WO2020153000A1 - 非水電解質二次電池用複合水酸化物小粒子 - Google Patents

非水電解質二次電池用複合水酸化物小粒子 Download PDF

Info

Publication number
WO2020153000A1
WO2020153000A1 PCT/JP2019/047316 JP2019047316W WO2020153000A1 WO 2020153000 A1 WO2020153000 A1 WO 2020153000A1 JP 2019047316 W JP2019047316 W JP 2019047316W WO 2020153000 A1 WO2020153000 A1 WO 2020153000A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite hydroxide
particle size
hydroxide
less
present
Prior art date
Application number
PCT/JP2019/047316
Other languages
English (en)
French (fr)
Inventor
一貴 片桐
貴昭 増川
正洋 高嶋
Original Assignee
株式会社田中化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社田中化学研究所 filed Critical 株式会社田中化学研究所
Priority to EP19911876.1A priority Critical patent/EP3915943A4/en
Priority to CN201980089905.1A priority patent/CN113329976B/zh
Priority to KR1020217020690A priority patent/KR20210113985A/ko
Publication of WO2020153000A1 publication Critical patent/WO2020153000A1/ja
Priority to US17/365,677 priority patent/US20210328216A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composite hydroxide that is a precursor of a positive electrode active material for a non-aqueous electrolyte secondary battery, and particularly to a composite hydroxide having a uniform reactivity with a lithium compound regardless of the size of the particle size. It is a thing.
  • secondary batteries have been used in a wide range of fields from the viewpoint of reducing environmental impact, such as power sources for mobile devices and power sources for vehicles that use or combine electricity.
  • the secondary battery for example, there is a secondary battery using a non-aqueous electrolyte such as a lithium ion secondary battery.
  • a secondary battery using a non-aqueous electrolyte such as a lithium ion secondary battery is suitable for miniaturization and weight reduction, and has excellent battery characteristics such as high utilization rate, high cycle characteristics, and large discharge capacity.
  • the positive electrode active material of the non-aqueous electrolyte secondary battery is used as the positive electrode.
  • High density packing is required.
  • the positive electrode active material of the non-aqueous electrolyte secondary battery can be produced, for example, by firing a mixture of a composite hydroxide that is a precursor of the positive electrode active material and a lithium compound. Therefore, the composite hydroxide, which is a precursor of the positive electrode active material, is required to have a high packing density, like the positive electrode active material.
  • a nickel-cobalt-manganese composite hydroxide capable of obtaining a high-density positive electrode active material for a non-aqueous electrolyte secondary battery, a BET specific surface area of 1.0 to 10.0 m 2 /g and a carbon content of 0.
  • a nickel-cobalt-manganese composite hydroxide having a content of 1 mass% or less, a half width of (101) plane in X-ray diffraction of 1.5° or less, and an average particle diameter of 5 to 25 ⁇ m has been proposed (Patent Document 1). ..
  • the compound hydroxide which is the precursor of the positive electrode active material, has different reactivity with the lithium compound depending on the size of the particle size. That is, as the particle size of the composite hydroxide increases, the specific surface area of the composite hydroxide decreases, so that the reactivity with the lithium compound tends to decrease.
  • the nickel-cobalt-manganese composite hydroxide of Patent Document 1 improves the packing density of the positive electrode active material and contributes to excellent battery characteristics, but reacts with the lithium compound due to the size of the nickel-cobalt-manganese composite hydroxide particles. Sex changes.
  • Patent Document 1 when the addition amount of the lithium compound is increased in order to impart good battery characteristics to the nickel-cobalt-manganese composite hydroxide having a large particle size, lithium is added to the nickel-cobalt-manganese composite hydroxide having a small particle size. In some cases, the nickel-manganese-manganese composite hydroxide having a small particle size cannot be provided with excellent battery characteristics due to excessive reaction.
  • Patent Document 1 there is room for improvement in improving the battery characteristics by making the reactivity with the lithium compound uniform regardless of the size of the particles.
  • a positive electrode active material having a plurality of particle size distribution peaks that is, a positive electrode active material having a particle size distribution peak on the large particle size side and a particle size on the small particle size side
  • a so-called bimodal positive electrode active material in which a positive electrode active material having a distribution peak is mixed may be used.
  • the composite hydroxide for a positive electrode active material having a plurality of particle size distribution peaks is divided into a composite hydroxide having a large particle diameter and a composite hydroxide having a small particle diameter, and The production of a positive electrode active material in which an appropriate amount of a lithium compound is added and mixed after firing is also performed.
  • an object of the present invention is to provide a composite hydroxide having a reactivity with a lithium compound equal to that of another composite hydroxide having a large particle size.
  • the gist of the configuration of the present invention is as follows.
  • the composite hydroxide is nickel, cobalt, manganese, and one or more additive metal elements selected from the group consisting of aluminum, calcium, titanium, vanadium, chromium, zirconium, niobium, molybdenum, and tungsten.
  • particle strength means that the composite hydroxide particles are obtained by applying a test pressure (load) to one arbitrarily selected composite hydroxide particle using a micro compression tester.
  • P test force
  • St The strength (St) calculated by the formula (Japanese Mining Industry Journal, Vol. 81, (1965)).
  • the micro compression tester include “Micro compression tester MCT-510” manufactured by Shimadzu Corporation.
  • the secondary particle diameter (D50) having a cumulative volume percentage of 50% by volume is 4.0 ⁇ m or less, and the tap density (g/ml)/the cumulative volume percentage is 50% by volume.
  • the secondary particle diameter (D50) is 0.60 g/ml ⁇ m or more, and the specific surface area measured by the BET method is 15.0 m 2 /g or less, which is larger than the D50 of the composite hydroxide of the present invention. It is possible to equalize the reactivity of the lithium compound with another composite hydroxide having D50.
  • a positive electrode active material having a plurality of particle size distribution peaks is produced using the composite hydroxide of the present invention and another composite hydroxide having a D50 larger than the D50 of the composite hydroxide of the present invention.
  • the lithium compound can be added and fired in a state where the composite hydroxide of the present invention and the above-mentioned other composite hydroxide are mixed. From the above, the production efficiency of the positive electrode active material having a plurality of particle size distribution peaks can be improved by using the composite hydroxide of the present invention.
  • the average particle strength is 45 MPa or more and 100 MPa or less
  • the reactivity with the compound can be more reliably equalized.
  • (A) is a graph showing the results of TG and DTG in Example 1
  • (b) is a graph showing the results of TG and DTG in Comparative Example 1.
  • composite hydroxide that is a precursor of the positive electrode active material of the non-aqueous electrolyte secondary battery of the present invention is nickel (Ni), At least one metal selected from the group consisting of cobalt (Co) and manganese (Mn) is included. That is, the composite hydroxide of the present invention contains at least one of nickel, cobalt, and manganese as an essential metal component.
  • the composite hydroxide of the present invention is a secondary particle formed by aggregating a plurality of primary particles.
  • the particle shape of the composite hydroxide of the present invention is not particularly limited and can be various shapes, and examples thereof include a substantially spherical shape and a substantially elliptical shape.
