JP2009156852A - レゾルバ装置およびレゾルバの角度検出装置とその方法 - Google Patents

レゾルバ装置およびレゾルバの角度検出装置とその方法 Download PDF

Info

Publication number
JP2009156852A
JP2009156852A JP2007338940A JP2007338940A JP2009156852A JP 2009156852 A JP2009156852 A JP 2009156852A JP 2007338940 A JP2007338940 A JP 2007338940A JP 2007338940 A JP2007338940 A JP 2007338940A JP 2009156852 A JP2009156852 A JP 2009156852A
Authority
JP
Japan
Prior art keywords
angle
signal
error
resolver
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007338940A
Other languages
English (en)
Other versions
JP5041419B2 (ja
Inventor
Shigetoshi Yokogawa
成年 横川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2007338940A priority Critical patent/JP5041419B2/ja
Priority to US12/341,237 priority patent/US7895010B2/en
Priority to DE102008063089A priority patent/DE102008063089B4/de
Publication of JP2009156852A publication Critical patent/JP2009156852A/ja
Application granted granted Critical
Publication of JP5041419B2 publication Critical patent/JP5041419B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2073Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2449Error correction using hard-stored calibration data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

【課題】検出精度の高いレゾルバ装置を提供する。
【解決手段】レゾルバ(7)において検出された信号から角度信号を検出し、検出した角度信号から速度信号を検出する。レゾルバの誤差波形がレゾルバ固有の決められたn次成分から構成されていること、および、再現性があることを利用して、角度誤差推定器(13)において、検出された誤差を含む角度信号から生成した誤差を含む速度信号の高周波成分を周波数変換、たとえば、フーリエ変換して複数に分割した各成分ごとの誤差の大きさを算出し、算出した誤差を合成して検出誤差を復元した誤差波形信号を生成する。角度信号補正回路(14)において、この誤差波形信号を用いてレゾルバで検出した誤差を含む角度信号を補正する。
【選択図】図6

