を有する。
[1]炭素繊維束がボビンにトラバース巻きされてなるスクエアエンド型の繊維パッケージであって、炭素繊維束が部分的にサブ束にスプリットされており、炭素繊維束の幅がサブ束の幅の総和よりも小さいことを特徴とする繊維パッケージ。
[2]炭素繊維束がボビンにトラバース巻きされてなるスクエアエンド型の繊維パッケージであって、炭素繊維束は部分的にサブ束にスプリットされており、サブ束同士の重なり合いが生じるようにボビンに巻かれていることを特徴とする繊維パッケージ。
[3]炭素繊維束の幅が、サブ束の幅の総和の90%以下である、[1]または[2]に記載の繊維パッケージ。
[4]5サイクル以上離れていないトラバースサイクルでボビンに巻かれた炭素繊維束の間では、最小でも炭素繊維束の幅の0.8倍以上のズレ幅で中央線の位置がずれている、[1]~[3]のいずれかに記載の繊維パッケージ。
[5]5サイクル以上離れていないトラバースサイクルでボビンに巻かれた炭素繊維束の間では、最小でも炭素繊維束の幅の1.0倍以上のズレ幅で中央線の位置がずれている、[4]に記載の繊維パッケージ。
[6]5サイクル以上離れていないトラバースサイクルでボビンに巻かれた炭素繊維束の間では、最小でも炭素繊維束の幅の1.3倍以上のズレ幅で中央線の位置がずれている、[5]に記載の繊維パッケージ。
[7]炭素繊維束が部分的に3以上のサブ束にスプリットされている、[1]~[6]のいずれかに記載の繊維パッケージ。
[8]前記サブ束のフィラメント数が5000本以下である、[1]~[7]のいずれかに記載の繊維パッケージ。
[9]前記炭素繊維束の総フィラメント数が12000本以上である、[1]~[8]のいずれかに記載の繊維パッケージ。
[10]炭素繊維束がボビンにトラバース巻きされてなるスクエアエンド型の繊維パッケージの製造方法であって、炭素繊維束を部分的にサブ束にスプリットするスプリット工程と、部分的にサブ束にスプリットされた炭素繊維束をボビンに巻き取るワインド工程とを含み、ワインド工程では炭素繊維束の幅がサブ束の幅の総和より小さくなるように炭素繊維束をボビンに巻き取ることを特徴とする製造方法。
[11]炭素繊維束がボビンにトラバース巻きされてなるスクエアエンド型の繊維パッケージの製造方法であって、炭素繊維束を部分的にサブ束にスプリットするスプリット工程と、部分的にサブ束にスプリットされた炭素繊維束をボビンに巻き取るワインド工程とを含み、ワインド工程ではサブ束同士の重なり合いが生じるように炭素繊維束をボビンに巻き取ることを特徴とする製造方法。
[12]ワインド工程では、炭素繊維束の幅が、サブ束の幅の総和の90%以下となるように炭素繊維束をボビンに巻き取る、[10]または[11]に記載の製造方法。
[13]ワインド工程において、5サイクル以上離れていないトラバースサイクルでボビンに巻かれる炭素繊維束の間では、最小でも炭素繊維束の幅の0.8倍以上のズレ幅で中央線の位置がずれるようにする、[10]~[12]のいずれかに記載の製造方法。
[14]ワインド工程において、5サイクル以上離れていないトラバースサイクルでボビンに巻かれる炭素繊維束の間では、最小でも炭素繊維束の幅の1.0倍以上のズレ幅で中央線の位置がずれるようにする、[13]に記載の製造方法。
[15]ワインド工程において、5サイクル以上離れていないトラバースサイクルでボビンに巻かれる炭素繊維束の間では、最小でも炭素繊維束の幅の1.3倍以上のズレ幅で中央線の位置がずれるようにする、[14]に記載の製造方法。
[16]スプリット工程において、炭素繊維束を部分的に3以上のサブ束にスプリットする、[10]~[15]のいずれかに記載の製造方法。
[17]前記サブ束のフィラメント数が5000本以下である、[10]~[16]のいずれかに記載の製造方法。
[18]前記炭素繊維束の総フィラメント数が12000本以上である、[10]~[17]のいずれかに記載の製造方法。
 本発明によれば、部分的にスプリットされた炭素繊維束がボビンに巻き取られてなる繊維パッケージであって、炭素繊維束の解舒性に問題のない繊維パッケージを提供できる。
