WO2020152762A1 - 回転角度検出装置、および当該回転角度検出装置を含む電動パワーステアリング装置 - Google Patents

回転角度検出装置、および当該回転角度検出装置を含む電動パワーステアリング装置 Download PDF

Info

Publication number
WO2020152762A1
WO2020152762A1 PCT/JP2019/001738 JP2019001738W WO2020152762A1 WO 2020152762 A1 WO2020152762 A1 WO 2020152762A1 JP 2019001738 W JP2019001738 W JP 2019001738W WO 2020152762 A1 WO2020152762 A1 WO 2020152762A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
rotation angle
cosine
sine
coefficient
Prior art date
Application number
PCT/JP2019/001738
Other languages
English (en)
French (fr)
Inventor
辰也 森
古川 晃
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980089247.6A priority Critical patent/CN113330282B/zh
Priority to JP2020567689A priority patent/JP7066306B2/ja
Priority to PCT/JP2019/001738 priority patent/WO2020152762A1/ja
Priority to US17/312,115 priority patent/US20220024517A1/en
Priority to EP19912010.6A priority patent/EP3916361B1/en
Publication of WO2020152762A1 publication Critical patent/WO2020152762A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Technology Law (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

回転角度検出装置は、回転体の回転角度に基づく正弦信号および余弦信号に基づいて、正弦信号および余弦信号に含まれる周波数成分の係数を同定する係数同定部と、係数同定部によって同定された係数に基づいて補正値を算出する補正値算出部と、正弦信号および余弦信号のいずれかまたは両方を補正値によって補正した値に基づいて、回転体の回転角度を算出する回転角度算出部とを備えている。係数同定部は、M+N=正の定数を満たす0以上の各整数M、Nについて、正弦信号のM乗と余弦信号のN乗との積に対して、ローパスフィルタを適用した結果に基づいて、正弦信号および余弦信号に含まれるM+N-1次成分の係数を同定する。