Description

本発明はレゾルバ装置およびその角度検出装置とその方法に関する。
より特定的には、本発明は検出精度を高めたレゾルバの角度検出装置その方法と、および、当該角度検出装置とレゾルバとを有するレゾルバ装置に関する。
図1はレゾルバ本体7の構成図である。
レゾルバ本体7は、SIN巻線4と、このSIN巻線4と機械的に90度ずれて配設されたCOS巻線5と、ロータ巻線6とを備えており、回転角度(または回転位置)を検出する対象、たとえば、モータの軸(図示せず)がロータ巻線6に接続される。
レゾルバは2相励磁1出力方式と、1相励磁2出力方式とが知られているが、たとえば、2相励磁1出力方式を例示する。
SIN巻線4とCOS巻線5にそれぞれSIN巻線電圧およびCOS巻線電圧が印加され、ロータ巻線6から回転角度検出対象の回転角度に相当する信号が検出される。すなわち、回転角度検出対象が回転するとロータ巻線6が回転し、SIN巻線4およびCOS巻線5との磁束の鎖交状態が変化する。その状態をロータ巻線6からロータ巻線電圧S6として取り出して演算処理することにより、回転角度検出対象の回転角度または位置を検出することができる。
レゾルバは機械的に堅牢であり、劣悪な環境にも耐えるという利点を有しているので、種々の回転角度(または回転位置)の検出に利用されている。
しかしながら、レゾルバは、サーボモータなどの回転角度の検出に使用されているエンコーダと比較すると、検出誤差が大きく検出精度が低いという欠点を有している。そのため、検出誤差を補正することが行われている。
図2はレゾルバの検出誤差の1例を示すグラフである。横軸は実際の角度を示し、縦軸は検出角度を示している。
直線CV1が誤差がない実際の正確な角度を示し、直線CV1の上下に変動している曲線CV2が検出誤差を含む検出角度を示している。
レゾルバの検出誤差は、図2に例示したように、角度に対してその誤差の大きさと方向とが決まっており、再現性はあるものの、検出誤差に関してレゾルバの固体差が大きく、曲線CV2に例示した検出誤差の波形も各レゾルバごとに異なる。したがって、検出精度を高めるため検出誤差を補正する処理もレゾルバ個々に行っていた。
図3は従来の推定角度生成回路14Aの回路構成を示す図である。
推定角度生成回路14Aは、テーブル番号取得部35と、誤差角度データ参照部38と、減算部37とを有する。誤差角度データ参照部38はROM38aを有する。
たとえば、事前に、図2に例示したように、実際の角度と検出角度とを求めて検出誤差を検出し(算出し)、検出した誤差の波形信号をROM38aにテーブルとして格納しておく。実際に検出誤差を補正して角度を算出するとき、レゾルバのロータ巻線から検出した角度検出信号S11からテーブル番号取得部35においてROM38aに格納された誤差の波形信号を読み出すためのアドレス信号S35を生成し、誤差角度データ参照部38がアドレス信号S35に基づいてROM38aから対応する誤差角度データS36を読みだす。さらに、減算部37において、角度検出信号S11から誤差角度データS36を減じて角度検出信号S11の補正を行う。
このように補正した角度を、たとえば、位置フィードバック制御系または速度フィードバック系の角度検出信号として利用する。
レゾルバの検出誤差を補正する他の方法として、たとえば、特許文献1に、1相励磁2出力方式のレゾルバ装置について、従来技術としてアナログ回路を用いてトラッキング方式で角度を算出する方法(図4)、および、このアナログ回路を用いた方法を改善するため、フーリエ変換を用いてデジタル信号処理によって角度を検出する方法が開示されている。
後者の1相励磁2出力方式のレゾルバについてのフーリエ変換法について述べる。
1相励磁2出力方式のレゾルバの(S−sin)信号と、(S−cos)信号と、励磁信号(sinωt)とを入力してA/D変換し、A/D変換した(S−sin)信号と(S−cos)信号とをデジタル的に乗算して乗算結果SA1と、A/D変換した励磁信号(sinωt)にcosωtを乗じて乗算結果SB1を求める処理を、サンプリング数n回だけ反復する。同様に、cos信号にsinωtを乗じて乗算結果CA2、CB2を求める。SA1とSB1との絶対値からsinθの絶対値を求め、CA2とCB2との絶対値からcosθの絶対値を求め、sinθとcosθとのtan- θを求めてtan- テーブルから、デジタル角度θを求める。
特開平11−118520号公報
図3を参照して述べた方法は、レゾルバ1つ1つ毎に、予め、正確な実角度と検出誤差を含む検出角度との関係から検出誤差を検出し、その結果を整理して、たとえば、図3に図解した誤差角度データ参照部38のROM38aに、たとえば、図2に例示したように、実角度と検出角度とを対応させたテーブルとして格納する処理を手作業で行う必要があり、非常に手間がかかるという問題がある。
特に、実際の使用においては、レゾルバと角度検出装置とが1対1に対応していなければならないという制限があり、そのような角度検出装置を用いてレゾルバ個々にそのような作業を行う必要があり、このような手法は汎用のサーボモータ、サーボアンプへの適用には向いていないという不具合がある。
レゾルバ1台毎に、その都度、検出誤差の補正値を決定する場合、たとえば、サーボモータに大きなイナーシャ(慣性体)を取り付け、そのイナーシャの回転慣性を利用して脈動のない一定の回転を実現し、その一定の回転の際に実角度と検出角度を測定して検出角度に含む検出誤差を検出し、検出した検出誤差を整理して、コンピュータのメモリに、実角度と検出角度とを対応させたテーブルとして格納する。そして、上述した方法で、実際に検出角度について検出誤差を補正する。
上述したイナーシャを用いて回転の変動のない状態で実角度と検出角度から検出誤差を測定することは補正の精度を高める上で利点がある。
しかしながら、回転位置の測定の対象となるモータは、たとえば、ロボットや搬送機に取り付けられた状態で電源が投入されて回転する場合が多く、現実には、そのようなイナーシャをモータなどに取り付けることは困難な場合が多い。
特許文献1にはコンピュータによるソフトウェアによる信号処理によるフーリエ変換法のみ開示されている。しかしながら、ソフトウェアによる信号処理では、フーリエ変換処理を始めとし、種々の複雑な演算処理を行うのに処理時間がかかりすぎ、実時間で角度検出対象の角度を検出することができない。したがって、たとえば、高速が回転する回転体、たとえば、モータの回転角度を迅速に検出という用途には適用できない。
特許文献1には開示も示唆もされていないが、迅速な演算を実現するため、コンピュータに代えて、仮に高速な演算処理装置、たとえば、デジタル信号プロセッサ(DSP)を用いたとしても、実時間の角度検出には適さない。また装置の価格が高価になる。
また、特許文献1に開示されている方法は、1相励磁2出力方式のレゾルバを対象としており、レゾルバからの2つの検出信号を用いるので、特許文献1に開示されている方法を適用するとフーリエ変換などの信号処理が複雑になる。
以上から、上述した課題を克服したレゾルバの角度検出装置の提供が望まれている。
本発明は、個々のレゾルバの検出誤差を正確に補正可能な方法と装置、および、レゾルバ装置を提供する。
検出誤差の補正方法
本発明のレゾルバの角度検出装置における検出誤差の補正方法の基本的な技術思想について述べる。
図4は図2に図解した誤差成分のみを取り出したグラフである。横軸は実角度を示し、縦軸は検出誤差を含む検出角度を示す。
レゾルバにおける検出誤差の要因は、レゾルバ内の巻線のアンバランスや巻線の相互干渉によって発生したものであるから、その成分は再現性があり、個々のレゾルバについて限られた成分に集中する。そのような成分を抽出する方法として、検出角度信号について周波数分析を行う。たとえば、周波数分析として、フーリエ変換を行う。
図5は図4に図解した検出誤差成分をフーリエ変換した結果の例を示すグラフである。横軸は成分次数を示し、縦軸はフーリエ変換した強度(スペクトル)を示す。
このように、レゾルバ固有の検出誤差成分は限られた成分に集中するから、主要次数成分で複製(復元)した信号波形は殆ど、そのレゾルバの誤差の実波形と一致する。
このことから、たとえば、図3を参照して例示したように誤差の波形信号をROM38aなどのテーブルとして持つのではなく、回転角度検出対象の1回転の基本波に対する高調波成分の係数として持つことが可能であることを、本願発明者が見いだした。
本発明のレゾルバの角度検出装置およびその方法はかかる知見に基づく。
すなわち、本発明においては、レゾルバの誤差波形がレゾルバ固有の決められたn次成分から構成されていることを利用して、また、再現性があることから、誤差を含む角度検出信号から生成した誤差成分を含む速度信号を、好ましくは、速度信号の高周波成分を周波数変換、たとえば、フーリエ変換して複数に分割した各成分ごとの検出誤差の大きさを算出し、算出した検出誤差を合成して、検出した角度信号に含まれる検出誤差を復元した誤差波形信号を生成する。
そして、この誤差波形信号を用いて検出誤差を含む角度検出信号を補正する。