  • the composite hydroxide of the present invention has a secondary particle size with a cumulative volume percentage of 50% by volume (hereinafter sometimes simply referred to as “D50”) of 4.0 ⁇ m or less.
  • D50 cumulative volume percentage of 50% by volume
  • the D50 of the composite hydroxide of the present invention is not particularly limited as long as it is 4.0 ⁇ m or less, but its upper limit value more reliably improves the density of the positive electrode active material having a plurality of particle size distribution peaks, 3.7 ⁇ m is preferable, and 3.5 ⁇ m is particularly preferable.
  • the lower limit value of D50 of the composite hydroxide of the present invention is such that the reactivity with a lithium compound is more reliably, and another composite hydroxide having a D50 larger than the D50 of the composite hydroxide of the present invention is used. (Hereinafter, it may be simply referred to as “another complex hydroxide”.) From the viewpoint of equalization, it is preferably 2.0 ⁇ m and particularly preferably 2.3 ⁇ m.
  • the upper limit value and the lower limit value described above can be arbitrarily combined.
  • the composite hydroxide of the present invention has a ratio of tap density (unit: g/ml) to D50 (unit: ⁇ m), that is, tap density (g/ml)/D50 ( ⁇ m) of 0.60 g/ml ⁇ m. That is all.
  • the value of tap density (g/ml)/D50 ( ⁇ m) of the composite hydroxide of the present invention is not particularly limited as long as it is 0.60 g/ml ⁇ m or more, but the lower limit thereof is the reaction with the lithium compound. From the viewpoint of more reliably equalizing the properties with other composite hydroxides, 0.62 g/ml ⁇ m is preferable, and 0.64 g/ml ⁇ m is particularly preferable.
  • the upper limit value of the tap density (g/ml)/D50 ( ⁇ m) of the composite hydroxide of the present invention is 0.90 g/ml ⁇ m from the viewpoint of easy production of the composite hydroxide. Is preferable, and 0.75 g/ml ⁇ m is particularly preferable.
  • the upper limit value and the lower limit value described above can be arbitrarily combined.
  • the specific surface area of the composite hydroxide of the present invention measured by the BET method is 15.0 m 2 /g or less.
  • the specific surface area of the composite hydroxide of the present invention measured by the BET method is not particularly limited as long as it is 15.0 m 2 /g or less, but the upper limit thereof more reliably determines the reactivity with the lithium compound. From the viewpoint of being equivalent to the complex hydroxide of, 12.0 m 2 /g is preferable, and 10.0 m 2 /g is particularly preferable.
  • the lower limit of the specific surface area measured by the BET method is preferably 5.0 m 2 /g, and particularly preferably 8.0 m 2 /g from the viewpoint of preventing an excessive decrease in reactivity with the lithium compound. ..
  • the upper limit value and the lower limit value described above can be arbitrarily combined.
  • D50 is 4.0 ⁇ m or less
  • tap density (g/ml)/D50 ( ⁇ m) is 0.60 g/ml ⁇ m or more
  • specific surface area measured by BET method is 15.0 m.
  • it is 2 /g or less, it is possible to equalize the reactivity of the lithium compound with another composite hydroxide having a D50 larger than the D50 of the composite hydroxide of the present invention. Therefore, a positive electrode active material having a plurality of particle size distribution peaks is produced using the composite hydroxide of the present invention and another composite hydroxide having a D50 larger than the D50 of the composite hydroxide of the present invention.
  • the composite hydroxide of the present invention is It does not react excessively with Li) and can react uniformly with a lithium (Li) compound regardless of the size of the particles. From the above, by using the composite hydroxide of the present invention, it is possible to divide the composite hydroxide having a plurality of particle size distribution peaks into a composite hydroxide having a large particle diameter and a composite hydroxide having a small particle diameter, and to obtain lithium. There is no need to add or bake the compound. Therefore, the production efficiency of the positive electrode active material having a plurality of particle size distribution peaks can be improved by using the composite hydroxide of the present invention.
  • the tap density of the composite hydroxide of the present invention is not particularly limited as long as the value of tap density (g/ml)/D50 ( ⁇ m) is 0.60 g/ml ⁇ m or more.
  • the lower limit value is , 1.50 g/ml is preferable, 1.70 g/ml is more preferable, and 1.80 g/ml is particularly preferable, from the viewpoint of more reliably making the reactivity with the lithium compound equivalent to other complex hydroxides. ..
  • the upper limit value of the tap density is preferably 2.50 g/ml, and particularly preferably 2.20 g/ml, from the viewpoint of preventing an excessive decrease in reactivity with the lithium compound.
  • the upper limit value and the lower limit value described above can be arbitrarily combined.
  • the particle size distribution width of the composite hydroxide of the present invention is shown as follows: [Secondary particle size with cumulative volume percentage of 90% by volume (hereinafter sometimes simply referred to as “D90")-second with cumulative volume percentage of 10% by volume).
  • D90 Secondary particle size with cumulative volume percentage of 90% by volume
  • D10 secondary particle diameter
  • D50 secondary particle diameter
  • the lower limit of the particle size distribution width of the composite hydroxide of the present invention is preferably 1.00 from the viewpoint that the production efficiency of the composite hydroxide can be improved by omitting the step of adjusting the particle size distribution width. 0.15 is more preferable, and 1.30 is particularly preferable.
  • the upper limit of the particle size distribution width is preferably 1.90 from the viewpoint of making the reactivity of the particles having a small particle size and the particles having a large particle size with respect to the lithium (Li) compound in the composite hydroxide of the present invention uniform. 1.80 is particularly preferred.
  • the upper limit value and the lower limit value described above can be arbitrarily combined.
  • the lower limit value of D90 of the composite hydroxide of the present invention is preferably 4.2 ⁇ m, particularly preferably 4.4 ⁇ m, from the viewpoint of uniformity of reactivity with lithium (Li) compound and production efficiency, and the upper limit value of D90 is 6.2 ⁇ m is preferable and 5.2 ⁇ m is particularly preferable.
  • the lower limit value of D10 of the composite hydroxide of the present invention is preferably 0.2 ⁇ m, particularly preferably 0.4 ⁇ m, and the upper limit value of D10 is preferably 1.6 ⁇ m, particularly preferably 1.4 ⁇ m.
  • the upper limit value and the lower limit value described above can be arbitrarily combined.
  • the above-mentioned D10, D50, and D90 mean particle diameters measured by a particle size distribution measuring device using a laser diffraction/scattering method.
  • the average particle strength of the composite hydroxide of the present invention is not particularly limited, but its lower limit value is preferably 45 MPa in order to more reliably equalize the reactivity with the lithium compound with other composite hydroxides. , 55 MPa is particularly preferable.
  • the upper limit of the average particle strength is preferably 100 MPa, particularly preferably 80 MPa, from the viewpoint of preventing the reactivity with the lithium compound from being excessively lowered.
  • the upper limit value and the lower limit value described above can be arbitrarily combined.
  • the component of the composite hydroxide of the present invention is not particularly limited as long as it contains at least one metal selected from the group consisting of nickel (Ni), cobalt (Co) and manganese (Mn). , Nickel (Ni), cobalt (Co), manganese (Mn), aluminum (Al), calcium (Ca), titanium (Ti), vanadium (V), chromium (Cr), zirconium (Zr), niobium (Nb), molybdenum (Mo), and one or more additive metal elements M selected from the group consisting of tungsten (W), and nickel (Ni): cobalt (Co): manganese (Mn): additive metal
