WO2020137891A1 - 緩衝器 - Google Patents

緩衝器 Download PDF

Info

Publication number
WO2020137891A1
WO2020137891A1 PCT/JP2019/050112 JP2019050112W WO2020137891A1 WO 2020137891 A1 WO2020137891 A1 WO 2020137891A1 JP 2019050112 W JP2019050112 W JP 2019050112W WO 2020137891 A1 WO2020137891 A1 WO 2020137891A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
orifice
pilot
passage
damping force
Prior art date
Application number
PCT/JP2019/050112
Other languages
English (en)
French (fr)
Inventor
山岡 史之
穣司 遠藤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201980086461.6A priority Critical patent/CN113227605A/zh
Priority to KR1020217019543A priority patent/KR102559735B1/ko
Priority to JP2020563206A priority patent/JP7012884B2/ja
Priority to US17/417,463 priority patent/US20220065321A1/en
Priority to DE112019005938.6T priority patent/DE112019005938T5/de
Publication of WO2020137891A1 publication Critical patent/WO2020137891A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/465Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall using servo control, the servo pressure being created by the flow of damping fluid, e.g. controlling pressure in a chamber downstream of a pilot passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • F16F9/3484Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body characterised by features of the annular discs per se, singularly or in combination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/516Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics resulting in the damping effects during contraction being different from the damping effects during extension, i.e. responsive to the direction of movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/02Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally
    • B60G13/06Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type
    • B60G13/08Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/62Adjustable continuously, e.g. during driving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/41Dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/104Damping action or damper continuous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/11Damping valves
    • B60G2500/114Damping valves pressure regulating valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/182Active control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/21Self-controlled or adjusted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/16Running
    • B60G2800/162Reducing road induced vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/916Body Vibration Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/12Fluid damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/066Variable stiffness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/18Control arrangements
    • F16F2230/183Control arrangements fluid actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2232/00Nature of movement
    • F16F2232/08Linear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2234/00Shape
    • F16F2234/02Shape cylindrical