なお、検出誤差を収束させるため、好ましくは、フーリエ変換の各成分の大きさ(スペクトル)に、ゲイン(利得)を乗じて積算する。そして、収束した各次成分の正弦波および各次成分の余弦波信号を加算して、誤差角度データを算出して推定角度誤差信号とする。
上述した基本思想を実現した本発明によれば、レゾルバにおいて検出された信号から角度信号を検出する角度検出器と、前記角度検出器において検出した角度信号から速度信号を検出する速度検出器と、前記検出された角度信号を参照して前記速度信号を周波数分析して各周波数成分ごとの検出誤差を算出し、該算出した検出誤差を合成して推定角度誤差信号を生成する角度誤差推定器と、該生成した推定角度誤差信号を用いて前記検出された角度信号を補正する角度信号補正回路とを有するレゾルバの角度検出装置が提供される。
好ましくは、前記角度誤差推定器は、前記周波数分析としてフーリエ変換を行う。
好ましくは、前記角度誤差推定器は、速度検出信号のうちの高周波成分を通過させるハイパスフィルタ部と、前記ハイパスフィルタ部を通過した高周波成分の速度信号を検出された角度信号を参照して複数領域に分割するm分割角度毎速度データ作成部と、該m分割角度毎速度データ作成部において生成されたm分割角度毎速度データについてフーリエ変換を行うフーリエ変換部と、該フーリエ変換部においてフーリエ変換された結果について、各次の成分のフーリエ変換係数を積算して各次係数積算値信号を算出する各次係数積算部と、該各次係数積算部において算出された各次係数積算値信号を合成して前記推定角度誤差信号を作成するm分割誤差角度データ作成部とを有する。
さらに好ましくは、前記各次係数積算部において、前記フーリエ変換係数より小さな利得を前記各次の成分のフーリエ変換係数に乗じて、該乗じた値を積算して各次係数積算値信号を算出する。
また本発明によれば、レゾルバにおいて検出された信号から角度信号を検出する工程と、前記検出した角度信号から速度信号を検出する工程と、前記検出された角度信号を参照して前記速度信号を周波数分析して各周波数成分ごとの検出誤差を算出し、該算出した検出誤差を合成して推定角度誤差信号を生成する工程と、該生成した推定角度誤差信号を用いて前記角度検出信号を補正する角度信号補正工程とを有するレゾルバの角度検出方法が提供される。
さらに本発明によれば、SIN巻線と、COS巻線と、ロータ巻線とを有するレゾルバ本体と、前記SIN巻線および前記COS巻線にそれぞれ励磁電圧を印加する励磁電圧印加部、または、前記ロータ巻線に励磁電圧を印加する励磁電圧印加部と、前記ロータ巻線から検出された信号、または、前記SIN巻線および前記COS巻線から検出された信号に基づいて角度信号を検出し、検出した角度信号から速度信号を検出し、前記検出された角度信号を参照して前記速度信号を周波数分析して各周波数成分ごとの検出誤差を算出し、該算出した検出誤差を合成して推定角度誤差信号を生成し、該生成した推定角度誤差信号を用いて前記角度検出信号を補正する、レゾルバの角度検出装置とを有する、レゾルバ装置が提供される。
本発明によれば、周波数分析、たとえば、フーリエ変換を行うことにより、個々のレゾルバの検出誤差を正確に算出することができる。そして、求めた検出誤差を用いて検出された角度信号を補正することにより、正確な角度検出信号を提供できる。
また本発明によれば、レゾルバとこの角度検出装置を設置したサイトにおいてレゾルバを回転角度検出対象に取り付けた後でも、レゾルバの検出誤差を簡単に補正することが可能である。
本発明の実施の形態としてのレゾルバの角度検出装置を添付図面を参照して述べる。
レゾルバとその角度検出装置
図6は本発明の実施の形態としてのレゾルバとその角度検出装置の構成図である。
図6において、レゾルバ本体7は、図1を参照して述べたものと同様、固定子側に機械的に90度ずれた配設されてSIN巻線4およびCOS巻線5と、回転部に配設されたロータ巻線6を有する。
レゾルバは、2相励磁1出力方式と、1相励磁2出力方式とが知られている。
2相励磁1相出力方式のレゾルバにおいては、SIN巻線4とCOS巻線5にそれぞれSIN巻線電圧およびCOS巻線電圧が印加され、ロータ巻線6から回転角度(または回転位置)検出対象(図示せず)の回転角度(または回転位置)に相当する信号が検出される。
他方、1相励磁2相出力方式のレゾルバにおいては、正弦波電圧がロータ巻線6に印加され、ロータ巻線6と固定子の角度θによって正弦波励磁電圧が振幅変調された電圧がSIN巻線4とCOS巻線5とに出力される。
以下、2相励磁1出力方式のレゾルバを例示して述べる。
2相励磁1出力方式のレゾルバの角度検出装置100は、レゾルバ本体7のロータ巻線6が検出したロータ巻線電圧S6を用いて、ロータ巻線6に接続された回転角度(または回転位置)検出対象、たとえば、ロボットのアームなどの駆動のために回転するモータの軸の回転角度θを検出する。
以下、ロータ巻線6に接続される角度検出対象を、たとえば、ロボットのアームなどを駆動するモータの軸を例示して述べる。
また以下の記述においては、説明を簡単にするため、モータが1方向にのみ回転する場合を例示する。
2相励磁1出力方式のレゾルバの角度検出装置100は、励磁カウンタ16と、第1励磁電圧発生器8と、第2励磁電圧発生器9と、受信フィルタ回路10とを有する。
レゾルバの角度検出装置100はまた、角度検出器11と、速度検出器12と、誤差推定器13と、推定角度生成回路14とを有する。
本願明細書において、レゾルバ装置とは、レゾルバ本体7およびレゾルバの角度検出装置100を総称した装置を言う。
他方、本願明細書において、レゾルバの角度検出装置は、図6に図解したレゾルバ本体7を除く部分、すなわち、励磁カウンタ16と、第1励磁電圧発生器8と、第2励磁電圧発生器9と、受信フィルタ回路10と、角度検出器11と、速度検出器12と、誤差推定器13と、推定角度生成回路14とを含んだものを言う。ただし、後述した記載から明らかなように、機能的には、レゾルバ本体7を駆動する、励磁カウンタ16、第1励磁電圧発生器8および第2励磁電圧発生器9をレゾルバ本体7とともに、「レゾルバ」として総称し、レゾルバの角度検出装置からは除くことができる。
励磁カウンタ
励磁カウンタ16は、第1励磁電圧発生器8、第2励磁電圧発生器9におけるSIN巻線電圧S8およびSIN巻線電圧S8を発生させるためのカウンタ出力パルス信号S16を生成する。
励磁カウンタ16は、レゾルバの角度検出精度(分解能)を規定する所定周波数のクロックパルスを発振するクロックパルス発振器と、そのクロックパルスを計数するカウンタを有しており、カウンタで計数したクロックパルスをカウンタ出力パルス信号S16として第1励磁電圧発生器8、第2励磁電圧発生器9および角度検出器11に出力する。
第1励磁電圧発生器、第2励磁電圧発生器
第1励磁電圧発生器8および第2励磁電圧発生器9はそれぞれ、カウンタ出力パルス信号S16に基づいて、図7に例示したように、SIN巻線4およびCOS巻線5を励磁するSIN巻線電圧S8およびCOS巻線電圧S9を発生して、SIN巻線4およびCOS巻線5にそれぞれ印加する。
図7は、SIN巻線電圧S8およびCOS巻線電圧S9を図解したグラフである。
なお、SIN巻線電圧S8の位相とCOS巻線電圧S9の位相は、90度の位相差があれば、いずれが進んでいてもよい。
たとえば、励磁カウンタ16における励磁周波数を5kHz、カウンタクロック(クロックパルス)の周波数を50MHzとした場合、励磁カウンタ16は200μsで、回転角度検出対象の1回転角度範囲、0〜360度を表す数値として、”0000”から”9999”まで増加するカウンタ出力パルス信号S16を出力し、”9999”を越えるとリセットされて、再び、”0000”から”9999”まで増加するカウンタ出力パルス信号S16を出力する。励磁カウンタ16はこの動作を反復する。
第1励磁電圧発生器8および第2励磁電圧発生器9の具体的な回路例としては、たとえば、リードオンリーメモリ(ROM)を用いた余弦関数発生器および正弦関数発生器として構成し、カウンタ出力パルス信号S16をアドレス信号とするROMを用いたテーブルルックアップ方式でSIN、COSの値を読みだすことができる。
たとえば、カウンタ出力パルス信号S16が印加される度に、ROMを有する第1励磁電圧発生器8はカウンタ出力パルス信号S16をsinαの角度αに相当するアドレス信号としてROMに入力し、図7に図解した波形のSIN巻線電圧S8を生成する。
同様に、カウンタ出力パルス信号S16が印加される度に、ROMを有する第2励磁電圧発生器9はカウンタ出力パルス信号S16をcosαの角度αに相当するアドレス信号としてROMに入力し、図7に図解した波形のCOS巻線電圧S9を生成する。
なお、第1励磁電圧発生器8および第2励磁電圧発生器9における関数発生器は、角度αについて0〜360度の全てを網羅する必要はなく、45度または90度の範囲のsinαおよびcosαの値を発生することができればよい。
さらに、sinαとcosαとが位相90度ずれてはいるが、波形は同じであることを利用して、すなわち、角度を調整することにより、第1励磁電圧発生器8と第2励磁電圧発生器9とを共用することもできる。その結果、第1励磁電圧発生器8および第2励磁電圧発生器9の回路構成は一層簡単になる。