Description

回転角度検出装置、および当該回転角度検出装置を含む電動パワーステアリング装置
 本発明は、回転角度検出装置に係り、特に正弦信号および余弦信号に基づいて回転体の回転角度を検出する、回転角度検出装置に関する。また、当該回転角度検出装置を含む電動パワーステアリング装置にも関する。
 モータ等の回転体の回転角度を検出する手段としては、レゾルバ、MR(magneto resistance)センサ等が広く用いられている。これらの手段では、回転体の回転角度に基づく正弦信号および余弦信号を出力する。回転角度検出装置は、正弦信号および余弦信号に基づいて、回転体の回転角度を検出する(例えば、特許文献1参照)。
 特許文献1に記載の回転角度検出装置では、正弦信号および余弦信号の山の値と谷の値とを読み取り、山の値と谷の値との中点と予め決定された中点値との差から、中点補正値を算出する。回転角度検出装置は、正弦信号および余弦信号に中点補正値をそれぞれ加算して補正を施し、補正された正弦信号および余弦信号に基づいて、回転体の回転角度を検出する。
特開2008-273478号公報
 しかしながら、特許文献1の回転角度検出装置では、正弦信号および余弦信号に基本波以外の周波数成分が含まれている場合に対する対処が行われていない。そのため、特許文献1の回転角度検出装置では、正弦信号および余弦信号に基本波以外の周波数成分が含まれている場合には、回転角度検出装置によって検出される回転角度と回転体の実際の回転角度との間に誤差が生じることになる。
 本発明は、上記のような課題を解決するためのものであり、正弦信号および余弦信号に基本波以外の周波数成分が含まれていることに起因する誤差を抑制することができる、回転角度検出装置を提供することを目的とする。
 上記の課題を解決するために、本発明に係る回転角度検出装置は、回転体の回転角度に基づく正弦信号および余弦信号に基づいて、正弦信号および余弦信号に含まれる周波数成分の係数を同定する係数同定部と、係数同定部によって同定された係数に基づいて補正値を算出する補正値算出部と、正弦信号および余弦信号のいずれかまたは両方を補正値によって補正した値に基づいて、回転体の回転角度を算出する回転角度算出部とを備える。
 また、本発明に係る回転角度検出装置は、回転体の回転角度に基づく正弦信号と余弦信号との積に基づいて、中間信号を生成する中間信号生成部と、中間信号に正弦信号および余弦信号のいずれか一方を乗算する乗算部と、正弦信号および余弦信号のいずれか他方と乗算部の出力とを加算するか、または正弦信号および余弦信号のいずれか他方から乗算部の出力を減算する、加減算部と、正弦信号および余弦信号のいずれか一方、並びに、加減算部の出力に基づいて、回転体の回転角度を算出する回転角度算出部とを備える。
 本発明に係る回転角度検出装置によれば、正弦信号および余弦信号に基本波以外の周波数成分が含まれていることに起因する誤差を抑制することができる。
本発明の実施の形態1に係る回転角度検出装置を含む回転角度検出システムの構成を示すブロック図である。 図1の励磁回路によって生成される交流信号の時間波形を示す図である。 図1の正弦検出コイルの出力端に現れる信号の時間波形を示す図である。 図1の余弦検出コイルの出力端に現れる信号の時間波形を示す図である。 図1の係数同定部の内部構成を示すブロック図である。 図1の補正値算出部の内部構成を示すブロック図である。 本発明の実施の形態2に係る回転角度検出装置を含む回転角度検出システムの構成を示すブロック図である。 本発明の実施の形態3に係る回転角度検出装置を含む回転角度検出システムの構成を示すブロック図である。 図8の補正値算出部の内部構成を示すブロック図である。 本発明の実施の形態4に係る回転角度検出装置を含む回転角度検出システムの構成を示すブロック図である。 図10の中間信号生成部の内部構成を示すブロック図である。 本発明の実施の形態5に係る電動パワーステアリング装置の構成を示すブロック図である。 本発明の実施の形態1~5に係る回転角度検出装置の各機能を専用のハードウェアである処理回路で実現する場合を示した構成図である。 本発明の実施の形態1~5に係る回転角度検出装置の各機能をプロセッサおよびメモリを備えた処理回路より実現する場合を示した構成図である。
 以下、添付図面を参照して、本願が開示する回転角度検出装置の実施の形態について、詳細に説明する。ただし、以下に示す実施の形態は一例であり、これらの実施の形態によって、本発明が限定されるものではない。
 実施の形態1.
 図1は、本発明の実施の形態1に係る回転角度検出装置50を含む、回転角度検出システム100の構成を示すブロック図である。
 回転角度検出システム100は、レゾルバ10と、励磁回路20と、差動増幅装置30と、A/D変換器40と、回転角度検出装置50とを備えている。
 レゾルバ10は、図示しないモータと一体に回転するロータ1と、励磁回路20によって生成される交流信号によって駆動される励磁コイル11と、モータの回転角度の正弦を検出する正弦検出コイル12と、モータの回転角度の余弦を検出する余弦検出コイル13とを含んでいる。
 図2に示されるような交流信号によって励磁コイル11が駆動されると、正弦検出コイル12の出力端には、図3に示されるようなモータの回転角度の正弦によって振幅変調された信号が出力される。また、余弦検出コイル13の出力端には、図4に示されるようなモータの回転角度の余弦によって振幅変調された信号が出力される。
 なお、図2~図4の横軸は時間軸を示しており、レゾルバ10の回転角度の1周期を表している。また、図2~図4の縦軸は、各信号の振幅を示している。
 図1に戻って、正弦検出コイル12の両出力端間の信号は、差動増幅装置30に含まれる第1の差動増幅器31によって差動増幅され、A/D変換器40に入力される。同様に、余弦検出コイル13の両出力端間の信号は、差動増幅装置30に含まれる第2の差動増幅器32よって差動増幅され、A/D変換器40に入力される。
 A/D変換器40では、図3、図4に丸印で示される正弦値および余弦値の各ピーク点、すなわち差動増幅装置30によって検出された正弦値および余弦値の各ピーク点が、A/D変換される。そして、これらのピーク点を連ねた信号列から、図3、図4に太線で示される正弦信号S(θ)および余弦信号C(θ)が得られる。ここで、θは、モータの回転角度である。
 なお、A/D変換器40から出力される正弦信号S(θ)の振幅と余弦信号(θ)の振幅とに差がある場合には、両者の差が零に近づくように補正を施してもよい。
 図1に戻って、A/D変換器40から出力された正弦信号S(θ)および余弦信号(θ)は、回転角度検出装置50にそれぞれ入力される。
 回転角度検出装置50は、係数同定部51と、補正値算出部52と、加算部53と、加算部54と、回転角度算出部55とを含んでいる。
 係数同定部51は、正弦信号S(θ)および余弦信号C(θ)に基づいて、正弦信号(θ)および余弦信号(θ)に含まれる0次成分および2次成分の係数をそれぞれ同定して出力する。
 図5は、実施の形態1の係数同定部51の内部構成を示すブロック図である。以下、係数同定部51の各要素および動作について詳細に説明する。
 ローパスフィルタ51aは、余弦信号C(θ)にローパスフィルタリングを施した値a0_calを出力する。ここで、a0_calは、余弦信号C(θ)に含まれる0次成分、すなわち直流成分の係数の同定値である。
 ローパスフィルタ51bは、正弦信号S(θ)にローパスフィルタリングを施した値c0_calを出力する。ここで、c0_calは、正弦信号S(θ)に含まれる0次成分、すなわち直流成分の係数の同定値である。
 次に、乗算器51cは、余弦信号C(θ)を3乗した値C(θ)3を出力する。
 ローパスフィルタ51dは、余弦信号C(θ)を3乗した値C(θ)3にローパスフィルタリングを施した値X1を出力する。
 ゲイン51eは、ローパスフィルタ51dの出力X1を(4/(3×a12))倍した値X2を出力する。ここで、a1は、余弦信号C(θ)の1次成分、すなわち基本波成分の係数である。このa1は、設計値あるいは事前に予め測定しておいた値を用いればよい。
 ゲイン51fは、a0_calを2倍した値a0_cal×2を出力する。
 減算器51gは、ゲイン51eの出力X2からゲイン51fの出力a0_cal×2を減算した値a2_calを出力する。ここで、a2_calは、余弦信号C(θ)に含まれる2次成分の係数の同定値である。
 次に、乗算器51hは、正弦信号S(θ)を3乗した値S(θ)3を出力する。
 ローパスフィルタ51iは、正弦信号S(θ)を3乗した値S(θ)3にローパスフィルタリングを施した値X3を出力する。
 ゲイン51jは、ローパスフィルタ51iの出力X3を(4/(3×d12))倍した値X4を出力する。ここで、d1は、正弦信号S(θ)の1次成分、すなわち基本波成分の係数である。このd1は、設計値あるいは事前に予め測定しておいた値を用いればよい。
 ゲイン51kは、c0_calを2倍した値c0_cal×2を出力する。
 減算器51lは、ゲイン51jの出力X4からゲイン51kの出力c0_cal×2を減算した値c2_calを出力する。ここで、c2_calは、正弦信号S(θ)に含まれる2次成分の係数の同定値である。
 次に、乗算器51mは、余弦信号C(θ)の2乗と正弦信号S(θ)との積C(θ)2S(θ)を出力する。
 ローパスフィルタ51nは、C(θ)2S(θ)にローパスフィルタリングを施した値X5を出力する。
 ゲイン51oは、ローパスフィルタ51nの出力X5を(4/a12)倍した値X6を出力する。ここで、a1は、余弦信号C(θ)の1次成分、すなわち基本波成分の係数である。先述したように、このa1は、設計値あるいは事前に予め測定しておいた値を用いればよい。
 減算器51pは、ゲイン51oの出力X6からゲイン51jの出力X4を減算した値を出力する。
 ゲイン51qは、減算器51pの出力を0.5倍した値を出力する。
 減算器51rは、ゲイン51qの出力からc2_calを減算した値b2_calを出力する。ここで、b2_calは、余弦信号C(θ)に含まれる2次成分の係数の同定値である。
 次に、乗算器51sは、余弦信号C(θ)と正弦信号S(θ)の2乗との積C(θ)S(θ)2を出力する。
 ローパスフィルタ51tは、C(θ)S(θ)2にローパスフィルタリングを施した値X7を出力する。
 ゲイン51uは、ローパスフィルタ51tの出力X7を(4/d12)倍した値X8を出力する。ここで、d1は、余弦信号S(θ)の1次成分、すなわち基本波成分の係数である。先述したように、このd1は、設計値あるいは事前に予め測定しておいた値を用いればよい。
 減算器51vは、ゲイン51uの出力X8からゲイン51eの出力X2を減算した値を出力する。
 ゲイン51wは、減算器51vの出力を0.5倍した値を出力する。
 加算器51yは、ゲイン51wの出力にa2_calを加算した値d2_calを出力する。ここで、d2_calは、正弦信号S(θ)に含まれる2次成分の係数の同定値である。