  • the molar ratio of the element M means 1-xyz:x:y:z (0.1 ⁇ x ⁇ 0.3, 0.1 ⁇ y ⁇ 0.3, 0 ⁇ z ⁇ 0.05. A complex hydroxide, etc.
  • a solution containing a metal salt for example, a metal salt selected from the group consisting of a nickel salt (eg, sulfate), a cobalt salt (eg, sulfate) and a manganese salt (eg, sulfate).
  • a solution containing at least one of the above, a complexing agent, and a pH adjusting agent are appropriately added to cause a neutralization reaction in the reaction tank, and a slurry containing a composite hydroxide is obtained. Water is used as the solvent of the slurry, for example.
  • an ion of a metal element in an aqueous solution for example, an ion of at least one metal selected from the group consisting of nickel, cobalt and manganese
  • an ammonium ion supplier examples include aqueous ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride and the like.
  • an alkali metal hydroxide for example, sodium hydroxide or potassium hydroxide
  • the metal of the solution containing the metal salt (for example, nickel , At least one of the metals selected from the group consisting of cobalt and manganese) undergoes a coprecipitation reaction to prepare a slurry containing a composite hydroxide.
  • the temperature of the mixed solution in the reaction tank is controlled within the range of 30 to 60° C., and when the pH adjusting agent and the ammonium ion supplier are supplied to the reaction tank, By controlling the ammonia concentration within the range of 3.5 g/L to 5.0 g/L, D50 is 4.0 ⁇ m or less and tap density (g/ml)/D50 ( ⁇ m) is 0.60 g/ml ⁇ m or more. , A composite hydroxide having a specific surface area of 15.0 m 2 /g or less measured by the BET method can be obtained. Further, the pH of the mixed liquid in the reaction vessel at a liquid temperature of 40° C. is preferably 11.0 or more and 12.5 or less, and particularly preferably 11.5 or more and 12.3 or less. The stirring conditions of the stirring device installed in the reaction tank and the residence time in the reaction tank may be adjusted appropriately within a predetermined range.
  • the reaction tank used in the method for producing the composite hydroxide of the present invention may be, for example, a continuous system in which the slurry containing the obtained composite hydroxide is overflowed to separate it, or a batch system in which the reaction is not discharged to the outside until the reaction is completed. Can be mentioned.
  • the slurry containing the composite hydroxide obtained in the neutralization reaction step is filtered, washed with an alkaline aqueous solution, and then washed with water to remove impurities contained therein, and then heat-treated to dry. As a result, a particulate composite hydroxide can be obtained.
  • Nickel sulfate, cobalt sulfate and manganese sulfate were mixed at a predetermined ratio in an aqueous solution, an ammonium sulfate aqueous solution (ammonium ion supplier) and a sodium hydroxide aqueous solution at a predetermined volume.
  • the mixture was added dropwise to the reaction tank, and continuously stirred by a stirrer while maintaining the ammonia concentration of the mixed solution contained in the reaction tank and the pH based on the liquid temperature of 40° C. at the values shown in Table 1 below.
  • the liquid temperature of the mixed liquid in the reaction tank was maintained at the values shown in Table 1 below.
  • the slurry containing the composite hydroxide produced by the neutralization reaction was overflowed from the overflow pipe of the reaction tank and taken out.
  • the slurry containing the composite hydroxide taken out after being retained for 3 times or more in the reaction tank is filtered, washed with an alkaline aqueous solution, subsequently washed with water, further dehydrated and dried to obtain a particulate form.
  • the complex hydroxide of was obtained.
  • Table 1 below shows the neutralization reaction conditions for the composite hydroxides of Examples and Comparative Examples.
  • the evaluation items of the physical properties of the composite hydroxides of the examples and comparative examples and the reactivity with the lithium compound are as follows.
  • (1) Composition Analysis of Composite Hydroxide The composition analysis was performed by dissolving the obtained composite hydroxide in hydrochloric acid and then using an inductively coupled plasma emission spectrometer (Optima7300DV manufactured by Perkin Elmer Japan Co., Ltd.). ..
  • TG measurement (thermogravimetric measurement) Lithium hydroxide monohydrate was mixed with the composite hydroxides of Example 1 and Comparative Example 1 so that the molar ratio of lithium/(nickel+cobalt+manganese) was 1.05, and the mixture was mixed. Was prepared. The obtained mixture was subjected to TG measurement (thermogravimetric measurement) at a maximum temperature of 1000° C., a temperature rising rate of 10° C./minute, a sampling frequency of once/30 seconds, and a dry air supply rate of 200 ml/min. Also, DTG was calculated by differentiating the TG measurement data. “TG/DTA6300” manufactured by Hitachi, Ltd. was used as a measuring device for TG.
  • FIG. 1(a) The results of TG and DTG of Example 1 are shown in FIG. 1(a), and the results of TG and DTG of Comparative Example 1 are shown in FIG. 1(b).
  • the temperature at which the composite hydroxide starts to react with lithium hydroxide monohydrate was set to the temperature at which the DTG was the lowest in the range of 350° C. ⁇ 50° C. from the DTG graph.
  • the reaction initiation temperature with lithium hydroxide monohydrate was determined from the results of TG and DTG (not shown) in the same manner. It was
  • Table 1 below shows the composition analysis of the composite hydroxides of Examples and Comparative Examples, and Table 2 below shows the other evaluation results.
  • D50 is 2.64 to 3.40 ⁇ m
  • tap density (g/ml)/D50 ( ⁇ m) is 0.60 to 0.73 g/ml ⁇ m
  • BET specific surface area is 8.4.
  • the reaction initiation temperature with lithium hydroxide increased to 355.4 to 365.7° C.
  • the reactivity with lithium was suppressed. From the above, it was revealed that in Examples 1 to 3, the reactivity of the lithium compound with other composite hydroxides having D50 larger than those of Examples 1 to 3 can be made equal.
  • the tap density (g/ml)/D50 ( ⁇ m) is 0.65 to 0.73 g/ml ⁇ m
  • the tap density (g/ml)/D50 ( ⁇ m) is 0.
  • the reaction initiation temperature with lithium hydroxide was further increased as compared with Example 3 in which the amount was 60 g/ml ⁇ m, and the reactivity with lithium hydroxide could be further suppressed.
  • D50 is 2.58 to 2.81 ⁇ m
  • tap density (g/ml)/D50 ( ⁇ m) is 0.38 to 0.58
  • BET specific surface area is 16.8 to 33.2 m 2 /g.
  • the reaction initiation temperature with lithium hydroxide was 330.9 to 350.2° C., and the reactivity with lithium hydroxide could not be suppressed. Therefore, in Comparative Examples 1 and 2, it was found that it is still impossible to equalize the reactivity of the lithium compound with other composite hydroxides having D50 larger than those of Comparative Examples 1 and 2. Further, in Comparative Examples 1 and 2 in which the BET specific surface area was 16.8 to 33.2 m 2 /g, the average particle strength remained at 15.7 to 43.3 MPa.
  • the composite hydroxide of the present invention can react uniformly with the lithium (Li) compound regardless of the particle size of the composite hydroxide having a plurality of peaks of particle size distribution.
  • the positive electrode active material obtained from the precursor containing hydroxide is mounted on the secondary battery using the non-aqueous electrolyte to provide excellent battery characteristics such as high utilization rate, high cycle characteristics, and large discharge capacity. can do. Therefore, the composite hydroxide of the present invention can be used in a wide range of fields such as mobile devices and vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本発明は、リチウム化合物との反応性が、粒子径の大きい他の複合水酸化物と同等化された複合水酸化物を提供する。 非水電解質二次電池の正極活物質の前駆体である、ニッケル、コバルト及びマンガンからなる群から選択された金属のうち少なくとも1種を含む複合水酸化物であって、累積体積百分率が50体積%の二次粒子径(D50)が4.0μm以下、タップ密度(g/ml)/累積体積百分率が50体積%の二次粒子径(D50)(μm)が0.60g/ml・μm以上、BET法により測定される比表面積が15.0m2/g以下である複合水酸化物。