Definitions

  • the present invention relates to a damping force adjustable shock absorber in which the damping force is adjusted by controlling the flow of working fluid with respect to the stroke of a piston rod.
  • Patent Document 1 discloses a damping valve in which the main valve is opened in two stages to reduce the change in damping force before and after the opening of the main valve in the hard side damping force characteristic. With this damping valve, valve vibration when the main valve is opened can be reduced, and the sound and vibration performance of the shock absorber can be improved.
  • the above-mentioned damping valve causes the main valve port to open in two stages, which complicates the structure. Further, since the flow passage area of the orifice that generates the back pressure of the main valve (pressure in the pilot chamber) is constant, it is difficult to reduce the soft side damping force characteristic, and it is difficult to further improve the riding comfort of the vehicle. Met.
  • An object of the present invention is to provide a shock absorber capable of further improving the riding comfort of a vehicle.
  • a shock absorber includes a cylinder in which a fluid is enclosed, a piston slidably fitted in the cylinder, a piston rod connected to the piston and extended to the outside of the cylinder, A main valve that controls a flow of a fluid generated by sliding of the piston in the cylinder to generate a damping force, a pilot chamber that exerts a pressure on the main valve in a valve closing direction, and a fluid in the pilot chamber.
  • a pilot passage that connects the pilot chamber and a downstream side of the main valve, and a control valve provided in the pilot passage, the pilot passage being upstream of the control valve.
  • a first orifice that is in constant communication, a first passage that is provided in parallel with the first orifice, and a valve that opens at a predetermined differential pressure, and a flow that flows toward the control valve through the first passage are provided.
  • a permissible first check valve and second orifice are provided.
  • the riding comfort of the vehicle can be further improved.
  • FIG. 6 is a chart comparing damping force characteristics of a damping force generation mechanism including a pilot orifice portion of the first embodiment and a damping force generation mechanism including a pilot orifice portion of a conventional structure. It is explanatory drawing of the pilot orifice part in 2nd Embodiment. It is a conceptual diagram of the pilot orifice part in 2nd Embodiment. It is explanatory drawing of the pilot orifice part in 3rd Embodiment. It is a conceptual diagram of the pilot orifice part in 3rd Embodiment. It is explanatory drawing of the pilot orifice part in 4th Embodiment. It is a conceptual diagram of the pilot orifice part in 4th Embodiment.
  • a damping force generation mechanism 31 having a solenoid 91 is built in a piston case 21 (piston) in the cylinder 2, that is, a so-called built-in piston type damping force. It is an adjustable shock absorber 1 (hereinafter referred to as "shock absorber 1").
  • the shock absorber 1 has a multi-cylinder structure in which an outer cylinder 3 is provided outside the cylinder 2, and a reservoir 4 is formed between the cylinder 2 and the outer cylinder 3.
  • a piston valve 5 (piston) is slidably fitted in the cylinder 2.
  • the piston valve 5 is provided with a piston band 5A on the outer peripheral side and divides the inside of the cylinder 2 into two chambers, a cylinder upper chamber 2A and a cylinder lower chamber 2B.
  • the piston valve 5 has an extension side passage 19 whose upper end opens to the cylinder upper chamber 2A and a contraction side passage 20 whose lower end opens to the cylinder lower chamber 2B.
  • a base valve 7 that partitions the cylinder lower chamber 2B and the reservoir 4 is provided.
  • the base valve 7 is provided with passages 8 and 9 that allow the lower cylinder chamber 2B and the reservoir 4 to communicate with each other.
  • the passage 8 is provided with a check valve 10 which allows only the flow of the oil liquid (working fluid) from the reservoir 4 side to the cylinder lower chamber 2B side.
  • the passage 9 is provided with a disc valve 11 that opens when the pressure of the oil liquid on the cylinder lower chamber 2B side reaches a set pressure and allows the pressure (oil liquid) on the cylinder lower chamber 2B side to escape to the reservoir 4 side.
  • the cylinder 2 is filled with an oil liquid
  • the reservoir 4 is filled with an oil liquid and a gas.
  • the bottom cap 12 is joined to the lower end of the outer cylinder 3, and the mounting member 13 is joined to the bottom cap 12.
  • the piston valve 5 is connected to the piston rod 6 via the piston case 21.
  • the piston case 21 includes a substantially cylindrical case body 22 connected to the lower end portion (one end) of the piston rod 6, a case bottom portion 23 that closes the lower end portion of the case body 22, and an axial direction (downward) from the lower end portion of the case bottom portion 23. Direction), and a shaft portion 24 to which the piston valve 5 is attached.
  • the case bottom portion 23 and the shaft portion 24 are one component, and the case body 22 and the case bottom portion 23 are integrated by the screw portion 18. Note that, as shown in FIG.
  • the upper end side (the other end side) of the piston rod 6 passes through the cylinder upper chamber 2A, and the rod guide 14 attached to the upper end portions of the cylinder 2 and the outer cylinder 3, and further, It is inserted into the oil seal 15 and extended to the outside of the cylinder 2.
  • the upper end of the outer cylinder 3 is covered by the cap 16, and the spring receiving member 17 is attached to the outer circumference of the outer cylinder 3.
  • the shock absorber 1 controls the flow of the oil liquid between the cylinder upper chamber 2A and the cylinder lower chamber 2B caused by the movement of the piston rod 6 to generate a damping force.
  • the mechanism 31 is provided.
  • the damping force generating mechanism 31 has a main valve 32 provided at the lower end of the piston valve 5.
  • the main valve 32 includes a damping valve 33 that generates a damping force by regulating the flow of oil liquid from the cylinder upper chamber 2A to the cylinder lower chamber 2B when the piston valve 5 moves to the extension side, and a damping valve 33.
  • it has a pilot chamber 34 that applies an internal pressure in the valve closing direction, and an introduction passage 27 that introduces an oil liquid from the cylinder upper chamber 2A to the pilot chamber 34.
  • the damping valve 33 is composed of a disc valve, and the shaft portion 24 of the piston case 21 is inserted into the shaft hole.
  • the inner peripheral edge of the damping valve 33 is sandwiched between the inner peripheral edge of the piston valve 5 and the inner peripheral edge of the pilot case 36.
  • An annular packing 37 (seat portion) is provided on the lower surface of the damping valve 33.
  • the packing 37 slidably contacts the inner peripheral surface of the annular wall portion 38 of the pilot case 36.
  • an annular pilot chamber 34 is formed between the damping valve 33 and the pilot case 36.
  • the damping valve 33 is seated on the lower end of the piston valve 5 such that the outer peripheral edge of the damping valve 33 closes the lower end side opening of the extension side passage 19 of the piston valve 5.
  • the cylinder upper chamber 2A and the cylinder lower chamber 2B are communicated with each other by the flow path formed by opening the extension side passage 19 and the damping valve 33.
  • the pilot case 36 has a plurality of passages 41 that penetrate the pilot case 36 in the vertical direction.
  • a disc valve 39 is provided at the lower end of the pilot case 36.
  • the shaft portion 24 of the piston case 21 is inserted into the shaft hole, and the outer peripheral edge portion is formed at the lower end portion of the pilot case 36 so as to close the lower end side opening of the passage 41 of the pilot case 36.
  • the seat 40 is seated in an annular shape.
  • the disc valve 39 is opened when the pressure in the pilot chamber 34 reaches the set load. By opening the disc valve 39, the pressure (oil liquid) in the pilot chamber 34 is relieved to the cylinder lower chamber 2B.
  • the inner peripheral edge of the disc valve 39 is sandwiched between the inner peripheral edge of the pilot case 36 and the washer 42.
  • the case bottom portion 23 of the piston case 21 is provided with a plurality of passages 51 (only “two” are shown in FIG. 2) that penetrate the case bottom portion 23 in the axial direction (vertical direction). ..
  • the passage 51 has a lower end opened to the annular passage 50 and an upper end opened to a chamber 52 formed inside the annular side wall of the case bottom portion 23.
  • a valve seat 55 is formed on the bottom surface (bottom surface of the chamber 52) of the piston case 21, and an annular seat portion 54 formed on the lower end of the first valve body 53 is seated on the valve seat 55.
  • a first valve chamber 56 is formed between the first valve body 53 and the case bottom portion 23.
  • the first valve chamber 56 communicates with the cylinder lower chamber 2B via a passage 57 (shaft hole) formed in the shaft portion 24.
  • the first valve body 53 is made of a non-magnetic material and is formed in a stepped columnar shape having a large diameter portion 58 and a small diameter portion 59.
  • the small diameter portion 59 of the first valve body 53 is slidably fitted under the magnetic portion 96 of the core 93 of the solenoid 91.
  • a seal member seals between the small diameter portion 59 of the first valve body 53 and the magnetic portion 96 of the core 93.
  • a bore 63 having an open upper end is formed in the first valve body 53.
  • a needle-type second valve body 65 is housed in the bore 63.
  • the second valve body 65 is seated on the valve seat 64.
  • the valve seat 64 is formed on the opening peripheral edge portion of the second valve chamber 69 that opens to the bottom surface of the bore 63.
  • the set load of the first valve body 53 and the second valve body 65 is changed by adjusting the control current for the coil 92 of the solenoid 91.
  • the pilot valve 68 (control valve) includes a first valve body 53, a second valve body 65, and an actuator that changes the set load of the first valve body 53 and the second valve body 65 by the thrust of the solenoid 91. To be done.
  • a second valve chamber 69 that opens in the center of the bottom surface of the bore 63 and a second valve chamber 69 that extends in the large diameter portion 58 in the radial direction (left and right direction in FIG. 2) and communicates with the chamber 52.
  • a passage 70 that allows the second valve body 69 to communicate with the cylinder lower chamber 2B when the second valve body 65 is opened is formed.
  • a flange portion 72 is formed on the outer peripheral edge portion on the upper end side of the second valve body 65. The outer peripheral surface of the flange portion 72 is slidably fitted to the inner peripheral surface of the bore 63.
  • a compression coil spring 73 that biases the second valve body 65 upward with respect to the first valve body 53 is interposed between the flange portion 72 and the bottom surface of the bore 63.
  • the second valve body 65 is formed with a recess 74 that opens at the center of the upper end of the second valve body 65.
  • An inner conical surface 76 that receives the hemispherical lower end of the operating pin 75 is formed at the center of the bottom of the recess 74.
  • the operating pin 75 has a shaft portion 77 whose lower end is received by the inner conical surface 76 of the second valve body 65, a base portion 79 whose lower half is formed in a hemispherical shape, and a convex portion 78 formed at the center of the upper end of the base portion 79. And.
  • the actuating pin 75 is received by the inner conical surface 81 formed on the mover 80 of the solenoid 91 at the hemispherical surface of the base 79.
  • the inner conical surface 81 is connected to the lower end of the large diameter hole portion 82 opening to the upper end of the mover 80 and the upper end of the small diameter hole portion 83 opening to the lower end of the mover 80.
  • the shaft portion 77 of the actuating pin 75 is inserted into the small diameter hole portion 83 of the mover 80.
  • the lower half hemisphere of the base 79 of the operating pin 75 is seated on the inner conical surface 81 of the mover 80 by the urging force of the compression coil spring 85.
  • the compression coil spring 85 is interposed between the outer peripheral edge of the base 79 and the spring receiving member 84.
  • the spring force of the compression coil spring 85 is transmitted to the first valve body 53 via the operation pin 75 and the second valve body 65, whereby the first valve body 53 moves downward with respect to the core 93 of the solenoid 91. Is urged in the direction.
  • the spring receiving member 84 has a stepped shaft shape and has a large diameter shaft portion 60, a small diameter shaft portion 61, and a flange portion 62. The flange portion 62 is formed between the large diameter shaft portion 60 and the small diameter shaft portion 61 and receives the upper end of the compression coil spring 85.
  • the large-diameter shaft portion 60 is inserted inside the upper end portion of the compression coil spring 85, and the small-diameter shaft portion 61 is fitted to the ring 66 mounted in the recess 97 of the magnetic portion 95 of the core 93.
  • the second valve body 65 is urged downward with respect to the mover 80 by the spring force of the compression coil spring 86.
  • the compression coil spring 86 is mounted on the shaft 77 of the actuating pin 75 and is interposed between the bottom surface of the recess 74 of the second valve body 65 and the mover 80.
  • the space 88 inside the core 93 (magnetic portion 96) and between the second valve body 65 and the mover 80 is connected to the first space through a passage 89 formed in the flange portion 72 of the second valve body 65.
  • the one valve body 53 is communicated with the bore 63.
  • a coil cap 98 is fitted to the upper end of the inner peripheral surface 22A of the case body 22 of the piston case 21.
  • the large-diameter hole portion 82 on the inner side of the mover 80 is provided between the shaft hole 67 of the spring receiving member 84, the shaft hole of the ring 66, the passage 44 axially penetrating the magnetic portion 95, and between the coil cap 98 and the magnetic portion 95.
  • an air vent passage is formed for discharging the air remaining in the piston case 21 during assembly.
  • a disc valve 102 configured by laminating a plurality of discs (“3 discs” in the present embodiment) is provided at the upper end of the piston valve 5.
  • the outer peripheral edge portion of the disc valve 102 is seated on an annular seat portion 103 formed on the upper end portion of the piston valve 5.
  • an annular recess 104 is formed inside (inner peripheral side) the annular seat 103.
  • An upper end of the contraction-side passage 20 is opened at the bottom of the annular recess 104.
  • the pilot orifice portion 101 has an annular valve seat 105 into which the shaft portion 24 of the piston case 21 is inserted in the shaft hole 105A.
  • the upper end surface of the valve seat 105 is brought into contact with the lower end surface of the case bottom portion 23 of the piston case 21.
  • a boss portion 106 that is sandwiched between the inner peripheral edge portion of the piston valve 5 and the case bottom portion 23 of the piston case 21 is formed on the inner peripheral edge portion of the valve seat 105.
  • An annular seat portion 107 protruding downward is formed on the outer peripheral edge of the valve seat 105.
  • An annular seat portion 108 that projects downward is formed at the lower end portion of the valve seat 105.
  • the seat portion 108 is provided between the boss portion 106 and the seat portion 107.
  • annular recesses 109 and 110 are concentrically provided.
  • the outer annular recess 109 is formed between the seat portions 107 and 108.
  • the inner annular recess 110 is formed between the seat portion 108 and the boss portion 106.
  • the outer diameter (diameter) of the seat portion 107 is larger than the outer diameter of the seat portion 103 of the piston valve 5.
  • the outer diameter (diameter) of the seat portion 108 is smaller than the outer diameter of the seat portion 103 of the piston valve 5.
  • (the outer diameter of the seat portion 108) ⁇ (the outer diameter of the seat portion 103) is shown, but the equality or the relationship may be reversed.
  • the pilot orifice portion 101 has stacked circular disks 111 to 114.
  • the disks 111 to 114 have the same outer diameter (diameter) and are larger than the outer diameter of the disk valve 102.
  • the shaft portion 24 of the piston case 21 is inserted into the shaft holes of the disks 111 to 114.
  • Inner peripheral edge portions of the disks 111 to 114 are sandwiched between the boss portion 106 of the valve seat 105 and the retainer 115.
  • a valve seat 105, a disc 111, a disc 112, a disc 113, a disc 114, a retainer 115, and a disc valve 102 are provided between the case bottom portion 23 of the piston case 21 and the piston valve 5 in this order from the upper side to the lower side. ..
  • Each component inserted into the shaft portion 24 of the piston case 21 is fixed to the case bottom portion 23 of the piston case 21 by the axial force generated by tightening the nut 26 attached to the lower end portion of the shaft portion 24.
  • the outer peripheral edge of the disc 111 is seated on the annular seat portion 107 of the valve seat 105.
  • the annular seat portion 108 of the valve seat 105 is brought into contact with a base end portion 118A of a valve body 118 of a check valve 117, which will be described later, in other words, an annular region on the disc 111 which is at a constant distance from the center of the disc 111.
  • two annular passages 121 and 122 that are divided into an outer side and an inner side by the seat portion 108 are formed.
  • the annular passages 121 and 122 are communicated with each other by a plurality (8 in this embodiment) of passages 123 provided in the valve seat 105.
  • the passages 123 are arranged on the seat portion 108 at equal intervals.
  • the upper end side opening of the passage 123 is opened to the annular passage 50 formed in the case bottom portion 23 of the piston case 21.