図1は、繊維パッケージの構成を示す模式図である。 図2Aは、部分的にスプリットされた炭素繊維束を示す模式図であって、平面図である。 図2Bは、部分的にスプリットされた炭素繊維束を示す模式図であって、繊維方向に垂直な平面で切断したときの断面図である。 図3は、繊維パッケージの製造装置を示す概念図である。 図4は、サブ束同士の重なり合いが生じるようにボビンに巻かれた炭素繊維束の、繊維方向に垂直な平面で切断したときの断面図である。
1.炭素繊維パッケージとその製造方法
 以下、図面を参照しつつ、本発明の一実施形態に係る炭素繊維パッケージについて説明する。本明細書では、炭素繊維パッケージを単に繊維パッケージとも呼び、また、炭素繊維束を単に繊維束とも呼ぶ。
 図1は、本実施形態の繊維パッケージ10を、ボビン14の回転軸に垂直な方向から見た模式図である。図1に示すように、繊維パッケージ10は、幅Wを有する繊維束12がボビン14上にトラバース巻きされてなるスクエアエンド型の繊維パッケージである。
 繊維パッケージ10は、限定するものではないが、図3に概念図を示す製造装置100を用いて製造され得る。
 製造装置100は、繊維束12を変形させて扁平にする(または、拡幅してより扁平とする)ためのスプレッダー110と、繊維束12を部分的にスプリットするためのスプリッター120と、繊維束12をボビン14に巻き取るためのワインダー130とを備えている。
 スプレッダー110は、スプレッダーバー112を備えている。スプレッダーバー112は加熱してもよいし、繊維束12の走行方向と垂直な方向に往復動させてもよく、そのための機構は公知技術を参照することができる。供給ボビン102から供給され、繊維方向に走行する繊維束12は、スプレッダーバー112に擦り付けられることで扁平化または拡幅され、0.05~0.2mm程度の厚さとされる。
 供給ボビン102から供給される繊維束12が既に十分に扁平なとき、スプレッダー110は省略することができる。
 例えば、幅が厚さの50倍以上であるとき、繊維束12は十分に扁平といってよい。
 スプリッター120は、繊維束12にスリットを形成するための回転刃122と、繊維束12の走行速度を制御するための複数のゴデットロール124とを備える。
 回転刃122の回転軸は、繊維束12の幅方向に平行である。一定長さのスリットが一定周期で繊維束12の繊維方向(長手方向)に沿って、間欠的に形成されるように、回転刃122の外周には、複数の刃物123が周方向に一定間隔を置いて設けられている。
 スプリッター120によって繊維束12に形成されるスリットの長さは、回転刃122の周速度と繊維束12の走行速度を調節することによって制御できる。
 4個の回転刃122を走行する繊維束の幅方向に並べたスプリッター120を用いた場合に得られる、部分的にスプリットされた幅Wの繊維束12を図2Aおよび図2Bに示す。便宜のために、繊維束の繊維方向をx方向、幅方向をy方向、厚さ方向をz方向とすると、図2Aは繊維束12をz方向から見た平面図であり、図2Bは繊維束12のx方向に垂直な断面を示している。
 図2Aに示すように、繊維束12には、第一スリット列13A、第二スリット列13B、第三スリット列13Cおよび第四スリット列13Dという4つのスリット列が形成されている。
 第一スリット列13Aは、x方向に並んだ複数の第一スリット13aからなる。
 第二スリット列13Bは、x方向に並んだ複数の第二スリット13bからなる。
 第三スリット列13Cは、x方向に並んだ複数の第三スリット13cからなる。
 第四スリット列13Dは、x方向に並んだ複数の第四スリット13dからなる。
 これら4つのスリット列は、異なる回転刃によって形成されることから、y方向の位置が異なっている。
 スリット長Lとスリット間ギャップ長Lは、いずれのスリット列内でも一定であり、また、異なるスリット列間においても共通している。
 スリット長Lとスリット間ギャップ長Lの和に対するスリット長Lの比L/(L+L)は通常90%以上、好ましくは95%以上であり、例えば99%であってもよい。従って、繊維束12は殆どの部分で、図2Bに示すように、5つのサブ束11にスプリットされている。
 第一スリット列13A、第二スリット列13B、第三スリット列13Cおよび第四スリット列13Dのy方向の位置は、5つのサブ束11が概ね同じ幅Wを有するように設定されている。