Description

非水電解質二次電池用複合水酸化物小粒子
 本発明は、非水電解質二次電池の正極活物質の前駆体である複合水酸化物、特に、粒子径の大小に関わらず、リチウム化合物との反応性が均一化された複合水酸化物に関するものである。
 近年、環境負荷の低減の点から、携帯機器の電源や電気を使用または併用する車両等の動力源など、広汎な分野で二次電池が使用されている。二次電池としては、例えば、リチウムイオン二次電池等の非水電解質を用いた二次電池がある。リチウムイオン二次電池等の非水電解質を用いた二次電池は、小型化、軽量化に適し、また、高利用率、高サイクル特性、大きな放電容量といった優れた電池特性を有している。
 非水電解質を用いた二次電池の上記電池特性が十分に発揮されるには、二次電池の容量を大きくすることが有利となるので、非水電解質二次電池の正極活物質が正極に高密度に充填されることが要求される。非水電解質二次電池の正極活物質は、例えば、正極活物質の前駆体である複合水酸化物とリチウム化合物との混合物を焼成することで製造することができる。従って、正極活物質の前駆体である複合水酸化物にも、正極活物質と同様に、充填密度が高いことが要求されている。
 そこで、高密度な非水電解質二次電池の正極活物質を得ることができるニッケルコバルトマンガン複合水酸化物として、BET比表面積が1.0~10.0m/g、炭素含有量が0.1質量%以下、X線回折における(101)面の半価幅が1.5°以下、平均粒径が5~25μmであるニッケルコバルトマンガン複合水酸化物が提案されている(特許文献1)。
 一方で、正極活物質の前駆体である複合水酸化物は、その粒子径の大小によりリチウム化合物との反応性が相違する。すなわち、複合水酸化物の粒子径が大きくなるのに応じて、複合水酸化物の比表面積が低下するので、リチウム化合物との反応性が低下する傾向がある。特許文献1のニッケルコバルトマンガン複合水酸化物では、正極活物質の充填密度が向上して優れた電池特性に寄与するものの、ニッケルコバルトマンガン複合水酸化物の粒子径の大小によりリチウム化合物との反応性が変化する。特許文献1では、粒子径の大きいニッケルコバルトマンガン複合水酸化物に良好な電池特性を付与するためにリチウム化合物の添加量を増大させると、粒子径の小さいニッケルコバルトマンガン複合水酸化物にリチウムが過剰に反応してしまい、粒子径の小さいニッケルコバルトマンガン複合水酸化物に、優れた電池特性が付与できない場合がある。
 上記から、特許文献1では、粒子径の大小に関わらずリチウム化合物との反応性を均一化することで、電池特性を向上させることに改善の余地があった。
 また、高密度の正極活物質を得るために、複数の粒度分布のピークを有する正極活物質、すなわち、粒子径の大きい側の粒度分布のピークを有する正極活物質と粒子径の小さい側の粒度分布のピークを有する正極活物質が混在した、いわゆるバイモーダルの正極活物質が用いられることがある。複数の粒度分布のピークを有する正極活物質を製造する際に、粒子径の大きい複合水酸化物にリチウムを十分に反応させると、上記の通り、粒子径の小さい複合水酸化物にリチウムが過剰量反応してしまうこととなる。そこで、複数の粒度分布のピークを有する正極活物質用の複合水酸化物では、複合水酸化物を粒子径の大きい複合水酸化物と粒子径の小さい複合水酸化物とに分けて、それぞれについて、適量のリチウム化合物を添加して、焼成後に混合する正極活物質の製造も行われている。
 しかし、粒子径の大きい複合水酸化物と粒子径の小さい複合水酸化物、それぞれについてリチウム化合物を添加して焼成すると、複数の焼成ラインの設置が必要となるので、正極活物質の生産効率に改善の余地があった。
特開2013-171744号公報
 上記事情に鑑み、本発明は、リチウム化合物との反応性が、粒子径の大きい他の複合水酸化物と同等化された複合水酸化物を提供することを目的とする。
 本発明の構成の要旨は、以下の通りである。
 [1]非水電解質二次電池の正極活物質の前駆体である、ニッケル、コバルト及びマンガンからなる群から選択された金属のうち少なくとも1種を含む複合水酸化物であって、累積体積百分率が50体積%の二次粒子径(D50)が4.0μm以下、タップ密度(g/ml)/累積体積百分率が50体積%の二次粒子径(D50)(μm)が0.60(g/ml・μm)以上、BET法により測定される比表面積が15.0m/g以下である複合水酸化物。
 [2]累積体積百分率が50体積%の二次粒子径(D50)が、3.5μm以下である[1]に記載の複合水酸化物。
 [3]前記複合水酸化物が、ニッケルと、コバルトと、マンガンと、アルミニウム、カルシウム、チタン、バナジウム、クロム、ジルコニウム、ニオブ、モリブデン及びタングステンからなる群から選択される1種類以上の添加金属元素Mと、を含み、ニッケル:コバルト:マンガン:添加元素Mのモル比が、1-x-y-z:x:y:z(0.1≦x≦0.3、0.1≦y≦0.3、0<z≦0.05、x+y+z=1を意味する。)である[1]または[2]に記載の複合水酸化物。
 [4][累積体積百分率が90体積%の二次粒子径(D90)-累積体積百分率が10体積%の二次粒子径(D10)]/累積体積百分率が50体積%の二次粒子径(D50)が、1.30以上1.80以下である[1]乃至[3]のいずれか1つに記載の複合水酸化物。
 [5]平均粒子強度が、45MPa以上100MPa以下である[1]乃至[4]のいずれか1つに記載の複合水酸化物。
 上記[5]の態様において、「粒子強度」とは、微小圧縮試験機を用いて、任意に選んだ複合水酸化物粒子1個に対して試験圧力(負荷)をかけ、複合水酸化物粒子の変位量を測定し、試験圧力を徐々にあげて行った際、試験圧力がほぼ一定のまま変位量が最大となる圧力値を試験力(P)とし、下記数式(A)に示す平松らの式(日本鉱業会誌,Vol.81,(1965))により算出した強度(St)意味する。「平均粒子強度」とは、上記操作を計5回行い、粒子強度の5回平均値から算出した値を意味する。
 St=2.8×P/(π×d×d) (d:複合水酸化物粒子径) (A)
 微小圧縮試験機としては、例えば、株式会社島津製作所製「微小圧縮試験機MCT-510」が挙げられる。
 本発明の複合水酸化物の態様によれば、累積体積百分率が50体積%の二次粒子径(D50)が4.0μm以下、タップ密度(g/ml)/累積体積百分率が50体積%の二次粒子径(D50)が0.60g/ml・μm以上、BET法により測定される比表面積が15.0m/g以下であることにより、本発明の複合水酸化物のD50よりも大きいD50を有する他の複合水酸化物と、リチウム化合物との反応性を同等化することができる。
 従って、本発明の複合水酸化物と、本発明の複合水酸化物のD50よりも大きいD50を有する他の複合水酸化物と、を用いて複数の粒度分布のピークを有する正極活物質を製造する際に、本発明の複合水酸化物と上記他の複合水酸化物とを混合した状態で、リチウム化合物を添加して焼成することができる。上記から、本発明の複合水酸化物を用いることで、複数の粒度分布のピークを有する正極活物質の生産効率を向上させることができる。
 本発明の複合水酸化物の態様によれば、平均粒子強度が45MPa以上100MPa以下であることにより、本発明の複合水酸化物のD50よりも大きいD50を有する他の複合水酸化物と、リチウム化合物との反応性がより確実に同等化することができる。
(a)図は、実施例1のTG及びDTGの結果のグラフ、(b)図は、比較例1のTG及びDTGの結果のグラフである。
 以下に、本発明の、非水電解質二次電池の正極活物質の前駆体である複合水酸化物について、詳細を説明する。本発明の、非水電解質二次電池の正極活物質の前駆体である複合水酸化物(以下、単に、「本発明の複合水酸化物」ということがある。)は、ニッケル(Ni)、コバルト(Co)及びマンガン(Mn)からなる群から選択された金属のうち少なくとも1種を含む。すなわち、本発明の複合水酸化物は、必須金属成分として、ニッケル、コバルト、マンガンのうちの1種以上を含む。
 本発明の複合水酸化物は、複数の一次粒子が凝集して形成された二次粒子である。本発明の複合水酸化物の粒子形状は、特に限定されず、多種多様な形状となっており、例えば、略球形状、略楕円形状等を挙げることができる。
