WO2017068684A1 - 角度検出装置 - Google Patents

角度検出装置 Download PDF

Info

Publication number
WO2017068684A1
WO2017068684A1 PCT/JP2015/079829 JP2015079829W WO2017068684A1 WO 2017068684 A1 WO2017068684 A1 WO 2017068684A1 JP 2015079829 W JP2015079829 W JP 2015079829W WO 2017068684 A1 WO2017068684 A1 WO 2017068684A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
detection signal
angle
correction
detection
Prior art date
Application number
PCT/JP2015/079829
Other languages
English (en)
French (fr)
Inventor
古川 晃
航 尾崎
佑 川野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/079829 priority Critical patent/WO2017068684A1/ja
Priority to US15/754,114 priority patent/US10788319B2/en
Priority to JP2017546485A priority patent/JP6510064B2/ja
Priority to EP16857268.3A priority patent/EP3367069B1/en
Priority to PCT/JP2016/079354 priority patent/WO2017068952A1/ja
Priority to CN201680059558.4A priority patent/CN108139232B/zh
Publication of WO2017068684A1 publication Critical patent/WO2017068684A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2448Correction of gain, threshold, offset or phase control

Definitions

  • the present invention relates to an angle detection device for reducing an angle detection error.
  • This patent document 1 corrects the sine signal and cosine signal of the resolver subjected to the midpoint correction by multiplying by an amplitude correction coefficient stored in advance in an EEPROM or the like, thereby correcting the first-order rotation signal error. Rotational second-order angle error caused by the above is reduced.
  • This Patent Document 2 adds an input signal from two rotation detectors arranged at 90 deg intervals, or subtracts a signal input from two rotation detectors arranged at 180 deg intervals. The angular error of the secondary rotation caused by the deformation in the shape is removed.
  • JP 2008-273478 A Japanese Patent No. 448137
  • Patent Document 1 By using the detection method according to Patent Document 1, it is possible to reduce a rotation primary angle error caused by an offset error included in a sine signal and a cosine signal or a rotation secondary angle error caused by an amplitude ratio. However, there is a problem that it is not possible to reduce the rotation secondary angle error caused by the rotation third-order signal error caused by the positional deviation of the rotation sensor.
  • the present invention has been made to solve the above-described problems, and provides an angle detection device capable of reducing an angle error including a rotation secondary component without causing an increase in cost. With the goal.
  • An angle detector calculates a correction signal calculator that generates a correction signal from a sine signal and a cosine signal obtained from the angle detector, and calculates an angle signal of a rotating machine from the correction signal generated by the correction signal calculator.
  • the correction signal calculator expresses either a sine signal or a cosine signal as a first detection signal, and the other as a second detection signal, and n is a correction signal calculator.
  • the angle calculator reduces the error of the (n + 1) th order component included in the angle signal by calculating the angle signal of the rotating machine from the corrected first detection signal and the corrected second detection signal. is there.
  • An angle detector includes a correction signal calculator that generates a correction signal from a sine signal and a cosine signal obtained from the angle detector, and an angle signal of a rotating machine from the correction signal generated by the correction signal calculator.
  • the angle detector includes a correction signal calculator for generating a correction signal from a sine signal and a cosine signal obtained from the angle detector, and an angle signal of the rotating machine from the correction signal generated by the correction signal calculator.
  • the angle is calculated using the correction signal generated from the sine signal and the cosine signal obtained from the angle detector.
  • FIG. 10 It is the schematic diagram which showed the positional relationship of the angle detector and sensor magnet in Embodiment 1 of this invention as XZ plane. It is a block diagram which shows the structure of the angle detection apparatus in Embodiment 1 of this invention.
  • Embodiment 1 of the present invention error components included in the respective signals when appropriate values are given to the coefficients a0 to a3, b1 to b3, c0 to c3, and d1 to d3 of the equation (10) are shown.
  • FIG. The angle error remaining after correcting the rotation primary angle error caused by the offset error included in each signal of FIG. 3 and the rotation secondary angle error caused by the amplitude ratio of the two signals using the method of Patent Document 1.
  • FIG. 10 The angle error remaining after correcting the rotation primary angle error caused by the offset error included in each signal of FIG. 3 and the rotation secondary angle error caused by the amplitude ratio of the two signals using the method of Patent Document 1.
  • Embodiment 1 of this invention After correcting the rotation primary angle error caused by the offset error included in each signal of FIG. 3 and the rotation secondary angle error caused by the amplitude ratio of the two signals using the method of Embodiment 1 of the present invention. It is the figure which showed the angle error which remains. In Embodiment 1 of this invention, it is the example figure different from previous FIG. 4 which showed the error component contained in each signal. It is the figure which showed the angle error which remains after correcting the angle error contained in each signal of FIG. 6 using the method of patent document 1. FIG. It is the figure which showed the angle error which remains after correcting the angle error contained in each signal of FIG. 6 using the method of Embodiment 1 of this invention.
  • the rotation primary angle error caused by the offset error included in each signal of FIG. 3 and the amplitude ratio of the two signals is calculated. It is the figure which showed the angle error which remains after correction
  • a rotation primary angle error caused by the offset error included in each signal of FIG. 3 and a rotation secondary angle error caused by the amplitude ratio of the two signals are calculated. It is the figure which showed the angle error which remains after correction
  • the rotation primary angle error caused by the offset error included in each signal in FIG. 3 and the rotation secondary angle error caused by the amplitude ratio of the two signals is calculated.
  • Embodiment 1 FIG. Examples of the angle detector 1 used in the angle detection device of the present invention include a resolver, a sensor using a magnetoresistive element (hereinafter referred to as an MR sensor), an encoder, and a Hall element. Since the same effect can be obtained regardless of which detector is used, an MR sensor will be described as an example here.
  • FIG. 1 is a schematic diagram showing the positional relationship between the angle detector 1 and the sensor magnet 5 in the first embodiment of the present invention as an XZ plane.
  • the direction from the front to the back of the page perpendicular to the XZ plane is the Y axis.
  • the angle detector 1 detects a magnetic field generated by the sensor magnet 5 and outputs a sine signal Vsin and a cosine signal Vcos.
  • the magnetic field Hr and magnetic field H ⁇ generated by the sensor magnet 5 are given by the following equation (1), where m is the magnetic dipole moment and ⁇ 0 is the vacuum permeability.
  • the magnetic field detected by the angle detector 1 by the generation of the sensor magnet 5 changes according to the angle.
  • the magnetic field Hr and the magnetic field H ⁇ are given by the following expression (2).
  • the magnetic field Hr and the magnetic field H ⁇ are magnetic field vectors having the same magnitude and different directions on the XY plane, and the angle error caused by the positional deviation of the angle detector 1 is ideally zero.
  • the magnetic field of the XY direction component is superimposed on the error component in addition to the fundamental wave component. Become. Therefore, the magnetic field vector hall is divided into XYZ direction components and is given by the following expression (3).
  • the angle detector 1 is often used in a state saturated in the direction of the principal component vector of the magnetic field.
  • the error component that appears in the normal direction component of the principal component vector can be actually detected. For example, if the X direction component is detected as the cosine signal Vcos and the Y direction component is detected as the sine signal Vsin, each signal is given by the following equation (4).
  • the angle error ⁇ is the rotation second order component as in the following equation (5). Given in.
  • FIG. 2 is a block diagram showing the configuration of the angle detection apparatus according to Embodiment 1 of the present invention.
  • the angle detection apparatus according to the first embodiment shown in FIG. 2 includes an angle detector 1, a correction signal calculator 2, and an angle calculator 3.
  • the angle detector 1 outputs a sine signal Vsin and a cosine signal Vcos according to the angle of the rotor.
  • the correction signal calculator corrects the sine signal Vsin and the cosine signal Vcos obtained by the angle detector 1 by a method described later, and outputs a corrected sine signal Vsin ′ and a corrected cosine signal Vcos ′.
  • the angle calculator 3 calculates the angle ⁇ according to the following equation (8), for example, using the corrected sine signal Vsin ′ and the corrected cosine signal Vcos ′ obtained by the correction signal calculator 2.
  • the angle ⁇ may be calculated using a predetermined conversion table.
  • the correction signal calculator 2 when the cosine signal is expressed as a first detection signal and the sine signal as a second detection signal will be described. Even when the sine signal is the first detection signal and the cosine signal is the second detection signal, the correction coefficient determined based on the same concept can be used, and the same effect can be obtained.
  • the components other than the above equation (10) are error components.