SIN巻線4が上述した方法で発生されたSIN巻線電圧S8によって励磁され、COS巻線5が上述した方法で発生された第2励磁電圧発生器9によって励磁された状態において、ロータ巻線6に接続された回転角度検出対象、たとえば、モータの回転角度(または回転位置)がロータ巻線6においてロータ巻線電圧S6として検出されて受信フィルタ回路10に印加される。
受信フィルタ回路
受信フィルタ回路10は、ロータ巻線6で検出したロータ巻線電圧S6に含まれる所定成分の信号、特に、励磁周波数付近の周波数成分を通過させるアナログのフィルタ回路、たとえば、アナログのローパスフィルタまたはアナログのバンドパスフィルタである。
レゾルバ本体7は雑音を含む環境に設置されたり、ロータ巻線電圧S6の伝送経路に雑音成分が存在し、受信フィルタ回路10に至るまでにロータ巻線電圧S6に雑音が重畳されている場合があるから、受信フィルタ回路10においてそのような雑音成分を除去して、励磁周波数付近の、後述する信号処理に有効な成分を抽出する。
なお、受信フィルタ回路10は、レゾルバの角度検出装置100の構成に必須の要素ではないが、現実には上記目的を達成するため、設けることが望ましい。
角度検出器
角度検出器11は、受信フィルタ回路10で雑音を除去した回転角度検出対象の回転位置または角度を示すロータ巻線検出信号S10を、励磁カウンタ16からのカウンタ出力パルス信号S16を用いて角度(または回転位置)を検出する。この詳細は図8を参照して後述する。
速度検出器
速度検出器12は、角度検出器11で検出した角度検出信号S11からロータ巻線6に接続されている回転角度検出対象、たとえば、モータの回転速度を検出する。
速度検出器12の詳細は図10を参照して後述する。
角度誤差推定器
角度誤差推定器13は、速度検出器12で検出した回転速度信号S12と、角度検出器11で検出した角度検出信号S11とを用いてロータ巻線6で検出した検出誤差を含む検出角度の内の検出誤差を推定して推定角度誤差信号S13を出力する。
角度誤差推定器13の詳細は図11を参照して後述する。
推定角度生成回路
推定角度生成回路14は、角度誤差推定器13において推定した推定角度誤差信号S13を用いて角度検出器11において検出した角度検出信号S11を補正して推定角度検出信号S14を生成する。この推定角度検出信号S14は検出誤差が補正された正確な角度を示す。
推定角度生成回路14の詳細は、図15を参照して述べる。
推定角度検出信号S14が、制御対象かつ回転角度検出対象である、たとえば、ロボットのアームを駆動するモータの制御装置に角度検出信号として出力される。
角度検出器
図8は角度検出器11の回路構成図である。
角度検出器11は、基準波形生成回路17と、ロータ巻線検出信号S10が入力されるコンパレータ回路18と、位相差カウント(計数)回路19と、カウンタクロック発生器20とを有し、位相差カウント回路19から角度検出信号S11を出力する。
図9は基準波形生成回路17の出力信号S17とコンパレータ回路18の出力信号とを示すグラフである。
基準波形生成回路17は、励磁カウンタ16からのカウンタ出力パルス信号S16が入力されて回転角度検出対象、たとえば、モータの1回転の基準波形信号を生成する。具体的には、図9に図示したように、カウンタ出力パルス信号S16による励磁周波数の1周期(1周期τ=1/励磁周波数)でオン・オフする(ハイレベル“H“とローレベル“L“とが交互に出力される)基準波形の基準波形信号S17を生成する。
コンパレータ回路18はロータ巻線6によるロータ巻線電圧S6が受信フィルタ回路10を通過したロータ巻線検出信号S10が、正から負に変化するとき、およびその逆の負から正に変化するときに通過する「0ボルト」電圧の位置、すなわち、ゼロクロス位置を検出し、たとえば、ロータ巻線検出信号S10が正から負に変化したときをローレベル“L“、ロータ巻線検出信号S10が負から正に変化したときをハイレベル“H“の矩形波に変換して比較結果パルス信号S18を生成する。
カウンタクロック発生器20は、基準波形信号S17と比較結果パルス信号S18との位相差を検出するための分解能を持つクロック信号S20を生成して位相差カウント回路19に出力する。
位相差カウント回路19は、カウンタクロック発生器20からのクロック信号S20に基づいて、基準波形信号S17と比較結果パルス信号S18との位相差αを検出して(図8)、位相差αを示す角度検出信号S11として出力する。
たとえば、位相差カウント回路19は、基準波形信号S17からの立ち上がり時点からクロック信号S20を計数し、比較結果パルス信号S18の立ち上がり時点でクロック信号S20の計数を停止する。位相差カウント回路19におけるこの計数値が位相差αを示し、この位相差αが回転角度検出対象、たとえば、モータの検出すべき回転角度に相当しており、ロータ巻線6の固定子との角度θに相当する。
たとえば、励磁カウンタ16における励磁周波数が5kHzで、カウンタクロック発生器20のクロック信号S20の周波数が50MHzの場合、励磁カウンタ16について上述したように、”0000”から”9999”で0〜360度に対応しているから、たとえば、位相差カウント回路19のカウント値が「2499」の場合は角度θは90度となる。
速度検出器12
図10は速度検出器12の回路構成である。
速度検出器12は、1サンプリングディレイ回路23と、減算回路24とで構成されている。
速度は、位置または角度を微分する、または、位置または角度を差分することにより求めることができる。速度検出器12はこの方法により速度を検出する。
1サンプリングディレイ回路23は角度検出信号S11を1サンプリング時間遅延する。減算回路24は、今回の角度検出信号S11と1サンプリングディレイ回路23を経由した1サンプリング遅延された前回の角度検出信号S11との差分を算出する。この差分演算により、角度検出信号S11の速度に相当する信号、すなわち、速度検出信号S12が得られる。
1サンプリングディレイ回路23における、角度検出信号S11を1サンプリング時間遅延することは、実際は、たとえば、前回の角度検出信号S11を保存しておき、今回の演算にその保存結果を利用することを意味しており、1サンプリングディレイ回路23はメモリあるいはレジスタなどで構成される。
角度誤差推定器13
図11は角度誤差推定器13の回路構成図である。
角度誤差推定器13は、上述した検出誤差の補正方法についての基本思想に従って、すなわち、レゾルバの角度検出誤差波形がレゾルバ固有の決められたn次成分から構成されていることを利用して、検出された誤差を含む角度信号から生成した検出誤差を含む速度信号を周波数分析、たとえば、フーリエ変換処理して複数に分割した各成分ごとの検出誤差の大きさを算出し、算出した検出誤差を合成してロータ巻線電圧S6に含まれる検出誤差を復元して、誤差波形信号を生成する。
なお、検出誤差を収束させるため、好ましくは、フーリエ変換の各成分の大きさ(スペクトル)に、ゲイン(利得)を乗じて積算する。収束した各次成分の正弦波および各次成分の余弦波を加算して、誤差角度データを算出して推定角度誤差信号とする。
生成したこの誤差波形信号が、後述する推定角度生成回路14において、ロータ巻線6および角度検出器11で検出された角度検出信号を補正するための推定角度誤差信号S13である。
以下、角度誤差推定器13の詳細を述べる。
角度誤差推定器13は、ハイパスフィルタ部25と、m分割角度毎速度リップルデータ作成部26と、フーリエ変換部27と、各次係数積算部28と、m分割誤差データ作成部29とを有する。
図12はハイパスフィルタ部25から出力されるAC成分速度検出信号S25と、角度検出信号S11とを示すグラフである。図12において横軸は角度を示し、縦軸はそれぞれの角度領域における信号の振幅を示す。
図12において、角度検出信号S11は、0度から360度に向かって増加し、360度に達すると0にリセットされ、再び、0度から360度に向かって増加する鋸歯状の信号として図解されている。
ハイパスフィルタ部25は速度検出器12から入力された検出誤差成分を含む速度検出信号S12のうち高周波成分、すなわち、AC成分を通過させたAC成分速度検出信号S25を生成する。ハイパスフィルタ部25は、たとえば、アナログのハイパスフィルタ部25である。
m分割角度毎速度リップルデータ作成部26は、角度検出器11から入力された角度検出信号S11とAC成分速度検出信号S25とを入力して、図11に例示したように、0度から360度に変化する角度検出信号S11に基づいて、検出誤差成分を含むAC成分速度検出信号S25を複数領域、たとえば、m領域に分割し、分割した各領域毎のAC成分速度検出信号S25の速度リップル(変動)値を算出して、m分割角度毎速度リップルデータS26として出力する。
なお、同じ領域で何回もサンプリングできる場合は、その平均値を用いて、精度を高めることができる。
フーリエ変換部27は、m分割角度毎速度リップルデータ作成部26において生成されたm分割角度毎速度リップルデータS26ついてフーリエ変換を行い、各次数の成分を求める。
一般的なフーリエ変換を下記の式(1−1)〜(1−4)に示す。
Figure 2009156852