 本発明の複合水酸化物は、累積体積百分率が50体積%の二次粒子径(以下、単に「D50」ということがある。)が、4.0μm以下である。本発明の複合水酸化物のD50は4.0μm以下であれば、特に限定されないが、その上限値は、複数の粒度分布のピークを有する正極活物質の密度をより確実に向上させる点から、3.7μmが好ましく、3.5μmが特に好ましい。一方で、本発明の複合水酸化物のD50の下限値は、リチウム化合物との反応性を、より確実に、本発明の複合水酸化物のD50よりも大きいD50を有する他の複合水酸化物(以下、単に「他の複合水酸化物」ということがある。)と同等化する点から、2.0μmが好ましく、2.3μmが特に好ましい。なお、上記した上限値、下限値は、任意で組み合わせることができる。
 本発明の複合水酸化物は、D50(単位:μm)に対するタップ密度(単位:g/ml)の比、すなわち、タップ密度(g/ml)/D50(μm)が0.60g/ml・μm以上である。本発明の複合水酸化物のタップ密度(g/ml)/D50(μm)の値は0.60g/ml・μm以上であれば、特に限定されないが、その下限値は、リチウム化合物との反応性を、より確実に他の複合水酸化物と同等化する点から、0.62g/ml・μmが好ましく、0.64g/ml・μmが特に好ましい。一方で、本発明の複合水酸化物のタップ密度(g/ml)/D50(μm)の値の上限値は、複合水酸化物の生産の容易性の点から、0.90g/ml・μmが好ましく、0.75g/ml・μmが特に好ましい。なお、上記した上限値、下限値は、任意で組み合わせることができる。
 本発明の複合水酸化物は、BET法により測定される比表面積が15.0m/g以下である。本発明の複合水酸化物のBET法により測定される比表面積は15.0m/g以下であれば、特に限定されないが、その上限値は、リチウム化合物との反応性を、より確実に他の複合水酸化物と同等化する点から、12.0m/gが好ましく、10.0m/gが特に好ましい。一方で、BET法により測定される比表面積の下限値は、リチウム化合物との反応性の過度な低下を防止する点から、5.0m/gが好ましく、8.0m/gが特に好ましい。なお、上記した上限値、下限値は、任意で組み合わせることができる。
 本発明の複合水酸化物では、D50が4.0μm以下、タップ密度(g/ml)/D50(μm)が0.60g/ml・μm以上、BET法により測定される比表面積が15.0m/g以下であることにより、本発明の複合水酸化物のD50よりも大きいD50を有する他の複合水酸化物と、リチウム化合物との反応性を同等化することができる。従って、本発明の複合水酸化物と、本発明の複合水酸化物のD50よりも大きいD50を有する他の複合水酸化物と、を用いて複数の粒度分布のピークを有する正極活物質を製造する際に、本発明の複合水酸化物と上記他の複合水酸化物とを混合した状態で、リチウム(Li)化合物を添加・焼成処理しても、本発明の複合水酸化物がリチウム(Li)と過剰に反応せず、粒子径の大小に関わらずリチウム(Li)化合物と均一な反応をすることができる。上記から、本発明の複合水酸化物を用いることで、複数の粒度分布のピークを有する複合水酸化物を粒子径の大きい複合水酸化物と粒子径の小さい複合水酸化物とに分けてリチウム化合物を添加・焼成処理する必要がない。従って、本発明の複合水酸化物を用いることにより、複数の粒度分布のピークを有する正極活物質の生産効率を向上させることができる。
 本発明の複合水酸化物のタップ密度は、タップ密度(g/ml)/D50(μm)の値が0.60g/ml・μm以上であれば、特に限定されないが、例えば、その下限値は、リチウム化合物との反応性を、より確実に他の複合水酸化物と同等化する点から、1.50g/mlが好ましく、1.70g/mlがより好ましく、1.80g/mlが特に好ましい。一方で、タップ密度の上限値は、リチウム化合物との反応性の過度な低下を防止する点から、2.50g/mlが好ましく、2.20g/mlが特に好ましい。なお、上記した上限値、下限値は、任意で組み合わせることができる。
 本発明の複合水酸化物の粒度分布幅を示す、[累積体積百分率が90体積%の二次粒子径(以下、単に「D90」ということがある。)-累積体積百分率が10体積%の二次粒子径(以下、単に「D10」ということがある。)]/D50の値は、特に限定されない。本発明の複合水酸化物では、分級工程等の粒度分布幅を調整する工程を実施しなくても、他の複合水酸化物と、リチウム化合物との反応性を同等化することができる。例えば、本発明の複合水酸化物の粒度分布幅の下限値は、粒度分布幅の調整工程を省略することで、複合水酸化物の生産効率を向上できる点から、1.00が好ましく、1.15がより好ましく、1.30が特に好ましい。上記粒度分布幅の上限値は、本発明の複合水酸化物における、粒子径の小さい粒子と粒子径の大きい粒子のリチウム(Li)化合物に対する反応性を均一化する点から、1.90が好ましく、1.80が特に好ましい。なお、上記した上限値、下限値は、任意で組み合わせることができる。
 本発明の複合水酸化物のD90の下限値は、リチウム(Li)化合物に対する反応性の均一化及び生産効率の点から4.2μmが好ましく、4.4μmが特に好ましく、D90の上限値は、6.2μmが好ましく、5.2μmが特に好ましい。また、本発明の複合水酸化物のD10の下限値は、0.2μmが好ましく、0.4μmが特に好ましく、D10の上限値は、1.6μmが好ましく、1.4μmが特に好ましい。なお、上記した上限値、下限値は、任意で組み合わせることができる。なお、上記したD10、D50、D90は、レーザ回折・散乱法を用い、粒度分布測定装置で測定した粒子径を意味する。
 本発明の複合水酸化物の平均粒子強度は、特に限定されないが、その下限値は、リチウム化合物との反応性を、より確実に他の複合水酸化物と同等化する点から、45MPaが好ましく、55MPaが特に好ましい。一方で、平均粒子強度の上限値は、リチウム化合物との反応性の過度な低下を防止する点から、100MPaが好ましく、80MPaが特に好ましい。なお、上記した上限値、下限値は、任意で組み合わせることができる。
 本発明の複合水酸化物の成分は、ニッケル(Ni)、コバルト(Co)及びマンガン(Mn)からなる群から選択された金属のうち少なくとも1種を含んでいれば、特に限定されないが、例えば、ニッケル(Ni)と、コバルト(Co)と、マンガン(Mn)と、アルミニウム(Al)、カルシウム(Ca)、チタン(Ti)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)及びタングステン(W)からなる群から選択される1種以上の添加金属元素Mと、を含み、ニッケル(Ni):コバルト(Co):マンガン(Mn):添加金属元素Mのモル比が、1-x-y-z:x:y:z(0.1≦x≦0.3、0.1≦y≦0.3、0<z≦0.05を意味する。)である複合水酸化物等を挙げることができる。
 次に、本発明の複合水酸化物の製造方法について説明する。まず、共沈法により、金属塩を含む溶液、例えば、ニッケル塩(例えば、硫酸塩)、コバルト塩(例えば、硫酸塩)及びマンガン塩(例えば、硫酸塩)からなる群から選択された金属塩のうち少なくとも1種を含む溶液と、錯化剤と、pH調整剤と、を適宜添加することで、反応槽内にて中和反応させて、複合水酸化物を含むスラリーを得る。スラリーの溶媒としては、例えば、水が使用される。
 錯化剤としては、水溶液中で、金属元素のイオン、例えば、ニッケル、コバルト及びマンガンからなる群から選択された金属のうち少なくとも1種の金属のイオンと錯体を形成可能なものであれば、特に限定されず、例えば、アンモニウムイオン供給体が挙げられる。アンモニウムイオン供給体としては、例えば、アンモニア水、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウム等が挙げられる。なお、中和反応に際しては、水溶液のpH値を調整するため、必要に応じて、アルカリ金属水酸化物(例えば、水酸化ナトリウム、水酸化カリウム)をpH調整剤として添加してもよい。