 スリット長Lは25mm以上であることが好ましく、50mm超であることがより好ましく、500mm超であることが更に好ましい。なぜなら、シートモールディングコンパウンドに使用するために繊維束12をチョップしてチョップド繊維束にするとき、そのチョップド繊維束の繊維長は通常25~50mm程度だからである。スリット長Lが長い程、サブ束11と同等以下の束サイズを有するチョップド繊維束が多く得られる。
 スリット長Lは、例えば、25mm超50mm以下、50mm超100mm以下、100mm超200mm以下、200mm超500mm以下、500mm超1000mm以下、1000mm超1500mm以下、1500mm超2000mm以下、2000mm超3000mm以下などであり得る。
 スリット間ギャップ長Lは、例えば5~10mmであるが、この範囲より短くてもよい。
 図2Aに示すように、第一スリット列13Aと第二スリット列13Bとでは、スリット間ギャップGのx方向の位置がずれている。第二スリット列13Bと第三スリット列13Cの間、および、第三スリット列13Cと第四スリット列13Dの間でも同様である。
 このように、隣り合うスリット列の間でスリット間ギャップGのx方向の位置をずらすことによって、繊維束12が全くスプリットされていない部分を無くすことができる。ただし、かかる構成は必須ではなく、隣り合うスリット列の間でスリット間ギャップGのx方向の位置が同じであってもよい。
 繊維束12をスプリッター120でいくつのサブ束に部分的にスプリットするかは、スプリッター120に設ける回転刃の数によって、適宜決定することができるが、好ましくは3以上、より好ましくは5以上であり、10以上であってもよい。
 繊維束12の部分的なスプリットにより形成するサブ束のフィラメント数は、好ましくは5000本以下、より好ましくは3000本以下であり、2000本以下であってもよい。
 図3に示すように、ワインダー130は、トラバースガイド132と、ボビン14に巻き取られる繊維束12を押圧するプレスロール134とを備えている。
 ワインダー130を用いて繊維束12をボビン14上にトラバース巻きすることにより、繊維パッケージ10が得られる。
 繊維パッケージ10における繊維束12の幅Wは、サブ束11の幅Wの総和よりも小さい。これは、図4に示すように、サブ束11同士の重なり合いが生じるように、繊維束12がボビン14に巻かれていることを意味する。なお、図4に示すサブ束11同士の重なり合いの態様は一例であり、サブ束11同士は他の態様で重なり合ってもよい。
 サブ束11同士の重なり合いがあると、繊維束12同士の間での噛み込みが生じ難くなるので、繊維パッケージ10の使用時における繊維束12の解舒性が良好となる。
 サブ束11同士の重なり合いが生じるように繊維束12をボビン14に巻くには、繊維束12がスプリットされた後、トラバースガイド132を経てボビン14に巻き取られるまでに経由する1つ以上の溝付きロールの溝幅を調節することにより、ボビン14に巻き取られるときの繊維束12の幅Wをサブ束11の幅Wの総和よりも狭くしていけばよい。溝幅の狭い溝付きロールを通すことで、繊維束12の幅Wは狭くなる。
 繊維パッケージ10において、繊維束12の幅Wは、サブ束11の幅Wの総和の90%以下であることが好ましく、86%以下であることがより好ましい。ボビンに巻かれるまでの間に受ける変形のせいで、サブ束11の幅Wは、繊維束12のスプリット直後と同じではないことがあり得る。
 繊維パッケージ10において、繊維束12の幅Wは、限定するものではないが、例えば2~15mmであり、3~12mmであってもよい。
 繊維束12をボビン14にトラバース巻きするとき、巻き始めの綾角は好ましくは5~30°、巻き終わりの綾角は好ましくは2~17°である。
 トラバース巻きにおいて、ワインド比R、トラバース長L、巻き直径Dおよび綾角θの間には、下記式で表される関係がある。
 R=2L/(πDtanθ)
 図1に示すように、トラバース長Lは、ボビンの軸方向に往復動するトラバースガイドのストロークである。ワインド比Rは、トラバースガイドが1往復する間にボビンが何回転するかを表す。1トラバースサイクルあたりの巻き数と言い換えてもよい。巻き直径Dは、巻き始めにおいては、ボビンの直径Dである。
 繊維パッケージ10の製造において、繊維束12はワインド比一定でボビン14に巻かれる。