 したがって、係数同定部51は、6つの係数同定値a0_cal、c0_cal、a2_cal、c2_cal、b2_cal、d2_calを出力する。
 係数同定部51は、余弦信号C(θ)の1乗に対して、ローパスフィルタを適用することによって、余弦信号C(θ)に含まれる0次成分の係数a0_calを同定している。また、係数同定部51は、正弦信号S(θ)の1乗に対して、ローパスフィルタを適用することによって、正弦信号S(θ)に含まれる0次成分の係数c0_calを同定している。
 上記をまとめると、係数同定部51は、M+N=1を満たす0以上の各整数M、Nについて、正弦信号のM乗と余弦信号のN乗との積に対して、ローパスフィルタを適用した結果に基づいて、正弦信号S(θ)および余弦信号C(θ)に含まれるM+N-1次成分、すなわち0次成分の係数a0_cal、c0_calを同定している。
 また、係数同定部51は、正弦信号の3乗、余弦信号の3乗、余弦信号の2乗と正弦信号の1乗との積、および正弦信号の2乗と正弦信号の1乗との積に対して、ローパスフィルタをそれぞれ適用した結果に基づいて、正弦信号S(θ)および余弦信号C(θ)に含まれる2次成分の係数a2_cal、c2_cal、b2_cal、d2_calをそれぞれ同定している。
 上記をまとめると、係数同定部51は、M+N=3を満たす0以上の各整数M、Nについて、正弦信号のM乗と余弦信号のN乗との積に対して、ローパスフィルタを適用した結果に基づいて、正弦信号S(θ)および余弦信号C(θ)に含まれるM+N-1次成分、すなわち2次成分の係数a2_cal、c2_cal、b2_cal、d2_calを同定している。
 図1に戻って、係数同定部51から出力される6つの係数同定値a0_cal、c0_cal、a2_cal、c2_cal、b2_cal、d2_calは、補正値算出部52に入力される。
 補正値算出部52は、係数同定部51から入力される6つの係数同定値に基づいて、正弦信号S(θ)の補正値S_carr1および余弦信号C(θ)の補正値C_carr1をそれぞれ算出する。
 図6は、実施の形態1の補正値算出部52の内部構成を示すブロック図である。以下、補正値算出部52の各要素および動作について説明する。
 まず、加算器52aは、係数同定部51から入力されるa2_calとd2_calとを加算し、加算結果a2_cal+d2_calを出力する。
 ゲイン52bは、加算器52aの出力を0.5倍し、乗算結果0.5(a2_cal+d2_cal)を出力する。
 減算器52cは、係数同定部51から入力されるa0_calからゲイン52bの出力を減算し、減算結果a0_cal-0.5(a2_cal+d2_cal)を出力する。
 ゲイン52dは、減算器52cの出力を-1倍し、結果をC_corr1として出力する。
 したがって、補正値算出部52から出力される余弦信号C(θ)の補正値C_corr1は、以下のようになる。
Figure JPOXMLDOC01-appb-M000001
 次に、減算器52eは、係数同定部51から入力されるc2_calからb2_calを減算し、減算結果c2_cal-b2_calを出力する。
 ゲイン52fは、減算器52eの出力を0.5倍し、乗算結果0.5(c2_cal-b2_cal)を出力する。
 加算器52gは、係数同定部51から入力されるc0_calとゲイン52fの出力とを加算し、加算結果c0_cal+0.5(-b2_cal+c2_cal)を出力する。
 ゲイン52hは、加算器52gの出力を-1倍し、結果をS_corr1として出力する。
 したがって、補正値算出部52から出力される正弦信号S(θ)の補正値S_corr1は、以下のようになる。
Figure JPOXMLDOC01-appb-M000002
 図1に戻って、オフセット算出部52から出力される補正値S_corr1は、加算部53に入力される。加算部53は、正弦信号(θ)と補正値S_corr1とを加算して、回転角度算出部55に出力する。
 オフセット算出部52から出力される補正値C_corr1は、加算部54に入力される。加算部54は、余弦信号C(θ)と補正値C_corr1とを加算して、回転角度算出部55に出力する。
 回転角度算出部55は、S(θ)+S_corr1およびC(θ)+C_corr1に基づいて、以下の式に従って、回転角度信号θrを算出する。
Figure JPOXMLDOC01-appb-M000003
 以下、上記の回転角度検出装置50において、正弦信号S(θ)および余弦信号C(θ)に基本波以外の周波数成分が含まれていることに起因する回転角度誤差が抑制される理由について、詳細に説明する。
 まず、余弦信号C(θ)および正弦信号S(θ)が、それぞれ以下のように表される場合を考える。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 この場合、余弦信号C(θ)の0次成分、すなわち直流成分の係数は零である。また、余弦信号C(θ)の基本波以外の高調波成分の係数も零である。なお、基本波成分、すなわち1次成分の係数は1である。
 同様に、正弦信号S(θ)の0次成分、すなわち直流成分の係数は零である。また、正弦信号S(θ)の基本波以外の高調波成分の係数も零である。なお、基本波成分、すなわち1次成分の係数は1である。
 この場合に、仮に、余弦信号C(θ)および正弦信号S(θ)の補正値がC_corr1=0、S_corr1=0である場合を考えてみる。そうすると、回転角度信号θrは、式(3)から、以下のように計算される。
Figure JPOXMLDOC01-appb-M000006
 したがって、回転角度信号θrは、モータの実際の回転角度θに等しくなる。また、回転角度信号θrとモータの実際の回転角度θとの差に基づいて求められる回転角度誤差Δθは零になる。
 次に、余弦信号C(θ)および正弦信号S(θ)が、それぞれ以下のように表される場合を考える。式(4)、式(5)と式(7)、式(8)とでは、0次成分、すなわち直流成分が存在する点が異なっている。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 この場合にも、仮に、余弦信号C(θ)および正弦信号S(θ)の補正値がC_corr1=0、S_corr1=0である場合を考えてみる。そして、式(3)から回転角度信号θrを計算し、これに基づいて回転角度誤差Δθを求めると、以下のようになる。
Figure JPOXMLDOC01-appb-M000009
 すなわち、余弦信号C(θ)および正弦信号S(θ)に0次成分a0、c0が含まれていることに起因して、正弦信号S(θ)および余弦信号C(θ)の基本波と同周期の回転角度誤差Δθが発生する。
 これ以降、正弦信号S(θ)および余弦信号C(θ)の基本波と同周期の回転角度誤差を、1fの回転角度誤差と称することにする。また、正弦信号S(θ)および余弦信号C(θ)の2次成分と同周期の回転角度誤差を、2fの回転角度誤差と称することにする。以下、3f、4fの回転角度誤差も同様に定義する。
 特許文献1では、正弦信号S(θ)および余弦信号C(θ)の山の値と谷の値とから中点補正値を求めている。これに従って演算すると、補正値は、C_corr1=-a0、S_corr1=-c0となる。この場合に、式(3)から回転角度信号θrを計算すると、以下のようになる。
Figure JPOXMLDOC01-appb-M000010
 したがって、余弦信号C(θ)および正弦信号S(θ)に0次成分a0、c0がそれぞれ含まれている場合には、特許文献1の手法によって、回転角度誤差Δθを抑制することができる。
 次に、余弦信号C(θ)および正弦信号S(θ)が、それぞれ以下のように表される場合を考える。式(7)、式(8)と式(11)、式(12)とでは、2次成分、すなわち基本波の周波数の2倍の周波数成分が存在する点が異なっている。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 ここでも同様に、仮に、余弦信号C(θ)および正弦信号S(θ)の補正値がC_corr1=0、S_corr1=0である場合を考えてみる。そして、式(3)から回転角度信号θrを計算し、これに基づいて回転角度誤差Δθを求めると、以下のようになる。
Figure JPOXMLDOC01-appb-M000013
 上記の回転角度誤差Δθでは、式(11)、式(12)に含まれる2次成分の係数a2、b2、c2、d2の存在に起因して、1fの回転角度誤差の係数が式(9)のそれとは異なっている。
 したがって、特許文献1の手法によって、正弦信号S(θ)および余弦信号C(θ)の中点補正値を求め、補正値C_corr1=-a0、S_corr1=-c0としても、式(13)のa2、b2、c2、d2に起因する1fの回転角度誤差を抑制することはできない。
 これに対して、先述したように、本実施の形態1の補正値算出部52の出力は、式(1)、式(2)によって与えられる。
 ここで、係数同定部51から出力される係数同定値a0_cal、c0_cal、a2_cal、b2_cal、c2_cal、d2_calが、それぞれa0、c0、a2、b2、c2、d2に一致する場合、すなわち係数同定値と真の係数とが一致する場合には、式(1)、式(2)は、それぞれ以下のようになる。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 上記の補正値を用いて、式(3)に従って回転角度信号θrを計算し、さらに回転角度誤差Δθを求めると、以下のようになる。
Figure JPOXMLDOC01-appb-M000016
 したがって、正弦信号S(θ)および余弦信号C(θ)に0次成分および2次成分が含まれている場合、本実施の形態1の補正値C_corr1、S_corr1を適用して回転角度信号θrを算出すると、3fの回転角度誤差は残るが、1fの回転角度誤差は零になる。
 すなわち、係数同定部51による係数の同定が正しく行えていれば、正弦信号S(θ)および余弦信号C(θ)に2次成分が含まれている場合でも、本実施の形態1の補正値C_corr1、S_corr1によって、1fの回転角度誤差を零にすることができる。
 次に、図5に示される本実施の形態1の係数同定部51によって、正弦信号S(θ)および余弦信号C(θ)の係数の同定が正しく行われる理由について、詳細に説明する。
 まず、余弦信号C(θ)および正弦信号S(θ)が、それぞれ以下のように表されるものとする。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 上式において、a1=1、d1=1とすれば、式(17)、式(18)は、式(11)、式(12)に一致する。すなわち、式(17)、式(18)は、式(11)、式(12)をより一般化した表現である。
 余弦信号(θ)および正弦信号(θ)について、モータの回転角度の1周期の平均値をとったものは、それぞれ以下のようになる。