  • FIG. 3 shows the respective signals when appropriate values are given to the coefficients a0 to a3, b1 to b3, c0 to c3, and d1 to d3 of the above equation (10) in the first embodiment of the present invention. It is the example figure which showed the error component contained. As shown in FIG. 3, rotation zero-order to third-order errors are superimposed on the Vcos error and Vsin error signals.
  • FIG. 4 shows a method after correcting the rotation primary angle error caused by the offset error included in each signal of FIG. 3 and the rotation secondary angle error caused by the amplitude ratio of the two signals using the method of Patent Document 1. It is the figure which showed the angle error which remains.
  • Patent Document 1 cannot reduce angular errors caused by rotational secondary and rotational tertiary error components other than offset errors and amplitude ratio deviations. For this reason, as shown in FIG. 4, in the method of Patent Document 1, the angular error between the rotation primary and the rotation secondary remains as a large value.
  • equation for calculating each signal is not limited to the above equation (14). Needless to say, the same effect can be obtained with other correction formulas as long as the power of the sine signal Vsin or cosine signal Vcos is multiplied by a gain.
  • correction coefficients kc0 to kc3 and ks0 to ks3 are given by the following equation (16) so that the coefficients of the first to fourth order COS function and SIN function become 0, the angle from the rotation first order to the rotation fourth order angle Error can be reduced.
  • the first offset correction value X 0 may be calculated by adding and subtracting 2m-th order (m is an integer of 0 or more) coefficients when the first detection signal and the second detection signal are expanded in Fourier series.
  • the second offset correction value Y 0 may be calculated by adding and subtracting 2m-th order coefficients when the first detection signal and the second detection signal are Fourier series expanded.
  • the gain G 1kx to be multiplied to the power of kx (kx is an odd number of 1 or more) of the first detection signal is the addition of the (2m + 1) th order coefficient when the first detection signal and the second detection signal are expanded by Fourier series.
  • the value obtained by subtraction may be calculated by dividing the fundamental wave amplitude by the power of kx.
  • ky of the first detection signal (ky is 1 or more even number) gain G 1Ky multiplying against squares, when the first detection signal and the second detection signal Fourier series expansion, the addition of 2m order coefficient
  • the value obtained by subtraction may be calculated by dividing the fundamental wave amplitude by the ky power.
  • the gain G 2kx to be multiplied to the kx power of the second detection signal is also obtained by adding and subtracting (2m + 1) th order coefficients when the first detection signal and the second detection signal are expanded by Fourier series. The value may be calculated by dividing the fundamental wave amplitude by the power of kx. Further, the gain G 2ky to be multiplied to the ky power of the second detection signal is a value obtained by adding and subtracting the 2m-th order coefficient when the first detection signal and the second detection signal are expanded by Fourier series. It may be calculated by dividing the fundamental wave amplitude by the ky power.
  • FIG. 5 shows a rotation first-order angle error caused by an offset error included in each signal of FIG. 3 and a rotation second-order angle error caused by an amplitude ratio of two signals using the method of the first embodiment of the present invention. It is the figure which showed the angle error which remains after correct
  • FIG. 3 an angular error ⁇ as shown in the above equation (7) caused by positional deviation and misalignment is assumed.
  • the angle error ⁇ can be reduced even when a signal error as shown in FIG. 6 is included.
  • FIG. 6 is an exemplary diagram different from FIG. 4 showing the error component included in each signal in the first embodiment of the present invention.
  • FIG. 7 is a diagram showing the angular error remaining after correcting the angular error included in each signal of FIG. 6 using the method of Patent Document 1.
  • a rotation first-order to fourth-order angular error is caused by a rotation first-order to third-order error component included in a signal.
  • FIG. 8 is a diagram showing the angular error remaining after correcting the angular error included in each signal of FIG. 6 using the method of the first embodiment of the present invention. More specifically, FIG. 8 shows the angular error remaining when the correction signal calculator 2 performs correction according to the above equation (14). It can be seen that the rotation first to fourth order angular errors remaining in FIG. 7 can be reduced in FIG. 8 due to the effect of the correction according to the first embodiment.
  • the correction signal calculator 2 includes a first offset correction value X 0 , X 1 to X 3 obtained by multiplying the first to third power of the first detection signal by K 11 times to K 13 , respectively, For each of X 4 to X 6 obtained by multiplying the first to the third power of the detection signal by K 21 times to K 23 times, the sum of at least one of X 0 to X 6 is first detected. A corrected first detection signal is calculated by subtracting from the signal.
  • the correction signal calculator 2 includes a second offset correction value Y 0, and Y 3 from Y 1 obtained by 13 times G to 11 times G respectively cubed from the first power of the first detection signal, For Y 4 to Y 6 obtained by multiplying the first to the third power of the second detection signal by G 21 times to G 23 times, at least one of Y 0 to Y 6 is added to the second detection signal. A corrected second detection signal is calculated by subtracting from the signal.
  • the angle calculator 3 calculates the angle signal of the rotating machine from the corrected first detection signal and the corrected second detection signal.
  • the angle detection apparatus according to the first embodiment can obtain an excellent effect that has not been achieved so far, in which an error of the first to fourth order components included in the angle signal can be reduced.
  • the sine signal Vcos and the cosine signal Vsin do not necessarily indicate the raw values detected by the angle detector 1.
  • a value obtained by subtracting 2.5V from the detected raw value may be considered as the sine signal Vcos and the cosine signal Vsin.
  • the correction signal computing unit 2 may perform a process of subtracting 2.5V, and the above equation (14) may be a relational expression considering an offset of 2.5V.
  • sine signal Vcos and the cosine signal Vsin may be subjected to filtering processing by hardware or software in order to reduce the influence of disturbance noise.
  • the angle is calculated using the correction signal generated from the sine signal and the cosine signal obtained from the angle detector.
  • the error component contained in the sine signal and cosine signal is corrected by correcting it with a simple correction formula that can be expressed as the sum of each of the sine signal and cosine signal multiplied by a gain.
  • a configuration is provided in which a signal is generated and an angle is calculated from the generated correction signal. As a result, it is possible to obtain an angle detection device capable of reducing an angle error including a secondary rotation component without causing an increase in cost.
  • Embodiment 2 FIG. In the second embodiment, a case will be described in which the correction signal calculator 2a is used instead of the correction signal calculator 2 and correction processing is performed by a calculation different from that of the first embodiment.
  • correction signal calculator 2a that calculates the corrected sine signal and the corrected cosine signal by the following equation (17) when the sine signal is expressed as the first detection signal and the cosine signal as the second detection signal will be described. .
  • the correction signal calculator 2a is configured so that the following equation (19) is satisfied in view of the fact that the angle error caused by the positional deviation and misalignment of the angle detector 1 is given by the above equation (7). Determine the correction factor.
  • the correction signal calculator 2a may calculate each correction coefficient as shown in the following equation (20), for example.
  • FIG. 9 is a diagram illustrating a rotation quadratic rotation caused by a rotation primary angle error caused by an offset error included in each signal of FIG. 3 and an amplitude ratio of two signals, using the first correction of the second embodiment of the present invention. It is the figure which showed the angle error which remains after correcting this angle error. More specifically, FIG. 9 shows the angular error remaining when the correction signal calculator 2a performs correction based on the correction coefficient defined by the above equation (20).
  • the correction signal calculator 2a calculates the corrected first detection signal by subtracting the first offset correction value from the first detection signal. Further, the correction signal calculator 2 adds the corrected first detection signal multiplied by the second gain to the value obtained by subtracting the second offset correction value from the second detection signal and multiplied by the first gain. Then, the corrected second detection signal is calculated.
  • the angle calculator 3 calculates the angle signal of the rotating machine from the corrected first detection signal and the corrected second detection signal.
  • the angle detection apparatus according to the second embodiment can reduce the first-order and second-order angle errors caused by the errors of the zeroth-order to third-order components included in the sine signal or cosine signal. There can be no excellent effect.
  • correction signal calculator 2a may calculate each correction coefficient as shown in the following equation (21), for example.
  • FIG. 10 is a diagram illustrating a rotation secondary caused by a rotation primary angle error caused by an offset error included in each signal of FIG. 3 and an amplitude ratio of two signals, using the second correction of the second embodiment of the present invention. It is the figure which showed the angle error which remains after correcting this angle error. More specifically, FIG. 10 shows the angular error remaining when the correction signal calculator 2a performs correction based on the correction coefficient defined by the above equation (21).