  • a plurality of passages (“4” in the present embodiment) 124 that connect the shaft hole 105A of the valve seat 105 and the annular passage 122 are formed.
  • the passage 124 includes an axial passage 125 (see FIG. 2) formed in the outer peripheral surface of the shaft portion 24 of the piston case 21, an annular passage 126 (see FIG. 2) formed in the shaft hole of the pilot case 36, and the pilot case. It communicates with the pilot chamber 34 via a radial passage 127 (see FIG. 2) formed at the upper end of the inner peripheral edge of the valve 36.
  • the pilot passage 35 (see FIG.
  • 124 annular passages 121 and 122, passage 123, annular passage 50, passage 51, chamber 52, passage 70, second valve chamber 69, bore 63, passage 71, first valve chamber 56, and passage 57.
  • the pilot orifice portion 101 is provided in a pilot passage 35, which will be described later, that connects the cylinder upper chamber 2A and the cylinder lower chamber 2B.
  • the pilot orifice portion 101 constantly connects the pilot chamber 34 and the piston upper chamber 2A on the upstream side of the main valve 32 (see FIG. 2) during the extension stroke of the piston rod 6 (hereinafter referred to as "extension stroke"). It has a first orifice 131.
  • the first orifice 131 is provided at a position on the upstream side of the pilot valve 68 during the extension stroke.
  • the first orifice 131 is provided between the seat portion 107 of the valve seat 105 and the second disk 112 counted from the top among the stacked disks 111 to 114.
  • the first orifice 131 is formed by a plurality (“four” in this embodiment) of slits 132 provided on the outer peripheral edge of the first disk 111 counted from the top among the stacked disks 111 to 114. It is formed.
  • the pilot orifice portion 101 has a first passage 133 provided in parallel with the first orifice 131 on the upstream side of the pilot valve 68 during the extension stroke.
  • a check valve 117 is provided in the first passage 133.
  • the check valve 117 has a predetermined differential pressure (hereinafter referred to as “check” when the differential pressure between the pilot chamber 34 and the piston upper chamber 2A on the upstream side of the main valve 32 (see FIG. 2) during the hard side damping force characteristic during the extension stroke.
  • the valve is opened by reaching the valve opening differential pressure of the valve 117 ").
  • the opening of the check valve 117 allows the flow of the oil liquid from the upper piston chamber 2A on the upstream side of the main valve 32 in the extension stroke to the pilot valve 68 through the first passage 133.
  • the first passage 133 is a cutout portion provided in the fourth disk 114 counted from the top and the third disk 113 counted from the top among the stacked disks 111 to 114. 135, a notch 136 provided on the second disc 112 counting from the top, and a notch 137 provided on the first disc 111 counting from the top.
  • the notch 135 is a notch that extends in the radial direction (the left-right direction in FIG. 3) from the outer peripheral end of the disk 113, and the inner tip is formed in a semicircle.
  • the semi-circular tip portion of the cutout portion 135 is formed radially inside (left side in FIG. 3) of the seat portion 108 of the valve seat 105.
  • the notch 136 is an annular notch provided on the outer side (outer periphery) of the axial hole of the disk 112 and extending in the circumferential direction.
  • an annular portion outside the cutout portion 136 and an annular portion inside the cutout portion 136 in which the shaft hole is formed are connected by a connecting portion 138.
  • the semicircular tip of the cutout 135 of the disk 113 is opened (communicated) with the cutout 136 of the disk 112.
  • the notch 137 is an annular notch that is provided outside the shaft hole of the disc 111 (outer periphery) and extends in the circumferential direction.
  • an annular portion outside the cutout portion 137 and an annular portion inside the cutout portion 137 in which the shaft hole is formed are connected by the connecting portion 139. Be connected.
  • the outer diameter of the cutout portion 137 of the disc 111 is smaller than the inner diameter of the cutout portion 136 of the disc 112.
  • the differential pressure between the pilot chamber 34 and the piston upper chamber 2A on the upstream side of the main valve 32 causes the check valve 117 to open.
  • the valve differential pressure predetermined differential pressure
  • the valve element 118 is allowed to roll around the ridge 120 between the inner peripheral surface and the end surface (contact surface) of the seat portion 108 of the valve seat 105 as a fulcrum. To bend.
  • the valve element 118 is separated from the valve seat 119, the check valve 117 is opened, and the oil liquid in the cylinder upper chamber 2A flows toward the pilot valve 68 via the first passage 133.
  • the pilot orifice portion 101 is formed with the second orifice 134 formed by the cutout portion 135 of the disk 113.
  • the differential pressure generated by the oil liquid flowing through the first orifice 131 causes the upstream side of the pilot chamber 34 and the main valve 32 (see FIG. 2).
  • a differential pressure is generated between the upper chamber 2A and the piston upper chamber 2A.
  • the flow passage area of the second orifice 134 is the rectangular cross-sectional area of the cutout 135 of the disk 113, and is larger than the flow passage area of the first orifice 131 (the rectangular cross-sectional area of the slit 132 of the disk 111). ..
  • the flow passage area of the first orifice 131 is smaller than the flow passage area of the fixed orifice of the conventional pilot orifice portion (see FIG. 6).
  • the flow passage area of the orifice A that is, the total flow passage area of the flow passage area of the first orifice 131 and the flow passage area of the second orifice 134 is larger than the flow passage area of the fixed orifice of the conventional pilot orifice portion. large.
  • the shock absorber 1 is attached between the sprung portion and the unsprung portion of the suspension device of the vehicle.
  • the shock absorber 1 When vibration occurs in the vehicle, the shock absorber 1 generates a damping force by controlling the flow of oil liquid (working fluid) with respect to the stroke of the piston rod 6.
  • the damping force generation mechanism 31 controls the thrust force of the solenoid 91 to reduce the set load (valve opening pressure) of the first valve body 53 during the contraction stroke of the piston rod 6 (hereinafter referred to as “contraction stroke”).
  • the damping force is adjusted by changing it.
  • the back pressure of the main valve 32 pressure in the pilot chamber 34
  • the damping valve 33 is varied to change the valve opening pressure of the damping valve 33, thereby adjusting the damping force.
  • the first valve body 53 when the first valve body 53 is opened against the thrust of the solenoid 91 during the compression stroke, the oil liquid on the cylinder lower chamber 2B side flows through the passage 57, the chamber 52, the passage 51, and the annular passage 50. After passing, the disc valve 116 composed of the discs 111 to 114 is opened to flow into the cylinder upper chamber 2A. At this time, a damping force of the valve characteristic is generated by the oil liquid flowing through the disc valve 116. The first valve body 53 and the second valve body 65 move integrally during the contraction stroke.
  • the second valve body 65 is closed, that is, the second valve body 65 is closed.
  • the upstream side of the pilot chamber 34 has a radial passage 127, an annular passage 126, an axial passage 125, a passage 124, and annular passages 122, 121.
  • the oil liquid on the cylinder upper chamber 2A side is introduced into the pilot chamber 34 through the introduction passage 27.
  • the downstream side of the pilot chamber 34 communicates with the second valve chamber 69 via the passage 123, the annular passage 50, the passage 51, the chamber 52, and the passage 70.
  • the thrust (control current) of the solenoid 91 is controlled to control the pilot valve 68 (second valve body 65). Open the valve.
  • the oil liquid in the cylinder upper chamber 2A is supplied with the first orifice 131 of the pilot orifice portion 101, the annular passages 121 and 122, the passage 123, the annular passage 50, the passage 51, the chamber 52, the passage 70, and the second valve chamber 69. It flows through the control passage including the bore 63, the passage 71, the first valve chamber 56, and the passage 57 to the cylinder lower chamber 2B.
  • the pilot valve 68 controls the thrust force (control current) of the solenoid 91.
  • the valve is closed by the adjusted set load.
  • the above-described orifice A in the pilot orifice portion 101 that is, the flow passage area of the first orifice 131 and the second orifice 134.
  • This is equivalent to the provision of an orifice having a flow passage area that is the sum of the flow passage areas. Therefore, a pressure difference is generated between the upper cylinder chamber 2A and the pilot chamber 34 between the upstream side and the downstream side of the orifice A.
  • FIG. 7 is a chart comparing the orifice characteristics of the pilot orifice portion 101 in the first embodiment and the conventional pilot orifice portion (see FIG. 6) during the extension stroke.
  • FIG. 8 is a chart comparing damping force characteristics of the shock absorber 1 of the first embodiment having the pilot orifice portion 101 and the shock absorber having the pilot orifice portion of the conventional structure (see FIG. 6). Note that the following "differential pressure” refers to the pressure difference between the upstream side and the downstream side of the orifice, and further, the pressure difference between the cylinder upper chamber 2A and the pilot chamber 34.
  • the pilot orifice portion 101 At the time of the soft damping force characteristic, the pilot orifice portion 101 generates a differential pressure by the first orifice 131 due to the opening of the pilot valve 68 (control valve), while the conventional pilot orifice portion has a fixed orifice (see FIG. 6). Differential pressure is generated by
  • the pilot orifice portion 101 increases the differential pressure with respect to the conventional pilot orifice portion.
  • the speed increases, and the valve opening pressure (valve opening differential pressure) of the main valve 32 is reached with a smaller amount of oil liquid. As a result, as shown in FIG.
  • the pilot orifice portion 101 reaches the valve opening pressure (valve opening pressure difference) of the main valve 32 at a lower piston speed than that of the conventional pilot orifice portion. It is possible to reduce the damping force when the valve is opened, and it is possible to improve the riding comfort of the vehicle.
  • the pilot orifice portion 101 opens the pilot valve 68 (control valve) and further opens the check valve 117, so that the flow passage area of the first orifice 131 and the second orifice 131 are reduced.
  • the provisional orifice A having a flow passage area that is the sum of the flow passage areas of the orifices 134 produces a differential pressure
  • the conventional pilot orifice section produces a differential pressure with a fixed orifice (see FIG. 6).
  • the pilot orifice portion 101 since the flow passage area of the orifice A is larger than the flow passage area of the fixed orifice, as shown in FIG. 7, the pilot orifice portion 101 has a higher differential pressure increasing speed than the conventional pilot orifice portion.
  • valve opening pressure valve opening pressure difference
  • a larger flow rate of oil liquid is required.
  • the pilot orifice portion 101 reaches the valve opening pressure (valve opening differential pressure) of the main valve 32 at a higher piston speed than that of the conventional pilot orifice portion. The damping force when the valve is opened can be increased, and the steering stability of the vehicle can be improved.
  • the shift point of the damping force characteristic at the time of the hard side damping force characteristic is the opening point of the pilot valve (control valve) and the opening point of the main valve. It was a point.
  • the shift point of the damping force characteristic at the time of the hard side damping force characteristic is the opening point of the pilot valve 68 (control valve) and the opening point of the check valve 117.
  • the valve opening point of the main valve 32 is the check valve 117 is opened and the damping force characteristic is switched between the opening point of the pilot valve 68 and the opening point of the main valve 32.
  • the change in inclination can be reduced. This makes it possible to smooth the change in the damping force characteristic and reduce the valve vibration and jerk (jerk), thereby further improving the sound vibration and the riding comfort of the vehicle.
  • the shock absorber (1) includes a cylinder (2) in which a fluid is enclosed, a piston (5) slidably fitted in the cylinder (2), and the piston (5).
  • a piston rod (6) connected to the cylinder and extended to the outside of the cylinder (2) and a fluid flow generated by sliding of the piston (5) in the cylinder (2) are controlled to generate a damping force.
  • a valve (32), a pilot chamber (34) for exerting pressure on the main valve (32) in a valve closing direction, an introduction passage (27) for introducing a fluid into the pilot chamber (34), and a pilot chamber (34) is provided with a pilot passage communicating with the downstream side of the main valve (32) and a control valve (68) provided in the pilot passage, and the pilot passage is provided upstream of the control valve (68).
  • the first orifice (131) that is in constant communication with the first orifice (131), the first passage (133) provided in parallel with the first orifice (131), and the first passage (133) opened by a predetermined differential pressure.
  • a first check valve (117) and a second orifice (134) are provided to allow flow towards the control valve (68) through the.
  • the orifice of the orifice is different from that of the conventional fixed orifice.
  • the increasing speed of the differential pressure between the upstream side and the downstream side increases.
  • the main valve (32) opens with a smaller flow rate, and eventually reaches the valve opening pressure (valve opening differential pressure) at a lower piston speed.
  • the damping force when the main valve (32) is opened during the soft side damping force characteristic can be reduced, and the riding comfort of the vehicle can be improved.
  • the check valve (117) is opened, so that the flow passage area of the first orifice (131) and the second orifice (having a flow passage area larger than that of the first orifice (131) (
  • the differential pressure is generated by the orifice A having the same flow passage area as the total of the flow passage area of (134) and the orifice A having the same value.
  • the rate of increase of the differential pressure with the downstream side decreases.
  • the main valve (32) opens at a higher flow rate, and eventually reaches the valve opening pressure (valve opening pressure difference) at a higher piston speed.
  • the damping force characteristic is switched by opening the check valve (117) between the opening point of the control valve (68) and the opening point of the main valve (32). It is possible to reduce the change in the inclination of the damping force characteristic. This makes it possible to smooth the change in the damping force characteristic and reduce the valve vibration and jerk (jerk), thereby further improving the sound vibration and the riding comfort of the vehicle.
  • the second orifice 134 and the check valve 117 are separately configured in the first embodiment, the check valve having the orifice, that is, the second orifice 134 and the check valve 117 may be integrally formed.
  • the first orifice 131 and the second orifice 134 are arranged in parallel, and the check valve 117 is opened at the time of the hard side damping force characteristic of the extension stroke, so that the flow path of the first orifice 131 is increased.
  • the pilot orifice portion 101 was configured so as to be equivalent to the provision of the orifice A having the flow passage area obtained by adding the area and the flow passage area of the second orifice 134.
  • the second orifice 143 is arranged upstream of the first passage 133 (cylinder upper chamber 2A side), and the first orifice 142 and the second orifice 143 are arranged in series.
  • the pilot orifice portion 141 is configured so as to be as follows.
  • the first orifice 142 is provided between the first disc 111 (valve body 118) and the third disc 113 by providing the notch 144 in the valve seat 119 (see FIG. 3) on which the valve body 118 of the check valve 117 is seated.
  • the cylinder upper chamber 2A and the pilot chamber 34 are always communicated with each other.
  • the flow passage area of the second orifice 143 is set to be larger than the flow passage area of the fixed orifice (see FIG. 6) of the conventional pilot orifice portion, for example, the first orifice 131 in the first embodiment. Is set to the total flow channel area of the second orifice 134.
  • the opening of the check valve 117 causes the oil liquid that has passed through the second orifice 143 to flow toward the first orifice 142 and the first passage 133 provided with the check valve 117.
  • the pilot orifice portion 141 substantially generates a differential pressure by the second orifice 143.
  • the pilot orifice portion 141 since the flow passage area of the second orifice 143 is larger than the flow passage area of the fixed orifice, the pilot orifice portion 141 has a lower differential pressure increasing speed than the conventional pilot orifice portion, and thus the main valve 32. In order to reach the valve opening pressure (valve opening differential pressure) of No. 2, a larger amount of oil liquid is required. As a result, the pilot orifice portion 141 reaches the valve opening pressure (valve opening pressure difference) of the main valve 32 at a higher piston speed than the conventional pilot orifice portion. According to the second embodiment, it is possible to obtain the same effects as those of the first embodiment.