m分割角度毎速度リップルデータ作成部26において0〜360度の角度範囲をm領域に分割した場合のフーリエ変換は下記式(2−1)〜(2−4)で表すことができる。
Figure 2009156852

角度の波形を示す信号をf1 (k)とすると、角度f1 (k)を微分したその速度波形を示す信号f1 ' (k)は下記式で表すことができる。
Figure 2009156852

m分割角度毎速度リップルデータ作成部26において生成した速度波形信号f1 ' (k)についてのm分割角度毎速度リップルデータS26のフーリエ変換式f2 (k)を下記式(4−1)で定義する。
Figure 2009156852

式(3−1)と式(4−1)との係数を比較すると、下記式(5−1)〜(5−4)となる。
Figure 2009156852
最終的には、各係数は下記式(6−1)、(6−2)で表すことができる。
Figure 2009156852

フーリエ変換部27は、速度波形信号f1 ' (k)についてのm分割角度毎速度リップルデータS26について上述した演算を行い、式(6−1)、(6−2)で示されたn次成分の係数an 、bn を有するフーリエ変換係数S27として出力する。
すなわち、フーリエ変換部27は、速度波形信号f1 ' (k)についてのm分割角度毎速度リップルデータS26について、式(6−1)、(6−2)の演算を行う。
フーリエ変換部27として、式(6−1)、(6−2)におけるSIN、COSの演算はコンピュータを用いたソフトウェア信号処理としてそのまま行うことができる。
なお、フーリエ変換部27におけるフーリエ変換は、主要次数成分について処理すればよく、全ての周波数範囲について行う必要はない。その結果、フーリエ変換部27、および、フーリエ変換部27以降の処理回路の構成は簡単になり、信号処理時間も短縮される。
また、フーリエ変換部27におけるフーリエ変換処理としては、たとえば、乗算処理を極力減らして演算処理速度を向上させて、高速フーリエ変換(FFT)技術を適用することができる。
他方、演算時間を短縮するため、そして、簡便に実現するため、コンピュータを用いたソフトウェア演算は行わず、たとえば、第1励磁電圧発生器8および第2励磁電圧発生器9について述べたと同様、関数発生器の1例としてのリードオンリーメモリ(ROM)に正弦波関数と余弦波関数としてテーブルにし、角度パラメータをROMのアドレス信号として用いて、テーブルルックアップ方式で式(6−1)、(6−2)におけるSIN、COSの値を生成することができる。
各次係数積算部28
図13は各次係数積算部28の回路構成例を示す図である。
各次係数積算部28はフーリエ変換部27において得られた各次数を積算する。
各次係数積算部28は、利得(ゲイン)乗算器30と、加算器32と、1サンプリングディレイ回路31とを有する。
利得乗算器30は、フーリエ変換係数S27として出力されたフーリエ変換によって得られたn次成分のフーリエ変換係数に利得(ゲイン)Rgを乗ずる。
なお、利得Rgは、本実施の形態においては、検出誤差を収束させるため、1より小さな値とする。また、利得Rgは、ノイズやばらつきを平均化して検出誤差が収束していくように、状態に合わせて調整することが望ましい。
加算器32と1サンプリングディレイ回路31とで積分回路を構成している。例えば、1サンプリングディレイ回路31は前回の値を保持しているメモリまたはレジスタとして構成され、加算器32において利得乗算器30からの今回の出力値と、1サンプリングディレイ回路31からの前回の加算器32とを加算することにより、利得乗算器30からの結果を積分する。
このようにして得られたn次の各係数の積算値を含む各次係数積算値信号S28が、m分割誤差データ作成部29に出力される。
m分割誤差角度データ作成部29
図14はm分割誤差角度データ作成部29の回路構成を示す図である。
m分割誤差角度データ作成部29は、m分割SIN成分波形生成部33aと、m分割COS成分波形生成部33bと、加算器34とを有する。
m分割SIN成分波形生成部33aは、各次係数積算部28から出力される各次係数積算値信号S28に含まれるn次成分の係数積算値に対応して設けられたn個のm分割n次SIN成分波形生成部、たとえば、m分割1次SIN成分波形生成部33a−1、m分割2次SIN成分波形生成部33a−2〜m分割n次SIN成分波形生成部33a−nを有する。
同様に、m分割COS成分波形生成部33bは、各次係数積算部28から出力される各次係数積算値信号S28に含まれるn次成分の係数積算値に対応して設けられたn個のm分割n次COS成分波形生成部、すなわち、m分割1次COS成分波形生成部33b−1、m分割2次COS成分波形生成部33b−2〜m分割n次COS成分波形生成部33b−nを有する。
m分割SIN成分波形生成部33aにおいて、図12に図解したように回転角度検出対象であるモータの1回転、0〜360度の角度範囲がm領域に分割された各領域について下記に述べる信号処理を行う。
m分割1次SIN成分波形生成部33a−1においては各次係数積分値信号S28に含まれる1次成分のフーリエ変換係数積算値を用いて1次のSIN成分の波形信号を生成する。
m分割2次SIN成分波形生成部33a−2においては各次係数積分値信号S28に含まれる2次成分のフーリエ変換係数積算値を用いて2次のSIN成分の波形信号を生成する。
以下同様に、m分割n次SIN成分波形生成部33a−nにおいては各次係数積分値信号S28に含まれるn次成分のフーリエ変換係数積算値を用いてn次のSIN成分の波形信号を生成する。
m分割COS成分波形生成部33bにおいても、図12に図解したように回転角度検出対象であるモータの1回転、0〜360度の角度範囲がm領域に分割された各領域について下記に述べる信号処理を行う。
m分割1次COS成分波形生成部33b−1においては各次係数積分値信号S28に含まれる1次成分のフーリエ変換係数積算値を用いて1次のCOS成分の波形信号を生成する。
m分割2次COS成分波形生成部33b−2においては各次係数積分値信号S28に含まれる2次成分のフーリエ変換係数積算値を用いて2次のCOS成分の波形信号を生成する。
以下同様に、m分割n次COS成分波形生成部33b−nにおいては各次係数積分値信号S28に含まれるn次成分のフーリエ変換係数積算値を用いてn次のCOS成分の波形信号を生成する。
以上のようにして、m分割SIN成分波形生成部33aにおいて求めたm分割領域各々の領域について1次〜n次SIN成分波形信号と、同様に、m分割COS成分波形生成部33bにおいて求めたm分割領域各々の領域について1次〜n次COS成分波形信号とが加算器34において加算されて、検出誤差を復元した、推定角度誤差信号S13として生成される。
角度誤差推定器13の全体動作
図11〜図14を参照して述べた、角度検出器11で検出した角度検出信号S11と、速度検出器12で検出した回転速度信号S12とを用いて推定角度誤差信号S13を生成する角度誤差推定器13の全体動作を整理して述べる。
ハイパスフィルタ部25において検出誤差を含む速度検出信号S12のAC成分を通過させたAC成分速度検出信号S25を生成し、m分割角度毎速度リップルデータ作成部26において角度検出信号S11に基づいて検出誤差を含むAC成分速度検出信号S25をm領域に分割してm分割角度毎速度リップルデータS26を生成する。
フーリエ変換部27において、検出誤差を含むm分割角度毎速度リップルデータS26をフーリエ変換して、フーリエ変換係数S27を生成する。
各次係数積算部28がフーリエ変換係数S27に含まれる各次数のフーリエ変換係数を積分して、各次係数積算値信号S28を算出する。