 一般に、ワインド比一定で糸をボビンに巻くとき、ワインド比が整数であると、全てのトラバースサイクルで糸がボビンの同じ位置に巻かれる、いわゆるリボン巻きとなり、解舒性が悪くなることが知られている。
 ワインド比の小数点以下の端数が1/n(nは2以上の整数)の倍数である場合も、トラバースのnサイクル毎に糸がボビンの同じ位置に巻かれるので、特にnが小さいときには、ワインド比が整数の場合と同じく解舒性に問題が生じる。
 そこで、好ましくは、5サイクル以上離れていないトラバースサイクルでボビン14に巻かれる繊維束12の間では中央線の位置が必ずずれるように、ワインド比の小数点以下の端数が設定される。ここで、中央線とは、繊維束の中央線のことであり、繊維束の長手方向に延び、厚さ方向から見たときに繊維束を二等分するラインのことをいう(以下においても同じとする)。
 実際には、異なるトラバースサイクルで巻かれる繊維束12の間で中央線の位置をこのようにずらしたとしても、そのズレ幅が繊維束12の幅Wに比べて過小であるときは、解舒性が悪化し得る。
 そこで、更に好ましくは、5サイクル以上離れていないトラバースサイクルでボビン14に巻かれる繊維束12の間では、最小でも繊維束12の幅Wの0.8倍以上、好ましくは1.0倍以上、より好ましくは1.3倍以上のズレ幅で、中央線の位置がずれるようにする。ここでいうズレ幅は、繊維束12の中央線と直交する方向をズレ方向としたときのズレ幅をいう。
 トラバースサイクルについて補足説明すると、巻き始めからN回目のトラバースサイクルを第Nトラバースサイクルとしたとき、第Nトラバースサイクルから5サイクル離れたトラバースサイクルは、第(N-5)トラバースサイクルと第(N+5)トラバースサイクルである。
 繊維束12の総フィラメント数は、限定するものではないが、例えば6000本以上であり、12000~15000本、15000~24000本、24000~40000本、40000~60000本等であり得る。
 ボビン14は、特に限定されず、例えば、紙管である。
 ボビン14の直径Dは、適宜設定でき、例えば、50~150mmとすることができる。
 繊維パッケージ10は、ボビン14を抜き取って使用することもできる。
2.実験結果
 本発明者等が行った実験の結果を以下に記す。
[実験1]
 総フィラメント数15000本、初期幅8mm、厚さ0.1mmの扁平な炭素繊維束を準備し、これを部分的にスプリットしたうえで、直径82mm、長さ280mmの紙製ボビンにトラバース長254mmで巻き取ることにより、スクエアエンド型の繊維パッケージを作製した。スプレッダーによる拡幅は行わなかった。
 炭素繊維束の部分的なスプリットには、4個の回転刃を持つスプリッターを使用した。スリット長1000mm、スリット間ギャップ長5mmであるスリット列を4列形成することにより、炭素繊維束は一部で互いにつながった1.6mm幅のサブ束5本にスプリットされた。スリット間ギャップの繊維方向の位置は、全スリット列とも同じとした。
 巻き取りにおいては、巻き始めの綾角を9.9°、巻き終わりの綾角を5°、ワインド比を11.30、巻き取り量を5.0kgとした。この条件では、5サイクル以上離れていないトラバースサイクルで巻かれる炭素繊維束間での、中央線の位置のズレ幅は10mm以上であった。
 スプリット処理後に炭素繊維束が経由する溝付きロールの溝幅を調節することにより、ボビンに巻き取られる炭素繊維束の幅を、サブ束の幅の総和の75%である6mmとした。よって、上記ズレ幅は最小で炭素繊維束の幅の1.7倍であった。
[実験2]
 以下のように変更したこと以外は、実験1と同様にして繊維パッケージを作製した。
・最初に準備する炭素繊維束が、総フィラメント数50000本、初期幅14mm、厚さ0.2mmであった。
・炭素繊維束の部分的なスプリットには、16個の回転刃を持つスプリッターを使用した。スリット長700mm、スリット間ギャップ長5mmであるスリット列を16列設けることで、炭素繊維束は一部で互いにつながった0.8mm幅のサブ束17本にスプリットされた。
・巻き終わりの綾角を3°にするとともに、巻き取り量を9.5kgとした。このとき、5サイクル以上離れていないトラバースサイクルで巻かれる炭素繊維束間での、中央線の位置のズレ幅は、実験1と同じく10mm以上であった。