 上記金属塩を含む溶液とpH調整剤とアンモニウムイオン供給体とを反応槽に、適宜連続して供給し、反応槽内の物質を、適宜撹拌すると、金属塩を含む溶液の金属(例えば、ニッケル、コバルト及びマンガンからなる群から選択された金属のうち少なくとも1種)が共沈反応し、複合水酸化物を含むスラリーが調製される。共沈反応に際しては、反応槽内の混合液の温度を30℃~60℃の範囲に制御し、pH調整剤とアンモニウムイオン供給体を反応槽に供給する際に、反応槽内の混合液のアンモニア濃度を3.5g/L~5.0g/Lの範囲に制御することで、D50が4.0μm以下、タップ密度(g/ml)/D50(μm)が0.60g/ml・μm以上、BET法により測定される比表面積が15.0m/g以下である複合水酸化物を得ることができる。また、液温40℃基準の反応槽内の混合液のpHは、11.0以上12.5以下が好ましく、11.5以上12.3以下が特に好ましい。なお、反応槽に設置された撹拌装置の撹拌条件と反応槽における滞留時間は、所定範囲に適宜調整すればよい。
 本発明の複合水酸化物の製造方法に用いる反応槽としては、例えば、得られた複合水酸化物を含むスラリーを分離するためにオーバーフローさせる連続式や、反応終了まで系外に排出しないバッチ式を挙げることができる。
 上記のように、中和反応工程で得られた複合水酸化物を含むスラリーをろ過後、アルカリ水溶液で洗浄、続いて水洗することにより、含まれる不純物を除去しその後、加熱処理して乾燥させることで、粒子状の複合水酸化物を得ることができる。
 次に、本発明の複合水酸化物の実施例を説明するが、本発明はその趣旨を超えない限り、これらの例に限定されるものではない。
 実施例及び比較例のニッケル複合水酸化物の製造
 硫酸ニッケルと硫酸コバルトと硫酸マンガンとを、所定割合にて混合した水溶液、硫酸アンモニウム水溶液(アンモニウムイオン供給体)及び水酸化ナトリウム水溶液を、所定容積を有する反応槽へ滴下して、反応槽内に収容された混合液のアンモニア濃度と液温40℃基準のpHを下記表1の値に維持しながら、攪拌機により連続的に攪拌した。また、反応槽内の混合液の液温は下記表1の値に維持した。中和反応により生成した複合水酸化物を含むスラリーは、反応槽のオーバーフロー管からオーバーフローさせて、取り出した。反応槽内で3滞留以上させた後に取り出した上記複合水酸化物を含むスラリーを、ろ過後、アルカリ水溶液で洗浄、続いて、水洗し、さらに、脱水、乾燥の各処理を施して、粒子状の複合水酸化物を得た。
 実施例と比較例の複合水酸化物の中和反応条件を、下記表1に示す。
 実施例と比較例の複合水酸化物の物性とリチウム化合物との反応性の評価項目は、以下の通りである。
(1)複合水酸化物の組成分析
 組成分析は、得られた複合水酸化物を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(株式会社パーキンエルマージャパン製、Optima7300DV)を用いて行った。
(2)D10、D50、D90
 得られた複合水酸化物を、粒度分布測定装置(日機装株式会社製、「マイクロトラックMT3300 EXII」)で測定した(原理はレーザ回折・散乱法)。D10、D50、D90の測定結果を用いて、タップ密度/D50の値及び粒度分布幅を示す(D90-D10)/D10の値を、それぞれ、算出した。
粒度分布測定装置の測定条件 : 溶媒:水、溶媒屈折率:1.33、粒子屈折率:1.55、透過率80±5%、分散媒:10.0wt%ヘキサメタリン酸ナトリウム水溶液
(3)タップ密度(TD)
 得られた複合水酸化物について、タップデンサー(株式会社セイシン企業製、「KYT-4000」)を用いて、JIS R1628に記載の手法のうち、定容積測定法によってタップ密度の測定を行った。
(4)BET比表面積
 得られた複合水酸化物1gを、窒素雰囲気中、105℃で30分間乾燥させた後、比表面積測定装置(株式会社マウンテック製、「Macsorb」)を用い、1点BET法によって測定した。
(5)平均粒子強度
 得られた複合水酸化物について、微小圧縮試験機「MCT-510」(株式会社島津製作所製)を用いて、任意に選んだ複合水酸化物の粒子1個に対して試験圧力(負荷)をかけ、複合水酸化物の変位量を測定した。試験圧力を徐々に上げて行った際、試験圧力がほぼ一定のまま変位量が最大となる圧力値を試験力(P)とし、下記数式(A)に示す平松らの式(日本鉱業会誌,Vol.81,(1965))により、粒子強度(St)を算出した。この操作を計5回行い、粒子強度の5回平均値から平均粒子強度を算出した。
 St=2.8×P/(π×d×d) (d:複合水酸化物の径)・・(A)
(6)TG測定(熱重量測定)
 実施例1及び比較例1の複合水酸化物に対し、それぞれ、水酸化リチウム・1水和物をリチウム/(ニッケル+コバルト+マンガン)のモル比率が1.05となるように混合し、混合物を調製した。得られた混合物について、最高温度1000℃、昇温速度10℃/分、サンプリング頻度1回/30秒、ドライエアー供給量200ml/minにて、TG測定(熱重量測定)を行った。また、TG測定データを微分することで、DTGを算出した。TGの測定装置には、株式会社日立製作所製の「TG/DTA6300」を使用した。実施例1のTG及びDTGの結果を図1(a)、比較例1のTG及びDTGの結果を図1(b)に示す。また、複合水酸化物が水酸化リチウム・1水和物と反応を開始する温度は、DTGグラフから、350℃±50℃の範囲のうち、DTGが最低となる温度とした。なお、実施例2~3及び比較例2の複合水酸化物についても、同様にして、TG及びDTGの結果(図示せず)から、水酸化リチウム・1水和物との反応開始温度を求めた。
 実施例と比較例の複合水酸化物の組成分析を下記表1に、それ以外の評価結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記表2に示すように、D50が2.64~3.40μm、タップ密度(g/ml)/D50(μm)が0.60~0.73g/ml・μm、BET比表面積が8.4~9.9m/gである複合水酸化物を前駆体として使用した実施例1~3では、水酸化リチウムとの反応開始温度が355.4~365.7℃に上昇して、水酸化リチウムとの反応性が抑制された。上記から、実施例1~3では、D50が実施例1~3よりも大きい他の複合水酸化物と、リチウム化合物との反応性を同等化することができることが判明した。従って、実施例1~3の複合水酸化物と、実施例1~3の複合水酸化物のD50よりも大きいD50を有する他の複合水酸化物と、を用いて複数の粒度分布のピークを有する正極活物質を製造する際に、実施例1~3の複合水酸化物と上記他の複合水酸化物とを混合した状態で、リチウム化合物を添加・焼成しても、本発明の複合水酸化物がリチウム(Li)と過剰量に反応せず、粒子径の大小に関わらずリチウム(Li)化合物と均一な反応をすることができることが判明した。また、BET比表面積が8.4~9.9m/gである実施例1~3では、平均粒子強度が60.7~77.9MPaに向上した。
 特に、タップ密度(g/ml)/D50(μm)が0.65~0.73g/ml・μmである実施例1、2では、タップ密度(g/ml)/D50(μm)が0.60g/ml・μmである実施例3と比較して水酸化リチウムとの反応開始温度がさらに上昇して、水酸化リチウムとの反応性をさらに抑制することができた。
 一方で、D50が2.58~2.81μm、タップ密度(g/ml)/D50(μm)が0.38~0.58、BET比表面積が16.8~33.2m/gである複合水酸化物を前駆体として使用した比較例1~2では、水酸化リチウムとの反応開始温度が330.9~350.2℃にとどまり、水酸化リチウムとの反応性を抑制できなかった。従って、比較例1~2では、依然として、D50が比較例1~2よりも大きい他の複合水酸化物と、リチウム化合物との反応性を同等化することはできないことが判明した。また、BET比表面積が16.8~33.2m/gである比較例1~2では、平均粒子強度が15.7~43.3MPaにとどまった。
 本発明の複合水酸化物は、複数の粒度分布のピークを有する複合水酸化物の粒子径の大小に関わらず、リチウム(Li)化合物と均一な反応をすることができるので、本発明の複合水酸化物を含有する前駆体から得られた正極活物質が非水電解質を用いた二次電池に搭載されることで、高利用率、高サイクル特性、大きな放電容量といった優れた電池特性を付与することができる。従って、本発明の複合水酸化物は、携帯機器や車両等、広汎な分野で利用可能である。