  • the above equation (21) is expressed as follows.
  • the first gain is obtained by adding or subtracting the sum of the primary component of the first detection signal and the tertiary component of the first detection signal and the second detection signal, and dividing by the primary component of the second detection signal.
  • the second gain is obtained by adding a value obtained by multiplying each of the first and third components of the first detection signal and the first and third components of the second detection signal by 1 or ⁇ 1. It can be obtained by dividing by the primary component of one detection signal or the second detection signal.
  • the first offset correction value can be obtained by adding a value obtained by multiplying each of the zero-order component and the second-order component of the first detection signal and the second-order component of the second detection signal by a coefficient.
  • the second offset correction value can be obtained by adding the second component of the first detection signal and the zeroth component and the second component of the second detection signal multiplied by a coefficient.
  • the angle is calculated using the correction signal generated from the sine signal and the cosine signal obtained from the angle detector.
  • a correction signal is generated by correcting an error component included in the sine signal and the cosine signal by a simple correction expression that can be expressed by a gain and an offset defined by coefficients of the sine signal and the cosine signal,
  • a configuration for calculating an angle from the generated correction signal is provided.
  • Embodiment 3 FIG.
  • the correction signal calculator 2b is used in place of the correction signal calculator 2 or the correction signal calculator 2a, and correction processing is performed by a calculation different from the first and second embodiments. explain.
  • correction signal calculator 2b that calculates the corrected sine signal and the corrected cosine signal by the following equation (22) when the cosine signal is expressed as the first detection signal and the sine signal as the second detection signal will be described. .
  • the correction signal calculator 2b may calculate each correction coefficient as shown in the following equation (23), for example.
  • FIG. 11 is a diagram illustrating a rotation quadratic rotation caused by a rotation primary angle error caused by an offset error included in each signal of FIG. It is the figure which showed the angle error which remains after correcting this angle error. More specifically, FIG. 11 shows the angle error remaining when the correction signal calculator 2b performs correction based on the correction coefficient defined by the above equation (23).
  • correction signal calculator 2b may calculate each correction coefficient as shown in the following equation (24), for example.
  • FIG. 12 is a diagram illustrating a rotation secondary caused by a rotation primary angle error caused by an offset error included in each signal of FIG. It is the figure which showed the angle error which remains after correcting this angle error. More specifically, FIG. 12 shows the angular error remaining when the correction signal calculator 2b performs correction based on the correction coefficient defined by the above equation (24).
  • the angle is calculated using the correction signal generated from the sine signal and the cosine signal obtained from the angle detector.
  • a correction signal is generated by correcting an error component included in the sine signal and the cosine signal by a simple correction expression that can be expressed by a gain and an offset defined by coefficients of the sine signal and the cosine signal,
  • a configuration for calculating an angle from the generated correction signal is provided.
  • Embodiment 4 FIG.
  • the correction signal calculator 2c is used instead of the correction signal calculator 2, the correction signal calculator 2a, or the correction signal calculator 2b, and the calculation is different from that of the first to third embodiments. A case where correction processing is performed will be described.
  • correction signal calculator 2c that calculates the corrected sine signal and the corrected cosine signal by the following equation (25) when the sine signal is expressed as the first detection signal and the cosine signal as the second detection signal will be described. .
  • the correction signal calculator 2c may calculate each correction coefficient as shown in the following equation (26), for example.
  • FIG. 13 is a diagram illustrating a rotation quadratic rotation caused by a rotation primary angle error caused by an offset error included in each signal of FIG. 3 and an amplitude ratio of two signals, using the first correction of the fourth embodiment of the present invention. It is the figure which showed the angle error which remains after correcting this angle error. More specifically, FIG. 13 shows the angular error remaining when the correction signal calculator 2c performs correction based on the correction coefficient defined by the above equation (26).
  • the correction signal calculator 2c calculates the corrected first detection signal by subtracting the first offset correction value from the first detection signal and multiplying by the third gain. Further, the correction signal calculator 2c adds the corrected first detection signal multiplied by the fourth gain to the value obtained by subtracting the second offset correction value from the second detection signal. A detection signal is calculated.
  • the angle calculator 3 calculates the angle signal of the rotating machine from the corrected first detection signal and the corrected second detection signal.
  • the angle detection apparatus according to the fourth embodiment can reduce the first-order and second-order angle errors caused by the errors of the zeroth-order to third-order components included in the sine signal or cosine signal. There can be no excellent effect.
  • correction signal calculator 2c may calculate each correction coefficient as shown in the following equation (27), for example.
  • FIG. 14 is a diagram illustrating the rotation secondary caused by the angular error of the first rotation caused by the offset error included in each signal of FIG. 3 and the amplitude ratio of the two signals, using the second correction of the fourth embodiment of the present invention. It is the figure which showed the angle error which remains after correcting this angle error. More specifically, FIG. 14 shows the angle error remaining when the correction signal calculator 2c performs correction based on the correction coefficient defined by the above equation (27).
  • the above equation (27) is expressed as follows.
  • the third gain is obtained by adding or subtracting the sum of the primary component of the first detection signal and the tertiary component of the first detection signal and the second detection signal, and dividing the result by the primary component of the second detection signal.
  • the fourth gain is obtained by adding a value obtained by multiplying the primary component and the tertiary component of the first detection signal, and the primary component and the tertiary component of the second detection signal by 1 or ⁇ 1, respectively. It can be obtained by dividing by the primary component of one detection signal or the second detection signal.
  • the angle is calculated using the correction signal generated from the sine signal and the cosine signal obtained from the angle detector.
  • a correction signal is generated by correcting an error component included in the sine signal and the cosine signal by a simple correction expression that can be expressed by a gain and an offset defined by coefficients of the sine signal and the cosine signal, A configuration for calculating an angle from the generated correction signal is provided.
  • an angle detection device capable of reducing an angle error including a secondary rotation component without causing an increase in cost.
  • Embodiment 5 FIG.
  • the correction signal calculator 2d is used in place of the correction signal calculator 2, the correction signal calculator 2a, the correction signal calculator 2b, or the correction signal calculator 2c. A case where correction processing is performed by a calculation different from 4 will be described.
  • correction signal calculator 2d that calculates the corrected sine signal and the corrected cosine signal by the following equation (28) when the cosine signal is expressed as the first detection signal and the sine signal as the second detection signal will be described. .
  • the correction signal calculator 2d may calculate each correction coefficient as shown in the following equation (29), for example.
  • FIG. 15 shows the rotation secondary caused by the rotation primary angular error caused by the offset error included in each signal of FIG. 3 and the amplitude ratio of the two signals, using the first correction of the fifth embodiment of the present invention. It is the figure which showed the angle error which remains after correcting this angle error. More specifically, FIG. 15 shows the angular error remaining when the correction signal calculator 2d performs correction based on the correction coefficient defined by the above equation (29).
  • correction signal calculator 2d may calculate each correction coefficient as in the following equation (30), for example.
  • FIG. 16 is a diagram illustrating the rotation secondary caused by the angular error of the rotation primary caused by the offset error included in each signal of FIG. It is the figure which showed the angle error which remains after correcting this angle error. More specifically, FIG. 16 shows the angle error remaining when the correction signal calculator 2d performs correction based on the correction coefficient defined by the above equation (30).
  • the angle is calculated using the correction signal generated from the sine signal and the cosine signal obtained from the angle detector.
  • a correction signal is generated by correcting an error component included in the sine signal and the cosine signal by a simple correction expression that can be expressed by a gain and an offset defined by coefficients of the sine signal and the cosine signal, A configuration for calculating an angle from the generated correction signal is provided.