m分割誤差角度データ作成部29が各次係数積算値信号S28を合成して推定角度誤差信号S13を生成する。
推定角度生成回路14
図15は推定角度生成回路14の回路構成を示す図である。
推定角度生成回路14は、角度検出器11から出力される検出誤差を含んでいる角度検出信号S11を、角度誤差推定器13から出力される推定角度誤差信号S13で補正して推定角度検出信号S14を生成する。
推定角度生成回路14は、テーブル番号取得部35と、誤差角度データ参照部36と、減算部37とを有する。
誤差角度データ参照部36、メモリとして構成され、このメモリ内に誤差角度データ格納部36aが設けられており(規定されており)、この誤差角度データ格納部36aに角度誤差推定器13で生成した推定角度誤差信号S13を格納する。
テーブル番号取得部35は、角度検出信号S11から誤差角度データ格納部36aに格納された推定角度誤差信号S13を読み出すためのアドレス信号S35を生成する。
誤差角度データ参照部36は、アドレス信号S35に基づいて誤差角度データ格納部36aから対応する誤差角度データS36を読みだす。
減算部37は、角度検出信号S11から誤差角度データS36を減じて角度検出信号S11を補正し、推定角度検出信号S14を生成する。なお、減算器37に代えて、加算器を用いて、角度検出信号S11に誤差角度データS36を加算して角度検出信号S11を補正することもできる。
以上の処理により、図2を参照して述べた大きな検出誤差を含む角度検出信号S11の検出誤差が補正された精度の高い角度検出信号が得られる。
上述したレゾルバの角度検出装置100における、角度検出器11、速度検出器12、角度誤差推定器13を用いた処理動作は、通常、ロータ巻線に回転角度検出対象を取り付け、レゾルバと角度検出装置100とを結合した初期状態のみ行われる。
角度誤差推定器13は比較的処理時間のかかるフーリエ変換部27を含むが、実時間で角度を検出するより前の事前処理であるので、実際に角度を補正する上で処理時間的な負担とはならない。
回転角度検出対象の角度を実時間で得るとき、推定角度生成回路14において、上述して得られた推定角度誤差信号S13を用いて角度検出信号S11を補正するだけであるから、実時間に対応できる。すなわち、本発明の実施の形態のレゾルバの角度検出装置によれば、実時間で精度のよい角度(または回転位置)信号を提供できる。すなわち、実時間で誤差角度データS36を生成することができ、それを用いて実時間で回転角度検出対象の角度センサとして使用することができる。
このように、本実施の形態は、実時間で精度のよい角度検出が可能であることが、特許文献1に記載された技術と相違する。
さらに、出荷後のサイトで、レゾルバ本体7を回転角度検出対象に取り付けた後、簡単に検出誤差を補正することができる。
以上から、レゾルバの角度検出装置100を、サーボモータの角度センサとして堅牢なレゾルバを用いた場合でも、利用者が実機の運転において検出誤差を補正することが可能となる。
なお、本実施の形態として、好適な例として、フーリエ変換部27において、フーリエ変換を用いた場合について例示しているが、一般的には、フーリエ変換部27に代えて、広く周波数分析技術を適用することができる。
そのような周波数分析技術としては、たとえば、離散コサイン変換など演算時間を短縮した公知の技術を適用することができる。
以上、2相励磁1出力方式のレゾルバ装置を例示したが、本発明は1相励磁2出力方式のレゾルバ装置についても適用できる。
1相励磁2出力方式のレゾルバ装置においては、図6において、正弦波励磁電圧がロータ巻線6に印加されて、ロータ巻線6と固定子の角度θによって正弦波励磁電圧が振幅変調された電圧が、SIN巻線4およびCOS巻線5で検出される。
1相励磁2出力方式のレゾルバにおいて、SIN巻線4およびCOS巻線5で検出された信号から、角度信号を検出する方法は、公知の方法、たとえば、特許文献1に記載された方法と同様の方法で行うことができる。
検出した角度検出信号S11から速度検出信号S12を生成する方法以下の方法および装置構成は、上述したと同じである。
そのようにして推定角度誤差信号S13を算出し、その推定角度誤差信号S13を用いて検出角度を補正することにより、1相励磁2出力方式のレゾルバについても、精度の高い角度信号を、実時間で提供することができる。
上述した本実施の形態の回路構成は、既存の比較的簡単な構成の回路を組み合わせることによって実現できる。したがって、レゾルバの角度検出装置100を実現することは容易であり、規模を大きくすることなく、低価格で製造することができる。
上述した実施の形態は、例示であり、本発明のレゾルバの角度検出装置の実施に際しては、例示した上記回路構成に限定されないことは自明である。
したがって、本発明の上述した技術思想を適用した種々の変形態様を当業者はとることができるが、そのような変形態様も本願発明に含まれる。
図1はレゾルバの概略構成を示す図である。 図2はレゾルバの検出誤差を示す例示的なグラフである。 図3は従来の推定角度生成回路の回路構成を示す図である。 図4は図2に図解した誤差成分と実角度との関係を図解したグラフである。 図5は誤差成分をフーリエ変換した結果の例を示すグラフである。 図6は本発明の実施の形態としてのレゾルバとその角度検出装置の構成図である。 図7は図6におけるSIN巻線およびCOS巻線に印加されるSIN巻線電圧およびCOS巻線電圧を図解したグラフである。 図8は図4に示した角度検出器の回路構成図である。 図9は図8に図解した角度検出器における、基準波形生成回路の出力信号とコンパレータ回路の出力信号とを示すグラフである。 図10は図6に図解した速度検出器の回路構成である。 図11は図6に図解した角度誤差推定器の回路構成図である。 図12は図11に図解した角度誤差推定器におけるハイパスフィルタ部から出力されるAC成分速度検出信号S25と、図6に図解した角度検出器から出力される角度検出信号S11とを示すグラフである。 図13は図11に図解した角度誤差推定器における各次係数積算部の回路構成例を示す図である。 図14は図11に図解した角度誤差推定器内のm分割誤差データ作成部の回路構成を示す図である。 図15は図6に図解した推定角度生成回路の回路構成を示す図である。
符号の説明
7…レゾルバ本体
4…SIN巻線、5…COS巻線、6…ロータ巻線、S6…ロータ巻線電圧
100…レゾルバの角度検出装置
8…第1励磁電圧発生器、S8…SIN巻線電圧
9…第2励磁電圧発生器、S9…COS巻線電圧
10…受信フィルタ回路、
11…角度検出器、
17…基準波形生成回路、S17…基準波形信号
18…コンパレータ回路、S18…比較結果パルス信号
19…位相差カウント回路、
20…カウンタクロック発生器、S20…クロック信号
12…速度検出器12
23…1サンプリングディレイ回路、
24…減算回路、
13…角度誤差推定器、S13…推定角度誤差信号、
25…ハイパスフィルタ部、
26…m分割角度毎速度リップルデータ作成部、
27…フーリエ変換部、S27…フーリエ変換係数
28…各次係数積算部、S28…各次係数積算値信号
30…利得(ゲイン)乗算器、
31…1サンプリングディレイ回路、
32…加算器、
29…m分割誤差角度データ作成部、S29…m分割誤差角度データ
33a…m分割SIN成分波形生成部、
33b…m分割COS成分波形生成部、
34…加算器、
14…推定角度生成回路、S14…推定角度検出信号、
35…テーブル番号取得部、
36…誤差角度データ参照部、
36a…誤差角度データテーブル、
37…減算部。