Claims (5)

  1.  非水電解質二次電池の正極活物質の前駆体である、ニッケル、コバルト及びマンガンからなる群から選択された金属のうち少なくとも1種を含む複合水酸化物であって、
    累積体積百分率が50体積%の二次粒子径(D50)が4.0μm以下、タップ密度(g/ml)/累積体積百分率が50体積%の二次粒子径(D50)(μm)が0.60g/ml・μm以上、BET法により測定される比表面積が15.0m/g以下である複合水酸化物。
  2.  累積体積百分率が50体積%の二次粒子径(D50)が、3.5μm以下である請求項1に記載の複合水酸化物。
  3.  前記複合水酸化物が、ニッケルと、コバルトと、マンガンと、アルミニウム(Al)、カルシウム(Ca)、チタン(Ti)、バナジウム(V)、クロム(Cr)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)及びタングステン(W)からなる群から選択される1種以上の添加金属元素Mと、を含み、ニッケル:コバルト:マンガン:Mのモル比が、1-x-y-z:x:y:z(0.1≦x≦0.3、0.1≦y≦0.3、0<z≦0.05、x+y+z=1を意味する。)である請求項1または2に記載の複合水酸化物。
  4.  [累積体積百分率が90体積%の二次粒子径(D90)-累積体積百分率が10体積%の二次粒子径(D10)]/累積体積百分率が50体積%の二次粒子径(D50)が、1.30以上1.80以下である請求項1乃至3のいずれか1項に記載の複合水酸化物。
  5.  平均粒子強度が、45MPa以上100MPa以下である請求項1乃至4のいずれか1項に記載の複合水酸化物。
PCT/JP2019/047316 2019-01-22 2019-12-04 非水電解質二次電池用複合水酸化物小粒子 WO2020153000A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19911876.1A EP3915943A4 (en) 2019-01-22 2019-12-04 SMALL COMPLEX HYDROXIDE PARTICLES FOR SECONDARY NON-AQUEOUS ELECTROLYTE BATTERIES
CN201980089905.1A CN113329976B (zh) 2019-01-22 2019-12-04 非水电解质二次电池用复合氢氧化物小粒子
KR1020217020690A KR20210113985A (ko) 2019-01-22 2019-12-04 비수전해질 이차전지용 복합수산화물 소립자
US17/365,677 US20210328216A1 (en) 2019-01-22 2021-07-01 Composite hydroxide small particle for non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-008264 2019-01-22
JP2019008264A JP7262230B2 (ja) 2019-01-22 2019-01-22 非水電解質二次電池用複合水酸化物小粒子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/365,677 Continuation US20210328216A1 (en) 2019-01-22 2021-07-01 Composite hydroxide small particle for non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2020153000A1 true WO2020153000A1 (ja) 2020-07-30

Family

ID=71735510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047316 WO2020153000A1 (ja) 2019-01-22 2019-12-04 非水電解質二次電池用複合水酸化物小粒子

Country Status (7)