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 なお、上式において、Ave{ }は、括弧内の平均の意味である。
 したがって、余弦信号C(θ)の直流成分の係数a0は、余弦信号C(θ)について、モータの回転角度の1周期の平均をとる、あるいは1周期の積算を行うことによって求めることができる。
 同様に、正弦信号S(θ)の直流成分の係数c0は、正弦信号S(θ)について、モータの回転角度の1周期の平均をとる、あるいは1周期の積算を行うことによって求めることができる。
 本実施の形態1の係数同定部51では、1周期の積算を行うのと等価、もしくはそれよりも時定数の長いローパスフィルタを用いることによって、Ave{C(θ)}=a0、Ave{S(θ)}=c0を、それぞれ算出する構成となっている。
 詳細には、図5において、余弦信号C(θ)にローパスフィルタ51aを適用することによって、a0_calとしてa0を同定することができる。同様に、正弦信号S(θ)にローパスフィルタ51bを適用することによって、c0_calとしてc0を同定することができる。
 すなわち、余弦信号C(θ)の1乗、換言すると余弦信号C(θ)そのものに対して、ローパスフィルタ51aを適用することによって、余弦信号C(θ)の0次成分、すなわち直流成分の係数a0を同定することができる。
 同様に、正弦信号S(θ)の1乗、すなわち正弦信号S(θ)そのものに対して、ローパスフィルタ51bを適用することによって、正弦信号S(θ)の0次成分、すなわち直流成分の係数c0を同定することができる。
 続いて、図5の乗算器51cの出力C(θ)3、乗算器51hの出力S(θ)3、乗算器51mの出力C(θ)2S(θ)、乗算器51sの出力C(θ)S(θ)2について、モータの回転角度の1周期の平均値をとったものは、それぞれ以下のようになる。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
 ここで、ローパスフィルタ51d、51i、51n、51tを、1周期の積算を行うのと等価、もしくはそれよりも時定数の長いローパスフィルタとすることによって、図3のX1、X3、X5、X7は、それぞれ以下のようになる。
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
 さらに、上記の各式とゲイン51e、51j、51o、51uとをそれぞれ乗算することによって、図5のX2、X4、X6、X8は、それぞれ以下のようになる。
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
 したがって、式(29)で求めたX2と、a0_calがa0に一致することと、減算器51gおよびゲイン51fの演算とによって、a2_calは、以下のようになる。
Figure JPOXMLDOC01-appb-M000033
 同様に、式(30)で求めたX4と、c0_calがc0に一致することと、減算器51lおよびゲイン51kの演算とによって、c2_calは、以下のようになる。
Figure JPOXMLDOC01-appb-M000034
 同様に、式(30)で求めたX4と、式(31)で求めたX6と、c2_calがc2に一致することと、減算器51p、ゲイン51qおよび減算器51rの演算とによって、b2_calは、以下のようになる。
Figure JPOXMLDOC01-appb-M000035
 同様に、式(29)で求めたX2と、式(32)で求めたX8と、a2_calがa2に一致することと、減算器51v、ゲイン51wおよび加算器51yの演算とによって、d2_calは、以下のようになる。
Figure JPOXMLDOC01-appb-M000036
 上記の式(33)、式(34)、式(35)、式(36)から、図5の構成によって同定した2次成分の各係数a2_cal、b2_cal、c2_cal、d2_calは、式(17)、式(18)の2次成分の各係数a2、b2、c2、d2に一致する。
 以上により、図5の係数同定部51によって、正弦信号S(θ)および余弦信号C(θ)に含まれる0次成分の係数a0_cal、c0_cal、および2次成分の係数a2_cal、c2_cal、b2_cal、d2_calを正しく同定できることが示された。
 なお、図5の各ローパスフィルタにおいて、モータの回転速度の変動帯域以上の速度で演算を実行できれば、モータの回転角度の1周期の積算演算と比べて、より高精度にローパスフィルタの高域遮断機能が作用する。その結果、式(19)~式(24)の演算がより高精度に行われる。したがって、ローパスフィルタ51a、51b、51d、51i、51n、51tの出力値の更新は、モータの回転速度の変動帯域以上の速度で行うことが好ましい。
 一例として、電動パワーステアリングのアシスト用のモータの場合、その回転速度の変動帯域の上限はおおよそ5Hzである。そのため、5Hzに対応するモータの回転数以上の場合に、各ローパスフィルタの出力値を更新するのが好ましい。その場合、5Hz未満に対応するモータの回転数の場合には、ローパスフィルタの出力値は、前回値を維持するのが好ましい。
 また、上記の実施の形態1は、正弦信号S(θ)および余弦信号C(θ)を、0次成分および2次成分の各係数の同定結果に基づいて補正することによって、回転角度誤差Δθを抑制するものであった。これ以外にも、回転角度誤差Δθが次式のように表せることを利用して、回転角度信号θrを補正することも可能である。
Figure JPOXMLDOC01-appb-M000037
 また、上記の回転角度検出装置50が検出する回転角度はモータの回転角度であったが、本実施の形態1に係る発明の適用可能な範囲はこれに限定されるものではない。本実施の形態1に係る発明は、任意の回転体、すなわち回転する物体に対して、適用することができる。
 以上説明したように、本発明の実施の形態1に係る回転角度検出装置は、回転体の回転角度に基づく正弦信号および余弦信号に基づいて、正弦信号および余弦信号に含まれる周波数成分の係数を同定する係数同定部と、係数同定部によって同定された係数に基づいて補正値を算出する補正値算出部と、正弦信号および余弦信号のいずれかまたは両方を補正値によって補正した値に基づいて、回転体の回転角度を算出する回転角度算出部とを備えている。
 また、本実施の形態1の係数同定部は、M+N=1を満たす0以上の各整数M、Nについて、正弦信号のM乗と余弦信号のN乗との積に対して、ローパスフィルタを適用した結果に基づいて、正弦信号および余弦信号に含まれるM+N-1=0次成分の係数を同定する。
 また、本実施の形態1の係数同定部は、M+N=3を満たす0以上の各整数M、Nについて、正弦信号のM乗と余弦信号のN乗との積に対して、ローパスフィルタを適用した結果に基づいて、正弦信号および余弦信号に含まれるM+N-1=2次成分の係数をさらに同定する。
 実施の形態2.
 次に、本発明の実施の形態2に係る回転角度検出装置250について説明する。なお、以降の実施の形態において、それ以前の実施の形態と同一または同様の構成要素については、同一の参照符号を付して詳細な説明は省略する。
 図7は、本発明の実施の形態2に係る回転角度検出装置250を含む、回転角度検出システム200の構成を示すブロック図である。
 実施の形態2に係る回転角度検出装置250は、係数同定部251と、補正値算出部252と、回転角度算出部255とを含んでいる。以下、実施の形態2の回転角度検出装置250の詳細について、順に説明する。
 まず、余弦信号C(θ)および正弦信号S(θ)が、それぞれ以下のように表される場合について考える。
Figure JPOXMLDOC01-appb-M000038
Figure JPOXMLDOC01-appb-M000039
 このとき、C(θ)2、C(θ)S(θ)、S(θ)2について、モータの回転角度の1周期の平均をとると、それぞれ以下のようになる。
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000042
 また、C(θ)4、C(θ)3S(θ)、C(θ)2S(θ)2、C(θ)S(θ)3、S(θ)4について、モータの回転角度の1周期の平均をとると、それぞれ以下のようになる。
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000047
 式(45)は、a1とd1がそれぞれd3とa3に掛かっている。そのため、a3とd3を算出するには、式(43)および式(47)を用いるとよい。式(45)のように、正弦信号S(θ)および余弦信号C(θ)が共に2乗以上となる場合には、微小な係数の積を0とみなして近似する方法によって、a1をd1に、あるいはd1をa1に置き換えることができない。
 したがって、係数の同定には、正弦信号S(θ)または余弦信号C(θ)のいずれかが1乗以下である式を用いると好適である。式(40)~式(44)および式(46)~式(47)を整理すると、以下のようになる。
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000052
Figure JPOXMLDOC01-appb-M000053
Figure JPOXMLDOC01-appb-M000054
 係数同定部251は、式(48)~式(54)に基づいて、正弦信号S(θ)および余弦信号C(θ)に含まれる1次成分の係数および3次成分の係数を同定する。
 補正値算出部252は、正弦信号S(θ)および余弦信号C(θ)に含まれる1次成分および3次成分に起因する2fの回転角度誤差を抑制する補正値を算出する。
 例えば、補正値算出部252は、下記の式(55)、式(56)によって与えられる補正値G1、G2を算出し、式(57)に従って、余弦信号C(θ)を補正する。これにより、正弦信号S(θ)および余弦信号C(θ)に含まれる1次成分および3次成分に起因する2fの回転角度誤差を抑制することができる。
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000056
Figure JPOXMLDOC01-appb-M000057
 なお、ここでは余弦信号C(θ)の補正値を算出する例を示したが、正弦信号S(θ)の補正値を算出してもよい。また、正弦信号S(θ)および余弦信号C(θ)の補正値を共に算出してもよい。さらに、近似によって上記の各式を簡略化してもよい。
 また、上記の実施の形態2は、正弦信号S(θ)および余弦信号C(θ)を、1次成分および3次成分の各係数の同定結果に基づいて補正することによって、回転角度誤差Δθを抑制するものであった。これ以外にも、回転角度誤差Δθが次式のように表せることを利用して、回転角度信号θrを補正することも可能である。
Figure JPOXMLDOC01-appb-M000058
 以上説明したように、本実施の形態2の係数同定部は、M+N=2を満たす0以上の各整数M、Nについて、正弦信号のM乗と余弦信号のN乗との積に対して、ローパスフィルタを適用した結果に基づいて、正弦信号および余弦信号に含まれるM+N-1=1次成分の係数を同定する。