Claims (6)

  1. レゾルバにおいて検出された信号から角度信号を検出する角度検出器と、
    前記角度検出器において検出した角度信号から速度信号を検出する速度検出器と、
    前記検出された角度信号を参照して前記速度信号を周波数分析して各周波数成分ごとの検出誤差を算出し、算出した検出誤差を合成して推定角度誤差信号を生成する角度誤差推定器と、
    前記生成した推定角度誤差信号を用いて前記検出された角度信号を補正する角度信号補正回路と
    を有するレゾルバの角度検出装置。
  2. 前記角度誤差推定器は、前記周波数分析としてフーリエ変換を行う、
    請求項1に記載のレゾルバの角度検出装置。
  3. 前記角度誤差推定器は、
    前記速度信号のうちの高周波成分を通過させるハイパスフィルタ部と、
    前記ハイパスフィルタ部を通過した高周波成分の速度信号を前記検出された角度信号を参照して複数領域に分割するm分割角度毎速度データ作成部と、
    前記m分割角度毎速度データ作成部において生成されたm分割角度毎速度データについてフーリエ変換を行うフーリエ変換部と、
    該フーリエ変換部においてフーリエ変換された結果について、各次の成分のフーリエ変換係数を積算して各次係数積算値信号を算出する各次係数積算部と、
    該各次係数積算部において算出された各次係数積算値信号を合成して前記推定角度誤差信号を作成するm分割誤差角度データ作成部と
    を有する、
    請求項2に記載のレゾルバの角度検出装置。
  4. 前記各次係数積算部において、前記フーリエ変換係数より小さな利得を前記各次の成分のフーリエ変換係数に乗じて、該乗じた値を積算して各次係数積算値信号を算出する、
    請求項3に記載のレゾルバの角度検出装置。
  5. レゾルバにおいて検出された信号から角度信号を検出する工程と、
    前記検出した角度信号から速度信号を検出する工程と、
    前記検出された角度信号を参照して前記速度信号を周波数分析して各周波数成分ごとの検出誤差を算出し、該算出した検出誤差を合成して推定角度誤差信号を生成する工程と、 該生成した推定角度誤差信号を用いて前記検出された角度信号を補正する角度信号補正工程と
    を有するレゾルバの角度検出方法。
  6. SIN巻線と、COS巻線と、ロータ巻線とを有するレゾルバ本体と、
    前記SIN巻線および前記COS巻線にそれぞれ励磁電圧を印加する励磁電圧印加部、または、前記ロータ巻線に励磁電圧を印加する励磁電圧印加部と、
    前記ロータ巻線から検出された信号、または、前記SIN巻線および前記COS巻線から検出された信号から角度信号を検出する角度検出器と、
    前記角度検出器において検出した角度信号から速度信号を検出する速度検出器と、
    前記検出された角度信号を参照して前記速度信号を周波数分析して各周波数成分ごとの検出誤差を算出し、該算出した検出誤差を合成して推定角度誤差信号を生成する角度誤差推定器と、
    前記生成した推定角度誤差信号を用いて前記検出された角度信号を補正する角度信号補正回路と
    を有するレゾルバ装置。
JP2007338940A 2007-12-28 2007-12-28 レゾルバ装置およびレゾルバの角度検出装置とその方法 Active JP5041419B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007338940A JP5041419B2 (ja) 2007-12-28 2007-12-28 レゾルバ装置およびレゾルバの角度検出装置とその方法
US12/341,237 US7895010B2 (en) 2007-12-28 2008-12-22 Resolver angle detection device and method of detecting position with a resolver
DE102008063089A DE102008063089B4 (de) 2007-12-28 2008-12-24 Drehmeldereinrichtung und Winkelerfassungsvorrichtung und Drehmelderverfahren

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007338940A JP5041419B2 (ja) 2007-12-28 2007-12-28 レゾルバ装置およびレゾルバの角度検出装置とその方法

Publications (2)

Publication Number Publication Date
JP2009156852A true JP2009156852A (ja) 2009-07-16
JP5041419B2 JP5041419B2 (ja) 2012-10-03

Family

ID=40719571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007338940A Active JP5041419B2 (ja) 2007-12-28 2007-12-28 レゾルバ装置およびレゾルバの角度検出装置とその方法

Country Status (3)