Abstract

角度検出器から得られる正弦信号と余弦信号から補正信号を生成する補正信号演算器と、補正信号から回転機の角度信号を演算する角度演算器とを備え、補正信号演算器は、正弦信号または余弦信号のうちのいずれか一方を第1検出信号、もう一方を第2検出信号と表現した際に、補正後第1検出信号および補正後第2検出信号を算出し、角度演算器は、補正後第1検出信号と補正後第2検出信号から回転機の角度信号を算出する。

Description

角度検出装置
 本発明は、角度検出誤差の低減を図る角度検出装置に関するものである。
 トルクリップルを低減したモータを提供するために、ロータの回転位置の検出精度の向上が求められている。そして、あらかじめEEPROMなどに記憶したレゾルバの正弦信号と余弦信号の中点補正値を用いて検出信号を補正することで、回転0次の信号誤差によって生じる回転1次の角度誤差を低減する従来の電動パワーステアリング制御装置がある(例えば、特許文献1参照)。
 この特許文献1は、中点補正を施されたレゾルバの正弦信号と余弦信号に対して、あらかじめEEPROMなどに記憶しておいた振幅補正係数を乗じて補正することで、回転1次の信号誤差によって生じる回転2次の角度誤差を低減している。
 また、90deg間隔で配置された3つまたは4つの回転検出器から得られた信号を用いて、偏心によって生じる回転1次の角度誤差を除去する従来技術がある(例えば、特許文献2参照)。
 この特許文献2は、90deg間隔で配置された2つの回転検出器から入力した信号を加算するか、または、180deg間隔で配置された2つの回転検出器から入力した信号を減算することで、楕円状に変形することによって生じる回転2次の角度誤差を除去している。
特開2008-273478号公報 特許第4481137号公報
 しかしながら、従来技術には、以下のような課題がある。
 特許文献1による検出方法を用いれば、正弦信号と余弦信号に含まれるオフセット誤差によって生じる回転1次の角度誤差、あるいは振幅比によって生じる回転2次の角度誤差を低減することができる。しかしながら、回転センサの位置ずれによって生じる回転3次の信号誤差を起因とする回転2次の角度誤差を低減することはできないといった問題がある。
 また、特許文献2による検出方法によれば、3つまたは4つの回転検出器を用いることで、偏心あるいは楕円状の変形によって生じる回転1次または2次の角度誤差を低減できる。しかしながら、複数個の回転検出器が必要なため、高コストな構造となるといった問題がある。
 本発明は、前記のような課題を解決するためになされたものであり、コストの増加を招くことなく、回転2次の成分も含めた角度誤差を低減することのできる角度検出装置を得ることを目的とする。
 本発明に係る角度検出器は、角度検出器から得られる正弦信号と余弦信号から補正信号を生成する補正信号演算器と、補正信号演算器で生成された補正信号から回転機の角度信号を演算する角度演算器とを備える角度検出装置であって、補正信号演算器は、正弦信号または余弦信号のうちのいずれか一方を第1検出信号、もう一方を第2検出信号と表現し、nを自然数としたとき、第1オフセット補正値X0と、第1検出信号の1乗からn乗に対してそれぞれK11倍からK1n倍して得られるX1からXnと、第2検出信号の1乗からn乗に対してそれぞれK21倍からK2n倍して得られるXn+1からX2nについて、X0からX2nのうち少なくとも1つ以上の和を、第1検出信号から減算して補正後第1検出信号を算出し、第2オフセット補正値Y0と、第1検出信号の1乗からn乗に対してそれぞれG11倍からG1n倍して得られるY1からYnと、第2検出信号の1乗からn乗に対してそれぞれG21倍からG2n倍して得られるYn+1からY2nについて、Y0からY2nのうち少なくとも1つ以上の和を、第2検出信号から減算して補正後第2検出信号を算出し、角度演算器は、補正後第1検出信号と補正後第2検出信号から回転機の角度信号を算出することで、角度信号に含まれる1次から(n+1)次成分の誤差を低減するものである。
 また、本発明に係る角度検出器は、角度検出器から得られる正弦信号と余弦信号から補正信号を生成する補正信号演算器と、補正信号演算器で生成された補正信号から回転機の角度信号を演算する角度演算器とを備える角度検出装置であって、補正信号演算器は、余弦信号Vcosを、Vcos=a0+a1cosθ+b1sinθ+a2cos2θ+b2sin2θ・・・、正弦信号Vsinを、Vsin=c0+c1cosθ+d1sinθ+c2cos2θ+d2sin2θ・・・とし、正弦信号または余弦信号のうちのいずれか一方を第1検出信号、もう一方を第2検出信号と表現したとき、第1検出信号から第1オフセット補正値を減算して補正後第1検出信号を算出し、第2検出信号から第2オフセット補正値を減算して第1ゲインを掛けたものに対して、補正後第1検出信号に第2ゲインを掛けたものを加算して補正後第2検出信号を算出し、角度演算器は、補正後第1検出信号と補正後第2検出信号から回転機の角度信号を算出することで、正弦信号または余弦信号に含まれる0次から3次成分の誤差から生じる1次および2次の角度誤差を低減するものである。
 さらに、本発明に係る角度検出器は、角度検出器から得られる正弦信号と余弦信号から補正信号を生成する補正信号演算器と、補正信号演算器で生成された補正信号から回転機の角度信号を演算する角度演算器とを備える角度検出装置であって、補正信号演算器は、余弦信号Vcosを、Vcos=a0+a1cosθ+b1sinθ+a2cos2θ+b2sin2θ・・・、正弦信号Vsinを、Vsin=c0+c1cosθ+d1sinθ+c2cos2θ+d2sin2θ・・・とし、正弦信号または余弦信号のうちのいずれか一方を第1検出信号、もう一方を第2検出信号と表現したとき、第1検出信号から第1オフセット補正値を減算して第3ゲインを掛けて補正後第1検出信号を算出し、第2検出信号から第2オフセット補正値を減算したものに対して補正後第1検出信号に第4ゲインを掛けたものを加算して補正後第2検出信号を算出し、角度演算器は、補正後第1検出信号と補正後第2検出信号から回転機の角度信号を算出することで、正弦信号または余弦信号に含まれる0次から3次成分の誤差から生じる1次および2次の角度誤差を低減するものである。
 本発明によれば、角度検出器から得られる正弦信号と余弦信号から生成した補正信号を用いて角度を計算する構成を備えている。この結果、コストの増加を招くことなく、回転2次の成分も含めた角度誤差を低減することのできる角度検出装置を得ることができる。
本発明の実施の形態1における角度検出器とセンサマグネットの位置関係をXZ平面として示した模式図である。 本発明の実施の形態1における角度検出装置の構成を示すブロック図である。 本発明の実施の形態1において、式(10)の各係数a0~a3、b1~b3、c0~c3、d1~d3に適当な値を与えたときの、それぞれの信号に含まれる誤差成分を示した例示図である。 特許文献1の方法を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。 本発明の実施の形態1の方法を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。 本発明の実施の形態1において、それぞれの信号に含まれる誤差成分を示した、先の図4とは異なる例示図である。 特許文献1の方法を用いて、図6の各信号に含まれる角度誤差を補正した後に残存する角度誤差を示した図である。 本発明の実施の形態1の方法を用いて、図6の各信号に含まれる角度誤差を補正した後に残存する角度誤差を示した図である。 本発明の実施の形態2の第1の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。 本発明の実施の形態2の第2の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。 本発明の実施の形態3の第1の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。 本発明の実施の形態3の第2の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。 本発明の実施の形態4の第1の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。 本発明の実施の形態4の第2の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。 本発明の実施の形態5の第1の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。 本発明の実施の形態5の第2の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。
 以下、本発明の角度検出装置の各実施の形態について、図に基づいて詳細に説明する。なお、各図において、同一または相当部材、部位については、同一符号を付して説明する。
 実施の形態1.
 本発明の角度検出装置に使用する角度検出器1としては、レゾルバ、磁気抵抗素子を利用したセンサ(以下、MRセンサと称す)、エンコーダ、ホール素子などが挙げられる。いずれの検出器を用いた場合においても、同様の効果が得られるため、ここではMRセンサを例として説明する。
 図1は、本発明の実施の形態1における角度検出器1とセンサマグネット5の位置関係をXZ平面として示した模式図である。なお、XZ平面に垂直な、紙面の表から裏への方向がY軸である。角度検出器1は、センサマグネット5が生成する磁界を検出して、正弦信号Vsinと余弦信号Vcosを出力する。
 センサマグネット5が生成する磁界Hrおよび磁界Hθは、磁気双極子モーメントをm、真空の透磁率をμ0とすると、下式(1)で与えられる。
Figure JPOXMLDOC01-appb-M000001
 センサマグネット5は、ロータとともに回転するため、センサマグネット5が生成することで角度検出器1によって検出される磁界は、角度に応じて変化していく。
 θが90degとなる位置に角度検出器1があり、センサマグネット5の中心軸とZ軸がずれていない場合には、磁界Hrおよび磁界Hθは、下式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000002
 すなわち、この場合には、磁界Hrと磁界Hθは、XY平面上の同じ大きさで方向が異なる磁界ベクトルとなり、角度検出器1の位置ずれによって生じる角度誤差は、理想的には零となる。
 一方、製造上の制約、あるいは製造ばらつきによって、センサマグネット5の中心軸とZ軸がずれている場合には、XY方向成分の磁界は、基本波成分に加えて、誤差成分を重畳したものになる。従って、磁界ベクトルhallは、XYZ方向成分に分けて、下式(3)で与えられる。
Figure JPOXMLDOC01-appb-M000003
 また、角度検出器1は、磁界の主成分ベクトル方向に飽和した状態で使用される場合が多い。その場合には、主成分ベクトルの法線方向成分に出た誤差成分が、実際に検知できるものとなる。例えば、X方向成分を余弦信号Vcosとして、Y方向成分を正弦信号Vsinとして検出するものとすれば、それぞれの信号は、下式(4)のように与えられる。
Figure JPOXMLDOC01-appb-M000004
 上式(4)のような回転1次および回転3次の信号誤差を含む検出信号を用いて角度を算出したとき、角度誤差εは、下式(5)のように、回転2次の成分で与えられる。
Figure JPOXMLDOC01-appb-M000005
 また、センサマグネット5がZ軸からずれた位置を中心として回転した場合についても、同様に計算することができ、余弦信号Vcosおよび正弦信号Vsinは、それぞれ下式(6)のように与えられる。
Figure JPOXMLDOC01-appb-M000006
 上式(6)のような回転0次、回転1次、回転2次および回転3次の信号誤差を含む検出信号を用いて角度を算出したとき、角度誤差εは、下式(7)のように、回転1次および回転2次の成分で与えられる。
Figure JPOXMLDOC01-appb-M000007