 また、本実施の形態2の係数同定部は、M+N=4を満たす0以上の各整数M、Nについて、正弦信号のM乗と余弦信号のN乗との積に対して、ローパスフィルタを適用した結果に基づいて、正弦信号および余弦信号に含まれるM+N-1=3次成分の係数をさらに同定する。
 実施の形態3.
 図8は、本発明の実施の形態3に係る回転角度検出装置350を含む、回転角度検出システム300の構成を示すブロック図である。
 実施の形態3に係る回転角度検出装置350は、係数同定部51と、補正値算出部357と、減算部358と、減算部359と、遅延部360と、回転角度算出部355とを含んでいる。
 係数同定部51は、実施の形態1と同じものであり、正弦信号S(θ)および余弦信号C(θ)に含まれる0次成分の係数同定値a0_cal、c0_cal、および2次成分の係数同定値a2_cal、c2_cal、b2_cal、d2_calを出力する。
 補正値算出部352は、係数同定部51から出力される係数と、回転角度算出部355から遅延部360を介して入力される1演算周期前の回転角度信号θr_oldとに基づいて、補正値S_corr2、C_corr2を算出する。
 減算部358は、正弦信号S(θ)から、補正値算出部352によって算出された補正値S_corr2を減算し、減算結果(S(θ)-S_corr1)を回転角度算出部355に出力する。
 減算部359は、余弦信号C(θ)から、補正値算出部352によって算出された補正値C_corr2を減算し、減算結果(C(θ)-C_corr1)を回転角度算出部355に出力する。
 回転角度算出部355は、(S(θ)-S_corr1)および(C(θ)-C_corr1)に基づいて、以下の式に従って、回転角度信号θrを算出する。
Figure JPOXMLDOC01-appb-M000059
 図9は、実施の形態3の補正値算出部352の内部構成を示すブロック図である。以下、補正値算出部352の各要素および動作について説明する。
 まず、加算器352aは、1演算周期前の回転角度信号θ\ochr_oldにω・Δtを加算した値θr_corrを出力する。ここで、Δtは、回転角度算出部355が回転角度信号θrを算出する演算周期である。また、ωは、モータの回転角速度である。このωは、ω=(θr-θr_old)/Δtによって求めることができる。あるいは、公知技術である回転速度センサレス制御等を流用することによってωを推定してもよい。
 なお、加算器352aによってω・Δtを加算するのは、補正値算出部352に入力される回転角度信号θ\ochr_oldが、現在の回転角度信号θrよりも1演算周期遅れているためである。θ\ochr_oldにω・Δtを加算することによって、θr_corrは、現在のθrにほぼ一致する値となる。
 次に、ゲイン352bは、加算器352aの出力θr_corrを2倍した値θr_corr×2を出力する。
 余弦算出器352cは、ゲイン352bの出力θr_corr×2の余弦値cos(2・θr_corr)を出力する。
 正弦算出器352dは、ゲイン352bの出力θr_corr×2の正弦値sin(2・θr_corr)を出力する。
 乗算器352eは、a2_calと余弦算出器352cの出力とを乗算した値Y1を出力する。すなわち、Y1は以下のように表される。
Figure JPOXMLDOC01-appb-M000060
 乗算器352fは、b2_calと正弦算出器352dの出力とを乗算した値Y2を出力する。すなわち、Y2は、以下のように表される。
Figure JPOXMLDOC01-appb-M000061
 加算器352gは、乗算器352eの出力Y1と乗算器352fの出力Y2とを加算した値Y1+Y2を出力する。
 加算器352hは、a0_calと加算器352gの出力Y1+Y2とを加算した値C_corr2を出力する。C_corr2は、余弦信号C(θ)の補正値であり、以下のように表される。
Figure JPOXMLDOC01-appb-M000062
 乗算器352iは、c2_calと余弦算出器352cの出力とを乗算した値Y3を出力する。すなわち、Y3は以下のように表される。
Figure JPOXMLDOC01-appb-M000063
 乗算器352jは、d2_calと正弦算出器352dの出力とを乗算した値Y4を出力する。すなわち、Y4は以下のように表される。
Figure JPOXMLDOC01-appb-M000064
 加算器352kは、乗算器352iの出力Y3と乗算器352jの出力Y4とを加算した値Y3+Y4を出力する。
 加算器352lは、c0_calと加算器352lの出力Y3+Y4とを加算した値S_corr2を出力する。S_corr2は、正弦信号C(θ)の補正値であり、以下のように表される。
Figure JPOXMLDOC01-appb-M000065
 以下、上記の回転角度検出装置350において、回転角度誤差が抑制される理由について、詳細に説明する。
 まず、余弦信号C(θ)および正弦信号S(θ)が、それぞれ以下のように表されるとする。なお、これらの式(66)、式(67)は、実施の形態1で示した式(11)、式(12)と同じものである。
Figure JPOXMLDOC01-appb-M000066
Figure JPOXMLDOC01-appb-M000067
 また、実施の形態1で説明したように、a0_cal=a0、c0_cal=c0、a1_cal=a1、b1_cal=b1、c1_cal=c1、d1_cal=d1である。
 また、上述したように、θr_corr=θrとなり、また回転角度信号θrがモータの実際の回転角度θに一致するとすれば、余弦信号C(θ)の補正値C_corr2および正弦信号S(θ)の補正値S_corr2は、それぞれ以下のようになる。
Figure JPOXMLDOC01-appb-M000068
Figure JPOXMLDOC01-appb-M000069
 したがって、余弦信号C(θ)と補正値C_corr2との差分、および正弦信号S(θ)と補正値S_corr2との差分は、それぞれ以下のようになる。
Figure JPOXMLDOC01-appb-M000070
Figure JPOXMLDOC01-appb-M000071
 次に、式(59)に従って、回転角度信号θrを算出すると、以下のようになる。
Figure JPOXMLDOC01-appb-M000072
 したがって、回転角度算出部355によって算出される回転角度信号θrは、モータの実際の回転角度θと完全に一致する。
 先述した実施の形態1では、余弦信号C(θ)および正弦信号S(θ)が、それぞれ式(11)、式(12)で与えられる場合、式(16)で示されたように、3fの回転角度誤差を抑制することができなかった。
 これに対して、本実施の形態3では、余弦信号C(θ)および正弦信号S(θ)が、それぞれ式(66)、式(67)で与えられる場合、1fの回転角度誤差を零にするだけでなく、3fの回転角度誤差も零にすることができる。
 以上説明したように、本実施の形態3の補正値算出部は、回転角度算出部から遅延部を介して入力される1演算周期前の回転角度信号にさらに基づいて、補正値を算出する。
 実施の形態4
 図10は、本発明の実施の形態4に係る回転角度検出装置450を含む、回転角度検出システム400の構成を示すブロック図である。
 実施の形態4に係る回転角度検出装置450では、M+N=2を満たす0以上の各整数M、Nについて、正弦信号のM乗と余弦信号のN乗との積に対して、ローパスフィルタを適用した結果に基づいて、正弦信号および余弦信号に含まれるM+N-1=1次成分の係数を同定する。
 回転角度検出装置450は、正弦信号S(θ)と余弦信号C(θ)との積に基づいて中間信号TMP1を生成する中間信号生成部461と、乗算部462と、加算部463と、回転角度算出部455とを含んでいる。
 図11に示されるように、中間信号生成部461は、乗算器461aと、ローパスフィルタ(LPF)461bと、乗算器461cとを含んでいる。
 乗算器461aは、正弦信号S(θ)と余弦信号C(θ)との積S(θ)・C(θ)を算出する。すなわち、M+N=2である。
 ローパスフィルタ461bのカットオフ周波数は、正弦信号S(θ)および余弦信号C(θ)の基本波の周波数の2倍以上の周波数成分を除去する値に設定されている。したがって、ローパスフィルタ461bの出力X461bは、乗算器461aの出力S(θ)・C(θ)から、これに含まれる正弦信号S(θ)および余弦信号C(θ)の基本波の周波数の2倍以上の周波数成分が除去された信号になる。
 乗算器461cは、ローパスフィルタ461bの出力X461bに、-2/(K・K)=-2/(K2)を乗算する。したがって、乗算器461cの出力、すなわち中間信号生成部461の出力TMP1=(-2/(K2))・X461bである。ここで、Kは、正弦信号S(θ)または余弦信号(θ)の振幅である。
 なお、Kの求め方としては、事前にオフラインで計測した振幅値をKに設定することができる。あるいは、特許文献1に記載されているように、正弦信号S(θ)または余弦信号C(θ)の山の値および谷の値を読み込むことによって、オンラインで算出することもできる。
 図10に戻って、中間信号生成部461によって生成された中間信号TMP1は、乗算部462に入力される。乗算部462では、中間信号TMP1に正弦信号S(θ)が乗算される。したがって、乗算部462の出力OUT1=TMP1・S(θ)である。
 乗算部462の出力OUT1は、加算部463に入力される。加算部463では、余弦信号C(S)とOUT1とが加算される。したがって、加算部463の出力C_corr3(θ)=C(θ)+OUT1である。
 加算部463の出力C_corr3(θ)=C(θ)+OUT1は、回転角度算出部455に入力される。また、回転角度算出部455には、正弦信号S(θ)も入力される。
 回転角度算出部455は、加算部463の出力C_corr3(θ)=C(θ)+OUT1および正弦信号S(θ)に基づいて、以下の式に従って、回転角度信号θrを算出する。
Figure JPOXMLDOC01-appb-M000073
 以下、上記の回転角度検出装置450において、回転角度誤差が抑制される理由について、詳細に説明する。
 まず、正弦信号S(θ)および余弦信号C(θ)が、それぞれ以下のように表されるものとする。
Figure JPOXMLDOC01-appb-M000074
Figure JPOXMLDOC01-appb-M000075
 すなわち、正弦信号S(θ)と余弦信号C(θ)との位相差は、π/2+α[rad]である。そして、余弦信号C(θ)に含まれるαによって、正弦信号S(θ)と余弦信号C(θ)との直交性が低下しているものとする。