・ボビンに巻き取られる炭素繊維束の幅を、サブ束の幅の総和の86%である12mmとした。よって、上記ズレ幅は最小で炭素繊維束の幅の0.8倍であった。
[実験3]
 以下のように変更したこと以外は、実験1と同様にして繊維パッケージを作製した。
・巻き始めの綾角を14°、巻き終わりの綾角を10°、ワインド比を7.91とした。この条件では、5サイクル以上離れていないトラバースサイクルで巻かれる炭素繊維束間での、中央線の位置のズレ幅は4mm以上であった。
・ボビンに巻き取られる炭素繊維束の幅を、サブ束の幅の総和の38%である3mmとした。よって、上記ズレ幅は最小で炭素繊維束の幅の1.3倍であった。
[実験4]
 以下のように変更したこと以外は、実験3と同様にして繊維パッケージを作製した。
・ボビンに巻き取られる炭素繊維束の幅を、サブ束の幅の総和の75%である6mmとした。よって、5サイクル以上離れていないトラバースサイクルで巻かれる炭素繊維束間での、中央線の位置のズレ幅は、最小で炭素繊維束の幅の0.7倍であった。
[実験5]
 以下のように変更したこと以外は、実験1と同様にして繊維パッケージを作製した。
・ボビンに巻き取られる炭素繊維束の幅を、サブ束の幅の総和と同じ8mmとした。よって、5サイクル以上離れていないトラバースサイクルで巻かれる炭素繊維束間での、中央線の位置のズレ幅は、最小で炭素繊維束の幅の1.3倍であった。
[実験6]
 以下のように変更したこと以外は、実験2と同様にして繊維パッケージを作製した。
・巻き始めの綾角を14°、巻き終わりの綾角を10°、ワインド比を7.91、巻き取り量を9.5kgとした。この条件では、5サイクル以上離れていないトラバースサイクルで巻かれる炭素繊維束間での、中央線の位置のズレ幅は4mm以上であった。
・ボビンに巻き取られる炭素繊維束の幅を、サブ束の幅の総和の86%である12mmとした。よって、5サイクル以上離れていないトラバースサイクルで巻かれる炭素繊維束間での、中央線の位置のズレ幅は、最小で炭素繊維束の幅の0.3倍であった。
 上記の各実験で作製した繊維パッケージからボビンを引き抜き、内側から炭素繊維束を引き出したときの解舒性を、以下の基準で評価した。
 〇:炭素繊維束が絡まったり、切れたりしなかった。
 ×:炭素繊維束が絡まったり、切れたりする不具合が生じた。
 上記の各実験で用いた条件と繊維パッケージの評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実験5で作製した繊維パッケージにおいて、炭素繊維束の解舒性が良好でなかった理由は、サブ束同士が重なり合っていない状態で炭素繊維束がボビンに巻かれたためと考えられる。
 実験4および6で作製した繊維パッケージにおいて、炭素繊維束の解舒性が良好でなかった理由は、5サイクル以上離れていないトラバースサイクルで巻かれる炭素繊維束間での、中央線の位置のズレ幅が、一部で、炭素繊維束の幅に比べ過小だったためと考えられる。
10 繊維パッケージ
11 サブ束
12 繊維束
13A 第一スリット列
13a 第一スリット
13B 第二スリット列
13b 第二スリット
13C 第三スリット列
13c 第三スリット
13D 第四スリット列
13d 第四スリット
14 ボビン

Claims (18)

  1.  炭素繊維束がボビンにトラバース巻きされてなるスクエアエンド型の繊維パッケージであって、炭素繊維束が部分的にサブ束にスプリットされており、炭素繊維束の幅がサブ束の幅の総和よりも小さいことを特徴とする繊維パッケージ。
  2.  炭素繊維束がボビンにトラバース巻きされてなるスクエアエンド型の繊維パッケージであって、炭素繊維束は部分的にサブ束にスプリットされており、サブ束同士の重なり合いが生じるようにボビンに巻かれていることを特徴とする繊維パッケージ。
  3.  炭素繊維束の幅が、サブ束の幅の総和の90%以下である、請求項1または2に記載の繊維パッケージ。
  4.  5サイクル以上離れていないトラバースサイクルでボビンに巻かれた炭素繊維束の間では、最小でも炭素繊維束の幅の0.8倍以上のズレ幅で中央線の位置がずれている、請求項1~3のいずれか一項に記載の繊維パッケージ。