 つまり、角度検出器1またはセンサマグネット5が回転軸からずれた場合には、回転0次~回転3次の信号誤差を含む検出信号が得られ、それによって回転1次または回転2次の角度誤差を生じることがわかる。
 そこで、本発明の角度検出装置は、図2に示すような構成の制御ブロックによって、信号誤差によって生じる角度誤差を低減する。図2は、本発明の実施の形態1における角度検出装置の構成を示すブロック図である。図2に示した本実施の形態1における角度検出装置は、角度検出器1、補正信号演算器2、および角度演算器3を備えて構成されている。
 角度検出器1は、ロータの角度に応じて、正弦信号Vsinと余弦信号Vcosを出力する。補正信号演算部器は、角度検出器1で得られた正弦信号Vsinと余弦信号Vcosを、後述の方法で補正して、補正後正弦信号Vsin’と補正後余弦信号Vcos’を出力する。
 角度演算器3は、補正信号演算器2で得られた補正後正弦信号Vsin’と補正後余弦信号Vcos’を用いて、例えば、下式(8)に従って角度θを算出する。
Figure JPOXMLDOC01-appb-M000008
 ここでは、角度θの算出に、上式(8)のような数式を用いたが、あらかじめ定めた変換テーブルを用いて角度θを算出してもよい。
 以下では、余弦信号を第1検出信号、正弦信号を第2検出信号と表現した場合において、補正信号演算器2による補正方法について説明する。なお、正弦信号を第1検出信号、余弦信号を第2検出信号とした場合にも、同様の考え方で決定した補正係数を用いることができ、同様の効果が得られる。
 例えば、上式(6)のように、余弦信号Vcosおよび正弦信号Vsinが表される場合には、それぞれの信号は、下式(9)で与えられる。
Figure JPOXMLDOC01-appb-M000009
 余弦信号Vcosおよび正弦信号Vsinとして理想的な状態は、下式(10)のような成分となっているものである。
Figure JPOXMLDOC01-appb-M000010
 従って、上式(9)の成分のうち、上式(10)以外の成分は、誤差成分ということになる。
 図3は、本発明の実施の形態1において、上式(10)の各係数a0~a3、b1~b3、c0~c3、d1~d3に適当な値を与えたときの、それぞれの信号に含まれる誤差成分を示した例示図である。図3に示すように、Vcos誤差およびVsin誤差のそれぞれの信号に、回転0次から3次の誤差が重畳されている。
 図4は、特許文献1の方法を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。
 特許文献1の方法は、オフセット誤差と振幅比ずれ以外の回転2次および回転3次の誤差成分によって生じる角度誤差を低減することができない。このため、図4に示すように、特許文献1の方法は、回転1次と回転2次の角度誤差が大きな値として残存している。
 誤差成分が基本波成分に対して十分に小さいため、上式(9)の各係数に関しては、下式(11)の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000011
 また、余弦信号Vcosおよび正弦信号Vsinの振幅差は、基本波振幅に対して十分に小さいものであることから、下式(12)が成立する。
Figure JPOXMLDOC01-appb-M000012
 上式(11)および上式(12)の関係から、1と比べて十分に小さい補正係数kc0~kc3、ks0~ks3と信号の累乗の積は、下式(13)のように近似できる。
Figure JPOXMLDOC01-appb-M000013
 上式(9)および上式(13)より、例えば、補正後正弦信号Vsin’と補正後余弦信号Vcos’を下式(14)で与える。
Figure JPOXMLDOC01-appb-M000014
 なお、それぞれの信号を演算する式は、上式(14)に限定されるものではない。正弦信号Vsinまたは余弦信号Vcosの累乗に対して、ゲインを掛けたものの和によって表現できていれば、他の補正式であっても、同様の効果が得られることはいうまでもない。
 補正後正弦信号Vsin’と補正後余弦信号Vcos’によって生じる角度誤差εは、下式(15)で与えられる。
Figure JPOXMLDOC01-appb-M000015
 つまり、1次から4次のCOS関数およびSIN関数の係数が0となるように、下式(16)で補正係数kc0~kc3、ks0~ks3を与えれば、回転1次から回転4次の角度誤差が低減できる。
Figure JPOXMLDOC01-appb-M000016
 第1オフセット補正値X0は、第1検出信号と第2検出信号をフーリエ級数展開したときの、2m次(mは、0以上の整数)の係数の加算および減算によって算出すればよい。
 同様に、第2オフセット補正値Y0も、第1検出信号と第2検出信号をフーリエ級数展開したときの、2m次の係数の加算および減算によって算出すればよい。
 第1検出信号のkx(kxは、1以上の奇数)乗に対して掛けるゲインG1kxは、第1検出信号と第2検出信号をフーリエ級数展開したときの、(2m+1)次の係数の加算および減算によって得られた値を、基本波振幅のkx乗で除して算出すればよい。さらに、第1検出信号のky(kyは、1以上の偶数)乗に対して掛けるゲインG1kyは、第1検出信号と第2検出信号をフーリエ級数展開したときの、2m次の係数の加算および減算によって得られた値を、基本波振幅のky乗で除して算出すればよい。
 同様に、第2検出信号のkx乗に対して掛けるゲインG2kxも、第1検出信号と第2検出信号をフーリエ級数展開したときの、(2m+1)次の係数の加算および減算によって得られた値を、基本波振幅のkx乗で除して算出すればよい。さらに、第2検出信号のky乗に対して掛けるゲインG2kyも、第1検出信号と第2検出信号をフーリエ級数展開したときの、2m次の係数の加算および減算によって得られた値を、基本波振幅のky乗で除して算出すればよい。
 図5は、本発明の実施の形態1の方法を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。より具体的には、この図5は、補正信号演算器2にて、上式(14)による補正をした場合に残存する角度誤差を示している。
 図4、図5の比較から明らかなように、図4において残存していた回転1次と2次の角度誤差は、本実施の形態1による補正の効果により、図5において低減できていることがわかる。
 なお、図3では、位置ずれおよび芯ずれによって生じる上式(7)のような角度誤差εを想定した。しかしながら、本実施の形態1で述べた補正方法を用いると、次の図6のような信号誤差を含む場合においても、角度誤差εを低減できる。図6は、本発明の実施の形態1において、それぞれの信号に含まれる誤差成分を示した、先の図4とは異なる例示図である。
 また、図7は、特許文献1の方法を用いて、図6の各信号に含まれる角度誤差を補正した後に残存する角度誤差を示した図である。図7に示すように、特許文献1の方法は、信号に含まれる回転1次から3次の誤差成分によって、回転1次から4次の角度誤差を生じている。
 一方、図8は、本発明の実施の形態1の方法を用いて、図6の各信号に含まれる角度誤差を補正した後に残存する角度誤差を示した図である。より具体的には、この図8は、補正信号演算器2にて、上式(14)による補正をした場合に残存する角度誤差を示している。図7において残存していた回転1次から4次の角度誤差は、本実施の形態1による補正の効果により、図8において低減できていることがわかる。
 つまり、上式(14)を換言すると、次のようになる。補正信号演算器2は、第1オフセット補正値X0と、第1検出信号の1乗から3乗に対してそれぞれK11倍からK13倍して得られるX1からX3と、第2検出信号の1乗から3乗に対してそれぞれK21倍からK23倍して得られるX4からX6のそれぞれについて、X0からX6のうち少なくとも1つ以上の和を、第1検出信号から減算して、補正後第1検出信号を算出する。
 さらに、補正信号演算器2は、第2オフセット補正値Y0と、第1検出信号の1乗から3乗に対してそれぞれG11倍からG13倍して得られるY1からY3と、前記第2検出信号の1から3乗に対してそれぞれG21倍からG23倍して得られるY4からY6について、Y0からY6のうち少なくとも1つ以上の和を、第2検出信号から減算して、補正後第2検出信号を算出する。
 そして、角度演算器3は、補正後第1検出信号と補正後第2検出信号から、回転機の角度信号を算出する。この結果、本実施の形態1における角度検出装置は、角度信号に含まれる1次から4次成分の誤差を低減することができるという、従来にない優れた効果を得ることができる。
 ここでは、1次から3次の誤差を含んだ信号によって、1次から4次の角度誤差が生じる場合の効果について説明した。しかしながら、1次からn(nは2以上の自然数)次の誤差を含んだ信号によって、1次から(n+1)次の角度誤差が生じる場合においても、同様の効果が得られることはいうまでもない。
 なお、正弦信号Vcosおよび余弦信号Vsinは、必ずしも角度検出器1にて検出した生値を指すものではない。例えば、0~5Vの範囲内で2.5Vをセンターにして使用するような場合であれば、検出した生値から2.5Vを減算したものを正弦信号Vcosおよび余弦信号Vsinとして考えればよい。当然、補正信号演算器2において2.5Vを減算する処理を実施してもよく、上式(14)は、2.5Vのオフセット分を考慮した関係式とすればよい。
 また、正弦信号Vcosおよび余弦信号Vsinは、外乱ノイズの影響を低減するために、ハードウェアまたはソフトウェアによるフィルタ処理を経由したものとしてもよい。
 以上のように、実施の形態1によれば、角度検出器から得られる正弦信号と余弦信号から生成した補正信号を用いて角度を計算する構成を備えている。具体的には、正弦信号と余弦信号に含まれている誤差成分を、正弦信号と余弦信号のそれぞれのn乗に対してゲインをかけたものの和で表せる単純な補正式によって補正することで補正信号を生成し、生成した補正信号から角度を計算する構成を備えている。この結果、コストの増加を招くことなく、回転2次の成分も含めた角度誤差を低減することのできる角度検出装置を得ることができる。
 実施の形態2.
 本実施の形態2では、補正信号演算器2の代わりに、補正信号演算器2aを用い、先の実施の形態1とは異なる演算により、補正処理を行う場合について説明する。
 以下では、正弦信号を第1検出信号、余弦信号を第2検出信号と表現した場合において、下式(17)によって補正後正弦信号および補正後余弦信号を算出する補正信号演算器2aについて説明する。
Figure JPOXMLDOC01-appb-M000017
 上式(9)のような次数成分を含む信号を、上式(17)によって補正した場合の角度誤差εは、tanεとして、下式(18)で与えられる。
Figure JPOXMLDOC01-appb-M000018
 本実施の形態2における補正信号演算器2aは、角度検出器1の位置ずれおよび芯ずれによって生じる角度誤差が上式(7)で与えられることを鑑みて、下式(19)が成り立つように、補正係数を定める。
Figure JPOXMLDOC01-appb-M000019
 補正信号演算器2aは、例えば、下式(20)のように、各補正係数を算出すればよい。
Figure JPOXMLDOC01-appb-M000020
 図9は、本発明の実施の形態2の第1の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。より具体的には、この図9は、補正信号演算器2aにて、上式(20)で定めた補正係数に基づく補正をした場合に残存する角度誤差を示している。
 図4、図9の比較から明らかなように、図4において残存していた回転1次と2次の角度誤差は、本実施の形態2による第1の補正の効果により、図9において低減できていることがわかる。
 つまり、上式(17)を換言すると、次のようになる。補正信号演算器2aは、第1検出信号から第1オフセット補正値を減算して補正後第1検出信号を算出する。さらに、補正信号演算器2は、第2検出信号から第2オフセット補正値を減算して第1ゲインを掛けたものに対して、補正後第1検出信号に第2ゲインを掛けたものを加算して、補正後第2検出信号を算出する。