 ここで、正弦信号と余弦信号との直交性について補足説明する。正弦信号S(θ)と余弦信号C(θ)との位相差が90度に一致する場合、正弦信号S(θ)と余弦信号C(θ)とは直交している、あるいは直交性があると定義する。一方、正弦信号S(θ)と余弦信号C(θ)との位相差が90度に一致しない場合、正弦信号S(θ)と余弦信号C(θ)とは直交していない、あるいは直交性がないと定義する。また、直交性が高いとは、正弦信号S(θ)と余弦信号C(θ)との位相差が90度に近いことを意味し、直交性が低いとは、正弦信号S(θ)と余弦信号C(θ)との位相差が90度から離れていることを意味する。
 これらの正弦信号S(θ)および余弦信号C(θ)がそのまま回転角度算出部455に入力された場合、上記のOUT1が0であると仮定すると、回転角度信号θrには、モータの実際の回転角度θに対して、2fの回転角度誤差が生じることになる。この2fの回転角度誤差を抑制することが、本実施の形態4の目的である。
 ここで、式(75)を展開すると、以下のようになる。
Figure JPOXMLDOC01-appb-M000076
 ここで、αが十分に小さいと仮定すると、cos(α)≒1と近似できる。したがって、式(75)は以下のように変形することができる。
Figure JPOXMLDOC01-appb-M000077
 この式(77)から、右辺第2項を消去することができれば、正弦信号S(θ)と余弦信号C(θ)との直交性が改善されることになる。
 回転角度検出装置450における中間信号生成部461および乗算部462の目的は、式(77)の右辺第2項を抽出することにある。先述したように、中間信号生成部461では、乗算器461aによって正弦信号S(θ)と余弦信号C(θ)との積S(θ)・C(θ)が算出される。ここで、S(θ)・C(θ)を展開すると、以下のようになる。
Figure JPOXMLDOC01-appb-M000078
 式(78)において、右辺第1項はαで定まる直流項である。また、右辺第2項および第3項は、正弦信号S(θ)および余弦信号(θ)の基本波の周波数の2倍の周波数で振動するsin(2θ)およびcos(2θ)を含んでいる。
 式(78)の信号をローパスフィルタ461bに通すと、式(78)の右辺第2項および第3項が除去されるため、その出力X461bは、以下のようになる。
Figure JPOXMLDOC01-appb-M000079
 式(79)の信号を乗算器461cに通すと、その出力TMP1は、以下のようになる。
Figure JPOXMLDOC01-appb-M000080
 式(80)の中間信号TMP1を回転角度検出装置450の乗算部462に通すと、その出力OUT1は、以下のようになる。
Figure JPOXMLDOC01-appb-M000081
 式(81)の-1倍は、式(77)の右辺第2項に一致することがわかる。
 回転角度検出装置450の加算部463では、以下の演算が実施される。
Figure JPOXMLDOC01-appb-M000082
 先述したように、式(74)の正弦信号S(θ)と式(75)の余弦信号C(θ)とは直交していなかったが、上記の演算によって、式(77)の右辺第2項が除去される。その結果、回転角度算出部455には、式(74)の正弦信号S(θ)と、これに直交する式(82)の信号とが入力されることになる。
 回転角度算出部455では、以下の演算が実施され、2fの回転角度誤差が抑制される。
Figure JPOXMLDOC01-appb-M000083
 なお、上記の回転角度検出装置450の構成は、正弦信号S(θ)と余弦信号C(θ)との積S(θ)・C(θ)に基づいて中間信号TMP1を生成し、中間信号TMP1に正弦信号S(θ)を乗算し、この乗算結果OUT1と余弦信号C(θ)とを加算するものであった。
 しかしながら、本実施の形態4の構成は、これに限定されるものではない。例えば、正弦信号S(θ)および余弦信号C(θ)を、それぞれ以下のように表すこともできる。
Figure JPOXMLDOC01-appb-M000084
Figure JPOXMLDOC01-appb-M000085
 この場合、回転角度検出装置450の構成は、正弦信号S(θ)と余弦信号(θ)との積S(θ)・C(θ)に基づいて中間信号TMP1を生成し、中間信号TMP1に余弦信号C(θ)を乗算し、この乗算結果OUT1を正弦信号S(θ)から減算するものとすることができる。
 以上をまとめると、本発明の実施の形態4に係る回転角度検出装置は、回転体の回転角度に基づく正弦信号と余弦信号との積に基づいて、中間信号を生成する中間信号生成部と、中間信号に正弦信号および余弦信号のいずれか一方を乗算する乗算部と、正弦信号および余弦信号のいずれか他方と乗算部の出力とを加算するか、または正弦信号および余弦信号のいずれか他方から乗算部の出力を減算する、加減算部と、正弦信号および余弦信号のいずれか一方並びに加減算部の出力に基づいて、回転体の回転角度を算出する回転角度算出部とを備えている。
 また、中間信号生成部は、正弦信号と余弦信号との積を算出する乗算器と、乗算器の出力から、正弦信号および余弦信号の基本波の周波数の2倍以上の周波数成分を除去するローパスフィルタとを含んでいる。
 実施の形態5.
 図12は、本発明の実施の形態5に係る電動パワーステアリング装置500の構成を示すブロック図である。
 実施の形態5に係る電動パワーステアリング装置500は、実施の形態1に係る回転角度検出システム100から出力される回転角度信号θrに基づいて、車両のステアリング系の操舵トルクを補助するアシストトルクを発生させる。
 電動パワーステアリング装置500は、回転角度検出システム100と、ハンドル501と、前輪502と、ギア503と、トルク検出器504と、電圧指令生成装置506と、交流モータ507とを備えている。
 交流モータ507は、ギア503を介して、ステアリング系の操舵トルクを補助するアシストトルクを発生させる。
 回転角度検出システム100は、交流モータ507の回転角度を検出して、回転角度信号θrを出力する。
 車両の運転手は、ハンドル501を操作することによって、前輪502の操舵を行う。
 トルク検出器504は、ステアリング系の操舵トルクTsを検出する。
 電圧指令生成装置506は、トルク検出器504によって検出される操舵トルクTsと、回転角度検出システム100から出力される回転角度信号θrとに基づいて、交流モータ507に印加する駆動電圧Vを決定する。
 詳細には、まず、電圧指令生成装置506は、操舵トルクTsに基づいて、交流モータ507の電流指令値を算出する。次に、電圧指令生成装置506は、電流指令値と回転角度信号θ\ochrとに基づいて、電圧指令値を算出する。最後に、電圧指令生成装置506は、電圧指令値に基づいて、インバータ等の電力変換器を制御することによって、交流モータ507に印加する駆動電圧Vを決定する。
 上記の制御を実現するためには、例えば、交流モータ507に流れる電流を検出する電流センサを別途設け、電流指令値と電流センサの検出値との偏差に基づいて、電圧指令値を演算する等の公知技術を用いればよい。
 一般に、電動パワーステアリング装置においては、交流モータ507の回転角度の検出精度が重要である。
 例えば、回転角度検出システム100から出力される回転角度信号θrと交流モータ507の実際の回転角度θとの間に、2fの回転角度誤差が生じたと仮定する。この場合、電圧指令生成装置506は、2fの回転角度誤差を含む駆動電圧Vを交流モータに印加してしまう。その結果、交流モータ507の発生させるトルクに2fの回転角度誤差の成分が混入してしまい、リップル、振動、異音等が発生する。
 したがって、電動パワーステアリング装置においては、回転角度検出システム100から出力される回転角度信号θrの精度が非常に重要である。本実施の形態5では、実施の形態1に係る回転角度検出システム100を用いることによって、回転角度信号θrを高精度に算出することができる。
 なお、実施の形態1に係る回転角度検出システム100の代わりに、実施の形態2~4に係る回転角度検出システムを用いても、本実施の形態5と同等またはそれ以上の効果を得ることができる。
 また、上記の実施の形態1~5では、モータの回転角度を検出する手段として、レゾルバを用いていた。しかしながら、実施の形態1~5の適用可能な範囲は、これに限定されるものではない。モータの回転角度に対応する正弦信号および余弦信号を出力する他の検出手段、例えば、MRセンサ、エンコーダ等に対しても、実施の形態1~5を同様に適用することができる。
 また、上述した実施の形態1~5に係る回転角度検出装置における各機能は、処理回路によって実現される。各機能を実現する処理回路は、専用のハードウェアであってもよく、メモリに格納されるプログラムを実行するプロセッサであってもよい。図13は、本発明の実施の形態1~5に係る回転角度検出装置の各機能を専用のハードウェアである処理回路1000で実現する場合を示した構成図である。また、図14は、本発明の実施の形態1~5に係る回転角度検出装置の各機能をプロセッサ2001およびメモリ2002を備えた処理回路2000により実現する場合を示した構成図である。
 処理回路が専用のハードウェアである場合、処理回路1000は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。回転角度検出装置の各部の機能それぞれを個別の処理回路1000で実現してもよいし、各部の機能をまとめて処理回路1000で実現してもよい。
 一方、処理回路がプロセッサ2001の場合、回転角度検出装置の各部の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ2002に格納される。プロセッサ2001は、メモリ2002に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、回転角度検出装置は、処理回路2000により実行されるときに、上述した各制御が結果的に実行されることになるプログラムを格納するためのメモリ2002を備える。
 これらのプログラムは、上述した各部の手順あるいは方法をコンピュータに実行させるものであるともいえる。ここで、メモリ2002とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリが該当する。また、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等も、メモリ2002に該当する。
 なお、上述した各部の機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述した各部の機能を実現することができる。
 50,250,350,450 回転角度検出装置、51,251 係数同定部、52,252,352 補正値算出部、55,255,355,455 回転角度算出部、360 遅延部、461 中間信号生成部、462 乗算部、463 加算部(加減算部)、500 電動パワーステアリング装置、507 交流モータ(回転体)、S(θ) 正弦信号、C(θ) 余弦信号、θr 回転角度信号。