Country Link
US (1) US20210328216A1 (ja)
EP (1) EP3915943A4 (ja)
JP (1) JP7262230B2 (ja)
KR (1) KR20210113985A (ja)
CN (1) CN113329976B (ja)
TW (1) TWI834801B (ja)
WO (1) WO2020153000A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241995A1 (ko) * 2020-05-29 2021-12-02 주식회사 엘지화학 양극 활물질 전구체 및 양극 활물질 전구체의 제조 방법
US20220115654A1 (en) * 2020-10-14 2022-04-14 Uop Llc Mixed metal manganese oxide material
JP7262500B2 (ja) * 2021-03-18 2023-04-21 プライムプラネットエナジー&ソリューションズ株式会社 正極および非水電解質二次電池
JP7359911B1 (ja) 2022-07-15 2023-10-11 住友化学株式会社 前駆体及びリチウム二次電池用正極活物質の製造方法
JP7417675B1 (ja) 2022-07-15 2024-01-18 株式会社田中化学研究所 金属複合水酸化物粒子、金属複合化合物の製造方法、及びリチウム二次電池用正極活物質の製造方法
JP7412486B1 (ja) * 2022-07-15 2024-01-12 株式会社田中化学研究所 金属複合水酸化物及びリチウム二次電池用正極活物質の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536697A (ja) * 2007-08-21 2010-12-02 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末状化合物、その製造方法並びにリチウム二次電池におけるその使用
JP2011501727A (ja) * 2007-10-12 2011-01-13 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末状のniambox(oh)y化合物、その製造方法並びにバッテリーにおけるその使用
JP2013171744A (ja) 2012-02-21 2013-09-02 Sumitomo Metal Mining Co Ltd ニッケルコバルトマンガン複合水酸化物及びその製造方法
JP2013246983A (ja) * 2012-05-25 2013-12-09 Sumitomo Metal Mining Co Ltd ニッケルコバルト複合水酸化物の製造方法
JP2016026981A (ja) * 2014-06-27 2016-02-18 旭硝子株式会社 リチウム含有複合酸化物およびその製造方法
JP2017525090A (ja) * 2014-06-12 2017-08-31 ユミコア 充電式バッテリー用のリチウム遷移金属酸化物カソード材料の前駆体
WO2017204164A1 (ja) * 2016-05-24 2017-11-30 住友化学株式会社 正極活物質、その製造方法およびリチウムイオン二次電池用正極

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101306532B1 (ko) * 2005-08-12 2013-09-09 토다 고교 유럽 게엠베하 무기 화합물
KR101562686B1 (ko) * 2008-03-28 2015-10-22 도다 고교 가부시끼가이샤 옥시수산화코발트 입자 분말 및 그의 제조법 및 코발트산리튬 입자 분말, 그의 제조법, 및 그것을 사용한 비수전해질 이차 전지
KR101575024B1 (ko) * 2013-02-13 2015-12-07 주식회사 엘지화학 낮은 탭 밀도를 갖는 전이금속 전구체 및 높은 입자 강도를 가진 리튬 전이금속 산화물
CN103325992B (zh) * 2013-06-06 2015-05-13 南通瑞翔新材料有限公司 锂离子电池正极材料前驱体镍钴锰氢氧化合物粉末及制造方法
JP6582824B2 (ja) * 2015-09-30 2019-10-02 住友金属鉱山株式会社 ニッケルマンガン含有複合水酸化物およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536697A (ja) * 2007-08-21 2010-12-02 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末状化合物、その製造方法並びにリチウム二次電池におけるその使用
JP2011501727A (ja) * 2007-10-12 2011-01-13 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング 粉末状のniambox(oh)y化合物、その製造方法並びにバッテリーにおけるその使用
JP2013171744A (ja) 2012-02-21 2013-09-02 Sumitomo Metal Mining Co Ltd ニッケルコバルトマンガン複合水酸化物及びその製造方法
JP2013246983A (ja) * 2012-05-25 2013-12-09 Sumitomo Metal Mining Co Ltd ニッケルコバルト複合水酸化物の製造方法
JP2017525090A (ja) * 2014-06-12 2017-08-31 ユミコア 充電式バッテリー用のリチウム遷移金属酸化物カソード材料の前駆体
JP2016026981A (ja) * 2014-06-27 2016-02-18 旭硝子株式会社 リチウム含有複合酸化物およびその製造方法
WO2017204164A1 (ja) * 2016-05-24 2017-11-30 住友化学株式会社 正極活物質、その製造方法およびリチウムイオン二次電池用正極

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIRAMATSU ET AL., JOURNAL OF THE MINING AND METALLURGICAL INSTITUTE OF JAPAN, vol. 81, 1965

Also Published As

Publication number Publication date
CN113329976B (zh) 2023-11-07
US20210328216A1 (en) 2021-10-21
JP2020119685A (ja) 2020-08-06
JP7262230B2 (ja) 2023-04-21
EP3915943A1 (en) 2021-12-01
TWI834801B (zh) 2024-03-11
CN113329976A (zh) 2021-08-31
EP3915943A4 (en) 2022-10-12
TW202037564A (zh) 2020-10-16
KR20210113985A (ko) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2020153000A1 (ja) 非水電解質二次電池用複合水酸化物小粒子
JP6665060B2 (ja) Li−Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
JP5817143B2 (ja) 正極活物質前駆体粒子粉末及び正極活物質粒子粉末、並びに非水電解質二次電池
CA2778286C (en) Nickel-cobalt-manganese-based compound particles and process for producing the nickel-cobalt-manganese-based compound particles, lithium composite oxide particles and process for producing the lithium composite oxide particles, and non-aqueous electrolyte secondary battery
TWI527298B (zh) A positive electrode active material particle powder, a method for producing the same, and a nonaqueous electrolyte battery
JP6265117B2 (ja) ニッケルコバルトマンガン複合水酸化物とその製造方法
JP5353239B2 (ja) 無機化合物
JP6533734B2 (ja) リチウムイオン電池用正極活物質、リチウムイオン電池用正極及びリチウムイオン電池
WO2020152771A1 (ja) ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物
JP2022116215A (ja) ニッケルマンガンコバルト複合水酸化物及び、リチウムニッケルマンガンコバルト複合酸化物
JP2019106240A (ja) ニッケルコバルトアルミニウム複合水酸化物、ニッケルコバルトアルミニウム複合水酸化物の製造方法及び、リチウムニッケルコバルトアルミニウム複合酸化物
JP4234418B2 (ja) マンガンニッケル複合水酸化物粒子
JP2012096949A (ja) スピネル型リチウム・マンガン系複合酸化物粒子の製造方法ならびに用途
JP6458542B2 (ja) 水酸化ニッケル粒子粉末及びその製造方法、正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
JP7315887B2 (ja) リチウムイオン二次電池用正極活物質前駆体の製造方法、リチウムイオン二次電池用正極活物質中間物の製造方法、及びそれらを併せたリチウムイオン二次電池用正極活物質の製造方法
WO2020152768A1 (ja) ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物
JP2014205617A (ja) マンガン酸化物及びそれを用いたマンガン酸リチウムの製造方法
WO2020152770A1 (ja) ニッケルコバルトアルミニウム複合水酸化物、ニッケルコバルトアルミニウム複合水酸化物の製造方法及び、リチウムニッケルコバルトアルミニウム複合酸化物
WO2021201270A1 (ja) 複合水酸化物の製造方法及び複合水酸化物
CN111129481B (zh) 锂离子电池用正极活性物质的制备方法
JP6366956B2 (ja) 導電助剤複合アルカリ金属チタン酸化物の製造方法
WO2020152769A1 (ja) ニッケルマンガンコバルト複合水酸化物、ニッケルマンガンコバルト複合水酸化物の製造方法及び、リチウムニッケルマンガンコバルト複合酸化物
KR20240056727A (ko) 리튬 이온 배터리용 캐소드 활성 물질의 전구체의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019911876

Country of ref document: EP

Effective date: 20210823