 そして、角度演算器3は、補正後第1検出信号と補正後第2検出信号から、回転機の角度信号を算出する。この結果、本実施の形態2における角度検出装置は、正弦信号または余弦信号に含まれる0次から3次成分の誤差から生じる1次および2次の角度誤差を低減することができるという、従来にない優れた効果を得ることができる。
 また、補正信号演算器2aは、例えば、下式(21)のように、各補正係数を算出してもよい。
Figure JPOXMLDOC01-appb-M000021
 図10は、本発明の実施の形態2の第2の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。より具体的には、この図10は、補正信号演算器2aにて、上式(21)で定めた補正係数に基づく補正をした場合に残存する角度誤差を示している。
 図4、図10の比較から明らかなように、図4において残存していた回転1次と2次の角度誤差は、本実施の形態2による第2の補正の効果により、図10において低減できていることがわかる。
 なお、第2の補正においては、上式(20)に対して上式(21)のような近似式を得た。しかしながら、近似式は、これに限定されるものではなく、同様の考え方で近似したものであれば、同様の効果が得られることはいうまでもない。
 つまり、上式(21)を換言すると、次のようになる。第1ゲインは、第1検出信号の1次成分と、第1検出信号および第2検出信号の3次成分の和を加算または減算したものを、第2検出信号の1次成分で除して得ることができる。また、第2ゲインは、第1検出信号の1次成分と3次成分、第2検出信号の1次成分と3次成分のそれぞれを1倍または-1倍した値を加算したものを、第1検出信号または第2検出信号の1次成分で除して得ることができる。
 また、第1オフセット補正値は、第1検出信号の0次成分と2次成分、第2検出信号の2次成分のそれぞれに係数を掛けたものを加算して得ることができる。さらに、第2オフセット補正値は、第1検出信号の2次成分、第2検出信号の0次成分と2次成分のそれぞれに係数を掛けたものを加算して得ることができる。
 以上のように、実施の形態2によれば、角度検出器から得られる正弦信号と余弦信号から生成した補正信号を用いて角度を計算する構成を備えている。具体的には、正弦信号と余弦信号に含まれている誤差成分を、正弦信号と余弦信号の係数で規定されるゲインおよびオフセットで表せる単純な補正式によって補正することで補正信号を生成し、生成した補正信号から角度を計算する構成を備えている。この結果、コストの増加を招くことなく、回転2次の成分も含めた角度誤差を低減することのできる角度検出装置を得ることができる。
 実施の形態3.
 本実施の形態3では、補正信号演算器2あるいは補正信号演算器2aの代わりに、補正信号演算器2bを用い、先の実施の形態1、2とは異なる演算により、補正処理を行う場合について説明する。
 以下では、余弦信号を第1検出信号、正弦信号を第2検出信号と表現した場合において、下式(22)によって補正後正弦信号および補正後余弦信号を算出する補正信号演算器2bについて説明する。
Figure JPOXMLDOC01-appb-M000022
 補正信号演算器2bは、例えば、下式(23)のように、各補正係数を算出すればよい。
Figure JPOXMLDOC01-appb-M000023
 図11は、本発明の実施の形態3の第1の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。より具体的には、この図11は、補正信号演算器2bにて、上式(23)で定めた補正係数に基づく補正をした場合に残存する角度誤差を示している。
 図4、図11の比較から明らかなように、図4において残存していた回転1次と2次の角度誤差は、本実施の形態3による第1の補正の効果により、図11において低減できていることがわかる。
 また、補正信号演算器2bは、例えば、下式(24)のように、各補正係数を算出してもよい。
Figure JPOXMLDOC01-appb-M000024
 図12は、本発明の実施の形態3の第2の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。より具体的には、この図12は、補正信号演算器2bにて、上式(24)で定めた補正係数に基づく補正をした場合に残存する角度誤差を示している。
 図4、図12の比較から明らかなように、図4において残存していた回転1次と2次の角度誤差は、本実施の形態3による第2の補正の効果により、図12において低減できていることがわかる。
 なお、第2の補正においては、上式(23)に対して上式(24)のような近似式を得た。しかしながら、近似式は、これに限定されるものではなく、同様の考え方で近似したものであれば、同様の効果が得られることはいうまでもない。
 以上のように、実施の形態3によれば、角度検出器から得られる正弦信号と余弦信号から生成した補正信号を用いて角度を計算する構成を備えている。具体的には、正弦信号と余弦信号に含まれている誤差成分を、正弦信号と余弦信号の係数で規定されるゲインおよびオフセットで表せる単純な補正式によって補正することで補正信号を生成し、生成した補正信号から角度を計算する構成を備えている。この結果、コストの増加を招くことなく、回転2次の成分も含めた角度誤差を低減することのできる角度検出装置を得ることができる。
 実施の形態4.
 本実施の形態4では、補正信号演算器2、補正信号演算器2a、あるいは補正信号演算器2bの代わりに、補正信号演算器2cを用い、先の実施の形態1~3とは異なる演算により、補正処理を行う場合について説明する。
 以下では、正弦信号を第1検出信号、余弦信号を第2検出信号と表現した場合において、下式(25)によって補正後正弦信号および補正後余弦信号を算出する補正信号演算器2cについて説明する。
Figure JPOXMLDOC01-appb-M000025
 補正信号演算器2cは、例えば、下式(26)のように、各補正係数を算出すればよい。
Figure JPOXMLDOC01-appb-M000026
 図13は、本発明の実施の形態4の第1の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。より具体的には、この図13は、補正信号演算器2cにて、上式(26)で定めた補正係数に基づく補正をした場合に残存する角度誤差を示している。
 図4、図13の比較から明らかなように、図4において残存していた回転1次と2次の角度誤差は、本実施の形態4による第1の補正の効果により、図13において低減できていることがわかる。
 つまり、上式(25)を換言すると、次のようになる。補正信号演算器2cは、第1検出信号から第1オフセット補正値を減算して第3ゲインを掛けて補正後第1検出信号を算出する。さらに、補正信号演算器2cは、第2検出信号から第2オフセット補正値を減算したものに対して、補正後第1検出信号に第4ゲインを掛けたものを加算して、補正後第2検出信号を算出する。
 そして、角度演算器3は、補正後第1検出信号と補正後第2検出信号から、回転機の角度信号を算出する。この結果、本実施の形態4における角度検出装置は、正弦信号または余弦信号に含まれる0次から3次成分の誤差から生じる1次および2次の角度誤差を低減することができるという、従来にない優れた効果を得ることができる。
 また、補正信号演算器2cは、例えば、下式(27)のように、各補正係数を算出してもよい。
Figure JPOXMLDOC01-appb-M000027
 図14は、本発明の実施の形態4の第2の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。より具体的には、この図14は、補正信号演算器2cにて、上式(27)で定めた補正係数に基づく補正をした場合に残存する角度誤差を示している。
 図4、図14の比較から明らかなように、図4において残存していた回転1次と2次の角度誤差は、本実施の形態4による第2の補正の効果により、図14において低減できていることがわかる。
 なお、第2の補正においては、上式(26)に対して上式(27)のような近似式を得た。しかしながら、近似式は、これに限定されるものではなく、同様の考え方で近似したものであれば、同様の効果が得られることはいうまでもない。
 つまり、上式(27)を換言すると、次のようになる。第3ゲインは、第1検出信号の1次成分と、第1検出信号および第2検出信号の3次成分の和を加算または減算したものを、第2検出信号の1次成分で除して得ることができる。また、第4ゲインは、第1検出信号の1次成分と3次成分、第2検出信号の1次成分と3次成分のそれぞれを1倍または-1倍した値を加算したものを、第1検出信号または第2検出信号の1次成分で除して得ることができる。
 以上のように、実施の形態4によれば、角度検出器から得られる正弦信号と余弦信号から生成した補正信号を用いて角度を計算する構成を備えている。具体的には、正弦信号と余弦信号に含まれている誤差成分を、正弦信号と余弦信号の係数で規定されるゲインおよびオフセットで表せる単純な補正式によって補正することで補正信号を生成し、生成した補正信号から角度を計算する構成を備えている。この結果、コストの増加を招くことなく、回転2次の成分も含めた角度誤差を低減することのできる角度検出装置を得ることができる。
 実施の形態5.
 本実施の形態5では、補正信号演算器2、補正信号演算器2a、補正信号演算器2b、あるいは補正信号演算器2cの代わりに、補正信号演算器2dを用い、先の実施の形態1~4とは異なる演算により、補正処理を行う場合について説明する。
 以下では、余弦信号を第1検出信号、正弦信号を第2検出信号と表現した場合において、下式(28)によって補正後正弦信号および補正後余弦信号を算出する補正信号演算器2dについて説明する。
Figure JPOXMLDOC01-appb-M000028
 補正信号演算器2dは、例えば、下式(29)のように、各補正係数を算出すればよい。
Figure JPOXMLDOC01-appb-M000029
 図15は、本発明の実施の形態5の第1の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。より具体的には、この図15は、補正信号演算器2dにて、上式(29)で定めた補正係数に基づく補正をした場合に残存する角度誤差を示している。
 図4、図15の比較から明らかなように、図4において残存していた回転1次と2次の角度誤差は、本実施の形態5による第1の補正の効果により、図15において低減できていることがわかる。
 また、補正信号演算器2dは、例えば、下式(30)のように、各補正係数を算出してもよい。
Figure JPOXMLDOC01-appb-M000030
 図16は、本発明の実施の形態5の第2の補正を用いて、図3の各信号に含まれるオフセット誤差によって生じる回転1次の角度誤差と2つの信号の振幅比によって生じる回転2次の角度誤差を補正した後に残存する角度誤差を示した図である。より具体的には、この図16は、補正信号演算器2dにて、上式(30)で定めた補正係数に基づく補正をした場合に残存する角度誤差を示している。
 図4、図16の比較から明らかなように、図4において残存していた回転1次と2次の角度誤差は、本実施の形態5による第2の補正の効果により、図16において低減できていることがわかる。
 なお、第2の補正においては、上式(29)に対して上式(30)のような近似式を得た。しかしながら、近似式は、これに限定されるものではなく、同様の考え方で近似したものであれば、同様の効果が得られることはいうまでもない。
 以上のように、実施の形態5によれば、角度検出器から得られる正弦信号と余弦信号から生成した補正信号を用いて角度を計算する構成を備えている。具体的には、正弦信号と余弦信号に含まれている誤差成分を、正弦信号と余弦信号の係数で規定されるゲインおよびオフセットで表せる単純な補正式によって補正することで補正信号を生成し、生成した補正信号から角度を計算する構成を備えている。この結果、コストの増加を招くことなく、回転2次の成分も含めた角度誤差を低減することのできる角度検出装置を得ることができる。