  5.  5サイクル以上離れていないトラバースサイクルでボビンに巻かれた炭素繊維束の間では、最小でも炭素繊維束の幅の1.0倍以上のズレ幅で中央線の位置がずれている、請求項4に記載の繊維パッケージ。
  6.  5サイクル以上離れていないトラバースサイクルでボビンに巻かれた炭素繊維束の間では、最小でも炭素繊維束の幅の1.3倍以上のズレ幅で中央線の位置がずれている、請求項5に記載の繊維パッケージ。
  7.  炭素繊維束が部分的に3以上のサブ束にスプリットされている、請求項1~6のいずれか一項に記載の繊維パッケージ。
  8.  前記サブ束のフィラメント数が5000本以下である、請求項1~7のいずれか一項に記載の繊維パッケージ。
  9.  前記炭素繊維束の総フィラメント数が12000本以上である、請求項1~8のいずれか一項に記載の繊維パッケージ。
  10.  炭素繊維束がボビンにトラバース巻きされてなるスクエアエンド型の繊維パッケージの製造方法であって、炭素繊維束を部分的にサブ束にスプリットするスプリット工程と、部分的にサブ束にスプリットされた炭素繊維束をボビンに巻き取るワインド工程とを含み、ワインド工程では炭素繊維束の幅がサブ束の幅の総和より小さくなるように炭素繊維束をボビンに巻き取ることを特徴とする製造方法。
  11.  炭素繊維束がボビンにトラバース巻きされてなるスクエアエンド型の繊維パッケージの製造方法であって、炭素繊維束を部分的にサブ束にスプリットするスプリット工程と、部分的にサブ束にスプリットされた炭素繊維束をボビンに巻き取るワインド工程とを含み、ワインド工程ではサブ束同士の重なり合いが生じるように炭素繊維束をボビンに巻き取ることを特徴とする製造方法。
  12.  ワインド工程では、炭素繊維束の幅が、サブ束の幅の総和の90%以下となるように炭素繊維束をボビンに巻き取る、請求項10または11に記載の製造方法。
  13.  ワインド工程において、5サイクル以上離れていないトラバースサイクルでボビンに巻かれる炭素繊維束の間では、最小でも炭素繊維束の幅の0.8倍以上のズレ幅で中央線の位置がずれるようにする、請求項10~12のいずれか一項に記載の製造方法。
  14.  ワインド工程において、5サイクル以上離れていないトラバースサイクルでボビンに巻かれる炭素繊維束の間では、最小でも炭素繊維束の幅の1.0倍以上のズレ幅で中央線の位置がずれるようにする、請求項13に記載の製造方法。
  15.  ワインド工程において、5サイクル以上離れていないトラバースサイクルでボビンに巻かれる炭素繊維束の間では、最小でも炭素繊維束の幅の1.3倍以上のズレ幅で中央線の位置がずれるようにする、請求項14に記載の製造方法。
  16.  スプリット工程において、炭素繊維束を部分的に3以上のサブ束にスプリットする、請求項10~15のいずれか一項に記載の製造方法。
  17.  前記サブ束のフィラメント数が5000本以下である、請求項10~16のいずれか一項に記載の製造方法。
  18.  前記炭素繊維束の総フィラメント数が12000本以上である、請求項10~17のいずれか一項に記載の製造方法。
PCT/JP2020/001851 2019-01-28 2020-01-21 繊維パッケージ WO2020158496A1 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
CN202080011105.0A CN113365933B (zh) 2019-01-28 2020-01-21 纤维包装
JP2020569525A JP7238908B2 (ja) 2019-01-28 2020-01-21 繊維パッケージ
EP20748420.5A EP3919425B1 (en) 2019-01-28 2020-01-21 Fiber package
JP2021573105A JP7115648B2 (ja) 2020-01-21 2021-01-14 Smcの製造方法
EP21744794.5A EP4094914B1 (en) 2020-01-21 2021-01-14 Smc manufacturing method
MX2022008924A MX2022008924A (es) 2020-01-21 2021-01-14 Metodo de fabricacion de compuesto de moldeo en lamina.