Country Link
US (1) US7895010B2 (ja)
JP (1) JP5041419B2 (ja)
DE (1) DE102008063089B4 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118049A (ja) * 2010-12-01 2012-06-21 Hyundai Motor Co Ltd リゾルバの位置誤差を最適補償する装置及び方法
JP2012145371A (ja) * 2011-01-07 2012-08-02 Toshiba Mach Co Ltd レゾルバ装置、レゾルバの角度検出装置およびその方法
KR101175962B1 (ko) 2009-01-21 2012-08-22 쿠카 레보라토리즈 게엠베하 리졸버를 이용해 각위치를 결정하기 위한 방법 및 장치
WO2013035735A1 (ja) * 2011-09-08 2013-03-14 三菱重工業株式会社 誤差周波数成分取得装置、回転角度取得装置、モータ制御装置および回転角度取得方法
WO2013136612A1 (ja) 2012-03-16 2013-09-19 三菱電機株式会社 角度検出装置
US8669734B2 (en) 2010-07-20 2014-03-11 Toyota Jidosha Kabushiki Kaisha Control device and control method for motor
WO2017068684A1 (ja) * 2015-10-22 2017-04-27 三菱電機株式会社 角度検出装置
US10608568B2 (en) 2015-01-23 2020-03-31 Mitsubishi Electric Corporation Control device for AC rotary machine
JP2021110592A (ja) * 2020-01-08 2021-08-02 日立Astemo株式会社 角度検出装置
JP2021110583A (ja) * 2020-01-08 2021-08-02 日立Astemo株式会社 角度検出装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095316B2 (ja) * 2007-09-05 2012-12-12 東芝機械株式会社 織機及び織機の駆動装置。
DE102008024527A1 (de) * 2008-05-25 2009-11-26 Lenze Automation Gmbh Verfahren und Vorrichtung zur Überwachung eines Drehwinkelaufnehmers
DE102009031736A1 (de) * 2009-07-04 2011-01-13 Lenze Automation Gmbh Rotorlagegeber mit einer Kompensationseinheit zur Fehlerkompensation für einen drehzahlgeregelten Servomotor
CN101865651B (zh) * 2010-06-11 2011-08-10 天津工业大学 一种旋转变压器角度信号解码方法
WO2015029098A1 (ja) * 2013-08-26 2015-03-05 三菱電機株式会社 位置検出器の角度誤差補正装置および角度誤差補正方法
JP5822008B1 (ja) * 2014-08-08 2015-11-24 日本精工株式会社 角度検出装置、この角度検出装置を備えるモータ、トルクセンサ、電動パワーステアリング装置及び自動車
WO2016119814A1 (en) * 2015-01-26 2016-08-04 Abb Schweiz Ag Resolver for a servo motor
JP6005781B2 (ja) * 2015-03-05 2016-10-12 日本航空電子工業株式会社 レゾルバ装置
CA2945997C (en) 2015-12-16 2023-05-23 Rosemount Aerospace Inc. Static reference resolver circuit
CN105698825B (zh) * 2016-01-15 2017-10-27 中工科安科技有限公司 一种磁阻式旋转变压器的信号处理装置
CN105547335B (zh) * 2016-01-15 2017-10-27 中工科安科技有限公司 一种磁阻式旋转变压器的信号处理系统
FR3057351B1 (fr) * 2016-10-10 2018-10-19 Renault S.A.S Procede de validation de la position angulaire du rotor d'une machine electrique pour vehicule automobile
KR102059818B1 (ko) * 2017-09-28 2019-12-27 삼성전기주식회사 회전체 감지 장치
CN109586702B (zh) * 2017-09-28 2023-03-31 三星电机株式会社 用于感测旋转主体的设备
TWI798331B (zh) * 2018-02-02 2023-04-11 日商三共製作所股份有限公司 檢測移動體之運動之位置變化量的方法及裝置
EP3916361B1 (en) * 2019-01-22 2023-05-10 Mitsubishi Electric Corporation Rotation angle detection device, and electric power steering device including same rotation angle detection device
JP7161439B2 (ja) * 2019-04-23 2022-10-26 ルネサスエレクトロニクス株式会社 半導体装置及びモータ制御システム
CN110426071A (zh) * 2019-08-30 2019-11-08 新代科技(苏州)有限公司 旋转编码器精度估测装置及应用其的估测方法
CN115003985A (zh) * 2020-02-06 2022-09-02 三菱电机株式会社 角度检测装置
EP3901583A1 (en) * 2020-04-21 2021-10-27 Goodrich Aerospace Services Pvt Ltd Resolver interface systems and methods
CN113091601B (zh) * 2021-04-12 2023-03-24 上海大学 一种高速驱动电机旋变角位移测量误差测试方法
EP4130679A1 (en) * 2021-08-02 2023-02-08 Renesas Electronics America Inc. A method for detecting a phase shift in an output of an inductive position sensor
WO2024083320A1 (en) 2022-10-19 2024-04-25 Elaphe Propulsion Technologies Ltd. Positional non-linearity compensation for electric motor
CN117442891A (zh) * 2023-12-22 2024-01-26 智维精准(北京)医疗科技有限公司 一种用于直线加速器的信号处理方法、系统及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174914A (ja) * 1987-12-29 1989-07-11 Yaskawa Electric Mfg Co Ltd レゾルバ検出誤差補正方式
JPH04125409A (ja) * 1990-09-17 1992-04-24 Okuma Mach Works Ltd 位置検出誤差補正装置
JPH07336979A (ja) * 1994-06-06 1995-12-22 Nippon Seiko Kk 位置検出方法及び位置検出装置
JPH11118520A (ja) * 1997-10-17 1999-04-30 Tamagawa Seiki Co Ltd ディジタル角度変換方法
JP2001165707A (ja) * 1999-09-30 2001-06-22 Sanyo Denki Co Ltd レゾルバの位相誤差補正方法及び装置
WO2006043403A1 (ja) * 2004-10-20 2006-04-27 Kabushiki Kaisha Yaskawa Denki エンコーダ信号処理装置およびその信号処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6754610B2 (en) * 2001-05-16 2004-06-22 Raytheon Company Digital signal processing of resolver rotor angle signals
JP3953889B2 (ja) * 2002-05-29 2007-08-08 株式会社ジェイテクト 回転角検出装置とその温度補正方法
JP2005037305A (ja) * 2003-07-17 2005-02-10 Sanyo Denki Co Ltd レゾルバの検出位置補正方法及び装置
JP4419692B2 (ja) * 2004-06-07 2010-02-24 株式会社ジェイテクト 角度検出装置
JP4262753B2 (ja) * 2007-01-04 2009-05-13 日本航空電子工業株式会社 短絡検出回路、rdコンバータ及びデジタル角度検出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174914A (ja) * 1987-12-29 1989-07-11 Yaskawa Electric Mfg Co Ltd レゾルバ検出誤差補正方式
JPH04125409A (ja) * 1990-09-17 1992-04-24 Okuma Mach Works Ltd 位置検出誤差補正装置
JPH07336979A (ja) * 1994-06-06 1995-12-22 Nippon Seiko Kk 位置検出方法及び位置検出装置
JPH11118520A (ja) * 1997-10-17 1999-04-30 Tamagawa Seiki Co Ltd ディジタル角度変換方法
JP2001165707A (ja) * 1999-09-30 2001-06-22 Sanyo Denki Co Ltd レゾルバの位相誤差補正方法及び装置
WO2006043403A1 (ja) * 2004-10-20 2006-04-27 Kabushiki Kaisha Yaskawa Denki エンコーダ信号処理装置およびその信号処理方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175962B1 (ko) 2009-01-21 2012-08-22 쿠카 레보라토리즈 게엠베하 리졸버를 이용해 각위치를 결정하기 위한 방법 및 장치
US8669734B2 (en) 2010-07-20 2014-03-11 Toyota Jidosha Kabushiki Kaisha Control device and control method for motor
JP2012118049A (ja) * 2010-12-01 2012-06-21 Hyundai Motor Co Ltd リゾルバの位置誤差を最適補償する装置及び方法
JP2012145371A (ja) * 2011-01-07 2012-08-02 Toshiba Mach Co Ltd レゾルバ装置、レゾルバの角度検出装置およびその方法
WO2013035735A1 (ja) * 2011-09-08 2013-03-14 三菱重工業株式会社 誤差周波数成分取得装置、回転角度取得装置、モータ制御装置および回転角度取得方法
JP2013057590A (ja) * 2011-09-08 2013-03-28 Mitsubishi Heavy Ind Ltd 誤差周波数成分取得装置、回転角度取得装置、モータ制御装置および回転角度取得方法
US9297676B2 (en) 2011-09-08 2016-03-29 Mitsubishi Heavy Industries, Ltd. Error frequency component acquisition device, angle of rotation acquisition device, motor control device, and angle of rotation acquisition method
WO2013136612A1 (ja) 2012-03-16 2013-09-19 三菱電機株式会社 角度検出装置
US11047679B2 (en) 2012-03-16 2021-06-29 Mitsubishi Electric Corporation Angle detecting apparatus
US10608568B2 (en) 2015-01-23 2020-03-31 Mitsubishi Electric Corporation Control device for AC rotary machine
WO2017068684A1 (ja) * 2015-10-22 2017-04-27 三菱電機株式会社 角度検出装置
CN108139232A (zh) * 2015-10-22 2018-06-08 三菱电机株式会社 角度检测装置
JP2021110592A (ja) * 2020-01-08 2021-08-02 日立Astemo株式会社 角度検出装置
JP2021110583A (ja) * 2020-01-08 2021-08-02 日立Astemo株式会社 角度検出装置
JP7165691B2 (ja) 2020-01-08 2022-11-04 日立Astemo株式会社 角度検出装置
JP7224309B2 (ja) 2020-01-08 2023-02-17 日立Astemo株式会社 角度検出装置

Also Published As

Publication number Publication date
US20090167296A1 (en) 2009-07-02
US7895010B2 (en) 2011-02-22
DE102008063089B4 (de) 2011-12-29
JP5041419B2 (ja) 2012-10-03
DE102008063089A1 (de) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5041419B2 (ja) レゾルバ装置およびレゾルバの角度検出装置とその方法
JP5281102B2 (ja) レゾルバ装置、レゾルバの角度検出装置およびその方法
EP2209213B1 (en) RD converter and angle detecting apparatus
EP2827106B1 (en) Angle detection device
JP6661267B2 (ja) レゾルバ位置誤差を補償するための装置及び方法
JP5802588B2 (ja) 角度検出装置およびモータ駆動制御装置
JP6005781B2 (ja) レゾルバ装置
JP5173962B2 (ja) レゾルバ/デジタル変換装置およびレゾルバ/デジタル変換方法
EP1804032A1 (en) Encoder signal processor and processing method
JP2007511778A (ja) 位置決め装置及び方法
JP2005037305A (ja) レゾルバの検出位置補正方法及び装置
JP2007107886A (ja) エンコーダ誤差補正装置およびエンコーダ
JP6100552B2 (ja) 位置検出装置
JP2005208028A (ja) バリアブルリラクタンスレゾルバ用角度演算方法とそのための角度演算装置
JP7066306B2 (ja) 回転角度検出装置、および当該回転角度検出装置を含む電動パワーステアリング装置
JP2010145149A (ja) 電磁誘導式位置検出器及び電磁誘導式位置検出方法
WO2018092416A1 (ja) ロータリーエンコーダ信号処理装置及びロータリーエンコーダ信号処理方法
JP2005257565A (ja) レゾルバディジタル角度変換装置および方法ならびにプログラム
JP2002350181A (ja) レゾルバ及び回転角検出装置
JP4943171B2 (ja) 振幅検出装置
JP7200560B2 (ja) サーボ制御装置及びサーボシステム
JP2013127409A (ja) 波形測定器
US20180188070A1 (en) Method and device for determining a sensor signal
JP3451851B2 (ja) 回転速度検出装置
CN111699365B (zh) 检测基于移动体的运动产生的位置变化量的方法以及装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120704

R150 Certificate of patent or registration of utility model

Ref document number: 5041419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350