Claims (20)

  1.  角度検出器から得られる正弦信号と余弦信号から補正信号を生成する補正信号演算器と、
     前記補正信号演算器で生成された前記補正信号から回転機の角度信号を演算する角度演算器と
     を備える角度検出装置であって、
     前記補正信号演算器は、
      前記正弦信号または前記余弦信号のうちのいずれか一方を第1検出信号、もう一方を第2検出信号と表現し、nを自然数としたとき、
      第1オフセット補正値X0と、前記第1検出信号の1乗からn乗に対してそれぞれK11倍からK1n倍して得られるX1からXnと、前記第2検出信号の1乗からn乗に対してそれぞれK21倍からK2n倍して得られるXn+1からX2nについて、X0からX2nのうち少なくとも1つ以上の和を、前記第1検出信号から減算して補正後第1検出信号を算出し、
      第2オフセット補正値Y0と、前記第1検出信号の1乗からn乗に対してそれぞれG11倍からG1n倍して得られるY1からYnと、前記第2検出信号の1乗からn乗に対してそれぞれG21倍からG2n倍して得られるYn+1からY2nについて、Y0からY2nのうち少なくとも1つ以上の和を、前記第2検出信号から減算して補正後第2検出信号を算出し、
     前記角度演算器は、前記補正後第1検出信号と前記補正後第2検出信号から前記回転機の角度信号を算出することで、前記角度信号に含まれる1次から(n+1)次成分の誤差を低減する
     角度検出装置。
  2.  前記補正信号演算器は、mを0以上の整数としたとき、前記第1検出信号と前記第2検出信号をフーリエ級数展開したときの2m次の係数の加算および減算によって、前記第1オフセット補正値X0を算出する
     請求項1に記載の角度検出装置。
  3.  前記補正信号演算器は、mを0以上の整数としたとき、前記第1検出信号と前記第2検出信号をフーリエ級数展開したときの2m次の係数の加算および減算によって、前記第2オフセット補正値Y0を算出する
     請求項1または2に記載の角度検出装置。
  4.  前記補正信号演算器は、kxを1以上の奇数、kyを1以上の偶数、mを0以上の整数としたとき、前記第1検出信号と前記第2検出信号をフーリエ級数展開したときの(2m+1)次の係数の加算および減算によって得られた値を基本波振幅のkx乗で除算することによって、前記第1検出信号のkx乗に対して掛けるゲインG1kxを算出する、または前記第1検出信号と前記第2検出信号をフーリエ級数展開したときの2m次の係数の加算および減算によって得られた値を基本波振幅のky乗で除算することによって、前記第1検出信号のky乗に対して掛けるゲインG1kyを算出する
     請求項1から3のいずれか1項に記載の角度検出装置。
  5.  前記補正信号演算器は、kxを1以上の奇数、kyを1以上の偶数、mを0以上の整数としたとき、前記第1検出信号と前記第2検出信号をフーリエ級数展開したときの(2m+1)次の係数の加算および減算によって得られた値を基本波振幅のkx乗で除算することによって、前記第2検出信号のk乗に対して掛けるゲインG2kxを算出する、または前記第1検出信号と前記第2検出信号をフーリエ級数展開したときの2m次の係数の加算および減算によって得られた値を基本波振幅のky乗で除算することによって、前記第2検出信号のky乗に対して掛けるゲインG2kyを算出する
     請求項1から4のいずれか1項に記載の角度検出装置。
  6.  角度検出器から得られる正弦信号と余弦信号から補正信号を生成する補正信号演算器と、
     前記補正信号演算器で生成された前記補正信号から回転機の角度信号を演算する角度演算器と
     を備える角度検出装置であって、
     前記補正信号演算器は、
      前記余弦信号Vcosを、
       Vcos=a0+a1cosθ+b1sinθ+a2cos2θ+b2sin2θ・・・
      前記正弦信号Vsinを、
       Vsin=c0+c1cosθ+d1sinθ+c2cos2θ+d2sin2θ・・・
    とし、前記正弦信号または前記余弦信号のうちのいずれか一方を第1検出信号、もう一方を第2検出信号と表現したとき、
      前記第1検出信号から第1オフセット補正値を減算して補正後第1検出信号を算出し、
      前記第2検出信号から第2オフセット補正値を減算して第1ゲインを掛けたものに対して、補正後第1検出信号に第2ゲインを掛けたものを加算して補正後第2検出信号を算出し、
     前記角度演算器は、前記補正後第1検出信号と前記補正後第2検出信号から前記回転機の角度信号を算出することで、前記正弦信号または前記余弦信号に含まれる0次から3次成分の誤差から生じる1次および2次の角度誤差を低減する
     角度検出装置。
  7.  前記補正信号演算器は、前記第1検出信号の1次成分と、前記第1検出信号および第2検出信号の3次成分との和を加算または減算したものを、第2検出信号の1次成分で除算することによって、前記第1ゲインを算出する
     請求項6に記載の角度検出装置。
  8.  前記補正信号演算器は、
      前記第1検出信号を前記正弦信号としたときには、前記第1ゲインを(a3+d1+d3)/a1として算出し、
      前記第1検出信号を前記余弦信号としたときには、前記第1ゲインを(a1-a3-d3)/d1として算出する
     請求項6または7に記載の角度検出装置。
  9.  前記補正信号演算器は、前記第1検出信号の1次成分と3次成分、前記第2検出信号の1次成分と3次成分のそれぞれを、1倍または-1倍した値を加算したものを、前記第1検出信号または前記第2検出信号の1次成分で除算することによって、前記第2ゲインを算出する
     請求項6から8のいずれか1項に記載の角度検出装置。
  10.  前記補正信号演算器は、前記第2ゲインを(-b1+b3-c1-c3)/a1または(-b1+b3-c1-c3)/d1として算出する
     請求項6から9のいずれか1項に記載の角度検出装置。
  11.  角度検出器から得られる正弦信号と余弦信号から補正信号を生成する補正信号演算器と、
     前記補正信号演算器で生成された前記補正信号から回転機の角度信号を演算する角度演算器と
     を備える角度検出装置であって、
     前記補正信号演算器は、
      前記余弦信号Vcosを、
       Vcos=a0+a1cosθ+b1sinθ+a2cos2θ+b2sin2θ・・・
      前記正弦信号Vsinを、
       Vsin=c0+c1cosθ+d1sinθ+c2cos2θ+d2sin2θ・・・
    とし、前記正弦信号または前記余弦信号のうちのいずれか一方を第1検出信号、もう一方を第2検出信号と表現したとき、
      前記第1検出信号から第1オフセット補正値を減算して第3ゲインを掛けて補正後第1検出信号を算出し、
      前記第2検出信号から第2オフセット補正値を減算したものに対して補正後第1検出信号に第4ゲインを掛けたものを加算して補正後第2検出信号を算出し、
     前記角度演算器は、前記補正後第1検出信号と前記補正後第2検出信号から前記回転機の角度信号を算出することで、前記正弦信号または前記余弦信号に含まれる0次から3次成分の誤差から生じる1次および2次の角度誤差を低減する
     角度検出装置。
  12.  前記角度演算器は、前記第2検出信号の1次成分と、前記第1検出信号および第2検出信号の3次成分との和を加算または減算したものを、第2検出信号の1次成分で除算することによって、前記第3ゲインを算出する請求項11に記載の角度検出装置。
  13.  前記角度演算器は、
      前記第1検出信号を前記正弦信号としたときには、前記第3ゲインを(a1-a3-d3)/d1として算出し、
      前記第1検出信号を前記余弦信号としたときには、前記第3ゲインを(a3+d1+d3)/a1として算出する
     請求項11または12に記載の角度検出装置。
  14.  前記角度演算器は、前記第1検出信号の1次成分と3次成分、前記第2検出信号の1次成分と3次成分のそれぞれを、1倍または-1倍した値を加算したものを、第1検出信号または第2検出信号の1次成分で除算することによって、前記第4ゲインを算出する
     請求項11から13のいずれか1項に記載の角度検出装置。
  15.  前記角度演算器は、前記第4ゲインを(-b1+b3-c1-c3)/a1として算出する
     請求項11から14のいずれか1項に記載の角度検出装置。
  16.  前記角度演算器は、前記第1検出信号の0次成分と2次成分、前記第2検出信号の2次成分のそれぞれに係数を掛けたものを加算することによって、前記第1オフセット補正値を算出する
     請求項6から15のいずれか1項に記載の角度検出装置。
  17.  前記角度演算器は、前記第1検出信号の2次成分、前記第2検出信号の0次成分と2次成分のそれぞれに係数を掛けたものを加算することによって、前記第2オフセット補正値を算出する
     請求項6から16のいずれか1項に記載の角度検出装置。
  18.  前記角度演算器は、
      前記第1検出信号を前記余弦信号としたときには、前記第1オフセット補正値を(2a0-a2-d2)/2として算出し、
      前記第1検出信号を前記正弦信号としたときには、前記第1オフセット補正値を(2c0-b2+c2)/2として算出する
     請求項6から17のいずれか1項に記載の角度検出装置。
  19.  前記角度演算器は、
      前記第1検出信号を前記余弦信号としたときには、前記第2オフセット補正値を(2c0-b2+c2)/2として算出し、
      前記第1検出信号を前記正弦信号としたときには、前記第2オフセット補正値を(2a0-a2-d2)/2として算出する
     請求項6から18のいずれか1項に記載の角度検出装置。
  20.  前記角度検出器は、
      レゾルバ、
      磁気抵抗を利用したセンサ、
      エンコーダ、
      ホール素子
    のいずれかである請求項1から19のいずれか1項に記載の角度検出装置。
PCT/JP2015/079829 2015-10-22 2015-10-22 角度検出装置 WO2017068684A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2015/079829 WO2017068684A1 (ja) 2015-10-22 2015-10-22 角度検出装置
US15/754,114 US10788319B2 (en) 2015-10-22 2016-10-03 Angle detection device
JP2017546485A JP6510064B2 (ja) 2015-10-22 2016-10-03 角度検出装置
EP16857268.3A EP3367069B1 (en) 2015-10-22 2016-10-03 Angle detection device
PCT/JP2016/079354 WO2017068952A1 (ja) 2015-10-22 2016-10-03 角度検出装置
CN201680059558.4A CN108139232B (zh) 2015-10-22 2016-10-03 角度检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079829 WO2017068684A1 (ja) 2015-10-22 2015-10-22 角度検出装置