  • the structure in which the first orifice 131 and the second orifice 134 in the pilot orifice portion 101 of the first embodiment are arranged in parallel is used as a pilot orifice of a damping force adjusting hydraulic shock absorber with a lateral control valve. It is applied to the section 152.
  • the basic structure of the damping force generation mechanism 151 is the same as the damping force generation mechanism assembled in the conventional semi-active suspension device, and thus detailed description thereof is omitted.
  • the first orifice 153 is formed at the lower end portion of the shaft hole 156 of the pilot pin 155, and the first passage 133 is formed in the stacked disks 111 to 114 constituting the main valve 32. It is formed.
  • a check valve 117 and a second orifice 154 are provided in the first passage 133.
  • the check valve 117 is opened when the pilot valve 68 (control valve) is opened and the pressure difference between the internal pressure of the shaft hole 156 communicating with the cylinder upper chamber 2A and the pilot chamber 34 reaches a predetermined value.
  • the second orifice 154 is provided on the downstream side (the pilot valve 68 side) of the check valve 117 and is arranged in parallel with the first orifice 153.
  • the introduction passage including the first orifice 153, the shaft hole 156 of the pilot pin 155, the axial passage 157 formed on the outer peripheral surface of the pilot pin 155, and the passage 173 formed in the flexible disc valve 172.
  • the oil liquid in the cylinder upper chamber 2A is introduced into the pilot chamber 34 via 171.
  • the pilot valve 68 control valve
  • the differential pressure between the cylinder upper chamber 2A and the pilot chamber 34 becomes the valve opening pressure (valve opening differential pressure) of the check valve 117.
  • the check valve 117 is opened.
  • the first passage 133 is connected to the introduction passage 171 via the annular passage 158 and the radial passage 159 formed on the outer peripheral surface of the pilot pin 155.
  • the pilot orifice portion 152 has a difference due to the provisional orifice A having the flow passage area obtained by adding the flow passage area of the first orifice 153 and the flow passage area of the second orifice 154. Generate pressure. According to the third embodiment, it is possible to obtain the same effects as those of the first and second embodiments.
  • the second orifice 143 is arranged upstream of the first passage 133 (cylinder upper chamber 2A side), and the first orifice 142 and the second orifice 143 are arranged in series.
  • the pilot orifice portion 141 is configured in the above.
  • the configuration of the second embodiment is applied to the pilot orifice portion 162 of the damping force generation mechanism 161 including the poppet valve 165.
  • the basic structure of the damping force generation mechanism 161 is the same as that of the conventional damping force generation mechanism including the poppet valve, and thus detailed description thereof will be omitted.
  • the first orifice 163 is formed at the lower end portion of the shaft hole 167 (first passage) of the valve body 166 of the poppet valve 165 (first check valve), and the cylinder upper chamber 2A And the pilot chamber 34 are always communicated with each other.
  • the second orifice 164 is formed at the lower end of the shaft hole 156 of the pilot pin 155. The second orifice 164 communicates with the pilot chamber 34 when the valve body 166 is separated from the valve seat 168 formed on the pilot pin 155 and the poppet valve 165 is opened.
  • the valve element 166 is urged in the valve closing direction (downward in FIG. 13) by the valve spring 169 housed in the shaft hole 156 of the pilot pin 155.
  • the poppet valve 165 When the poppet valve 165 is closed, the first orifice 163 arranged in series with the second orifice 164, the shaft hole 167 of the valve body 166, the shaft hole 156 of the pilot pin 155, and the outer peripheral surface of the pilot pin 155.
  • the upper cylinder chamber 2A and the pilot chamber 34 are communicated with each other through an introduction passage 171 formed of the formed axial passage 157 and the passage 173 formed in the flexible disc valve 172.
  • the damping force generation mechanism 161 uses the fixed orifice 170 (see FIG. 13) provided in the main valve 32 before the pilot valve 68 (control valve) is opened during the hard damping force characteristic. Generates a constant orifice characteristic damping force.
  • the damping force generation mechanism 161 causes the damping force of the orifice characteristic of the first orifice 163, to be exact, the fixed orifice.
  • the damping force equal to that of an orifice having a flow passage area obtained by adding the flow passage area of 170 and the flow passage area of the first orifice 163 is generated.
  • the damping force generation mechanism 161 substantially generates the damping force of the orifice characteristic of the second orifice 164.
  • the damping force generation mechanism 161 When the piston speed further increases and the pressure difference between the cylinder upper chamber 2A and the pilot chamber 34 reaches the valve opening pressure (valve opening pressure difference) of the main valve 32 and the main valve 32 opens, the damping force generation mechanism 161 operates The main valve 32 generates a damping force of the valve characteristic.
  • the shift point of the damping force characteristic at the time of the hard side damping force characteristic is the opening point of the pilot valve 68 (control valve), the opening point of the poppet valve 165 (first check valve), and the main valve. These are three of the 32 valve opening points.
  • the poppet valve 165 is opened and the damping force characteristic is switched between the opening point of the pilot valve 68 and the opening point of the main valve 32.
  • the change in inclination can be reduced. According to the fourth embodiment, it is possible to obtain the same effects as those of the first to third embodiments.
  • the pilot orifice portion 162 is configured such that the second orifice 164 communicates with the pilot chamber 34 by opening the poppet valve 165.
  • the configuration of the fourth embodiment is applied to the pilot orifice portion 182 of the damping force generation mechanism 181 in which the main valve is opened stepwise, in other words, the port 190 is stepwise relieved. It was done.
  • the poppet valve 165 in the fifth embodiment When the poppet valve 165 in the fifth embodiment is closed, the first orifice 163 arranged in series with the second orifice 164, the shaft hole 167 of the valve body 166, the shaft hole 184 of the valve seat member 183, and the valve housing 185.
  • the cylinder upper chamber 2A and the pilot chamber 34 are communicated with each other through an introduction passage 189 including an axial hole 186, a radial passage 187 formed in the valve housing 185, and an axial passage 188 formed in the valve housing 185.
  • the damping force generation mechanism 181 includes a fixed orifice 191 (see FIG. 16) provided in the first main valve 32A. ) Generates a constant orifice characteristic damping force.
  • the damping force generation mechanism 181 causes the damping force of the orifice characteristic of the first orifice 163 to be exactly the same.
  • the generation mechanism 181 When the piston speed further increases and the pressure difference between the cylinder upper chamber 2A and the pilot chamber 34 reaches the valve opening pressure (valve opening pressure difference) of the first main valve 32A and the first main valve 32A opens, the damping force is increased.
  • the generation mechanism 181 generates the damping force of the valve characteristic by the first main valve 32A.
  • the piston speed further increases and the pressure difference between the cylinder upper chamber 2A and the pilot chamber 34 reaches the valve opening pressure (valve opening pressure difference) of the second main valve 32B and the second main valve 32B opens the damping force is increased.
  • the generation mechanism 181 generates the damping force of the valve characteristic of the second main valve 32B.
  • the shift point of the damping force characteristic at the time of the hard side damping force characteristic is the opening point of the pilot valve 68 (control valve), the opening point of the poppet valve 165 (first check valve), and the first main.
  • the valve opening point of the valve 32A and the valve opening point of the second main valve 32B there are four points, the valve opening point of the valve 32A and the valve opening point of the second main valve 32B.
  • the poppet valve 165 is opened and the damping force characteristic is switched between the opening point of the pilot valve 68 and the opening point of the first main valve 32A, whereby the damping force characteristic is changed. It is possible to further reduce the change in the slope of the characteristic.
  • the pilot orifice portion 202 is configured by providing the spool valve element 205 (second check valve) on the outer circumference of the poppet valve 165 (first check valve) in the fourth embodiment.
  • the hollow shaft spool 203 is inserted (accommodated) into the shaft hole 156 (hollow portion) of the pilot pin 155.
  • a valve element 166 of the poppet valve 165 is formed at the lower end of the spool 203.
  • a valve body 206 of a spool valve 205 is formed on the upper end of the spool 203.
  • a cylindrical bush 209 is press-fitted (fitted) to the upper end of the shaft hole 156 of the pilot pin 155, that is, the end opposite to the second orifice 164.
  • a small inner diameter portion 210 with which the outer peripheral surface 207 of the valve body 206 of the spool valve 205 slidably contacts is formed on the lower end side of the inner peripheral surface of the bush 209.
  • a large inner diameter portion 211 continuous with the small inner diameter portion 210 via a step portion is formed on the upper end side of the inner peripheral surface of the bush 209.
  • a valve seat 208 of the spool valve 205 is formed around the upper end of the small inner diameter portion 210.
  • a plurality of protrusions 212 (only one is shown in FIG. 19) that are provided at equal intervals along the circumferential direction and project in the radial direction are provided.
  • a valve spring 169 biasing means that biases the valve body 166 of the poppet valve 165 in the valve closing direction (“downward” in FIG. 19) is interposed between the protrusion 212 and the bush 209.
  • the valve opening pressure of the poppet valve 165 can be adjusted by the spring force of the valve spring 169.
  • the press-fitting position of the bush 209 with respect to the pilot pin 155 is adjusted so that the spool valve 205 opens after the poppet valve 165 opens.
  • a cutout portion 215 for forming a flow passage 214 on the outer periphery of the poppet valve 165 is provided on the outer peripheral surface 204 of the spool 203, between the valve body 166 of the poppet valve 165 and the valve body 206 of the spool valve 205.
  • the cutout portion 215 is formed by a surface parallel to the axis (center line) of the spool 203 and extends in the axial direction between the poppet valve 165 and the spool valve 205.
  • a notch 218 for forming the third orifice 217 is provided at the upper end of the outer peripheral surface 204 of the spool 203.
  • the third orifice 217 always connects the flow passage 214 on the outer periphery of the poppet valve 165 to the introduction passage 171.
  • the cutout portion 218 is a surface parallel to the cutout portion 215 and is continuous with the cutout portion 215 via the tapered surface 216.
  • the width of the cutout 218 is smaller than the width of the cutout 215. Then, in the pilot orifice portion 202 of the sixth embodiment, a plurality of notches 215 and notches 218 (only one is shown in FIG. 19) are provided at equal intervals along the circumferential direction of the spool 203.
  • the poppet valve 165 when the poppet valve 165 is closed, the cylinder upper chamber 2A is communicated with the pilot chamber 34 via the first orifice 163 provided on the inner circumference of the valve body 166. Then, when the poppet valve 165 opens, the oil liquid that has passed through the second orifice 164 flows through the first orifice 163 and the third orifice 217 provided in parallel with the first orifice 163. Further, after the poppet valve 165 is opened, the pressure in the flow path 214 reaches the valve opening pressure of the spool valve 205 and the spool valve 205 is opened, so that the second passage 213 parallel to the third orifice 217 is opened. To do.
  • the damping force generation mechanism 201 uses the fixed orifice 170 (see FIG. 19) provided in the main valve 32. Generates a constant orifice characteristic damping force.
  • the damping force generation mechanism 201 generates the damping force of the orifice characteristic of the first orifice 163.
  • the spool valve 205 is opened before the spool valve 205 is opened.
  • the oil liquid circulates through the third orifices 217 provided in parallel with each other. As a result, the damping force generation mechanism 201 generates the damping force having the orifice characteristic of the third orifice 217.
  • the damping force generation mechanism 201 When the piston speed further increases and the valve body 206 separates from the valve seat 208 and the spool valve 205 opens, the second passage 213 opens and the flow passage 214 communicates with the introduction passage 171. As a result, the damping force generation mechanism 201 generates the damping force of the orifice characteristic of the second orifice 164.
  • the damping force generation mechanism 201 operates. The main valve 32 generates a damping force of the valve characteristic.
  • the shift point of the damping force characteristic at the time of the hard side damping force characteristic is the opening point of the pilot valve 68 (control valve) and the opening point of the poppet valve 165 (first check valve). There were three points, the open point of the main valve 32 and the open point of the main valve 32.
  • the spool valve 205 is opened to switch the damping force characteristics between the opening point of the poppet valve 165 and the opening point of the main valve 32, that is, the damping force characteristics. Since the shift points of 4 are increased to 4, it is possible to further reduce the change in the inclination of the damping force characteristic.
  • the valve seat 208 of the spool valve 205 is It is possible to change the timing at which the spool valve 205 opens after the poppet valve 165 opens, depending on the press-fitting position of the formed bush 209 into the shaft hole 156 of the pilot pin 155. It is possible to improve the degree of freedom in adjusting damping force characteristics, which is necessary for reducing jerk. According to the sixth embodiment, it is possible to obtain the same operational effects as those of the first to fifth embodiments.
  • a seventh embodiment will be described with reference to FIGS. 23 and 24.
  • the same names and reference numerals are given to the same or corresponding components as those of the above-described embodiment, and detailed description thereof will be omitted.
  • the spool orifice 205 (second check valve) is provided on the outer circumference of the poppet valve 165 (first check valve) to configure the pilot orifice section 202.
  • the configuration of the sixth embodiment is applied to the pilot orifice portion 182 of the damping force generation mechanism 181 of the fifth embodiment in which the port 190 is gradually relieved, and the pilot orifice portion 182 is applied. 222 is configured.
  • the damping force generation mechanism 221 includes the fixed orifice 191 (see FIG. 23) provided in the first main valve 32A. ) Generates a constant orifice characteristic damping force.
  • the damping force generation mechanism 221 generates the damping force having the orifice characteristic of the first orifice 163.
  • the spool valve 205 is opened before the spool valve 205 is opened.
  • the oil liquid circulates through the third orifices 217 provided in parallel with each other. As a result, the damping force generation mechanism 221 generates the damping force having the orifice characteristic of the third orifice 217.
  • the damping force generation mechanism 221 When the piston speed further increases and the pressure difference between the cylinder upper chamber 2A and the pilot chamber 34 reaches the valve opening pressure (valve opening pressure difference) of the first main valve 32A and the first main valve 32A opens, the damping force is increased.
  • the generation mechanism 221 generates the damping force of the valve characteristic of the first main valve 32A.
  • the valve body 206 separates from the valve seat 208, and the spool valve 205 opens, the second passage 213 (see FIG. 21) opens and the flow passage 214 communicates with the introduction passage 171. It As a result, the damping force generation mechanism 221 generates the damping force having the orifice characteristic of the second orifice 164.
  • the damping force is increased.
  • the generation mechanism 221 generates the damping force of the valve characteristic of the second main valve 32B.
  • the shift point of the damping force characteristic at the time of the hard side damping force characteristic is the opening point of the pilot valve 68 (control valve) and the opening point of the poppet valve 165 (first check valve).
  • the opening point of the first main valve 32A and the opening point of the second main valve 32B There were four points, the opening point of the first main valve 32A and the opening point of the second main valve 32B.
  • the spool valve 205 is opened and the damping force characteristics are switched between the opening point of the first main valve 32A and the opening point of the second main valve 32B. It is possible to further reduce the change in the inclination of the damping force characteristic.
  • the seventh embodiment it is possible to make changes in the damping force characteristics smoother, and reduce valve vibration and jerk (jerk), thereby further improving sound vibration and ride comfort of the vehicle. be able to. According to the seventh embodiment, it is possible to obtain the same operational effects as those of the first to sixth embodiments.
  • 1 shock absorber 2 cylinder, 5 piston valve (piston), 6 piston rod, 27 introduction passage, 32 main valve, 34 pilot chamber, 68 pilot valve (control valve), 117 check valve, 131 first orifice, 133 first Passage, 134 second orifice