Claims (10)

  1.  回転体の回転角度に基づく正弦信号および余弦信号に基づいて、前記正弦信号および前記余弦信号に含まれる周波数成分の係数を同定する係数同定部と、
     前記係数同定部によって同定された係数に基づいて補正値を算出する補正値算出部と、
     前記正弦信号および前記余弦信号のいずれかまたは両方を前記補正値によって補正した値に基づいて、前記回転体の前記回転角度を算出する回転角度算出部と
    を備える、回転角度検出装置。
  2.  前記係数同定部は、M+N=正の定数を満たす0以上の各整数M、Nについて、前記正弦信号のM乗と前記余弦信号のN乗との積に対して、ローパスフィルタを適用した結果に基づいて、前記正弦信号および前記余弦信号に含まれるM+N-1次成分の係数を同定する、請求項1に記載の回転角度検出装置。
  3.  前記係数同定部は、M+N=1を満たす0以上の各整数M、Nについて、前記正弦信号のM乗と前記余弦信号のN乗との積に対して、ローパスフィルタを適用した結果に基づいて、前記正弦信号および前記余弦信号に含まれるM+N-1=0次成分の係数を同定する、請求項2に記載の回転角度検出装置。
  4.  前記係数同定部は、M+N=3を満たす0以上の各整数M、Nについて、前記正弦信号のM乗と前記余弦信号のN乗との積に対して、ローパスフィルタを適用した結果に基づいて、前記正弦信号および前記余弦信号に含まれるM+N-1=2次成分の係数をさらに同定する、請求項3に記載の回転角度検出装置。
  5.  前記補正値算出部は、前記回転角度算出部から遅延部を介して入力される1演算周期前の回転角度信号にさらに基づいて、前記補正値を算出する、請求項4に記載の回転角度検出装置。
  6.  前記係数同定部は、M+N=2を満たす0以上の各整数M、Nについて、前記正弦信号のM乗と前記余弦信号のN乗との積に対して、ローパスフィルタを適用した結果に基づいて、前記正弦信号および前記余弦信号に含まれるM+N-1=1次成分の係数を同定する、請求項2に記載の回転角度検出装置。
  7.  前記係数同定部は、M+N=3を満たす0以上の各整数M、Nについて、前記正弦信号のM乗と前記余弦信号のN乗との積に対して、ローパスフィルタを適用した結果に基づいて、前記正弦信号および前記余弦信号に含まれるM+N-1=3次成分の係数をさらに同定する、請求項6に記載の回転角度検出装置。
  8.  回転体の回転角度に基づく正弦信号と余弦信号との積に基づいて、中間信号を生成する中間信号生成部と、
     前記中間信号に前記正弦信号および前記余弦信号のいずれか一方を乗算する乗算部と、
     前記正弦信号および前記余弦信号のいずれか他方と前記乗算部の出力とを加算するか、または前記正弦信号および前記余弦信号のいずれか他方から前記乗算部の出力を減算する、加減算部と、
     前記正弦信号および前記余弦信号の前記いずれか一方、並びに、前記加減算部の出力に基づいて、前記回転体の前記回転角度を算出する回転角度算出部と
    を備える、回転角度検出装置。
  9.  前記中間信号生成部は、
     前記正弦信号と前記余弦信号との積を算出する乗算器と、
     前記乗算器の出力から、前記正弦信号および前記余弦信号の基本波の周波数の2倍以上の周波数成分を除去するローパスフィルタと
    を含む、請求項8に記載の回転角度検出装置。
  10.  前記回転体は、電動パワーステアリングのアシストトルクを発生させるモータであり、
     請求項1~9のいずれか一項に記載の回転角度検出装置を含み、該回転角度検出装置から出力される回転角度信号に基づいて、前記モータを制御する、電動パワーステアリング装置。
PCT/JP2019/001738 2019-01-22 2019-01-22 回転角度検出装置、および当該回転角度検出装置を含む電動パワーステアリング装置 WO2020152762A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980089247.6A CN113330282B (zh) 2019-01-22 2019-01-22 旋转角度检测装置及电动助力转向装置
JP2020567689A JP7066306B2 (ja) 2019-01-22 2019-01-22 回転角度検出装置、および当該回転角度検出装置を含む電動パワーステアリング装置
PCT/JP2019/001738 WO2020152762A1 (ja) 2019-01-22 2019-01-22 回転角度検出装置、および当該回転角度検出装置を含む電動パワーステアリング装置
US17/312,115 US20220024517A1 (en) 2019-01-22 2019-01-22 Rotation angle detection device, and electric power steering device including same rotation angle detection device
EP19912010.6A EP3916361B1 (en) 2019-01-22 2019-01-22 Rotation angle detection device, and electric power steering device including same rotation angle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/001738 WO2020152762A1 (ja) 2019-01-22 2019-01-22 回転角度検出装置、および当該回転角度検出装置を含む電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2020152762A1 true WO2020152762A1 (ja) 2020-07-30