PCT/JP2021/001014 WO2021149578A1 (ja) 2020-01-21 2021-01-14 Smcの製造方法
CN202180009443.5A CN114981054A (zh) 2020-01-21 2021-01-14 Smc的制造方法
EP23206395.8A EP4292802A3 (en) 2020-01-21 2021-01-14 Smc manufacturing method
TW110102139A TWI823049B (zh) 2020-01-21 2021-01-20 碳纖維捲裝體、片狀模壓料之製造方法、碳纖維捲裝體之用途、及碳纖維捲裝體之製造方法
US17/383,838 US20210347600A1 (en) 2019-01-28 2021-07-23 Fiber Package
JP2022066594A JP2022087260A (ja) 2020-01-21 2022-04-13 Smcの製造方法
US17/865,288 US20220347890A1 (en) 2020-01-21 2022-07-14 Smc manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-011966 2019-01-28
JP2019011966 2019-01-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/383,838 Continuation US20210347600A1 (en) 2019-01-28 2021-07-23 Fiber Package

Publications (1)

Publication Number Publication Date
WO2020158496A1 true WO2020158496A1 (ja) 2020-08-06

Family

ID=71842037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001851 WO2020158496A1 (ja) 2019-01-28 2020-01-21 繊維パッケージ

Country Status (5)

Country Link
US (1) US20210347600A1 (ja)
EP (1) EP3919425B1 (ja)
JP (1) JP7238908B2 (ja)
CN (1) CN113365933B (ja)
WO (1) WO2020158496A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251205A1 (ja) * 2020-06-09 2021-12-16 三菱ケミカル株式会社 スリット入り炭素繊維束の製造方法、炭素繊維パッケージおよび炭素繊維パッケージの製造方法
EP4292802A3 (en) * 2020-01-21 2024-03-20 Mitsubishi Chemical Corporation Smc manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07257818A (ja) * 1994-03-18 1995-10-09 Nitto Boseki Co Ltd ロービングパッケージ
JPH0912220A (ja) * 1995-06-28 1997-01-14 Mitsubishi Rayon Co Ltd 熱硬化性トウプリプレグの巻取方法
WO2008029740A1 (fr) 2006-09-06 2008-03-13 Mitsubishi Rayon Co., Ltd. Emballage en fibres de carbone et procédé de production de celui-ci
WO2017111056A1 (ja) 2015-12-25 2017-06-29 三菱ケミカル株式会社 繊維強化樹脂成形材料の製造方法、及び繊維強化樹脂成形材料の製造装置
JP2019011966A (ja) 2017-06-29 2019-01-24 トヨタ自動車株式会社 信号処理方法、スリップ検出方法、車両の制御方法、車両の制御装置及び車両

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5058818A (en) * 1990-02-08 1991-10-22 Magnatech International, Inc. Multi-strand bobbin winding apparatus
CN1073532A (zh) * 1991-12-11 1993-06-23 美国电话电报公司 光纤组件及其制作方法
JPH10121325A (ja) * 1996-10-14 1998-05-12 Toray Ind Inc 炭素繊維用前駆体繊維束とその製造方法および炭素繊維の製造方法
US6385828B1 (en) * 2001-08-28 2002-05-14 Zoltek Companies, Inc. Apparatus and method for splitting a tow of fibers
JP4709625B2 (ja) * 2005-09-28 2011-06-22 三菱レイヨン株式会社 炭素繊維前駆体繊維束の製造方法
JP5569708B2 (ja) * 2009-01-15 2014-08-13 三菱レイヨン株式会社 シートモールディングコンパウンドの製造方法
JP5609249B2 (ja) * 2010-05-11 2014-10-22 トヨタ自動車株式会社 高圧タンクの製造方法、高圧タンクの製造装置および高圧タンク
JP4999133B1 (ja) * 2011-09-30 2012-08-15 古河電気工業株式会社 線条体巻付けボビン、線条体巻取り方法、及び、線条体巻取り装置
KR101361718B1 (ko) * 2012-07-24 2014-02-10 백성열 권취 드럼
JP2015000553A (ja) * 2013-06-18 2015-01-05 トヨタ自動車株式会社 フィラメントワインディング装置