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

【課題】車両の乗り心地をより向上させることが可能な緩衝器を提供する。 【解決手段】パイロット通路35におけるパイロットバルブ68の上流側に、従来の固定オリフィスよりも流路面積が小さい第1オリフィス131と、第1オリフィス131に対して並列に配置された第2オリフィス134とを設け、チェック弁117の開弁により第2オリフィス134に油液を流通させるように、パイロットオリフィス部101を構成した。第1オリフィス131の流路面積を従来の固定オリフィスの流路面積よりも小さくすることで、伸び行程のソフト側減衰力特性時におけるメインバルブの開弁時の減衰力を低減させることが可能であり、車両の乗り心地をより向上させることができる。

Description

緩衝器
 本発明は、ピストンロッドのストロークに対して作動流体の流れを制御することにより、減衰力が調整される減衰力調整式緩衝器に関する。
 特許文献1には、メインバルブを2段階に開弁させることにより、ハード側減衰力特性におけるメインバルブの開弁前後の減衰力変化を低減させた減衰弁が開示されている。この減衰弁は、メインバルブの開弁時のバルブ振動が低減され、緩衝器の音振性能を向上させることができる。
特開2014-173715号公報
 前述した減衰弁は、メインバルブのポートを2段階に開弁させるため、構造の複雑化を招く。また、メインバルブの背圧(パイロット室内の圧力)を発生させるオリフィスの流路面積が一定であるため、ソフト側減衰力特性を低減させることが難しく、車両の乗り心地をより向上させることが困難であった。
 本発明の課題は、車両の乗り心地をより向上させることが可能な緩衝器を提供することにある。
 本発明に係る緩衝器は、流体が封入されたシリンダと、該シリンダ内に摺動可能に嵌装されたピストンと、該ピストンに連結されて前記シリンダの外部へ延出されたピストンロッドと、前記シリンダ内の前記ピストンの摺動によって生じる流体の流れを制御して減衰力を発生させるメインバルブと、該メインバルブに対して閉弁方向に圧力を作用させるパイロット室と、該パイロット室に流体を導入する導入通路と、前記パイロット室と前記メインバルブの下流側とを連通するパイロット通路と、該パイロット通路に設けられた制御弁と、を備え、前記パイロット通路の、前記制御弁よりも上流側には、常時連通する第1オリフィスと、該第1オリフィスに並列に設けられた第1通路と、所定の差圧で開弁し、前記第1通路を介して前記制御弁へ向かう流れを許容する第1チェック弁および第2オリフィスと、が設けられることを特徴とする。
 本発明によれば、車両の乗り心地をより向上させることができる。
第1実施形態に係る緩衝器の一軸平面による断面図である。 図1における要部を拡大して示す図である。 第1実施形態におけるパイロットオリフィス部の説明図である。 第1実施形態におけるパイロットオリフィス部の概念図である。 第1実施形態におけるパイロットオリフィス部の分解図である。 第1実施形態の説明図であって、従来のパイロットオリフィス部の概念図である。 第1実施形態におけるパイロットオリフィス部と従来のパイロットオリフィス部との、伸び行程時のオリフィス特性を比較した図表である。 第1実施形態のパイロットオリフィス部を備える減衰力発生機構と従来構造のパイロットオリフィス部を備える減衰力発生機構との減衰力特性を比較した図表である。 第2実施形態におけるパイロットオリフィス部の説明図である。 第2実施形態におけるパイロットオリフィス部の概念図である。 第3実施形態におけるパイロットオリフィス部の説明図である。 第3実施形態におけるパイロットオリフィス部の概念図である。 第4実施形態におけるパイロットオリフィス部の説明図である。 第4実施形態におけるパイロットオリフィス部の概念図である。 第4実施形態のパイロットオリフィス部を備える減衰力発生機構と従来構造のパイロットオリフィス部を備える減衰力発生機構との減衰力特性を比較した図表である。 第5実施形態におけるパイロットオリフィス部の説明図である。 第5実施形態におけるパイロットオリフィス部の概念図である。 第5実施形態のパイロットオリフィス部を備える減衰力発生機構と従来構造のパイロットオリフィス部を備える減衰力発生機構との減衰力特性を比較した図表である。 第6実施形態におけるパイロットオリフィス部の説明図である。 第6実施形態におけるパイロットオリフィス部の分解斜視図である。 第6実施形態におけるパイロットオリフィス部の概念図である。 第6実施形態のパイロットオリフィス部を備える減衰力発生機構と従来構造のパイロットオリフィス部を備える減衰力発生機構との減衰力特性を比較した図表である。 第7実施形態におけるパイロットオリフィス部の説明図である。 第7実施形態のパイロットオリフィス部を備える減衰力発生機構と従来構造のパイロットオリフィス部を備える減衰力発生機構との減衰力特性を比較した図表である。
(第1実施形態)
 本発明の第1実施形態を添付した図を参照して説明する。便宜上、図1における上下方向を「上下方向」と称する。
 図1を参照すると、第1実施形態に係る緩衝器1は、ソレノイド91を有する減衰力発生機構31がシリンダ2内のピストンケース21(ピストン)に内蔵された、いわゆる、ピストン内蔵型の減衰力調整式緩衝器1(以下「緩衝器1」と称する)である。緩衝器1は、シリンダ2の外側に外筒3を設けた複筒構造をなし、シリンダ2と外筒3との間にリザーバ4が形成される。シリンダ2内には、ピストンバルブ5(ピストン)が摺動可能に嵌装される。ピストンバルブ5は、外周側にピストンバンド5Aが設けられ、シリンダ2内をシリンダ上室2Aとシリンダ下室2Bとの2室に区画する。ピストンバルブ5は、上端がシリンダ上室2Aに開口する伸び側通路19と、下端がシリンダ下室2Bに開口する縮み側通路20と、を有する。
 シリンダ2の下端部には、シリンダ下室2Bとリザーバ4とを区画するベースバルブ7が設けられる。ベースバルブ7には、シリンダ下室2Bとリザーバ4とを連通させる通路8,9が設けられる。通路8には、リザーバ4側からシリンダ下室2B側への油液(作動流体)の流通のみが許容される逆止弁10が設けられる。通路9には、シリンダ下室2B側の油液の圧力が設定圧力に達することで開弁し、シリンダ下室2B側の圧力(油液)をリザーバ4側へ逃がすディスクバルブ11が設けられる。なお、作動流体として、シリンダ2内には油液が封入され、リザーバ4内には油液およびガスが封入される。また、外筒3の下端にはボトムキャップ12が接合され、ボトムキャップ12には取付部材13が接合される。
 図2に示されるように、ピストンバルブ5は、ピストンケース21を介してピストンロッド6に連結される。ピストンケース21は、ピストンロッド6の下端部(一端)に連結される略円筒形のケース本体22と、ケース本体22の下端を閉塞させるケース底部23と、ケース底部23の下端から軸方向(下方向)へ延びてピストンバルブ5が装着される軸部24と、を有する。ケース底部23と軸部24とは一部品であり、ケース本体22とケース底部23とはねじ部18によって一体化される。なお、図1に示されるように、ピストンロッド6の上端側(他端側)は、シリンダ上室2Aを通過し、シリンダ2および外筒3の上端部に装着されたロッドガイド14、さらにはオイルシール15に挿通され、シリンダ2の外部へ延出される。また、外筒3の上端部は、キャップ16によってカバーされ、外筒3の外周には、ばね受部材17が取り付けられる。
 図2に示されるように、緩衝器1は、ピストンロッド6の移動によって生じるシリンダ上室2Aとシリンダ下室2Bとの間の油液の流れを制御することで減衰力を発生させる減衰力発生機構31を備える。減衰力発生機構31は、ピストンバルブ5の下端部に設けられるメインバルブ32を有する。メインバルブ32は、ピストンバルブ5が伸び側へ移動したときのシリンダ上室2Aからシリンダ下室2Bへの油液の流れを規制することで減衰力を発生させる減衰弁33と、減衰弁33に対して閉弁方向へ内圧を作用させるパイロット室34と、シリンダ上室2Aからパイロット室34へ油液を導入させる導入通路27と、を有する。
 減衰弁33は、ディスクバルブによって構成され、軸孔にピストンケース21の軸部24が挿通される。減衰弁33の内側周縁部は、ピストンバルブ5の内側周縁部とパイロットケース36の内側周縁部とによって挟持される。減衰弁33の下面には、環状のパッキン37(シート部)が設けられる。パッキン37は、パイロットケース36の環状壁部38の内周面に摺動可能に当接される。これにより、減衰弁33とパイロットケース36との間に環状のパイロット室34が形成される。減衰弁33は、ピストンバルブ5の伸び側通路19の下端側開口を閉塞するようにして、外側周縁部がピストンバルブ5の下端部に着座される。そして、伸び側通路19および減衰弁33の開弁により形成される流路によって、シリンダ上室2Aとシリンダ下室2Bとが連通される。
 パイロットケース36は、パイロットケース36を上下方向へ貫通する複数個の通路41を有する。パイロットケース36の下端には、ディスクバルブ39が設けられる。ディスクバルブ39は、軸孔にピストンケース21の軸部24が挿通され、パイロットケース36の通路41の下端側開口を閉塞するようにして、外側周縁部がパイロットケース36の下端部に形成された環状のシート部40に着座される。ディスクバルブ39は、パイロット室34の圧力がセット荷重に達することで開弁される。ディスクバルブ39の開弁により、パイロット室34の圧力(油液)がシリンダ下室2Bへリリーフされる。なお、ディスクバルブ39の内側周縁部は、パイロットケース36の内側周縁部とワッシャ42との間で挟持される。
 図2に示されるように、ピストンケース21のケース底部23には、ケース底部23を軸線方向(上下方向)へ貫通する複数本(図2に「2本」のみ表示)の通路51が設けられる。通路51は、下端が環状通路50に開口し、上端がケース底部23の環状の側壁の内側に形成された室52に開口される。ピストンケース21の底面(室52の底面)には弁座55が形成され、弁座55には第1弁体53の下端に形成された環状のシート部54が着座される。弁座55に第1弁体53のシート部54が着座されることで、第1弁体53とケース底部23との間に第1弁室56が形成される。第1弁室56は、軸部24に形成された通路57(軸孔)を介してシリンダ下室2Bに連通される。
 第1弁体53は、非磁性体からなり、大径部58と小径部59とを有する段付円柱形に形成される。第1弁体53の小径部59は、ソレノイド91のコア93の磁性部96の下部に摺動可能に嵌装される。第1弁体53の小径部59とコア93の磁性部96との間は、シール部材によってシールされる。第1弁体53には、上端が開口するボア63が形成される。ボア63には、ニードル型の第2弁体65が収容される。第2弁体65は、弁座64に着座される。弁座64は、ボア63の底面に開口する第2弁室69の開口周縁部に形成される。第1弁体53および第2弁体65のセット荷重は、ソレノイド91のコイル92に対する制御電流を調節することで可変される。パイロットバルブ68(制御弁)は、第1弁体53と、第2弁体65と、第1弁体53および第2弁体65のセット荷重をソレノイド91の推力によって可変させるアクチュエータと、によって構成される。
 第1弁体53には、ボア63の底面中央に開口する第2弁室69、大径部58内を径方向(図2における左右方向)へ延びて第2弁室69を室52に連通させる通路70、および第2弁体65の開弁時に第2弁室69をシリンダ下室2Bに連通させる通路71が形成される。第2弁体65の上端側の外側周縁部には、フランジ部72が形成される。フランジ部72の外周面は、ボア63の内周面に摺動可能に嵌合される。フランジ部72とボア63の底面との間には、第2弁体65を第1弁体53に対して上方向へ付勢させる圧縮コイルばね73が介装される。第2弁体65には、第2弁体65の上端中央に開口する凹部74が形成される。凹部74の底部中央には、作動ピン75の半球形の下端を受ける内円錐面76が形成される。
 作動ピン75は、下端が第2弁体65の内円錐面76で受けられる軸部77と、下半分が半球形に形成される基部79と、基部79の上端中央に形成される凸部78と、を有する。作動ピン75は、基部79の半球面がソレノイド91の可動子80に形成された内円錐面81によって受けられる。内円錐面81は、可動子80の上端に開口する大径孔部82の下端と可動子80の下端に開口する小径孔部83の上端とに接続される。可動子80の小径孔部83には、作動ピン75の軸部77が挿通される。作動ピン75は、圧縮コイルばね85の付勢力によって、基部79の下側の半球面が可動子80の内円錐面81に着座される。圧縮コイルばね85は、基部79の外側周縁部とばね受部材84との間に介装される。
 第1弁体53には、圧縮コイルばね85のばね力が作動ピン75および第2弁体65を介して伝達され、これにより、第1弁体53は、ソレノイド91のコア93に対して下方向へ付勢される。ばね受部材84は、段付軸形状をなし、大径軸部60、小径軸部61、およびフランジ部62を有する。フランジ部62は、大径軸部60と小径軸部61との間に形成され、圧縮コイルばね85の上端を受ける。ばね受部材84は、大径軸部60が圧縮コイルばね85の上端部内側に挿入され、小径軸部61がコア93の磁性部95の凹部97に装着されたリング66に嵌合される。
 第2弁体65は、圧縮コイルばね86のばね力によって可動子80に対して下方向へ付勢される。圧縮コイルばね86は、作動ピン75の軸部77に外装され、第2弁体65の凹部74の底面と可動子80との間に介装される。なお、コア93(磁性部96)の内側で、かつ第2弁体65と可動子80との間の空間88は、第2弁体65のフランジ部72に形成された通路89を介して第1弁体53のボア63に連通される。
 ピストンケース21のケース本体22の内周面22Aの上端部には、コイルキャップ98が嵌合される。可動子80の内側の大径孔部82は、ばね受部材84の軸孔67、リング66の軸孔、磁性部95を軸方向に貫通する通路44、コイルキャップ98と磁性部95との間の空間43、コイルキャップ98に形成された通路45,46、コイルキャップ98とケース本体22の蓋部48との間に形成される通路47、およびケース本体22の蓋部48に形成された通路49を介して、シリンダ上室2Aに連通される。これにより、組立時に残留したピストンケース21内のエアを排出させるエア抜き通路が形成される。
 次に、パイロット室34内の圧力とメインバルブ32の開弁圧力との間に、メインバルブ32を開弁させる差圧を生じさせるパイロットオリフィス部101を説明する。
 図2、図3に示されるように、ピストンバルブ5の上端部には、複数枚(本実施形態では「3枚」)のディスクを積層して構成されたディスクバルブ102が設けられる。ディスクバルブ102の外側周縁部は、ピストンバルブ5の上端部に形成された環状のシート部103に着座される。ピストンバルブ5の上端部には、環状のシート部103の内側(内周側)に環状凹部104が形成される。環状凹部104の底部には、縮み側通路20の上端が開口される。
 パイロットオリフィス部101は、軸孔105Aにピストンケース21の軸部24が挿通される環状のバルブシート105を有する。バルブシート105の上端面は、ピストンケース21のケース底部23の下端面に当接される。バルブシート105の内側周縁部には、ピストンバルブ5の内側周縁部とピストンケース21のケース底部23との間で挟持されるボス部106が形成される。
 バルブシート105の外側周縁部には、下向きに突出する環状のシート部107が形成される。バルブシート105の下端部には、下向きに突出する環状のシート部108が形成される。シート部108は、ボス部106とシート部107との間に設けられる。バルブシート105の下端部には、環状凹部109,110が同心に設けられる。外側の環状凹部109は、シート部107,108間に形成される。内側の環状凹部110は、シート部108とボス部106との間に形成される。なお、シート部107の外径(直径)は、ピストンバルブ5のシート部103の外径よりも大きい。また、シート部108の外径(直径)は、ピストンバルブ5のシート部103の外径よりも小さい。なお、本実施の形態では、(シート部108の外径)<(シート部103の外径)として示したが、イコールでも、関係が逆になってもよい。
 図3に示されるように、パイロットオリフィス部101は、積層された円形のディスク111乃至114を有する。ディスク111乃至114の外径(直径)は、同一であって、ディスクバルブ102の外径よりも大きい。ディスク111乃至114の軸孔には、ピストンケース21の軸部24が挿通される。ディスク111乃至114の内側周縁部は、バルブシート105のボス部106とリテーナ115との間で挟持される。ピストンケース21のケース底部23とピストンバルブ5との間には、上側から下側へ順に、バルブシート105、ディスク111、ディスク112、ディスク113、ディスク114、リテーナ115、およびディスクバルブ102が設けられる。なお、ピストンケース21の軸部24に挿通された各部品は、軸部24の下端部に装着されたナット26の締め付けにより生じる軸力により、ピストンケース21のケース底部23に固定される。
 ディスク111の外側周縁部は、バルブシート105の環状のシート部107に着座される。バルブシート105の環状のシート部108には、後述するチェック弁117の弁体118の基端部118A、換言すると、ディスク111の中心から一定距離にあるディスク111上の環状領域、が当接される。これにより、バルブシート105とディスク111との間には、シート部108によって外側と内側とに区画される2つの環状通路121,122が形成される。環状通路121,122間は、バルブシート105に設けられた複数個(本実施形態では「8個」)の通路123によって連通される。通路123は、シート部108上に等間隔で配置される。通路123の上端側開口は、ピストンケース21のケース底部23に形成された環状通路50に開口される。
 バルブシート105のボス部106には、バルブシート105の軸孔105Aと環状通路122とを連通させる複数本(本実施形態では「4本」)の通路124が形成される。通路124は、ピストンケース21の軸部24の外周面に形成された軸方向通路125(図2参照)、パイロットケース36の軸孔に形成された環状通路126(図2参照)、およびパイロットケース36の内側周縁部の上端部に形成された径方向通路127(図2参照)を介してパイロット室34に連通される。なお、パイロット室34と伸び行程時にメインバルブ32の下流側となるシリンダ下室2Bとを連通するパイロット通路35(図4参照)は、径方向通路127、環状通路126、軸方向通路125、通路124、環状通路121,122、通路123、環状通路50、通路51、室52、通路70、第2弁室69、ボア63、通路71、第1弁室56、および通路57によって構成される。
 図3、図4を参照すると、パイロットオリフィス部101は、シリンダ上室2Aとシリンダ下室2Bとを連通する後述するパイロット通路35に設けられる。パイロットオリフィス部101は、パイロット室34と、ピストンロッド6の伸び行程時(以下「伸び行程時」)にメインバルブ32(図2参照)の上流側となるピストン上室2Aとを、常時連通させる第1オリフィス131を有する。第1オリフィス131は、伸び行程時にパイロットバルブ68の上流側となる位置に設けられる。第1オリフィス131は、バルブシート105のシート部107と、積層されたディスク111乃至114のうち、上から数えて2枚目のディスク112と、の間に設けられる。第1オリフィス131は、積層されたディスク111乃至114のうち、上から数えて1枚目のディスク111の外側周縁部に設けられた複数個(本実施形態では「4個」)のスリット132によって形成される。
 パイロットオリフィス部101は、伸び行程時におけるパイロットバルブ68の上流側に、第1オリフィス131に対して並列に設けられた第1通路133を有する。第1通路133には、チェック弁117が設けられる。チェック弁117は、伸び行程のハード側減衰力特性時に、パイロット室34とメインバルブ32(図2参照)の上流側となるピストン上室2Aとの差圧が、所定の差圧(以下「チェック弁117の開弁差圧」)に達することで開弁される。チェック弁117の開弁により、伸び行程でメインバルブ32の上流側となるピストン上室2Aからパイロットバルブ68への、第1通路133を介した油液の流れが許容される。
 図5を参照すると、第1通路133は、積層されたディスク111乃至114のうち、上から数えて4枚目のディスク114と、上から数えて3枚目のディスク113に設けられた切欠部135と、上から数えて2枚目のディスク112に設けられた切欠部136と、上から数えて1枚目のディスク111に設けられた切欠部137と、によって形成される。切欠部135は、ディスク113の外側周端部から径方向(図3における左右方向)へ延びる切欠きであって、内側先端部が半円形に形成される。切欠部135の半円形の先端部は、バルブシート105のシート部108よりも径方向内側(図3における左側)に形成される。
 切欠部136は、ディスク112の軸孔の外側(外周)に設けられて周方向へ延びる環状の切欠きである。ディスク112は、切欠部136の外側の環状部分と、軸孔が形成された切欠部136の内側の環状部分とが、連結部138によって連結される。なお、ディスク111乃至114が積層された状態で、ディスク113の切欠部135の半円形の先端部は、ディスク112の切欠部136に開口(連通)される。
 切欠部137は、ディスク111の軸孔の外側(外周)に設けられて周方向へ延びる環状の切欠きである。ディスク111は、切欠部137の外側の環状部分と、軸孔が形成された切欠部137の内側の環状部分(バルブシート105のボス部106が当接される部分)とが、連結部139によって連結される。ディスク111の切欠部137の外径は、ディスク112の切欠部136の内径よりも小さい。これにより、ディスク111における切欠部137の外側周縁部と、ディスク112における切欠部136の内側周縁部とが一定幅で重なり、ディスク111における切欠部137の外側周縁部を弁体118とし、ディスク112における切欠部136の内側周縁部を弁座119とするチェック弁117が形成される。
 伸び行程のハード側減衰力特性時には、パイロットバルブ68の開弁後、パイロット室34とメインバルブ32(図2参照)の上流側となるピストン上室2Aとの差圧が、チェック弁117の開弁差圧(所定の差圧)に達すると、弁体118は、バルブシート105のシート部108の、内周面と端面(当接面)との稜部120を支点に、捲れるようにして撓む。これにより、弁体118が弁座119から離座されてチェック弁117が開弁し、シリンダ上室2Aの油液が、第1通路133を介して、パイロットバルブ68へ向かって流れる。このとき、パイロットオリフィス部101には、ディスク113の切欠部135によって形成される第2オリフィス134が形成される。
 伸び行程のハード側減衰力特性時には、パイロットバルブ68が開弁すると、第1オリフィス131に油液が流れることで発生する差圧により、パイロット室34とメインバルブ32(図2参照)の上流側となるピストン上室2Aとの間に差圧が発生する。暫定的に、第1オリフィス131の流路面積と第2オリフィス134の流路面積との合計流路面積を有するオリフィスをオリフィスAとすると、第1実施形態における伸び行程のハード側減衰力特性時には、チェック弁117の開弁により、オリフィスAに油液が流れることで発生する差圧が、パイロット室34とピストン上室2Aとの間に発生することになる。
 なお、第2オリフィス134の流路面積は、ディスク113の切欠部135の矩形断面の面積であって、第1オリフィス131の流路面積(ディスク111のスリット132の矩形断面の面積)よりも大きい。また、第1オリフィス131の流路面積は、従来のパイロットオリフィス部(図6参照)の固定オリフィスの流路面積よりも小さい。さらに、オリフィスAの流路面積、すなわち、第1オリフィス131の流路面積と第2オリフィス134の流路面積との合計流路面積は、従来のパイロットオリフィス部の固定オリフィスの流路面積よりも大きい。
 次に、第1実施形態の作用を説明する。
 ここで、緩衝器1は、車両のサスペンション装置のばね上、ばね下間に取り付けられる。車両に振動が発生すると、緩衝器1は、ピストンロッド6のストロークに対して、油液(作動流体)の流れを制御することで減衰力を発生させる。このとき、減衰力発生機構31は、ピストンロッド6の縮み行程時(以下「縮み行程時」)には、ソレノイド91の推力を制御して第1弁体53のセット荷重(開弁圧力)を変化させることで減衰力を調節する。他方、伸び行程時には、メインバルブ32の背圧(パイロット室34の圧力)を可変させて減衰弁33の開弁圧力を変化させることで減衰力を調節する。
 縮み行程時には、シリンダ2内のピストンバルブ5(ピストン)の移動によってシリンダ下室2B側の油液(作動流体)が加圧されると、シリンダ下室2B側の油液は、縮み側通路20を通過してディスクバルブ102を開弁させることでシリンダ上室2Aへ流通する。このとき、ディスクバルブ102を流れる油液によるバルブ特性の減衰力が発生する。なお、ピストンロッド6がシリンダ2内に進入した分の油液は、シリンダ下室2B内の圧力がベースバルブ7のディスクバルブ11の開弁圧力に達することでディスクバルブ11が開弁し、リザーバ4へ流通する。
 また、縮み行程時には、ソレノイド91の推力に抗して第1弁体53が開弁されると、シリンダ下室2B側の油液は、通路57、室52、通路51、および環状通路50を通過し、さらにディスク111乃至114からなるディスクバルブ116を開弁させてシリンダ上室2Aへ流通する。このとき、ディスクバルブ116を流れる油液によるバルブ特性の減衰力が発生する。なお、縮み行程時には、第1弁体53と第2弁体65とが一体で移動する。
 伸び行程時には、シリンダ2内のピストンバルブ5(ピストン)の移動によってシリンダ上室2A側の油液(作動流体)が加圧されると、第2弁体65の閉弁時、すなわち、第2弁体65が第1弁体53の弁座64に着座されているとき、パイロット室34の上流側は、径方向通路127、環状通路126、軸方向通路125、通路124、環状通路122,121、およびパイロットオリフィス部101(ディスクバルブ116)に形成された第1オリフィス131からなる導入通路27を介して、シリンダ上室2Aに連通される。これにより、シリンダ上室2A側の油液は、導入通路27を介してパイロット室34に導入される。他方、パイロット室34の下流側は、通路123、環状通路50、通路51、室52、および通路70を介して第2弁室69に連通される。
 そして、伸び行程においてソフト側減衰力特性を発揮させるとき(以下「ソフト側減衰力特性時」)には、ソレノイド91の推力(制御電流)を制御してパイロットバルブ68(第2弁体65)を開弁させる。これにより、シリンダ上室2Aの油液は、パイロットオリフィス部101の第1オリフィス131、環状通路121,122、通路123、環状通路50、通路51、室52、通路70、第2弁室69、ボア63、通路71、第1弁室56、および通路57からなる制御通路を通過してシリンダ下室2Bへ流れる。このとき、第1オリフィス131の上流側(シリンダ上室2A)と下流側(パイロット室34)との間に差圧が発生し、この差圧がメインバルブ32のセット荷重(セット差圧)に達することにより、メインバルブ32が開弁する。
 そして、伸び行程においてハード側減衰力特性を発揮させるとき(以下「ハード側減衰力特性時」)には、パイロットバルブ68(第2弁体65)は、ソレノイド91の推力(制御電流)を制御することで調節されたセット荷重により閉弁される。ピストン速度が増加して、シリンダ上室2Aの圧力がパイロットバルブ68(第2弁体65)の開弁圧力に達してパイロットバルブ68が開弁すると、シリンダ上室2Aからの油液が、前述した制御通路を介してシリンダ下室2Bへ流通する。このとき、第1オリフィス131の上流側(シリンダ上室2A)と下流側(パイロット室34)との間に差圧が発生する。
 また、第1オリフィス131の上流側(チェック弁117の上流側)と下流側(チェック弁117の下流側)との差圧がチェック弁117の開弁圧力(開弁差圧)に達すると、チェック弁117が開弁する。これにより、第1オリフィス131と並列に設けられたパイロットオリフィス部101の第1通路133には、シリンダ上室2Aの油液が流通し、第2オリフィス134の上流側と下流側との間に差圧が発生する。そして、第1実施形態では、ハード側減衰力特性時にチェック弁117が開弁されると、パイロットオリフィス部101に前述したオリフィスA、すなわち、第1オリフィス131の流路面積と第2オリフィス134の流路面積とを合計した流路面積を有するオリフィスが設けられたことと等値になる。よって、シリンダ上室2Aとパイロット室34との間には、オリフィスAの上流側と下流側との間に発生する差圧が生じる。
 ここで、図7は、第1実施形態におけるパイロットオリフィス部101と従来のパイロットオリフィス部(図6参照)との、伸び行程時のオリフィス特性を比較した図表である。また、図8は、パイロットオリフィス部101を備える第1実施形態の緩衝器1と従来構造のパイロットオリフィス部(図6参照)を備える緩衝器との減衰力特性を比較した図表である。なお、以下の「差圧」とは、オリフィスの上流側と下流側との圧力差、延いては、シリンダ上室2Aとパイロット室34との圧力差を言う。
 ソフト側減衰力特性時には、パイロットオリフィス部101は、パイロットバルブ68(制御弁)の開弁により、第1オリフィス131によって差圧を発生し、他方、従来のパイロットオリフィス部は、固定オリフィス(図6参照)によって差圧を発生する。ここで、第1オリフィス131の流路面積は、固定オリフィスの流路面積よりも小さいため、図7に示されるように、パイロットオリフィス部101は、従来のパイロットオリフィス部に対して差圧の増加速度が高くなり、より少ない流量の油液でメインバルブ32の開弁圧力(開弁差圧)に達する。これにより、図8に示されるように、パイロットオリフィス部101は、従来のパイロットオリフィス部に対し、より低いピストン速度でメインバルブ32の開弁圧力(開弁差圧)に達するので、メインバルブ32の開弁時の減衰力を低減させることが可能であり、車両の乗り心地を向上させることができる。
 また、ハード側減衰力特性時には、パイロットオリフィス部101は、パイロットバルブ68(制御弁)が開弁し、さらに、チェック弁117が開弁することで、第1オリフィス131の流路面積と第2オリフィス134の流路面積とを合計した流路面積を有する暫定的なオリフィスAによって差圧を発生し、他方、従来のパイロットオリフィス部は、固定オリフィス(図6参照)によって差圧を発生する。ここで、オリフィスAの流路面積は、固定オリフィスの流路面積よりも大きいため、図7に示されるように、パイロットオリフィス部101は、従来のパイロットオリフィス部に対して差圧の増加速度が低くなり、メインバルブ32の開弁圧力(開弁差圧)に達するには、より多くの流量の油液が必要になる。これにより、図8に示されるように、パイロットオリフィス部101は、従来のパイロットオリフィス部に対し、より高いピストン速度でメインバルブ32の開弁圧力(開弁差圧)に達するので、メインバルブ32の開弁時の減衰力を高めることが可能であり、車両の操縦安定性を向上させることができる。
 また、従来のパイロットオリフィス部(図6参照)では、ハード側減衰力特性時における減衰力特性のシフト点が、パイロットバルブ(制御弁)の開弁点と、メインバルブの開弁点との2点であった。これに対し、第1実施形態のパイロットオリフィス部101では、ハード側減衰力特性時における減衰力特性のシフト点が、パイロットバルブ68(制御弁)の開弁点と、チェック弁117の開弁点と、メインバルブ32の開弁点との3点である。このように、第1実施形態では、パイロットバルブ68の開弁点からメインバルブ32の開弁点までの間で、チェック弁117を開弁させて減衰力特性を切り替えることにより、減衰力特性の傾きの変化を低減させることができる。これにより、減衰力特性の変化を滑らかにすることが可能であり、バルブ振動やジャーク(躍度)が低減されることにより、音振や車両の乗り心地をより向上させることができる。
 以下に、第1実施形態の作用効果を示す。
 第1実施形態に係る緩衝器(1)は、流体が封入されたシリンダ(2)と、該シリンダ(2)内に摺動可能に嵌装されたピストン(5)と、該ピストン(5)に連結されてシリンダ(2)の外部へ延出されたピストンロッド(6)と、シリンダ(2)内のピストン(5)の摺動によって生じる流体の流れを制御して減衰力を発生させるメインバルブ(32)と、該メインバルブ(32)に対して閉弁方向に圧力を作用させるパイロット室(34)と、該パイロット室(34)に流体を導入する導入通路(27)と、パイロット室(34)とメインバルブ(32)の下流側とを連通するパイロット通路と、該パイロット通路に設けられた制御弁(68)と、を備え、パイロット通路の、制御弁(68)よりも上流側には、常時連通する第1オリフィス(131)と、該第1オリフィス(131)に並列に設けられた第1通路(133)と、所定の差圧で開弁し、第1通路(133)を介して制御弁(68)へ向かう流れを許容する第1チェック弁(117)および第2オリフィス(134)と、が設けられる。
 第1実施形態によれば、第1オリフィス(131)の流路面積を従来の固定オリフィスの流路面積よりも小さくすることで、ソフト側減衰力特性時には、従来の固定オリフィスに対し、オリフィスの上流側と下流側との差圧の増加速度が高まる。これにより、メインバルブ(32)は、より少ない流量で開弁し、延いては、より低いピストン速度で開弁圧力(開弁差圧)に達する。このように、第1実施形態では、ソフト側減衰力特性時におけるメインバルブ(32)の開弁時の減衰力を低減させることが可能であり、車両の乗り心地を向上させることができる。
 また、ハード側減衰力特性時には、チェック弁(117)が開弁することで、第1オリフィス(131)の流路面積と、第1オリフィス(131)よりも流路面積が大きい第2オリフィス(134)の流路面積とを合計した流路面積を有するオリフィスと等値であるオリフィスAによって差圧を発生するので、ハード側減衰力特性時には、従来の固定オリフィスに対し、オリフィスの上流側と下流側との差圧の増加速度が低下する。これにより、メインバルブ(32)は、より多くの流量で開弁し、延いては、より高いピストン速度で開弁圧力(開弁差圧)に達する。このように、第1実施形態では、ハード側減衰力特性時におけるメインバルブ(32)の開弁時の減衰力を高めることが可能であり、車両の操縦安定性を向上させることができる。
 また、第1実施形態では、制御弁(68)の開弁点からメインバルブ(32)の開弁点までの間で、チェック弁(117)が開弁することで減衰力特性が切り替わるので、減衰力特性の傾きの変化を低減させることができる。これにより、減衰力特性の変化を滑らかにすることが可能であり、バルブ振動やジャーク(躍度)が低減されることにより、音振や車両の乗り心地をより向上させることができる。
 なお、第1実施形態では、第2オリフィス134とチェック弁117とを別個に構成したが、オリフィスを有するチェック弁、つまり第2オリフィス134とチェック弁117とを一体に形成してもよい。
(第2実施形態)
 次に、第2実施形態を、図9、図10を参照して説明する。なお、第1実施形態と同一または相当の構成要素については、同一の名称および符号を付与し、詳細な説明を省略する。
 前述した第1実施形態では、第1オリフィス131と第2オリフィス134とを並列に配置し、伸び行程のハード側減衰力特性時にチェック弁117を開弁させることで、第1オリフィス131の流路面積と第2オリフィス134の流路面積とを合計した流路面積を有するオリフィスAが設けられたことと等値になるように、パイロットオリフィス部101を構成した。
 これに対し、第2実施形態では、第2オリフィス143を第1通路133よりも上流側(シリンダ上室2A側)に配置し、かつ第1オリフィス142と第2オリフィス143とが直列に配置されるように、パイロットオリフィス部141を構成した。第1オリフィス142は、チェック弁117の弁体118が着座する弁座119(図3参照)に切欠部144を設けることで、第1ディスク111(弁体118)と第3ディスク113との間に形成され、シリンダ上室2Aとパイロット室34とを常時連通させる。
 第2実施形態では、第2オリフィス143の流路面積を、従来のパイロットオリフィス部の固定オリフィス(図6参照)の流路面積よりも大きく設定する、例えば、第1実施形態における第1オリフィス131の流路面積と第2オリフィス134の流路面積とを合計した流路面積に設定する。これにより、ハード側減衰力特性時には、チェック弁117の開弁により、第2オリフィス143を通過した油液が、第1オリフィス142に向かう流れと、チェック弁117が設けられた第1通路133に向かう流れとに分岐され、パイロットオリフィス部141は、実質上、第2オリフィス143によって差圧を発生する。
 ここで、第2オリフィス143の流路面積は、固定オリフィスの流路面積よりも大きいため、パイロットオリフィス部141は、従来のパイロットオリフィス部に対して差圧の増加速度が低くなり、メインバルブ32の開弁圧力(開弁差圧)に達するには、より多くの流量の油液が必要になる。これにより、パイロットオリフィス部141は、従来のパイロットオリフィス部に対し、より高いピストン速度でメインバルブ32の開弁圧力(開弁差圧)に達することになる。第2実施形態によれば、第1実施形態と同等の作用効果を得ることができる。
(第3実施形態)
 次に、第3実施形態を、図11、図12を参照して説明する。なお、前述した実施形態と同一または相当の構成要素については、同一の名称および符号を付与し、詳細な説明を省略する。
 第3実施形態は、第1実施形態のパイロットオリフィス部101における第1オリフィス131と第2オリフィス134とを並列に配置する構造を、制御弁横付型の減衰力調整式油圧緩衝器のパイロットオリフィス部152に適用したものである。なお、減衰力発生機構151の基本構造については、従来のセミアクティブサスペンション装置に組み付けられた減衰力発生機構と同一であるため、詳細な説明を省略する。
 第3実施形態におけるパイロットオリフィス部152には、第1オリフィス153がパイロットピン155の軸孔156の下端部に形成され、第1通路133がメインバルブ32を構成する積層されたディスク111乃至114に形成される。第1通路133には、チェック弁117と第2オリフィス154とが設けられる。チェック弁117は、パイロットバルブ68(制御弁)が開弁し、シリンダ上室2Aに連通する軸孔156の内部圧力とパイロット室34との差圧が所定値に達することで開弁される。第2オリフィス154は、チェック弁117の下流側(パイロットバルブ68側)に設けられ、かつ第1オリフィス153に対して並列に配置される。
 第3実施形態では、第1オリフィス153、パイロットピン155の軸孔156、パイロットピン155の外周面に形成された軸方向通路157、および可撓ディスクバルブ172に形成された通路173からなる導入通路171を介して、シリンダ上室2Aの油液がパイロット室34に導入される。そして、ハード側減衰力特性時には、パイロットバルブ68(制御弁)が開弁し、さらに、シリンダ上室2Aとパイロット室34との差圧がチェック弁117の開弁圧(開弁差圧)に達すると、チェック弁117が開弁される。これにより、第1通路133は、パイロットピン155の外周面に形成された環状通路158および径方向通路159を介して、導入通路171に連通される。
 このように、ハード側減衰力特性時には、パイロットオリフィス部152は、第1オリフィス153の流路面積と第2オリフィス154の流路面積とを合計した流路面積を有する暫定的なオリフィスAによって差圧を発生する。第3実施形態によれば、第1および第2実施形態と同等の作用効果を得ることができる。
(第4実施形態)
 次に、第4実施形態を、図13乃至図15を参照して説明する。なお、前述した実施形態と同一または相当の構成要素については、同一の名称および符号を付与し、詳細な説明を省略する。
 前述した第2実施形態では、第2オリフィス143を第1通路133よりも上流側(シリンダ上室2A側)に配置し、かつ第1オリフィス142と第2オリフィス143とが直列に配置されるようにパイロットオリフィス部141を構成した。第4実施形態は、当該第2実施形態の構成を、ポペット弁165を備える減衰力発生機構161のパイロットオリフィス部162に適用したものである。なお、減衰力発生機構161の基本構造については、ポペット弁を備える従来の減衰力発生機構と同一であるため、詳細な説明を省略する。
 第4実施形態におけるパイロットオリフィス部162は、第1オリフィス163が、ポペット弁165(第1チェック弁)の弁体166の軸孔167(第1通路)の下端部に形成され、シリンダ上室2Aとパイロット室34とを常時連通させる。他方、第2オリフィス164は、パイロットピン155の軸孔156の下端部に形成される。第2オリフィス164は、弁体166がパイロットピン155に形成された弁座168から離座してポペット弁165が開弁されることにより、パイロット室34に連通される。なお、弁体166は、パイロットピン155の軸孔156に収容された弁ばね169によって、閉弁方向(図13における下方向)へ付勢される。
 そして、ポペット弁165の閉弁時には、第2オリフィス164に対して直列に配置された第1オリフィス163、弁体166の軸孔167、パイロットピン155の軸孔156、パイロットピン155の外周面に形成された軸方向通路157、および可撓ディスクバルブ172に形成された通路173からなる導入通路171を介して、シリンダ上室2Aとパイロット室34とが連通される。
 図15を参照すると、ハード側減衰力特性時におけるパイロットバルブ68(制御弁)の開弁前には、減衰力発生機構161は、メインバルブ32に設けられた固定オリフィス170(図13参照)によるコンスタントオリフィス特性の減衰力を発生する。ピストン速度が増加して、パイロットバルブ68が開弁して第1オリフィス163に油液が流通すると、減衰力発生機構161は、第1オリフィス163によるオリフィス特性の減衰力、厳密には、固定オリフィス170の流路面積と第1オリフィス163の流路面積とを合計した流路面積を有するオリフィスと等値の減衰力を発生する。ピストン速度がさらに増加して弁体166が弁ばね169の付勢力に抗して弁座168から離座し、ポペット弁165が開弁されると、第2オリフィス164に油液が流通する。これにより、減衰力発生機構161は、実質上、第2オリフィス164によるオリフィス特性の減衰力を発生する。
 ピストン速度がさらに増加してシリンダ上室2Aとパイロット室34との差圧がメインバルブ32の開弁圧力(開弁差圧)に達し、メインバルブ32が開弁すると、減衰力発生機構161は、メインバルブ32によるバルブ特性の減衰力を発生する。第4実施形態では、ハード側減衰力特性時における減衰力特性のシフト点が、パイロットバルブ68(制御弁)の開弁点、ポペット弁165(第1チェック弁)の開弁点、およびメインバルブ32の開弁点の3点である。このように、第4実施形態では、パイロットバルブ68の開弁点からメインバルブ32の開弁点までの間で、ポペット弁165を開弁させて減衰力特性を切り替えることにより、減衰力特性の傾きの変化を低減させることができる。第4実施形態によれば、第1乃至第3実施形態と同等の作用効果を得ることができる。
(第5実施形態)
 次に、第5実施形態を、図16乃至図18を参照して説明する。なお、前述した実施形態と同一または相当の構成要素については、同一の名称および符号を付与し、詳細な説明を省略する。
 前述した第4実施形態では、ポペット弁165の開弁により第2オリフィス164がパイロット室34に連通されるようにパイロットオリフィス部162を構成した。第5実施形態は、当該第4実施形態の構成を、メインバルブが段階的に開弁される、換言すると、ポート190が段階的にリリーフされる減衰力発生機構181のパイロットオリフィス部182に適用したものである。なお、メインバルブが段階的に開弁される減衰力発生機構181の基本構造については、ポートが2段階でリリーフされる従来の減衰力発生機構(例えば「特開2014-173715号公報」参照)と同一であるため、詳細な説明を省略する。
 第5実施形態におけるポペット弁165の閉弁時には、第2オリフィス164に対して直列に配置された第1オリフィス163、弁体166の軸孔167、弁座部材183の軸孔184、バルブハウジング185の軸孔186、バルブハウジング185に形成された径方向通路187、およびバルブハウジング185に形成された軸方向通路188からなる導入通路189を介して、シリンダ上室2Aとパイロット室34とが連通される。
 図18を参照すると、ハード側減衰力特性時におけるパイロットバルブ68(制御弁)の開弁前には、減衰力発生機構181は、第1メインバルブ32Aに設けられた固定オリフィス191(図16参照)によるコンスタントオリフィス特性の減衰力を発生する。ピストン速度が増加してパイロットバルブ68が開弁し(図16参照)、第1オリフィス163に油液が流通すると、減衰力発生機構181は、第1オリフィス163によるオリフィス特性の減衰力、厳密には、固定オリフィス191の流路面積と第1オリフィス163の流路面積とを合計した流路面積を有するオリフィスと等値の減衰力を発生する。ピストン速度がさらに増加して弁体166が弁ばね169の付勢力に抗して弁座168から離座し、ポペット弁165が開弁すると、第2オリフィス164に油液が流通する。これにより、減衰力発生機構181は、実質上、第2オリフィス164によりオリフィス特性の減衰力を発生する。
 ピストン速度がさらに増加してシリンダ上室2Aとパイロット室34との差圧が第1メインバルブ32Aの開弁圧力(開弁差圧)に達し、第1メインバルブ32Aが開弁すると、減衰力発生機構181は、第1メインバルブ32Aによるバルブ特性の減衰力を発生する。ピストン速度がさらに増加してシリンダ上室2Aとパイロット室34との差圧が第2メインバルブ32Bの開弁圧力(開弁差圧)に達し、第2メインバルブ32Bが開弁すると、減衰力発生機構181は、第2メインバルブ32Bによるバルブ特性の減衰力を発生する。
 第5実施形態では、ハード側減衰力特性時における減衰力特性のシフト点が、パイロットバルブ68(制御弁)の開弁点、ポペット弁165(第1チェック弁)の開弁点、第1メインバルブ32Aの開弁点、および第2メインバルブ32Bの開弁点の4点である。このように、第5実施形態では、パイロットバルブ68の開弁点から第1メインバルブ32Aの開弁点までの間で、ポペット弁165を開弁させて減衰力特性を切り替えることにより、減衰力特性の傾きの変化をより低減させることができる。第5実施形態によれば、減衰力特性の変化をより滑らかにすることが可能であり、バルブ振動やジャーク(躍度)が低減されることにより、音振や車両の乗り心地をより向上させることができる。
(第6実施形態)
 次に、第6実施形態を、図19乃至図22を参照して説明する。なお、前述した実施形態と同一または相当の構成要素については、同一の名称および符号を付与し、詳細な説明を省略する。
 第6実施形態は、第4実施形態におけるポペット弁165(第1チェック弁)の外周にスプール弁体205(第2チェック弁)を設けてパイロットオリフィス部202を構成したものである。
 パイロットピン155の軸孔156(中空部)には、中空軸状のスプール203が挿入(収容)される。スプール203の下端部には、ポペット弁165の弁体166が形成される。スプール203の上端部には、スプール弁205の弁体206が形成される。パイロットピン155の軸孔156の上端部、即ち、第2オリフィス164側とは反対側の端部には、円筒状のブッシュ209が圧入(嵌合)される。ブッシュ209の内周面の下端側には、スプール弁205の弁体206の外周面207が摺動可能に当接する小内径部210が形成される。ブッシュ209の内周面の上端側には、段部を介して小内径部210に連続する大内径部211が形成される。なお、小内径部210の上端周縁には、スプール弁205の弁座208が形成される。
 スプール203の外周面204のポペット弁165側には、周方向に沿って等間隔に設けられて径方向へ突出する複数個の突部212(図19に1個のみ表示)が設けられる。突部212とブッシュ209との間には、ポペット弁165の弁体166を閉弁方向(図19における「下方向」)へ付勢する弁ばね169(付勢手段)が介装される。ポペット弁165の開弁圧力は、弁ばね169のばね力によって調節することができる。第6実施形態では、ポペット弁165の開弁後にスプール弁205が開弁するように、パイロットピン155に対するブッシュ209の圧入位置が調節される。
 スプール203の外周面204の、ポペット弁165の弁体166とスプール弁205の弁体206との間には、ポペット弁165の外周の流路214を形成するための切欠部215が設けられる。切欠部215は、スプール203の軸線(中心線)に対して平行な面からなり、ポペット弁165とスプール弁205との間を軸方向へ延びる。スプール203の外周面204の上端部には、第3オリフィス217を形成するための切欠部218が設けられる。第3オリフィス217は、ポペット弁165の外周の流路214を導入通路171に常時連通する。切欠部218は、切欠部215に対して平行な面からなり、テーパ面216を介して切欠部215に連続する。
 なお、切欠部218の幅は、切欠部215の幅よりも小さい。そして、第6実施形態のパイロットオリフィス部202では、複数個(図19に1個のみ表示)の切欠部215および切欠部218が、スプール203の周方向に沿って等間隔に設けられる。
 図21を参照すると、ポペット弁165の閉弁時には、シリンダ上室2Aは、弁体166の内周に設けられた第1オリフィス163を介してパイロット室34に連通される。そして、ポペット弁165が開弁すると、第2オリフィス164を通過した油液は、第1オリフィス163と、第1オリフィス163に対して並列に設けられた第3オリフィス217とを流れる。さらに、ポペット弁165の開弁後、流路214内の圧力がスプール弁205の開弁圧力に達してスプール弁205が開弁すると、第3オリフィス217に対して並列な第2通路213が開通する。
 図22を参照すると、ハード側減衰力特性時におけるパイロットバルブ68(制御弁)の開弁前には、減衰力発生機構201は、メインバルブ32に設けられた固定オリフィス170(図19参照)によるコンスタントオリフィス特性の減衰力を発生する。ピストン速度が増加してパイロットバルブ68が開弁し、第1オリフィス163に油液が流通すると、減衰力発生機構201は、第1オリフィス163によるオリフィス特性の減衰力を発生する。ピストン速度がさらに増加して弁体166が弁ばね169の付勢力に抗して弁座168から離座し、ポペット弁165が開弁すると、スプール弁205の開弁前には、スプール弁205に対して並列に設けられた第3オリフィス217に油液が流通する。これにより、減衰力発生機構201は、第3オリフィス217によるオリフィス特性の減衰力を発生する。
 ピストン速度がさらに増加して弁体206が弁座208から離座し、スプール弁205が開弁すると、第2通路213が開通して流路214が導入通路171に連通される。これにより、減衰力発生機構201は、第2オリフィス164によるオリフィス特性の減衰力を発生する。ピストン速度がさらに増加してシリンダ上室2Aとパイロット室34との差圧がメインバルブ32の開弁圧力(開弁差圧)に達し、メインバルブ32が開弁すると、減衰力発生機構201は、メインバルブ32によるバルブ特性の減衰力を発生する。
 ここで、前述した第4実施形態では、ハード側減衰力特性時における減衰力特性のシフト点が、パイロットバルブ68(制御弁)の開弁点、ポペット弁165(第1チェック弁)の開弁点、およびメインバルブ32の開弁点の3点であった。これに対し、第6実施形態では、ポペット弁165の開弁点と、メインバルブ32の開弁点との間で、スプール弁205を開弁させて減衰力特性を切り替える、即ち、減衰力特性のシフト点を4点に増加したので、減衰力特性の傾きの変化をより低減させることができる。
 また、第6実施形態では、ポペット弁165(第1チェック弁)の外周にスプール弁体205(第2チェック弁)を設けてパイロットオリフィス部202を構成したので、スプール弁205の弁座208が形成されるブッシュ209の、パイロットピン155の軸孔156に対する圧入位置に応じて、ポペット弁165が開弁した後のスプール弁205が開弁するタイミングを可変することが可能であり、バルブ振動やジャーク(躍度)の低減に必要な、減衰力特性の調整の自由度を向上させることができる。
 第6実施形態によれば、第1乃至第5実施形態と同等の作用効果を得ることができる。
(第7実施形態)
 次に、第7実施形態を、図23、図24を参照して説明する。なお、前述した実施形態と同一または相当の構成要素については、同一の名称および符号を付与し、詳細な説明を省略する。
 前述した第6実施形態では、ポペット弁165(第1チェック弁)の外周にスプール弁体205(第2チェック弁)を設けてパイロットオリフィス部202を構成した。これに対し、第7実施形態は、当該第6実施形態の構成を、ポート190が段階的にリリーフされる第5実施形態の減衰力発生機構181のパイロットオリフィス部182に適用してパイロットオリフィス部222を構成したものである。
 図24を参照すると、ハード側減衰力特性時におけるパイロットバルブ68(制御弁)の開弁前には、減衰力発生機構221は、第1メインバルブ32Aに設けられた固定オリフィス191(図23参照)によるコンスタントオリフィス特性の減衰力を発生する。ピストン速度が増加してパイロットバルブ68が開弁し、第1オリフィス163に油液が流通すると、減衰力発生機構221は、第1オリフィス163によるオリフィス特性の減衰力を発生する。ピストン速度がさらに増加して弁体166が弁ばね169の付勢力に抗して弁座168から離座し、ポペット弁165が開弁すると、スプール弁205の開弁前には、スプール弁205に対して並列に設けられた第3オリフィス217に油液が流通する。これにより、減衰力発生機構221は、第3オリフィス217によるオリフィス特性の減衰力を発生する。
 ピストン速度がさらに増加してシリンダ上室2Aとパイロット室34との差圧が第1メインバルブ32Aの開弁圧力(開弁差圧)に達し、第1メインバルブ32Aが開弁すると、減衰力発生機構221は、第1メインバルブ32Aによるバルブ特性の減衰力を発生する。ピストン速度がさらに増加して弁体206が弁座208から離座し、スプール弁205が開弁すると、第2通路213(図21参照)が開通して流路214が導入通路171に連通される。これにより、減衰力発生機構221は、第2オリフィス164によるオリフィス特性の減衰力を発生する。ピストン速度がさらに増加してシリンダ上室2Aとパイロット室34との差圧が第2メインバルブ32Bの開弁圧力(開弁差圧)に達し、第2メインバルブ32Bが開弁すると、減衰力発生機構221は、第2メインバルブ32Bによるバルブ特性の減衰力を発生する。
 ここで、前述した第5実施形態では、ハード側減衰力特性時における減衰力特性のシフト点が、パイロットバルブ68(制御弁)の開弁点、ポペット弁165(第1チェック弁)の開弁点、第1メインバルブ32Aの開弁点、および第2メインバルブ32Bの開弁点の4点であった。これに対し、第7実施形態では、第1メインバルブ32Aの開弁点から第2メインバルブ32Bの開弁点までの間で、スプール弁205を開弁させて減衰力特性を切り替えることにより、減衰力特性の傾きの変化をより低減させることができる。第7実施形態によれば、減衰力特性の変化をより滑らかにすることが可能であり、バルブ振動やジャーク(躍度)が低減されることにより、音振や車両の乗り心地をより向上させることができる。
 第7実施形態によれば、第1乃至第6実施形態と同等の作用効果を得ることができる。
1 緩衝器、2 シリンダ、5 ピストンバルブ(ピストン)、6 ピストンロッド、27 導入通路、32 メインバルブ、34 パイロット室、68 パイロットバルブ(制御弁)、117 チェック弁、131 第1オリフィス、133 第1通路、134 第2オリフィス

Claims (11)

  1.  流体が封入されたシリンダと、
     該シリンダ内に摺動可能に嵌装されたピストンと、
     該ピストンに連結されて前記シリンダの外部へ延出されたピストンロッドと、
     前記シリンダ内の前記ピストンの摺動によって生じる流体の流れを制御して減衰力を発生させるメインバルブと、
     該メインバルブに対して閉弁方向に圧力を作用させるパイロット室と、
     該パイロット室に流体を導入する導入通路と、
     前記パイロット室と前記メインバルブの下流側とを連通するパイロット通路と、
     該パイロット通路に設けられた制御弁と、を備え、
     前記パイロット通路の、前記制御弁よりも上流側には、
     常時連通する第1オリフィスと、
     該第1オリフィスに並列に設けられた第1通路と、
     所定の差圧で開弁し、前記第1通路を介して前記制御弁へ向かう流れを許容する第1チェック弁および第2オリフィスと、が設けられることを特徴とする緩衝器。
  2.  前記第2オリフィスは、前記第1オリフィスよりも流路面積が大きいことを特徴とする請求項1に記載の緩衝器。
  3.  前記第1チェック弁には、前記第2オリフィスが直列に設けられることを特徴とする請求項1または2に記載の緩衝器。
  4.  前記第1チェック弁は、ディスクバルブを積層して構成されることを特徴とする請求項1乃至3の何れかに記載の緩衝器。
  5.  前記第1チェック弁は、ポペット弁であることを特徴とする請求項1乃至3の何れかに記載の緩衝器。
  6.  前記メインバルブは、前記パイロット室内の圧力に応じて段階的に開弁することを特徴とする請求項1乃至3の何れかに記載の緩衝器。
  7.  前記第2オリフィスは、前記第1チェック弁と一体に形成されていることを特徴とする請求項1乃至3の何れかに記載の緩衝器。
  8.  前記第1チェック弁と前記制御弁との間に設けられる第3オリフィスと、
     前記第3オリフィスに並列に設けられる第2通路と、
     前記第2通路に設けられる第2チェック弁と、をさらに備えることを特徴とする請求項1乃至7の何れかに記載の緩衝器。
  9.  前記第2チェック弁は、前記ポペット弁の外周に設けられることを特徴とする請求項5に記載の緩衝器。
  10.  前記第2チェック弁は、スプール弁であることを特徴とする請求項9に記載の緩衝器。
  11.  前記スプール弁には、付勢手段が設けられ、前記付勢手段は、前記ポペット弁の開弁後に前記スプール弁が開弁するように調整されることを特徴とする請求項10に記載の緩衝器。
PCT/JP2019/050112 2018-12-25 2019-12-20 緩衝器 WO2020137891A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980086461.6A CN113227605A (zh) 2018-12-25 2019-12-20 缓冲器
KR1020217019543A KR102559735B1 (ko) 2018-12-25 2019-12-20 완충기
JP2020563206A JP7012884B2 (ja) 2018-12-25 2019-12-20 緩衝器
US17/417,463 US20220065321A1 (en) 2018-12-25 2019-12-20 Shock absorber
DE112019005938.6T DE112019005938T5 (de) 2018-12-25 2019-12-20 Stoßdämpfer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-241324 2018-12-25
JP2018241324 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020137891A1 true WO2020137891A1 (ja) 2020-07-02

Family

ID=71127754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050112 WO2020137891A1 (ja) 2018-12-25 2019-12-20 緩衝器

Country Status (6)

Country Link
US (1) US20220065321A1 (ja)
JP (1) JP7012884B2 (ja)
KR (1) KR102559735B1 (ja)
CN (1) CN113227605A (ja)
DE (1) DE112019005938T5 (ja)
WO (1) WO2020137891A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09242805A (ja) * 1996-03-12 1997-09-16 Tokico Ltd 減衰力調整式油圧緩衝器
JP2014173715A (ja) * 2013-03-13 2014-09-22 Kayaba Ind Co Ltd 減衰弁
JP2016032990A (ja) * 2014-07-31 2016-03-10 日立オートモティブシステムズ株式会社 緩衝器付き車両
WO2017145983A1 (ja) * 2016-02-24 2017-08-31 日立オートモティブシステムズ株式会社 減衰力調整式緩衝器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09242805A (ja) * 1996-03-12 1997-09-16 Tokico Ltd 減衰力調整式油圧緩衝器
JP2014173715A (ja) * 2013-03-13 2014-09-22 Kayaba Ind Co Ltd 減衰弁
JP2016032990A (ja) * 2014-07-31 2016-03-10 日立オートモティブシステムズ株式会社 緩衝器付き車両
WO2017145983A1 (ja) * 2016-02-24 2017-08-31 日立オートモティブシステムズ株式会社 減衰力調整式緩衝器

Also Published As

Publication number Publication date
KR20210090271A (ko) 2021-07-19
CN113227605A (zh) 2021-08-06
DE112019005938T5 (de) 2021-08-12
JPWO2020137891A1 (ja) 2021-09-27
JP7012884B2 (ja) 2022-01-28
KR102559735B1 (ko) 2023-07-25
US20220065321A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
JP2020153521A (ja) 緩衝器
JP5833129B2 (ja) 弁構成体
US9810280B2 (en) Damping valve
WO2018168865A1 (ja) 減衰力調整式緩衝器
JP5809801B2 (ja) 緩衝器
US20080006493A1 (en) Variable damping valve of shock absorber
CN111630295B (zh) 阻尼阀和缓冲器
WO2018163868A1 (ja) 緩衝器
JP6877587B2 (ja) 緩衝器およびソレノイド
WO2019208200A1 (ja) 緩衝器
WO2017145983A1 (ja) 減衰力調整式緩衝器
WO2020137891A1 (ja) 緩衝器
WO2020246315A1 (ja) 減衰力調整式緩衝器
JP7485579B2 (ja) 減衰バルブおよび緩衝器
WO2023013511A1 (ja) シリンダ装置及び制御弁装置
JP7129565B2 (ja) 減衰力調整式緩衝器
JP7378010B2 (ja) 緩衝器及びバルブ装置
JP7450057B2 (ja) 制御弁装置
JP7069353B2 (ja) 緩衝器
JP5894874B2 (ja) 緩衝器
JP7129385B2 (ja) 減衰力調整式緩衝器
WO2023084896A1 (ja) 減衰力調整式緩衝器、減衰バルブ、及びソレノイド
JP2022152580A (ja) 緩衝器
JPH03129137A (ja) 減衰力可変型液圧緩衝器
JP2022141301A (ja) シリンダ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563206

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217019543

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19905475

Country of ref document: EP

Kind code of ref document: A1