Family

ID=71736228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001738 WO2020152762A1 (ja) 2019-01-22 2019-01-22 回転角度検出装置、および当該回転角度検出装置を含む電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US20220024517A1 (ja)
EP (1) EP3916361B1 (ja)
JP (1) JP7066306B2 (ja)
CN (1) CN113330282B (ja)
WO (1) WO2020152762A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7209877B2 (ja) * 2020-02-06 2023-01-20 三菱電機株式会社 角度検出装置
JP7010414B1 (ja) 2020-04-08 2022-01-26 日本精工株式会社 回転角検出装置、電動パワーステアリング装置及び電動パワーステアリング装置の制御方法
CN115388930A (zh) * 2022-09-28 2022-11-25 长春汇通光电技术有限公司 正余弦信号的误差补偿方法及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148812A (ja) * 1983-02-15 1984-08-25 Yaskawa Electric Mfg Co Ltd 検出側におけるレゾルバの位相誤差補償装置
US20040019446A1 (en) * 2002-07-23 2004-01-29 Sang-Hwan Kim Resolver phase calibration system and method
JP2008273478A (ja) 2007-05-07 2008-11-13 Mitsubishi Electric Corp 電動パワーステアリング制御装置
JP2013101023A (ja) * 2011-11-08 2013-05-23 Nikon Corp 位置検出装置、及び駆動装置
JP2013205366A (ja) * 2012-03-29 2013-10-07 Mitsubishi Electric Corp 位置検出器
JP2014032105A (ja) * 2012-08-03 2014-02-20 Canon Inc 計測装置、リソグラフィー装置、および物品の製造方法
JP2017032394A (ja) * 2015-07-31 2017-02-09 Tdk株式会社 角度センサの補正装置および補正方法ならびに角度センサ
WO2017090146A1 (ja) * 2015-11-26 2017-06-01 三菱電機株式会社 角度検出装置及び電動パワーステアリング装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713123B2 (ja) * 2004-10-13 2011-06-29 株式会社ミツトヨ エンコーダ出力信号補正装置
JP2006337208A (ja) * 2005-06-02 2006-12-14 Jtekt Corp 電動パワーステアリング装置
JP2007304000A (ja) * 2006-05-12 2007-11-22 Tokai Rika Co Ltd 回転角度検出装置
JP2009150795A (ja) * 2007-12-21 2009-07-09 Hitachi Ltd 非接触式回転角度検出センサ装置およびその出力補正方法
JP5041419B2 (ja) * 2007-12-28 2012-10-03 東芝機械株式会社 レゾルバ装置およびレゾルバの角度検出装置とその方法
JP5115610B2 (ja) * 2010-09-23 2013-01-09 株式会社デンソー 回転角検出装置、および、これを用いた電動パワーステアリング装置
JP5469053B2 (ja) * 2010-12-22 2014-04-09 オークマ株式会社 位置速度制御装置
JP5836026B2 (ja) * 2011-09-08 2015-12-24 三菱重工業株式会社 誤差周波数成分取得装置、回転角度取得装置およびモータ制御装置
JP5762622B2 (ja) * 2012-03-16 2015-08-12 三菱電機株式会社 角度検出装置
JP2014211353A (ja) * 2013-04-18 2014-11-13 株式会社リコー 回転角度検出装置、画像処理装置及び回転角度検出方法
KR20170029608A (ko) * 2014-08-14 2017-03-15 콘티넨탈 오토모티브 게엠베하 2개의 센서 신호 간의 직교성 에러를 결정하는 방법
WO2017068684A1 (ja) * 2015-10-22 2017-04-27 三菱電機株式会社 角度検出装置
US10312837B2 (en) * 2016-05-02 2019-06-04 Canon Kabushiki Kaisha Information processing apparatus, and recording medium storing computer program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148812A (ja) * 1983-02-15 1984-08-25 Yaskawa Electric Mfg Co Ltd 検出側におけるレゾルバの位相誤差補償装置
US20040019446A1 (en) * 2002-07-23 2004-01-29 Sang-Hwan Kim Resolver phase calibration system and method
JP2008273478A (ja) 2007-05-07 2008-11-13 Mitsubishi Electric Corp 電動パワーステアリング制御装置
JP2013101023A (ja) * 2011-11-08 2013-05-23 Nikon Corp 位置検出装置、及び駆動装置
JP2013205366A (ja) * 2012-03-29 2013-10-07 Mitsubishi Electric Corp 位置検出器
JP2014032105A (ja) * 2012-08-03 2014-02-20 Canon Inc 計測装置、リソグラフィー装置、および物品の製造方法
JP2017032394A (ja) * 2015-07-31 2017-02-09 Tdk株式会社 角度センサの補正装置および補正方法ならびに角度センサ
WO2017090146A1 (ja) * 2015-11-26 2017-06-01 三菱電機株式会社 角度検出装置及び電動パワーステアリング装置

Also Published As

Publication number Publication date
JPWO2020152762A1 (ja) 2021-09-09
CN113330282B (zh) 2023-10-10
EP3916361A4 (en) 2022-01-19
EP3916361B1 (en) 2023-05-10
JP7066306B2 (ja) 2022-05-13
EP3916361A1 (en) 2021-12-01
CN113330282A (zh) 2021-08-31
US20220024517A1 (en) 2022-01-27

Similar Documents

Publication Publication Date Title
EP2827106B1 (en) Angle detection device
CN100522721C (zh) 电动式动力转向装置,及检测其角度检测器异常的方法
JP5417195B2 (ja) 永久磁石モータのトルクリプル抑制制御装置、電動パワーステアリングシステム
WO2020152762A1 (ja) 回転角度検出装置、および当該回転角度検出装置を含む電動パワーステアリング装置
US9973128B2 (en) Control device
US20040095089A1 (en) Transient compensation voltage estimation for feedforward sinusoidal brushless motor control
JP6779227B2 (ja) 角度検出装置および電動パワーステアリング装置
WO2016139849A1 (ja) レゾルバ装置
JP2009156852A (ja) レゾルバ装置およびレゾルバの角度検出装置とその方法
JP7055222B2 (ja) 角度検出装置、およびそれを用いた電動パワーステアリング装置
JP2004359178A (ja) 電動パワーステアリング制御装置及び制御方法
JP7435269B2 (ja) 回転角度演算装置の補正方法、回転角度演算装置、モータ制御装置、電動アクチュエータ製品及び電動パワーステアリング装置
WO2020152761A1 (ja) 回転角度検出装置、および当該回転角度検出装置を含む電動パワーステアリング装置
JP2002350181A (ja) レゾルバ及び回転角検出装置
JP7200560B2 (ja) サーボ制御装置及びサーボシステム
US11837979B2 (en) Electric motor control device and electric power steering apparatus using the same
JP6256080B2 (ja) レゾルバの異常検出装置
WO2023100886A1 (ja) 信号生成装置およびエレベータ
JP2008117262A (ja) 位置決め装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567689

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019912010

Country of ref document: EP

Effective date: 20210823