WO2017221688A1 (ja) 2016-06-22 2017-12-28 東レ株式会社 分繊繊維束の製造方法と分繊繊維束、および分繊繊維束を用いた繊維強化樹脂成形材料とその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07257818A (ja) * 1994-03-18 1995-10-09 Nitto Boseki Co Ltd ロービングパッケージ
JPH0912220A (ja) * 1995-06-28 1997-01-14 Mitsubishi Rayon Co Ltd 熱硬化性トウプリプレグの巻取方法
WO2008029740A1 (fr) 2006-09-06 2008-03-13 Mitsubishi Rayon Co., Ltd. Emballage en fibres de carbone et procédé de production de celui-ci
WO2017111056A1 (ja) 2015-12-25 2017-06-29 三菱ケミカル株式会社 繊維強化樹脂成形材料の製造方法、及び繊維強化樹脂成形材料の製造装置
JP2019011966A (ja) 2017-06-29 2019-01-24 トヨタ自動車株式会社 信号処理方法、スリップ検出方法、車両の制御方法、車両の制御装置及び車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3919425A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4292802A3 (en) * 2020-01-21 2024-03-20 Mitsubishi Chemical Corporation Smc manufacturing method
WO2021251205A1 (ja) * 2020-06-09 2021-12-16 三菱ケミカル株式会社 スリット入り炭素繊維束の製造方法、炭素繊維パッケージおよび炭素繊維パッケージの製造方法

Also Published As

Publication number Publication date
US20210347600A1 (en) 2021-11-11
CN113365933B (zh) 2023-07-18
EP3919425A4 (en) 2022-03-23
JP7238908B2 (ja) 2023-03-14
EP3919425A1 (en) 2021-12-08
CN113365933A (zh) 2021-09-07
EP3919425B1 (en) 2024-03-27
JPWO2020158496A1 (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
EP3239372B1 (en) Method for manufacturing and manufacturing device for partial split-fiber fiber bundle and partial split-fiber fiber bundle
WO2020158496A1 (ja) 繊維パッケージ
RU2409511C2 (ru) Паковка углеродного волокна и способ намотки такой паковки
US8567024B2 (en) Device and method for producing a UD layer
US8910896B2 (en) Precision wind synthetic elastomeric fiber and method for same
EP1979513A1 (de) Vorrichtung zum schmelzspinnen und aufwickeln von synthetischen fäden
DE102013211809A1 (de) Vorrichtung zum Ziehen eines gesponnenen Fadens
WO2021149578A1 (ja) Smcの製造方法
EP0539866A2 (de) Verfahren zum Abziehen eines endlosen, synthetischen Fadens
EP0117049B1 (en) Package of carbonaceous filament strand
CN1251951C (zh) 合成纤维的卷绕方法和装置以及纱线卷装的使用方法
DE69720434T2 (de) Kohlenstoff-faserbündel und verpackungskörper dafür
DE102018008486A1 (de) Arbeitsstelle einer Doppeldrahtzwirn- oder Kabliermaschine zur Herstellung von Teppichgarn
CN1584162A (zh) 具有结头排列装置的整经机
JP3656871B2 (ja) 炭素繊維パッケージおよびその製造方法
JP7322331B2 (ja) 巻糸パッケージ及びその製造方法
EP2468669B1 (de) Verfahren zur Herstellung einer Färbespule
JP2845636B2 (ja) 繊維糸条巻取機用トラバースガイド
EP1321412A2 (de) Konische Kreuzspule und Verfahren zur Bildung des Wickelkörpers einer konischen Kreuzspule
DE19647278A1 (de) Spulvorrichtung
DE10159613A1 (de) Stützwalze
JP2001089027A (ja) ストランドの製造装置、該製造装置により製造されたストランド、及び該ストランドを用いて製造された製品
JPS59108656A (ja) 炭素繊維パツケ−ジ
WO2006102932A1 (de) Vorrichtung zum führen und fördern von zumindest einem faden
JP2007320699A (ja) 扁平糸条パッケージの製造方法および製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020748420

Country of ref document: EP

Effective date: 20210830