Publications (1)

Publication Number Publication Date
WO2017068684A1 true WO2017068684A1 (ja) 2017-04-27

Family

ID=58556817

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/079829 WO2017068684A1 (ja) 2015-10-22 2015-10-22 角度検出装置
PCT/JP2016/079354 WO2017068952A1 (ja) 2015-10-22 2016-10-03 角度検出装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/079354 WO2017068952A1 (ja) 2015-10-22 2016-10-03 角度検出装置

Country Status (5)

Country Link
US (1) US10788319B2 (ja)
EP (1) EP3367069B1 (ja)
JP (1) JP6510064B2 (ja)
CN (1) CN108139232B (ja)
WO (2) WO2017068684A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196399A (zh) * 2018-02-27 2019-09-03 恩智浦有限公司 角传感器系统和杂散场消除方法
CN110319766A (zh) * 2018-03-30 2019-10-11 恩智浦有限公司 用于测量角位置的系统以及杂散磁场消除的方法
JP2020046183A (ja) * 2018-09-14 2020-03-26 日本精工株式会社 角度検出装置
JP2020176998A (ja) * 2019-04-23 2020-10-29 ルネサスエレクトロニクス株式会社 半導体装置、モータ制御システム、及びエラー検出方法
EP3792601A4 (en) * 2018-05-11 2022-02-16 Sankyo Seisakusho Co. ANGLE DETECTOR

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068684A1 (ja) * 2015-10-22 2017-04-27 三菱電機株式会社 角度検出装置
US20210323603A1 (en) * 2018-12-18 2021-10-21 Mitsubishi Electric Corporation Angle detection device, and electric power steering device using same
US20220024517A1 (en) * 2019-01-22 2022-01-27 Mitsubishi Electric Corporation Rotation angle detection device, and electric power steering device including same rotation angle detection device
JP6854841B2 (ja) * 2019-04-19 2021-04-07 三菱電機株式会社 角度検出装置
JP2021006769A (ja) * 2019-06-28 2021-01-21 三菱電機株式会社 回転角度検出装置
US11486742B2 (en) 2019-08-16 2022-11-01 Nxp B.V. System with magnetic field shield structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035566A (ja) * 2001-07-23 2003-02-07 Okuma Corp 補正機能付き絶対位置検出器
JP2003344106A (ja) * 2002-05-22 2003-12-03 Mitsubishi Electric Corp 回転角度検出装置
JP2007107886A (ja) * 2005-10-11 2007-04-26 Yaskawa Electric Corp エンコーダ誤差補正装置およびエンコーダ
JP2007304000A (ja) * 2006-05-12 2007-11-22 Tokai Rika Co Ltd 回転角度検出装置
JP2009156852A (ja) * 2007-12-28 2009-07-16 Toshiba Mach Co Ltd レゾルバ装置およびレゾルバの角度検出装置とその方法
JP2014157069A (ja) * 2013-02-15 2014-08-28 Okuma Corp 位置検出装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119958A (en) * 1975-10-23 1978-10-10 The Singer Company Method for achieving high accuracy performance from conventional tracking synchro to digital converter
US4046341A (en) * 1976-03-30 1977-09-06 General Electric Company Aircraft angle-of-attack and sideslip estimator
US4870588A (en) * 1985-10-21 1989-09-26 Sundstrand Data Control, Inc. Signal processor for inertial measurement using coriolis force sensing accelerometer arrangements
JP2680435B2 (ja) 1989-07-26 1997-11-19 シーケーディ株式会社 回転角度検出装置
GB2241337B (en) * 1990-02-24 1994-01-05 Ferranti Int Plc Potentiometric circuit arrangement
JP2001012967A (ja) * 1999-04-28 2001-01-19 Asahi Optical Co Ltd エンコーダおよび磁気式エンコーダを搭載した測量機
US6651496B2 (en) * 2001-09-04 2003-11-25 Scientific Drilling International Inertially-stabilized magnetometer measuring apparatus for use in a borehole rotary environment
JP3938501B2 (ja) * 2001-10-16 2007-06-27 三菱電機株式会社 回転角度検出装置、それを用いた永久磁石型回転電機、及び、永久磁石型回転電機を用いた電動パワーステアリング装置
JP4481137B2 (ja) 2003-11-13 2010-06-16 アスモ株式会社 モータ、回転制御装置、及び回転検出回路
CN1616971B (zh) * 2003-11-13 2010-07-28 阿斯莫株式会社 具有旋转传感器的旋转机器
US7926362B2 (en) * 2005-05-30 2011-04-19 Interfleet Technology Ab Method and a system for determining a plurality of load components on a wheel
US20080158026A1 (en) * 2006-12-29 2008-07-03 O'brien David Compensating for harmonic distortion in an instrument channel
US8400338B2 (en) * 2006-12-29 2013-03-19 Teradyne, Inc. Compensating for harmonic distortion in an instrument channel
JP2008273478A (ja) * 2007-05-07 2008-11-13 Mitsubishi Electric Corp 電動パワーステアリング制御装置
JP5177197B2 (ja) * 2010-10-13 2013-04-03 Tdk株式会社 回転磁界センサ
JP5762622B2 (ja) * 2012-03-16 2015-08-12 三菱電機株式会社 角度検出装置
JP5802588B2 (ja) * 2012-03-23 2015-10-28 株式会社東芝 角度検出装置およびモータ駆動制御装置
JP2013234890A (ja) * 2012-05-08 2013-11-21 Nikon Corp エンコーダ、及び駆動装置
JP6212993B2 (ja) * 2013-07-03 2017-10-18 株式会社リコー 回転角度検出装置、画像処理装置及び回転角度検出方法
JP5933844B2 (ja) * 2013-08-26 2016-06-15 三菱電機株式会社 位置検出器の角度誤差補正装置および角度誤差補正方法
WO2017068684A1 (ja) * 2015-10-22 2017-04-27 三菱電機株式会社 角度検出装置
US10075107B2 (en) * 2015-11-03 2018-09-11 Nxp Usa, Inc. Method and apparatus for motor lock or stall detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035566A (ja) * 2001-07-23 2003-02-07 Okuma Corp 補正機能付き絶対位置検出器
JP2003344106A (ja) * 2002-05-22 2003-12-03 Mitsubishi Electric Corp 回転角度検出装置
JP2007107886A (ja) * 2005-10-11 2007-04-26 Yaskawa Electric Corp エンコーダ誤差補正装置およびエンコーダ
JP2007304000A (ja) * 2006-05-12 2007-11-22 Tokai Rika Co Ltd 回転角度検出装置
JP2009156852A (ja) * 2007-12-28 2009-07-16 Toshiba Mach Co Ltd レゾルバ装置およびレゾルバの角度検出装置とその方法
JP2014157069A (ja) * 2013-02-15 2014-08-28 Okuma Corp 位置検出装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110196399A (zh) * 2018-02-27 2019-09-03 恩智浦有限公司 角传感器系统和杂散场消除方法
CN110319766A (zh) * 2018-03-30 2019-10-11 恩智浦有限公司 用于测量角位置的系统以及杂散磁场消除的方法
EP3792601A4 (en) * 2018-05-11 2022-02-16 Sankyo Seisakusho Co. ANGLE DETECTOR
US11573103B2 (en) 2018-05-11 2023-02-07 Sankyo Seisakusho Co. Angle detector
JP2020046183A (ja) * 2018-09-14 2020-03-26 日本精工株式会社 角度検出装置
JP7095514B2 (ja) 2018-09-14 2022-07-05 日本精工株式会社 角度検出装置
JP2020176998A (ja) * 2019-04-23 2020-10-29 ルネサスエレクトロニクス株式会社 半導体装置、モータ制御システム、及びエラー検出方法
JP7161439B2 (ja) 2019-04-23 2022-10-26 ルネサスエレクトロニクス株式会社 半導体装置及びモータ制御システム

Also Published As

Publication number Publication date
CN108139232A (zh) 2018-06-08
JP6510064B2 (ja) 2019-05-08
JPWO2017068952A1 (ja) 2018-01-11
EP3367069B1 (en) 2021-02-17
EP3367069A1 (en) 2018-08-29
WO2017068952A1 (ja) 2017-04-27
US10788319B2 (en) 2020-09-29
US20180245914A1 (en) 2018-08-30
EP3367069A4 (en) 2019-06-12
CN108139232B (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2017068684A1 (ja) 角度検出装置
JP6779227B2 (ja) 角度検出装置および電動パワーステアリング装置
EP2827106B1 (en) Angle detection device
CN108351197B (zh) 角度检测装置及电动助力转向装置
US10254135B2 (en) Correction apparatus and method for angle sensor, and angle sensor
US10393499B2 (en) Angle determinating method using encoder signal with noise suppression, adjusting method for output signal of encoder and absolute encoder
CN108204825B (zh) 角度传感器的修正装置以及角度传感器
EP2498063A2 (en) Rotation angle detection device
JP6350834B2 (ja) 角度センサおよび角度センサシステム
WO2018168203A1 (ja) 回転センサ
US10852163B2 (en) Rotation angle detection device and rotation angle detection method
JP6319538B1 (ja) 回転角度検出器及びトルクセンサ
US11255703B2 (en) Rotation angle detection device having increased accuracy
CN111721334A (zh) 旋转角度检测装置
JP7066306B2 (ja) 回転角度検出装置、および当該回転角度検出装置を含む電動パワーステアリング装置
WO2020213181A1 (ja) 角度検出装置
JP2020016439A (ja) 角度センサの補正装置および角度センサ
JP7293985B2 (ja) 角度検出装置
JP2023049950A (ja) 回転検出装置および軸受装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP