WO2020134665A1 - 控制电路与声波滤波器的集成方法和集成结构 - Google Patents

控制电路与声波滤波器的集成方法和集成结构 Download PDF

Info

Publication number
WO2020134665A1
WO2020134665A1 PCT/CN2019/117790 CN2019117790W WO2020134665A1 WO 2020134665 A1 WO2020134665 A1 WO 2020134665A1 CN 2019117790 W CN2019117790 W CN 2019117790W WO 2020134665 A1 WO2020134665 A1 WO 2020134665A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
electrode
cavity
output electrode
layer
Prior art date
Application number
PCT/CN2019/117790
Other languages
English (en)
French (fr)
Inventor
秦晓珊
Original Assignee
中芯集成电路(宁波)有限公司上海分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中芯集成电路(宁波)有限公司上海分公司 filed Critical 中芯集成电路(宁波)有限公司上海分公司
Priority to US17/417,932 priority Critical patent/US20220094337A1/en
Priority to JP2021525267A priority patent/JP2022507088A/ja
Publication of WO2020134665A1 publication Critical patent/WO2020134665A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1092Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the surface acoustic wave [SAW] device on the side of the IDT's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0542Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a lateral arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0557Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement the other elements being buried in the substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/105Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H2003/0071Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of bulk acoustic wave and surface acoustic wave elements in the same process
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/021Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the air-gap type

Definitions

  • the invention relates to the technical field of acoustic wave filters, in particular to an integrated method and integrated structure of a control circuit and an acoustic wave filter.
  • SAW is an elastic wave that is generated and propagated on the surface of the piezoelectric substrate material, and the amplitude decreases rapidly as the depth of the substrate material increases.
  • the basic structure of the SAW filter is to make two acoustoelectric transducers-comb electrode interdigital transducers (IDT) on the substrate material with piezoelectric characteristics, which are used as transmitting transducer and receiving Transducer.
  • IDT interdigital transducers
  • the working frequency band of SAW filter is generally 800MHz ⁇ 2GHz, and the bandwidth is 17MHz ⁇ 30MHz. Due to its good selection, frequency bandwidth, stable performance and high reliability, it has become the most widely used RF filter.
  • the BAW filter is a device based on bulk acoustic wave theory, which uses acoustic resonance to achieve electrical filtering, and filters through the resonance in the vertical direction of the piezoelectric layer (AlN, ZnO, etc.) between the electrodes.
  • the cavity type BAW filter is currently the most successful BAW filter. Its main structure is a sandwich structure composed of an upper electrode, a piezoelectric layer and a lower electrode. Both sides of the upper electrode and the lower electrode are provided with cavities. When the signal travels to the top of the upper electrode and the bottom of the lower electrode, due to the huge difference in acoustic impedance, total reflection of the sound wave is caused.
  • This BAW filter has low acoustic leakage and can achieve a high Q value of the device.
  • the working frequency band of BAW filter is generally 2GHz ⁇ 6GHz.
  • SAW and BAW have different operating frequency bands and can be used in combination to meet the filtering requirements of signals in different frequency bands.
  • packaging the individual SAW filters and BAW filters are generally packaged as discrete devices and then integrated on the printed circuit board (PCB). Out of use requirements, it is often necessary to integrate multiple filters on a PCB board. This separate packaging and system integration brings problems such as complicated SIP wiring and large insertion loss, and the need to introduce separate switches, selection, and control devices to control the filter, which increases the process complexity and manufacturing cost.
  • the purpose of the present invention is to propose an integrated method of a control circuit and an acoustic wave filter and a corresponding integrated structure to overcome the problems of complicated SIP wiring and large insertion loss in the packaging and integration of existing SAW filters and BAW filters.
  • An aspect of the present invention provides an integration method of a control circuit and an acoustic wave filter, including:
  • the substrate being formed with a control circuit
  • the surface of the SAW resonator plate is provided with a first input electrode and a first output electrode.
  • the surface of the BAW resonance structure is provided with a second input electrode and a second output electrode.
  • the BAW The resonance structure includes a third cavity;
  • the control circuit is electrically connected to the first input electrode, the first output electrode, the second input electrode, and the second output electrode.
  • the base includes a substrate and a first dielectric layer formed on the substrate;
  • the forming of the first cavity and the second cavity on the substrate includes:
  • the first cavity and the second cavity are formed in the first dielectric layer.
  • the substrate includes one of an SOI substrate, a silicon substrate, a germanium substrate, a silicon germanium substrate, and a gallium arsenide substrate.
  • control circuit includes a device structure and a first interconnect structure layer electrically connected to the device structure, the first interconnect structure layer is located on the first dielectric layer, and is connected to the first input electrode , The first output electrode, the second input electrode, and the second output electrode are electrically connected.
  • the device structure includes a MOS device.
  • electrically connecting the control circuit to the first input electrode and the first output electrode includes:
  • the SAW resonator plate After bonding the SAW resonator plate, electrically connect the first pad to the first input electrode and the first output electrode, so that the first input electrode and the first output electrode pass through the The first pad and the first redistribution layer are electrically connected to the control circuit.
  • electrically connecting the control circuit to the second input electrode and the second output electrode includes:
  • the step of bonding the BAW resonant structure to the substrate and closing the second cavity includes:
  • the BAW resonance structure is bonded to the substrate by the second bonding structure.
  • the first adhesive structure and/or the second adhesive structure include a dry film.
  • the first cavity and/or the second cavity are formed in the dry film by exposure and development.
  • the first adhesive structure and the second adhesive structure are formed by an adhesive layer patterned by screen printing.
  • the integration method further includes:
  • a third redistribution layer is formed on the back surface of the substrate, and is electrically connected to the first input electrode, the first output electrode, the second input electrode, the second output electrode, and the control circuit.
  • the third redistribution layer includes I/O pads.
  • the method further includes:
  • An encapsulation layer is formed, and the encapsulation layer covers the substrate, the SAW resonance sheet, and the BAW resonance structure.
  • the integration method further includes:
  • a fourth redistribution layer is formed on the packaging layer, and is electrically connected to the first input electrode, the second input electrode, the first output electrode, the second output electrode, and the control circuit.
  • the first input electrode, the first output electrode, the second input electrode, and the second output electrode all include solder pads.
  • Another aspect of the present invention provides an integrated structure of a control circuit and an acoustic wave filter, including:
  • a substrate, a control circuit is formed on the substrate, and a first cavity and a second cavity are formed on the substrate;
  • the surface of the SAW resonator plate is provided with a first input electrode and a first output electrode, the surface of the SAW resonator plate is bonded to the substrate toward the substrate and closes The first cavity, a surface of the BAW resonance structure is provided with a second input electrode and a second output electrode, the BAW resonance structure includes a third cavity, and the surface of the BAW resonance structure faces the substrate Bonded to the base and closing the second cavity;
  • the control circuit is electrically connected to the first input electrode, first output electrode, second input electrode, and second output electrode.
  • the base includes a substrate and a first dielectric layer formed on the substrate; the first cavity and the second cavity are formed in the first dielectric layer;
  • the substrate and the SAW resonator sheet are bonded by a first adhesive structure, and the first cavity is formed in the first adhesive structure; the substrate and the BAW resonator structure are bonded by a second The bonding structure is bonded, and the second cavity is formed in the second bonding structure.
  • the first adhesive structure and/or the second adhesive structure is a dry film.
  • the substrate includes one of an SOI substrate, a silicon substrate, a germanium substrate, a silicon germanium substrate, and a gallium arsenide substrate.
  • control circuit includes a device structure and a first interconnect structure layer electrically connected to the device structure, the first interconnect structure layer is located on the first dielectric layer, and is connected to the first input electrode , The first output electrode, the second input electrode, and the second output electrode are electrically connected.
  • the device structure includes a MOS device.
  • a first redistribution layer, a second redistribution layer, a first pad, and a second pad are formed on the substrate, the first pad and the first input electrode, the first output electrode Electrically connected so that the first input electrode and the first output electrode are electrically connected to the control circuit through the first pad and the first redistribution layer, and the second pad and the second The input electrode and the second output electrode are electrically connected so that the second input electrode and the second output electrode are electrically connected to the control circuit through the second pad and the second redistribution layer.
  • the integrated structure further includes a third redistribution layer formed on the back of the substrate, and the first input electrode, the first output electrode, the second input electrode, the second The output electrode and the control circuit are electrically connected.
  • the third redistribution layer includes I/O pads.
  • the integrated structure further includes an encapsulation layer that covers the substrate, the SAW resonator plate, and the BAW resonator structure.
  • the integrated structure further includes a fourth redistribution layer formed on the packaging layer, which is electrically connected to the first input electrode, the second input electrode, the first output electrode, the second output electrode, and the control circuit. connection.
  • a fourth redistribution layer formed on the packaging layer, which is electrically connected to the first input electrode, the second input electrode, the first output electrode, the second output electrode, and the control circuit. connection.
  • the first input electrode, the first output electrode, the second input electrode, and the second output electrode all include solder pads.
  • the beneficial effect of the present invention is that the cavity required for the control circuit, the SAW filter and the BAW filter is formed on the substrate, and then the existing SAW resonator and BAW resonant structure are installed in the cavity to realize the control circuit for the acoustic wave filter Control, so as to avoid the problems of complicated electrical connection process and large insertion loss caused by the integration of the existing SAW filter and BAW filter as discrete components on the PCB, high integration, and reduced process cost.
  • 1 to 7 respectively show the various processes of the integration method of the control circuit and the acoustic wave filter according to the first embodiment of the present invention
  • FIGS. 8 to 10 respectively show various flows of electrical connection of the filter according to the integration method of the control circuit and the acoustic wave filter according to the second embodiment of the present invention.
  • an embodiment of the present invention provides an integration method and integrated structure of a control circuit and an acoustic wave filter.
  • a method for integrating a control circuit and an acoustic wave filter includes: providing a substrate with a control circuit formed on the substrate; forming a first cavity and a second cavity on the substrate; providing a SAW resonator plate and a BAW resonator structure, The surface of the SAW resonator plate is provided with a first input electrode and a first output electrode. The surface of the BAW resonator structure is provided with a second input electrode and a second output electrode.
  • the BAW resonator structure includes a third cavity; The substrate, bonding the SAW resonator plate to the substrate and closing the first cavity; orienting the surface of the BAW resonance structure toward the substrate, bonding the BAW resonance structure to the substrate and closing the second cavity; connecting the control circuit to the first input electrode, The first output electrode, the second input electrode, and the second output electrode are electrically connected.
  • the integration method according to the embodiment of the present invention forms a cavity required for the control circuit and the acoustic wave filter on the substrate, and then installs the existing SAW resonator plate and BAW resonant structure in the cavity to realize the control of the acoustic wave filter by the control circuit. Therefore, the problems of complicated electrical connection process and large insertion loss caused by the integration of the existing acoustic wave filter as a discrete device on the PCB can be avoided, the integration degree is high, and the process cost is reduced.
  • FIGS. 1 to 7 respectively show various flows of the integration method of the control circuit and the acoustic wave filter according to the first embodiment of the present invention.
  • the integration method includes the following steps:
  • S1 Referring to FIGS. 1 to 4, a substrate is provided, and the substrate is formed with a control circuit.
  • the base includes a substrate and a first dielectric layer 401 formed on the substrate.
  • the substrate includes one of an SOI substrate, a silicon substrate, a germanium substrate, a silicon germanium substrate, and a gallium arsenide substrate. Those skilled in the art can also select the type of substrate according to the control circuit formed on the substrate.
  • the substrate is an SOI substrate.
  • SOI Silicon-on-Insulator
  • SOI silicon-on-insulator
  • Its structure can be a double-layer structure of an insulating silicon substrate plus a top single-crystal silicon layer, or a sandwich structure with an insulating layer as an intermediate layer (called a buried layer) .
  • a buried layer When manufacturing a device, only a thin silicon layer on the top layer is used as a device manufacturing layer to form a source, a drain, a channel region, and the like, and a silicon substrate only serves as a support.
  • the buried layer in the sandwich structure electrically isolates the device fabrication layer from the silicon substrate, thereby reducing the impact of the silicon substrate on device performance.
  • SOI has the advantages of reducing parasitic capacitance, reducing power consumption and eliminating latch-up effect in device performance.
  • the typical process for obtaining SOI substrates is the Smart-cutTM process.
  • an SOI substrate is selected to take advantage of the above-mentioned advantages of SOI.
  • the SOI substrate includes a silicon substrate 101, an insulating layer 102 on the silicon substrate 101, and a silicon top layer 103 on the insulating layer 102, or the SOI substrate may be insulating Double-layer structure of layer plus top silicon.
  • the first dielectric layer 401 is a low-K dielectric material layer, such as a silicon oxide layer.
  • the first dielectric layer 401 may be formed by chemical vapor deposition (CVP), and the first dielectric layer 401 is used to form a cavity necessary for the operation of the acoustic wave filter.
  • CVP chemical vapor deposition
  • the control circuit includes a device structure and a first interconnect structure layer electrically connected to the device structure.
  • the first interconnect structure layer is located in the first dielectric layer 401.
  • the device structure includes MOS devices, such as MOS switches, which may be nMOS or pMOS switches.
  • the MOS switch includes a source 201, a drain 202, and a gate 203, and further includes a gate dielectric layer 204 or a gate dielectric region on the surface of the silicon top layer 103 to isolate the source, drain, and gate. It can be sourced/drained through a low-dose drain (LDD) process and source/drain implantation Implantation (S/D IMP for short) forms source 201 and drain 202 in the top silicon layer.
  • LDD low-dose drain
  • S/D IMP source/drain implantation Implantation
  • control circuit is electrically connected to the SAW resonator plate and the BAW resonator structure, respectively.
  • the first interconnect structure layer includes a first conductive pillar 404 and a first circuit layer 405 that are electrically connected to the device structure in sequence.
  • first a first through hole penetrating the first dielectric layer 401 and a first trench provided on the surface of the first dielectric layer are formed, and then the first through hole and the first trench are filled with electrical connection material, To form the first conductive pillar 404 and the first circuit layer 405.
  • a first via hole penetrating the first dielectric layer 401 and a first trench provided on the surface of the first dielectric layer 401 can be formed by etching, the first trench defines a path for local interconnection of metal, and then is deposited (for example Sputtering) Filling the first through hole and the first trench with an electrical connection material, the electrical connection material is preferably copper, tungsten, titanium, or the like.
  • the gate dielectric layer 204 is formed on the silicon top layer 103, so the first via hole also penetrates the gate dielectric layer 204.
  • the first pad 407 is electrically connected to the first circuit layer of the control circuit through the first redistribution layer 406; in the case where the first interconnect structure layer is not suitable for directly and electrically connecting the second input electrode and the second output electrode, A second redistribution layer 414 and a second pad 415 are formed on the substrate, and the second pad 415 is electrically connected to the first circuit layer 405 through the second redistribution layer 414; or, the first layer can also be formed on the substrate at the same time
  • the first redistribution layer 406 and the second redistribution layer 414 can be simultaneously formed by deposition, and the first pad 407 and the second pad 415 can
  • the first cavity 402 and the second cavity 412 recessed inward are formed on the first dielectric layer 401 by etching.
  • a first adhesive structure 408 and a second adhesive structure 413 are formed on the surface of the substrate for the subsequent bonding of the SAW resonator sheet and the BAW resonator structure to the substrate.
  • the first adhesive structure 408 and the second adhesive structure 413 may be dry films or other types of chip connection films.
  • a layer of dry film is pasted on the surface of the substrate, and then the dry film is patterned, and then the dry film is exposed and developed and etched first
  • the dielectric layer 401 forms a first cavity 402 and a second cavity 412 recessed inward on the substrate, and the remaining dry film portion forms a first adhesive structure 408 and a second adhesive structure 413.
  • the first adhesive structure 408 and the second adhesive structure 413 are formed by a screen printing patterned adhesive layer.
  • the material of the adhesive layer is usually epoxy resin.
  • the first redistribution layer 406 and the second redistribution layer 414 are formed on the substrate, before the cavity is formed on the substrate, under the condition of heat and pressure, the first redistribution layer 406 and the second A layer of dry film is pasted on the surface of the redistribution layer 414, and then the dry film is patterned, and then the first cavity 402 and the second cavity 412 recessed inward are formed on the substrate by etching the dry film and the first dielectric layer 401 Then, the remaining dry film portion forms the first adhesive structure 408 and the second adhesive structure 413.
  • the first cavity 402 may be formed in the first adhesive structure 408 and the second cavity may be formed in the second adhesive structure 413 412.
  • a SAW resonator plate and a BAW resonance structure are provided.
  • the surface of the SAW resonator plate is provided with a first input electrode and a first output electrode
  • the surface of the BAW resonance structure is provided with a second input electrode and a second output electrode
  • the BAW resonant structure includes a third cavity.
  • the SAW resonator plate includes a piezoelectric substrate 301, a pair of comb-shaped electrodes 302 provided on the piezoelectric substrate 301, and a first input electrode and a first output electrode (not shown) are respectively connected to a pair of combs
  • the electrode 302 is electrically connected.
  • both the first input electrode and the first output electrode include pads.
  • a pair of comb-shaped electrodes 302 are used as a transmitting transducer and a receiving transducer respectively.
  • the transmitting transducer converts the electrical signal into a surface acoustic wave, propagates on the surface of the piezoelectric substrate 301, and after a certain delay, the receiving transducer The device converts the sound wave signal into an electrical signal output.
  • the filtering process is realized in the conversion of electricity to sound and sound to electricity.
  • the BAW resonant structure includes a first supporting substrate 308, a second supporting substrate 309, a first electrode 303 and a second electrode disposed between the first supporting substrate 308 and the second supporting substrate 309
  • An electrode 304, and a piezoelectric layer 305 provided between the first electrode 303 and the second electrode 304, and a second input electrode and a second output electrode (not shown) are provided on the outer surface of the first support substrate 308, The second input electrode and the second output electrode are electrically connected to the first electrode 303 and the second electrode 304, respectively.
  • a silicon chip 306 is provided on the outer side of the second support substrate 309, and a third cavity 307 is provided on the silicon chip 306.
  • the third cavity 307 serves as a lower cavity generally referred to in the art
  • the second cavity 412 serves as an upper cavity generally referred to in the art.
  • the materials of the first electrode 303 and the second electrode 304 may be Mo, Al, etc., and the thickness thereof is generally 100 nm to 200 nm.
  • the material of the piezoelectric layer 305 is usually PZT (lead zirconate titanate piezoelectric ceramic), ZnO or AlN, and its thickness is usually 1 to 2 ⁇ m.
  • the first supporting substrate 308 and the second supporting substrate 309 usually use Si3N4 and AlN materials, which have high mechanical strength, stable chemical properties, high sound velocity, and little influence on the center frequency.
  • the thickness of the first supporting substrate 308 and the second supporting substrate 309 is generally 100 nm to 200 nm.
  • S4 Orient the surface of the SAW resonator plate toward the substrate, bond the SAW resonator plate to the substrate and close the first cavity, and direct the surface of the BAW resonator structure to the substrate, bond the BAW resonator structure to the substrate and close the second Cavity.
  • the first input electrode and the first output electrode are located on the first surface of the piezoelectric substrate 301, and when bonded, the first surface is directed toward the first cavity 402 to resonate the SAW
  • the sheet is bonded to the substrate and closes the first cavity 402.
  • the second input electrode and the second output electrode are located on the outer side of the first support substrate 308. When bonding, the outer side faces the second cavity 412, so that the BAW resonance structure is bonded to the substrate and closes the second cavity Cavity 412.
  • a first adhesive structure 408 and a second adhesive structure 413 are formed on the surface of the substrate, the outer peripheries of the first cavity 402 and the second cavity 412, respectively.
  • the piezoelectric substrate 301 of the SAW resonator sheet is bonded to the substrate through the first adhesive structure 408, so that the SAW resonator sheet is bonded to the substrate and closes the first cavity 402, while BAW resonates through the second adhesive structure 413
  • the first support substrate 308 of the structure is bonded to the substrate, so that the BAW resonant structure is bonded to the substrate and closes the second cavity 412.
  • the first adhesive structure 408 and the second adhesive structure 413 can firmly fix the piezoelectric substrate 301 and the first supporting substrate 308 to the substrate, respectively.
  • S5 electrically connect the control circuit to the first input electrode, the first output electrode, the second input electrode, and the second output electrode.
  • the control circuit may include a device structure and a first interconnect structure layer electrically connected to the device structure, and the first interconnect structure layer is located in the first dielectric layer 401.
  • electrically connecting the control circuit to the first input electrode, the first output electrode, the second input electrode, and the second output electrode includes after bonding the SAW resonator plate, the first interconnect structure layer and the first input electrode respectively 1.
  • the second output electrode is electrically connected, and after the BAW resonance structure is bonded, the first interconnect structure layer is electrically connected to the second input electrode and the second output electrode.
  • a first redistribution layer 406, a first pad 407, a second redistribution layer 414, and a second pad 415 are formed on the substrate.
  • electrically connecting the control circuit to the first input electrode and the first output electrode includes:
  • the first redistribution layer 406 and the first pad 407 are formed on the first interconnect structure layer;
  • the first pad 407 is electrically connected to the first input electrode and the first output electrode so that the first input electrode and the first output electrode pass through the first pad 407 and the first redistribution layer 406 is electrically connected to the control circuit.
  • Electrically connecting the control circuit to the second input electrode and the second output electrode includes:
  • a second redistribution layer 414 and a second pad 415 are formed on the first interconnect structure layer;
  • the second pad 415 is electrically connected to the second input electrode and the second output electrode, so that the second input electrode and the second output electrode pass through the second pad 415 and the second redistribution layer 414 is electrically connected to the control circuit.
  • the integration method may further include the following steps S6 to S8:
  • an encapsulation layer 403 is formed, and the encapsulation layer covers the substrate, the SAW resonance sheet, and the BAW resonance structure.
  • the encapsulation layer 403 may be formed by a molding method, and the material used for the molding may be epoxy resin.
  • the silicon substrate 101 is removed to reduce the integrated structure.
  • the silicon substrate 101 can be removed by chemical mechanical polishing (CMP).
  • a fourth redistribution layer is formed on the encapsulation layer 403, and is electrically connected to the first input electrode, the second input electrode, the first output electrode, the second output electrode, and the control circuit.
  • a second through hole penetrating through the encapsulation layer 403 is formed, an electrical connection material is filled in the second through hole to form a second conductive pillar 410, and then a fourth heavy wiring layer 409 is formed on the encapsulation layer 403.
  • the wiring layer 409 is electrically connected to the second conductive pillar 410.
  • the fourth redistribution layer 409 also includes an I/O pad 411.
  • the second via hole may be formed by etching, and the second via hole is filled with an electrical connection material (eg, copper) by deposition (eg, sputtering) to form the second conductive pillar 410.
  • the I/O pad 411 can be connected to an external power source.
  • the integration method of the control circuit and the acoustic wave filter according to the second embodiment of the present invention also includes the aforementioned steps S1 to S7, which differs from the first embodiment in step S8.
  • the integration method according to the second embodiment of the present invention includes performing the following steps after step S7:
  • a third redistribution layer 503 is formed on the back surface of the substrate, and is electrically connected to the first input electrode, the second input electrode, the first output electrode, the second output electrode, and the control circuit.
  • the first through-insulation layer 102, the silicon top layer 103, and the first dielectric layer 401 are formed.
  • the third through holes are filled with electrical connection materials to form third conductive pillars 501, the third conductive pillars 501 are electrically connected to the first circuit layer 405, and the second circuit layer 502 is formed on the surface of the insulating layer Three conductive posts 501 are electrically connected;
  • a third redistribution layer 503 electrically connected to the second circuit layer 502 and the third conductive pillar 501 in sequence is formed on the surface of the insulating layer 102.
  • the third redistribution layer 503 further includes an I/O pad 411.
  • An embodiment of the present invention also provides an integrated structure of a control circuit and an acoustic wave filter, which includes: a substrate, a control circuit is formed on the substrate, a first cavity and a second cavity are formed on the substrate; a SAW resonator plate and a BAW resonator structure, The surface of the SAW resonator plate is provided with a first input electrode and a first output electrode. The surface of the SAW resonator plate faces the substrate and is bonded to the substrate and closes the first cavity.
  • the surface of the BAW resonator structure is provided with a second input electrode and a second The output electrode, the BAW resonant structure includes a third cavity, the surface of the BAW resonant structure faces the substrate and is bonded to the substrate and closes the second cavity; the control circuit and the first input electrode, the first output electrode, the second input electrode, the first The two output electrodes are electrically connected.
  • the integrated structure according to the embodiment of the present invention realizes the control of the acoustic wave filter through the control circuit formed on the substrate, thereby avoiding the problems of complicated electrical connection process and large insertion loss caused by the integration of the existing acoustic wave filter as a discrete device on the PCB. High level of integration and reduced process costs
  • the integrated structure of the control circuit and the acoustic wave filter according to the first embodiment of the present invention includes:
  • a substrate, a control circuit is formed on the substrate, and a first cavity 402 and a second cavity 412 are formed on the substrate;
  • the surface of the SAW resonator plate is provided with a first input electrode and a first output electrode
  • the surface of the SAW resonator plate faces the substrate and is bonded to the substrate and closes the first cavity 402
  • the surface of the BAW resonator structure The second input electrode and the second output electrode are provided.
  • the BAW resonant structure includes a third cavity 307. The surface of the BAW resonant structure faces the substrate and is bonded to the substrate and closes the second cavity 412;
  • the control circuit is electrically connected to the first input electrode, the first output electrode, the second input electrode, and the second output electrode.
  • the base includes a substrate and a first dielectric layer 401 formed on the substrate, wherein the substrate is an SOI substrate; the SOI substrate includes an insulating layer 102 and a silicon top layer 103 on the insulating layer 102.
  • the control circuit includes a device structure and a first interconnect structure layer electrically connected to the device structure.
  • the device structure includes a MOS switch including a source 201 and a drain 202 formed in the silicon top layer 103 of the SOI substrate, and a gate dielectric layer 204 and a gate 203 formed on the silicon top layer 103.
  • the first interconnect structure layer is located on the first dielectric layer 401, and is electrically connected to the first input electrode, the first output electrode, the second input electrode, and the second output electrode; specifically, the first interconnect structure layer includes the device structure in turn
  • the first conductive pillar 404 and the first circuit layer 405 are electrically connected.
  • the first cavity 402 and the second cavity 412 are formed in the first dielectric layer 401.
  • the SAW resonator plate includes a piezoelectric substrate 301, a pair of comb-shaped electrodes 302 provided on the piezoelectric substrate 301, and a first input electrode and a first output electrode electrically connected to the pair of comb-shaped electrodes, respectively, optionally, Both the first input electrode and the first output electrode include bonding pads.
  • the BAW resonance structure includes a first support substrate 308, a second support substrate 309, a first electrode 303 and a second electrode 304 disposed between the first support substrate 308 and the second support substrate 309, and a A piezoelectric layer 305 between an electrode 303 and a second electrode 304, a second input electrode and a second input electrode (not shown) are provided on the outer surface of the first support substrate 308, the second input electrode and the second The input electrode is electrically connected to the first electrode 303 and the second electrode 304, respectively.
  • a silicon chip 306 is provided on the outer side of the second support substrate 309, and a third cavity 307 is provided on the silicon chip 306.
  • both the second input electrode and the second output electrode include solder pads.
  • the integrated structure further includes a first redistribution layer 406 and a first pad 407 formed on the substrate.
  • the first pad 407 is electrically connected to the first input electrode and the first output electrode, so that the first The input electrode and the first output electrode are electrically connected to the control circuit through the first pad 407 and the first redistribution layer 406.
  • the integrated structure further includes a second redistribution layer 414 and a second pad 415.
  • the second pad 415 is electrically connected to the second input electrode and the second output electrode so that the second input electrode and the second output electrode pass the second solder
  • the pad 415 and the second redistribution layer 414 are electrically connected to the control circuit.
  • the substrate and the SAW resonator plate are bonded through a first adhesive structure 408, which is provided on the first redistribution layer 406 and the outer periphery of the first cavity 402.
  • the first adhesive structure 408 is Dry film or adhesive layer formed by screen printing, or other chip connection film.
  • the substrate and the BAW resonance structure are bonded through a second bonding structure 413, which is provided on the second redistribution layer 414 and the outer periphery of the second cavity 412.
  • the second bonding structure 413 is Dry film or adhesive layer formed by screen printing, or other chip connection film.
  • both the first adhesive structure 408 and the second adhesive structure 413 are ring-shaped.
  • the integrated structure further includes an encapsulation layer 403, which covers the substrate, the SAW resonator plate, and the BAW resonator structure.
  • the integrated structure further includes a fourth redistribution layer 409, which is electrically connected to the first input electrode, the second output electrode, the second input electrode, the second output electrode, and the control circuit.
  • the fourth heavy wiring layer 409 is electrically connected to the second conductive pillar 410 penetrating the encapsulation layer 403, and the fourth heavy wiring layer 409 further includes an I/O pad 411.
  • the integrated structure of the control circuit and the acoustic wave filter according to the second embodiment of the present invention includes:
  • a substrate, a control circuit is formed on the substrate, and a first cavity 402 and a second cavity 412 are formed on the substrate;
  • the surface of the SAW resonator plate is provided with a first input electrode and a first output electrode
  • the surface of the SAW resonator plate faces the substrate and is bonded to the substrate and closes the first cavity 402
  • the surface of the BAW resonator structure The second input electrode and the second output electrode are provided.
  • the BAW resonant structure includes a third cavity 307. The surface of the BAW resonant structure faces the substrate and is bonded to the substrate and closes the second cavity 412;
  • the control circuit is electrically connected to the first input electrode, the first output electrode, the second input electrode, and the second output electrode.
  • the base includes a substrate and a first dielectric layer 401 formed on the substrate, wherein the substrate is an SOI substrate; the SOI substrate includes an insulating layer 102 and a silicon top layer 103 on the insulating layer 102.
  • the control circuit includes a device structure and a first interconnect structure layer electrically connected to the device structure.
  • the device structure includes a MOS switch including a source 201 and a drain 202 formed in the silicon top layer 103 of the SOI substrate, and a gate dielectric layer 204 and a gate 203 formed on the silicon top layer 103.
  • the first interconnect structure layer is located on the first dielectric layer 401, and is electrically connected to the first input electrode, the first output electrode, the second input electrode, and the second output electrode; specifically, the first interconnect structure layer includes the device structure in turn
  • the first conductive pillar 404 and the first circuit layer 405 are electrically connected.
  • the first cavity 402 and the second cavity 412 are formed in the first dielectric layer 401.
  • the SAW resonator plate includes a piezoelectric substrate 301, a pair of comb-shaped electrodes 302 provided on the piezoelectric substrate 301, and a first input electrode and a first output electrode electrically connected to the pair of comb-shaped electrodes, respectively, optionally, Both the first input electrode and the first output electrode include bonding pads.
  • the BAW resonance structure includes a first support substrate 308, a second support substrate 309, a first electrode 303 and a second electrode 304 disposed between the first support substrate 308 and the second support substrate 309, and a A piezoelectric layer 305 between an electrode 303 and a second electrode 304, a second input electrode and a second input electrode (not shown) are provided on the outer surface of the first support substrate 308, the second input electrode and the second The input electrode is electrically connected to the first electrode 303 and the second electrode 304, respectively.
  • a silicon chip 306 is provided on the outer side of the second support substrate 309, and a third cavity 307 is provided on the silicon chip 306.
  • both the second input electrode and the second output electrode include solder pads.
  • the integrated structure further includes a first redistribution layer 406 and a first pad 407 formed on the substrate.
  • the first pad 407 is electrically connected to the first input electrode and the first output electrode, so that the first The input electrode and the first output electrode are electrically connected to the control circuit through the first pad 407 and the first redistribution layer 406.
  • the integrated structure further includes a second redistribution layer 414 and a second pad 415.
  • the second pad 415 is electrically connected to the second input electrode and the second output electrode so that the second input electrode and the second output electrode pass the second solder
  • the pad 415 and the second redistribution layer 414 are electrically connected to the control circuit.
  • the substrate and the SAW resonator sheet are bonded through a ring-shaped first adhesive structure 408, which is provided on the first redistribution layer 406 and the outer periphery of the first cavity 402.
  • the first adhesive structure 408 is a dry film or an adhesive layer formed by screen printing, or other chip connection film.
  • the substrate and the BAW resonant structure are bonded through a ring-shaped second adhesive structure 413, which is provided on the second redistribution layer 414 and the outer periphery of the second cavity 412.
  • the second adhesive structure 413 is a dry film or an adhesive layer formed by screen printing, or other chip connection film.
  • both the first adhesive structure 408 and the second adhesive structure 413 are ring-shaped.
  • the integrated structure further includes an encapsulation layer 403, which covers the substrate, the SAW resonator plate, and the BAW resonator structure.
  • the integrated structure further includes a third redistribution layer 503 formed on the back of the substrate, and is electrically connected to the first input electrode, the first output electrode, the second input electrode, and the second output electrode control circuit.
  • the third redistribution layer 503 is provided on the surface of the insulating layer 102 and is electrically connected to the third conductive pillar 501 penetrating the substrate and the second circuit layer 502 provided on the surface of the insulating layer, and the third conductive pillar 501 is interconnected with the first
  • the structural layer 405 is electrically connected, and the third redistribution layer 503 further includes an I/O pad 411.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Micromachines (AREA)

Abstract

一种控制电路与声波滤波器的集成方法和集成结构。该方法包括:提供基底,基底形成有控制电路;在基底上形成第一空腔(402)和第二空腔(412);提供SAW谐振片和BAW谐振结构,SAW谐振片的表面设有第一输入电极、第一输出电极,BAW谐振结构的表面设有第二输入电极、第二输出电极,BAW谐振结构包括第三空腔(307);将SAW谐振片的表面朝向基底,使SAW谐振片键合于基底且封闭第一空腔(402);将BAW谐振结构的表面朝向基底,使BAW谐振结构键合于基底且封闭第二空腔(412);将控制电路与第一输入电极、第一输出电极、第二输入电极、第二输出电极电连接。上述结构可以避免现有SAW滤波器以及BAW滤波器作为分立器件集成于PCB导致的电连接工艺复杂、插入损耗大等问题,集成度高、降低工艺成本。

Description

控制电路与声波滤波器的集成方法和集成结构 技术领域
本发明涉及声波滤波器技术领域,特别涉及一种控制电路与声波滤波器的集成方法和集成结构。
背景技术
SAW是在压电基片材料表面产生并传播,且振幅随着深入基片材料的深度增加而迅速减少的一种弹性波。SAW滤波器的基本结构是在具有压电特性的基片材料上制作两个声电换能器-梳状电极叉指换能器(Interdigital Transducer,IDT),分别用作发射换能器和接收换能器。SAW滤波器的工作频段一般在800MHz~2GHz,带宽为17MHz~30MHz。由于其选择型好、频带宽、性能稳定、可靠性高,已经成为目前应用最广泛的射频滤波器。
BAW滤波器是一种基于体声波理论、利用声学谐振实现电学滤波的器件,通过电极间的压电层(AlN、ZnO等)在垂直方向上的谐振进行滤波。空腔型BAW滤波器是目前应用最成功的BAW滤波器,其主体结构为上电极、压电层和下电极组成的三明治结构,上电极和下电极的两侧均设有空腔,当声波信号行进到上电极的顶端和下电极的底端时,由于声阻抗的巨大差异,造成声波的全反射。这种BAW滤波器的声泄露小,可实现器件的高Q值。BAW滤波器的工作频段一般在2GHz~6GHz。
技术问题
SAW和BAW的工作频段不同,可组合使用以满足不同频段信号的滤波需求。进行封装时,一般将单个的SAW滤波器以及BAW滤波器封装为分立器件,再集成于印刷电路板(PCB)上。出于使用需求,往往需要在一个PCB板上集成多个滤波器。这种单独封装再进行系统集成的方式带来SIP接线复杂、插入损耗大等问题,且需要引入分立的开关、选择、控制器件对滤波器进行控制,提高了工艺复杂度和制造成本。
技术解决方案
本发明的目的是提出一种控制电路与声波滤波器的集成方法和相应的集成结构,以克服现有SAW滤波器以及BAW滤波器封装和集成过程中SIP接线复杂、插入损耗大的问题。
本发明一方面提出一种控制电路与声波滤波器的集成方法,包括:
提供基底,所述基底形成有控制电路;
在所述基底上形成第一空腔和第二空腔;
提供SAW谐振片和BAW谐振结构,所述SAW谐振片的表面设有第一输入电极、第一输出电极,所述BAW谐振结构的表面设有第二输入电极、第二输出电极,所述BAW谐振结构包括第三空腔;
将所述SAW谐振片的所述表面朝向所述基底,使所述SAW谐振片键合于所述基底且封闭所述第一空腔,以及将所述BAW谐振结构的所述表面朝向所述基底,使所述BAW谐振结构键合于所述基底且封闭所述第二空腔;
将所述控制电路与所述第一输入电极、所述第一输出电极、所述第二输入电极、所述第二输出电极电连接。
可选地,所述基底包括衬底及形成在所述衬底上的第一介质层;
所述在所述基底上形成第一空腔和第二空腔包括:
在所述第一介质层内形成所述第一空腔和第二空腔。
可选地,所述衬底包括SOI衬底、硅衬底、锗衬底、锗化硅衬底、砷化镓衬底之一。
可选地,所述控制电路包括器件结构及与所述器件结构电连接的第一互连结构层,所述第一互连结构层位于所述第一介质层,与所述第一输入电极、所述第一输出电极、所述第二输入电极、所述第二输出电极电连接。
可选地,所述器件结构包括MOS器件。
可选地,将所述控制电路与所述第一输入电极、所述第一输出电极电连接包括:
在键合所述SAW谐振片之后,将所述第一互连结构层与所述第一输入电极、第一输出电极电连接;或者
在键合所述SAW谐振片之前,在所述第一互连结构层上形成第一重布线层及第一焊垫;
在键合所述SAW谐振片后,将所述第一焊垫与所述第一输入电极、所述第一输出电极电连接,以使所述第一输入电极、第一输出电极通过所述第一焊垫、所述第一重布线层与所述控制电路电连接。
可选地,将所述控制电路与所述第二输入电极、所述第二输出电极电连接包括:
在键合所述BAW谐振结构之后,将所述第一互连结构层与所述第二输入电极、第二输出电极电连接;或者
在键合所述BAW谐振结构之前,在所述第一互连结构层上形成第二重布线层及第二焊垫;
在键合所述BAW谐振结构之后,将所述第二焊垫与所述第二输入电极、所述第二输出电极电连接,以使所述第二输入电极、第二输出电极通过所述第二焊垫、所述第二重布线层与所述控制电路电连接。
可选地,将所述SAW谐振片的所述表面朝向所述基底,使所述SAW谐振片键合于所述基底且封闭所述第一空腔,以及将所述BAW谐振结构的所述表面朝向所述基底,使所述BAW谐振结构键合于所述基底且封闭所述第二空腔的步骤包括:
在所述基底的表面、所述第一空腔和所述第二空腔的外周分别形成第一粘合结构和第二粘合结构;
通过所述第一粘合结构将所述SAW谐振片粘结于所述基底;
通过所述第二粘合结构将所述BAW谐振结构粘结于所述基底。
可选地,所述第一粘合结构和/或第二粘合结构包括干膜。
可选地,通过曝光显影在所述干膜中形成所述第一空腔和/或第二空腔。
通过丝网印刷图案化的粘结层形成所述第一粘合结构和第二粘合结构。
可选地,所述集成方法还包括:
在所述基底的背面形成第三重布线层,与所述第一输入电极、所述第一输出电极、所述第二输入电极、所述第二输出电极、所述控制电路电连接。
可选地,所述第三重布线层包括I/O焊垫。
可选地,在键合所述SAW谐振片和BAW谐振结构之后,还包括:
形成封装层,所述封装层覆盖所述基底、所述SAW谐振片和所述BAW谐振结构。
可选地,所述集成方法还包括:
在所述封装层上形成第四重布线层,与所述第一输入电极、第二输入电极、第一输出电极、第二输出电极、控制电路电连接。
可选地,所述第一输入电极、第一输出电极、第二输入电极、第二输出电极均包括焊垫。
本发明另一方面提供一种控制电路与声波滤波器的集成结构,包括:
基底,所述基底形成有控制电路,所述基底上形成有第一空腔和第二空腔;
SAW谐振片和BAW谐振结构,所述SAW谐振片的表面设有第一输入电极、第一输出电极,所述SAW谐振片的所述表面朝向所述基底而键合于所述基底且封闭所述第一空腔,所述BAW谐振结构的表面设有第二输入电极、第二输出电极,所述BAW谐振结构包括第三空腔,所述BAW谐振结构的所述表面朝向所述基底而键合于所述基底且封闭所述第二空腔;
所述控制电路与所述第一输入电极、第一输出电极、第二输入电极、第二输出电极电连接。
可选地,所述基底包括衬底及形成在所述衬底上的第一介质层;所述第一空腔和第二空腔形成于所述第一介质层内;
或者,所述基底与所述SAW谐振片通过第一粘合结构键合,所述第一空腔形成于所述第一粘合结构内;所述基底与所述BAW谐振结构通过第二粘合结构键合,所述第二空腔形成于所述第二粘合结构内。
可选地,所述第一粘合结构和/或第二粘合结构为干膜。
可选地,所述衬底包括SOI衬底、硅衬底、锗衬底、锗化硅衬底、砷化镓衬底之一。
可选地,所述控制电路包括器件结构及与所述器件结构电连接的第一互连结构层,所述第一互连结构层位于所述第一介质层,与所述第一输入电极、所述第一输出电极、所述第二输入电极、所述第二输出电极电连接。
可选地,所述器件结构包括MOS器件。
可选地,所述基底上形成有第一重布线层、第二重布线层、第一焊垫、第二焊垫,所述第一焊垫与所述第一输入电极、第一输出电极电连接,以使所述第一输入电极、第一输出电极通过所述第一焊垫、所述第一重布线层与所述控制电路电连接,所述第二焊垫与所述第二输入电极、第二输出电极电连接,以使所述第二输入电极、第二输出电极通过所述第二焊垫、所述第二重布线层与所述控制电路电连接。
可选地,所述集成结构还包括形成于所述基底的背面的第三重布线层,与所述第一输入电极、所述第一输出电极、所述第二输入电极、所述第二输出电极、所述控制电路电连接。
可选地,所述第三重布线层包括I/O焊垫。
可选地,所述集成结构还包括封装层,所述封装层覆盖所述基底、所述SAW谐振片和所述BAW谐振结构。
可选地,所述集成结构还包括形成于所述封装层上的第四重布线层,与所述第一输入电极、第二输入电极、第一输出电极、第二输出电极、控制电路电连接。
可选地,所述第一输入电极、第一输出电极、第二输入电极、第二输出电极均包括焊垫。
有益效果
本发明的有益效果在于在基底上形成控制电路和SAW滤波器和BAW滤波器所需要的空腔,再将已有SAW谐振片和BAW谐振结构安装于空腔,实现控制电路对声波滤波器的控制,从而可以避免现有SAW滤波器以及BAW滤波器作为分立器件集成于PCB导致的电连接工艺复杂、插入损耗大等问题,集成度高、降低工艺成本。
本发明具有其它的特性和优点,这些特性和优点从并入本文中的附图和随后的具体实施方式中将是显而易见的,或者将在并入本文中的附图和随后的具体实施方式中进行详细陈述,这些附图和具体实施方式共同用于解释本发明的特定原理。
附图说明
通过结合附图对本发明示例性实施例进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显,其中,在本发明示例性实施例中,相同的附图标记通常代表相同部件。
图1~图7分别显示根据本发明第一实施例的控制电路与声波滤波器的集成方法的各个流程;
图8~图10分别显示根据本发明第二实施例的控制电路与声波滤波器的集成方法的进行滤波器的电连接的各个流程。
附图标记说明:
101-硅衬底,102-绝缘层,103-硅顶层;201-源极,202-漏极,203-栅极,204-栅介质层;301-压电基片,302-梳状电极,303-第一电极,304-第二电极,305-压电层,306-硅片,307-第三空腔,308-第一支撑基片,309第二支撑基片;401-第一介质层,402-第一空腔,403-封装层,404-第一导电柱,405-第一线路层,406-第一重布线层,407-第一焊垫,408-第一粘合结构,409-第四重布线层,410-第二导电柱,411-I/O焊垫,412-第二空腔,413-第二粘合结构,414-第二重布线层,415-第二焊垫;501-第三导电柱,502-第二线路层,503-第三重布线层。
本发明的实施方式
下面将参照附图更详细地描述本发明。虽然附图中显示了本发明的优选实施例,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本发明更加透彻和完整,并且能够将本发明的范围完整地传达给本领域的技术人员。
为了解决现有声波滤波器的封装集成中接线复杂、插入损耗大等问题,本发明实施例提出一种控制电路与声波滤波器的集成方法和集成结构。
根据本发明实施例的控制电路与声波滤波器的集成方法,包括:提供基底,基底形成有控制电路;在基底上形成第一空腔和第二空腔;提供SAW谐振片和BAW谐振结构,SAW谐振片的表面设有第一输入电极、第一输出电极,BAW谐振结构的表面设有第二输入电极、第二输出电极,BAW谐振结构包括第三空腔;将SAW谐振片的表面朝向基底,使SAW谐振片键合于基底且封闭第一空腔;将BAW谐振结构的表面朝向基底,使BAW谐振结构键合于基底且封闭第二空腔;将控制电路与第一输入电极、第一输出电极、第二输入电极、第二输出电极电连接。
根据本发明实施例的集成方法在基底上形成控制电路和声波滤波器所需要的空腔,再将已有SAW谐振片和BAW谐振结构安装于空腔,实现控制电路对声波滤波器的控制,从而可以避免现有声波滤波器作为分立器件集成于PCB导致的电连接工艺复杂、插入损耗大等问题,集成度高、降低工艺成本。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。在详述本发明实施例时,为便于说明,示例图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明的保护范围。此外,在实际制作中应包含长度、宽度及深度的三维空间大小。
图1至图7分别显示根据本发明第一实施例的控制电路与声波滤波器的集成方法的各个流程,该集成方法包括以下步骤:
S1:参考图1至图4所示,提供基底,基底形成有控制电路。
参考图1和图2所示,在本实施例中,基底包括衬底及形成在衬底上的第一介质层401。可选地,衬底包括SOI衬底、硅衬底、锗衬底、锗化硅衬底、砷化镓衬底之一。本领域技术人员也可以根据基底上形成的控制电路选择衬底的类型。在本实施例中,衬底为SOI衬底。
SOI(Silicon-on-Insulator)即绝缘体上硅,其结构可以是绝缘硅衬底加顶层单晶硅层的双层结构,也可以是以绝缘层为中间层(称为埋层)的三明治结构。在进行器件制作时,仅使用顶层的薄硅层作为器件制作层,形成源极、漏极、沟道区等结构,而硅衬底仅起支撑作用。三明治结构中埋层将器件制作层与硅衬底在电学上隔离开,从而减少硅衬底对器件性能的影响。SOI在器件性能上具有减小寄生电容、降低功耗、消除闩锁效应等优点。目前获得SOI衬底的典型工艺是智能剥离(Smart-cutTM)工艺。本实施例选用SOI衬底以利用SOI的上述优点。
仍然参考图1所示,在本实施例中,SOI衬底包括硅衬底101、位于硅衬底101上的绝缘层102和位于绝缘层102上的硅顶层103,或者SOI衬底可以是绝缘层加顶层硅的双层结构。
仍然参考图2所示,第一介质层401为低K介质材料层,例如氧化硅层。可通过化学气相沉积(CVP)形成第一介质层401,第一介质层401用于形成声波滤波器工作所必需的空腔。
在本实施例中,控制电路包括器件结构及与器件结构电连接的第一互连结构层,第一互连结构层位于第一介质层401。器件结构包括MOS器件,例如MOS开关,MOS开关可以是nMOS或者pMOS开关。仍参考图1所示,MOS开关包括源极201、漏极202和栅极203,还包括硅顶层103表面的栅介质层204或栅介质区,以隔离源极、漏极和栅极。可通过浅掺杂源漏极(Low Dose Drain,简称LDD)工艺和源漏极注入(Source/Drain Implantation,简称S/D IMP)在顶层硅中形成源极201和漏极202。
在本实施例中,控制电路分别电连接SAW谐振片和BAW谐振结构。
参考图3所示,可选地,第一互连结构层包括依次与器件结构电连接的第一导电柱404和第一线路层405。在本实施例中,首先形成贯穿第一介质层401的第一通孔和设于第一介质层表面的第一沟槽,然后在第一通孔和第一沟槽内填充电连接材料,以形成第一导电柱404和第一线路层405。
可通过刻蚀形成贯穿第一介质层401的第一通孔和设于第一介质层401表面的第一沟槽,第一沟槽定义了局部互连金属的路径,然后通过淀积(例如溅射)在第一通孔和第一沟槽内填充电连接材料,电连接材料优选为铜、钨、钛等。在本实施例中,在硅顶层103上形成了栅介质层204,因此第一通孔还贯穿栅介质层204。
参考图4所示,可选的,在第一互连结构层不适宜直接电连接第一输入电极、第一输出电极的情况下,在基底上形成第一重布线层406、第一焊垫407,第一焊垫407通过第一重布线层406与控制电路的第一线路层电连接;在第一互连结构层不适宜直接电连接第二输入电极、第二输出电极的情况下,在基底上形成第二重布线层414及第二焊垫415,第二焊垫415通过第二重布线层414与第一线路层405电连接;或者,也可以在基底上同时形成第一重布线层406、第一焊垫407、第二重布线层414、第二焊垫415。可通过淀积同时形成第一重布线层406和第二重布线层414,并类似的通过刻蚀、淀积同时形成第一焊垫407和第二焊垫415。
S2:参考图5所示,在基底上形成第一空腔和第二空腔。
参考图5所示,在本实施例中,通过刻蚀在第一介质层401上形成向内凹陷的第一空腔402和第二空腔412。
仍然参考图5所示,可选地,在基底表面形成第一粘合结构408和第二粘合结构413,以用于实现后续SAW谐振片和BAW谐振结构与基底的键合。第一粘合结构408和第二粘合结构413可以是干膜或者其他类型的芯片连接膜。可选地,在基底上形成空腔之前,在加热加压的条件下,在基底表面粘贴一层干膜,然后对干膜进行图形化,再通过对干膜进行曝光显影以及刻蚀第一介质层401在基底上形成向内凹陷的第一空腔402和第二空腔412,保留下来的干膜部分形成第一粘合结构408和第二粘合结构413。可选地,通过丝网印刷图案化的粘结层形成第一粘合结构408和第二粘合结构413。粘结层的材料通常采用环氧树脂。通过丝网印刷的方法,可以直接在基底表面形成图案化的粘结层,不需要光刻版、曝光和显影等步骤来实现图案化。
可选地,当基底上形成有第一重布线层406和第二重布线层414时,在基底上形成空腔之前,在加热加压的条件下,在第一重布线层406和第二重布线层414表面粘贴一层干膜,然后对干膜进行图形化,再通过刻蚀干膜、第一介质层401在基底上形成向内凹陷的第一空腔402和第二空腔412,保留下来的干膜部分形成第一粘合结构408和第二粘合结构413。
可选地,在第一空腔402和第二空腔412的深度较小时,可以在第一粘合结构408中形成第一空腔402,在第二粘合结构413中形成第二空腔412。
S3:参考图5所示,提供SAW谐振片和BAW谐振结构,SAW谐振片的表面设有第一输入电极、第一输出电极,BAW谐振结构的表面设有第二输入电极、第二输出电极,BAW谐振结构包括第三空腔。
如图5所示,SAW谐振片包括压电基片301、设于压电基片301上的一对梳状电极302,第一输入电极和第一输出电极(未显示)分别与一对梳状电极302电连接,可选地,第一输入电极和第一输出电极均包括焊垫。一对梳状电极302分别用作发射换能器和接收换能,发射换能器将电信号转换为声表面波,在压电基片301表面上传播,经过一定的延迟后,接收换能器将声波信号转换为电信号输出。滤波过程在电到声和声到电的转换中实现。
仍然参考图5所示,BAW谐振结构包括第一支撑基片308、第二支撑基片309、设于第一支撑基片308和第二支撑基片309之间的第一电极303和第二电极304、以及设于第一电极303和第二电极304之间的压电层305,第一支撑基片308的外侧面上设有第二输入电极和第二输出电极(未示出),第二输入电极和第二输出电极分别与第一电极303和第二电极304电连接。此外,为了保证BAW滤波器的正常工作,在第二支撑基片309的外侧面设有硅片306,硅片306上设有第三空腔307。集成之后,第三空腔307作为本领域通常所指的下空腔,第二空腔412作为本领域通常所指的上空腔。
第一电极303和第二电极304的材料可为Mo、Al等,其厚度一般为100 nm~200 nm。压电层305的材料通常为PZT(锆钛酸铅压电陶瓷)、ZnO或AlN,其厚度通常为1~2μm。第一支撑基片308和第二支撑基片309通常采用Si3N4、AlN材料,其机械强度高,化学性能稳定,声速较高,对中心频率的影响较小。第一支撑基片308和第二支撑基片309的厚度一般为100 nm~200 nm。
S4:将SAW谐振片的表面朝向基底,使SAW谐振片键合于基底且封闭第一空腔,以及将BAW谐振结构的表面朝向所述基底,使BAW谐振结构键合于基底且封闭第二空腔。
参考图5所示,在本实施例中,第一输入电极和第一输出电极位于压电基片301的第一表面,键合时,使第一表面朝向第一空腔402,使SAW谐振片键合于基底且封闭第一空腔402。同样,第二输入电极和第二输出电极位于第一支撑基片308的外侧面,键合时,使该外侧面朝向第二空腔412,使BAW谐振结构键合于基底且封闭第二空腔412。
可选地,在基底的表面、第一空腔402和第二空腔412的外周分别形成有第一粘合结构408和第二粘合结构413。通过第一粘合结构408将SAW谐振片的压电基片301粘结于基底,从而使SAW谐振片键合于基底且封闭第一空腔402,同时通过第二粘合结构413将BAW谐振结构的第一支撑基片308粘结于基底,从而使BAW谐振结构键合于基底且封闭第二空腔412。通过第一粘合结构408和第二粘合结构413可以分别将压电基片301和第一支撑基片308牢固地固定于基底。
S5:将控制电路与第一输入电极、第一输出电极、第二输入电极、第二输出电极电连接。
在步骤S1中提到,控制电路可以包括器件结构及与器件结构电连接的第一互连结构层,第一互连结构层位于第一介质层401。相应地,将控制电路与第一输入电极、第一输出电极、第二输入电极、第二输出电极电连接包括在键合SAW谐振片之后,将第一互连结构层分别与第一输入电极、第二输出电极电连接,以及在键合BAW谐振结构之后,将第一互连结构层与第二输入电极、第二输出电极电连接。
仍然参考图5所示,可选的,基底上形成有第一重布线层406、第一焊垫407、第二重布线层414及第二焊垫415。相应地,将控制电路与第一输入电极、第一输出电极电连接包括:
在键合SAW谐振片之前,在第一互连结构层上形成第一重布线层406及第一焊垫407;
在键合SAW谐振片后,将第一焊垫407与第一输入电极、第一输出电极电连接,以使第一输入电极、第一输出电极通过第一焊垫407、第一重布线层406与控制电路电连接。
将控制电路与第二输入电极、第二输出电极电连接包括:
在键合BAW谐振结构之前,在第一互连结构层上形成第二重布线层414及第二焊垫415;
在键合BAW谐振结构之后,将第二焊垫415与第二输入电极、第二输出电极电连接,以使第二输入电极、第二输出电极通过第二焊垫415、第二重布线层414与控制电路电连接。
通过以上步骤S1至S5实现了控制电路与声波滤波器的集成。在本实施例中,该集成方法还可以包括以下步骤S6至S8:
S6:参考图6所示,形成封装层403,封装层覆盖基底、SAW谐振片和BAW谐振结构。可以通过塑封(molding)方法形成封装层403,塑封采用的材料可为环氧树脂。
S7:参考图7所示,去除硅衬底101,以减薄集成结构。在本实施例中,可通过化学机械抛光(CMP)去除硅衬底101。
S8:仍然参考图7所示,在封装层403上形成第四重布线层,与第一输入电极、第二输入电极、第一输出电极、第二输出电极、控制电路电连接。
具体地,形成贯穿封装层403的第二通孔,在第二通孔内填充电连接材料,以形成第二导电柱410,然后在封装层403上形成第四重布线层409,第四重布线层409与第二导电柱410电连接。第四重布线层409还包括I/O焊垫411。类似地,可通过刻蚀形成第二通孔,通过淀积(例如溅射)在第二通孔内填充电连接材料(例如铜),以形成第二导电柱410。I/O焊垫411可连接外部电源。
本实施例获得的集成结构如图7所示。
根据本发明第二实施例的控制电路与声波滤波器的集成方法也包括前述步骤S1至S7,其与第一实施例的差别在于步骤S8。参考图8至图10所示,根据本发明第二实施例的集成方法包括在步骤S7之后执行以下步骤:
在基底的背面形成第三重布线层503,与第一输入电极、第二输入电极、第一输出电极、第二输出电极、控制电路电连接。
具体地,参考图8和图9所示,在图8显示的形成有封装层403且去除了硅衬底101的集成结构中形成贯穿绝缘层102、硅顶层103和第一介质层401的第三通孔,在第三通孔内填充电连接材料,以形成第三导电柱501,第三导电柱501与第一线路层405电连接,在绝缘层表面形成第二线路层502,与第三导电柱501电连接;
参考图10所示,在绝缘层102表面形成与第二线路层502、第三导电柱501依次电连接的第三重布线层503,第三重布线层503还包括I/O焊垫411。
本发明实施例还提供一种控制电路与声波滤波器的集成结构,包括:基底,基底形成有控制电路,基底上形成有第一空腔和第二空腔;SAW谐振片和BAW谐振结构,SAW谐振片的表面设有第一输入电极、第一输出电极,SAW谐振片的表面朝向基底而键合于基底且封闭第一空腔,BAW谐振结构的表面设有第二输入电极、第二输出电极,BAW谐振结构包括第三空腔,BAW谐振结构的表面朝向基底而键合于基底且封闭第二空腔;控制电路与第一输入电极、第一输出电极、第二输入电极、第二输出电极电连接。
根据本发明实施例的集成结构通过形成于基底的控制电路实现对声波滤波器的控制,从而可以避免现有声波滤波器作为分立器件集成于PCB导致的电连接工艺复杂、插入损耗大等问题,集成度高、降低工艺成本
参考图7所示,根据本发明第一实施例的控制电路与声波滤波器的集成结构包括:
基底,基底形成有控制电路,基底上形成有第一空腔402和第二空腔412;
SAW谐振片和BAW谐振结构,SAW谐振片的表面设有第一输入电极、第一输出电极,SAW谐振片的表面朝向基底而键合于基底且封闭第一空腔402,BAW谐振结构的表面设有第二输入电极、第二输出电极,BAW谐振结构包括第三空腔307,BAW谐振结构的表面朝向基底而键合于基底且封闭第二空腔412;
控制电路与第一输入电极、第一输出电极、第二输入电极、第二输出电极电连接。
在本实施例中,基底包括衬底及形成在衬底上的第一介质层401,其中衬底为SOI衬底;SOI衬底包括绝缘层102和位于绝缘层102上的硅顶层103。
控制电路包括器件结构及与器件结构电连接的第一互连结构层。器件结构包括MOS开关,MOS开关包括形成于SOI衬底的硅顶层103内的源极201和漏极202,以及形成于硅顶层103上的栅介质层204和栅极203。
第一互连结构层位于第一介质层401,与第一输入电极、第一输出电极、第二输入电极、第二输出电极电连接;具体地,第一互连结构层包括依次与器件结构电连接的第一导电柱404和第一线路层405。第一空腔402和第二空腔412形成于第一介质层401内。
SAW谐振片括压电基片301、设于压电基片301上的一对梳状电极302以及分别与一对梳状电极电连接的第一输入电极和第一输出电极,可选地,第一输入电极和第一输出电极均包括焊垫。
BAW谐振结构包括第一支撑基片308、第二支撑基片309、设于第一支撑基片308和第二支撑基片309之间的第一电极303和第二电极304、以及设于第一电极303和第二电极304之间的压电层305,第一支撑基片308的外侧面上设有第二输入电极和第二输入电极(未示出),第二输入电极和第二输入电极分别与第一电极303和第二电极304电连接。此外,为了保证BAW滤波器的正常工作,在第二支撑基片309的外侧面设有硅片306,硅片306上设有第三空腔307。可选地,第二输入电极和第二输出电极均包括焊垫。
在本实施例中,集成结构还包括形成于基底上的第一重布线层406及第一焊垫407,第一焊垫407与第一输入电极、第一输出电极电连接,以使第一输入电极、第一输出电极通过第一焊垫407、第一重布线层406与控制电路电连接。集成结构还包括第二重布线层414及第二焊垫415,第二焊垫415与第二输入电极、第二输出电极电连接,以使第二输入电极、第二输出电极通过第二焊垫415、第二重布线层414与控制电路电连接。
基底与SAW谐振片通过第一粘合结构408键合,第一粘合结构408设于第一重布线层406上、第一空腔402的外周,可选地,第一粘合结构408为干膜或者通过丝网印刷形成的粘结层,或者其他芯片连接膜。
基底与BAW谐振结构通过第二粘合结构413键合,第二粘合结构413设于第二重布线层414上、第二空腔412的外周,可选地,第二粘合结构413为干膜或者通过丝网印刷形成的粘结层,或者其他芯片连接膜。
可选地,第一粘合结构408和第二粘合结构413均为环形。
在本实施例中,集成结构还包括封装层403,封装层403覆盖基底、SAW谐振片和BAW谐振结构。
在本实施例中,集成结构还包括第四重布线层409,与第一输入电极、第二输出电极、第二输入电极、第二输出电极、控制电路电连接。具体地,第四重布线层409与贯穿封装层403的第二导电柱410电连接,第四重布线层409还包括I/O焊垫411。
参考图10所示,根据本发明第二实施例的控制电路与声波滤波器的集成结构包括:
基底,基底形成有控制电路,基底上形成有第一空腔402和第二空腔412;
SAW谐振片和BAW谐振结构,SAW谐振片的表面设有第一输入电极、第一输出电极,SAW谐振片的表面朝向基底而键合于基底且封闭第一空腔402,BAW谐振结构的表面设有第二输入电极、第二输出电极,BAW谐振结构包括第三空腔307,BAW谐振结构的表面朝向基底而键合于基底且封闭第二空腔412;
控制电路与第一输入电极、第一输出电极、第二输入电极、第二输出电极电连接。
在本实施例中,基底包括衬底及形成在衬底上的第一介质层401,其中衬底为SOI衬底;SOI衬底包括绝缘层102和位于绝缘层102上的硅顶层103。
控制电路包括器件结构及与器件结构电连接的第一互连结构层。器件结构包括MOS开关,MOS开关包括形成于SOI衬底的硅顶层103内的源极201和漏极202,以及形成于硅顶层103上的栅介质层204和栅极203。
第一互连结构层位于第一介质层401,与第一输入电极、第一输出电极、第二输入电极、第二输出电极电连接;具体地,第一互连结构层包括依次与器件结构电连接的第一导电柱404和第一线路层405。第一空腔402和第二空腔412形成于第一介质层401内。
SAW谐振片括压电基片301、设于压电基片301上的一对梳状电极302以及分别与一对梳状电极电连接的第一输入电极和第一输出电极,可选地,第一输入电极和第一输出电极均包括焊垫。
BAW谐振结构包括第一支撑基片308、第二支撑基片309、设于第一支撑基片308和第二支撑基片309之间的第一电极303和第二电极304、以及设于第一电极303和第二电极304之间的压电层305,第一支撑基片308的外侧面上设有第二输入电极和第二输入电极(未示出),第二输入电极和第二输入电极分别与第一电极303和第二电极304电连接。此外,为了保证BAW滤波器的正常工作,在第二支撑基片309的外侧面设有硅片306,硅片306上设有第三空腔307。可选地,第二输入电极和第二输出电极均包括焊垫。
在本实施例中,集成结构还包括形成于基底上的第一重布线层406及第一焊垫407,第一焊垫407与第一输入电极、第一输出电极电连接,以使第一输入电极、第一输出电极通过第一焊垫407、第一重布线层406与控制电路电连接。集成结构还包括第二重布线层414及第二焊垫415,第二焊垫415与第二输入电极、第二输出电极电连接,以使第二输入电极、第二输出电极通过第二焊垫415、第二重布线层414与控制电路电连接。
基底与SAW谐振片通过环形的第一粘合结构408键合,第一粘合结构408设于第一重布线层406上、第一空腔402的外周,可选地,第一粘合结构408为干膜或者通过丝网印刷形成的粘结层,或者其他芯片连接膜。
基底与BAW谐振结构通过环形的第二粘合结构413键合,第二粘合结构413设于第二重布线层414上、第二空腔412的外周,可选地,第二粘合结构413为干膜或者通过丝网印刷形成的粘结层,或者其他芯片连接膜。
可选地,第一粘合结构408和第二粘合结构413均为环形。
在本实施例中,集成结构还包括封装层403,封装层403覆盖基底、SAW谐振片和BAW谐振结构。
在本实施例中,集成结构还包括形成于基底的背面的第三重布线层503,与第一输入电极、第一输出电极、第二输入电极、第二输出电极控制电路电连接。具体地,第三重布线层503设于绝缘层102表面,与贯穿基底的第三导电柱501以及设于绝缘层表面的第二线路层502电连接,第三导电柱501与第一互连结构层405电连接,第三重布线层503还包括I/O焊垫411。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。

Claims (28)

  1. 一种控制电路与声波滤波器的集成方法,其特征在于,包括:
    提供基底,所述基底形成有控制电路;
    在所述基底上形成第一空腔和第二空腔;
    提供SAW谐振片和BAW谐振结构,所述SAW谐振片的表面设有第一输入电极、第一输出电极,所述BAW谐振结构的表面设有第二输入电极、第二输出电极,所述BAW谐振结构包括第三空腔;
    将所述SAW谐振片的所述表面朝向所述基底,使所述SAW谐振片键合于所述基底且封闭所述第一空腔,以及将所述BAW谐振结构的所述表面朝向所述基底,使所述BAW谐振结构键合于所述基底且封闭所述第二空腔;
    将所述控制电路与所述第一输入电极、所述第一输出电极、所述第二输入电极、所述第二输出电极电连接。
  2. 根据权利要求1所述的集成方法,其特征在于,所述基底包括衬底及形成在所述衬底上的第一介质层;
    所述在所述基底上形成第一空腔和第二空腔包括:
    在所述第一介质层内形成所述第一空腔和第二空腔。
  3. 根据权利要求2所述的集成方法,其特征在于,所述衬底包括SOI衬底、硅衬底、锗衬底、锗化硅衬底、砷化镓衬底之一。
  4. 根据权利要求2所述的集成方法,其特征在于,所述控制电路包括器件结构及与所述器件结构电连接的第一互连结构层,所述第一互连结构层位于所述第一介质层,与所述第一输入电极、所述第一输出电极、所述第二输入电极、所述第二输出电极电连接。
  5. 根据权利要求4所述的集成方法,其特征在于,所述器件结构包括MOS器件。
  6. 根据权利要求4所述的集成方法,其特征在于,将所述控制电路与所述第一输入电极、所述第一输出电极电连接包括:
    在键合所述SAW谐振片之后,将所述第一互连结构层与所述第一输入电极、第一输出电极电连接;或者
    在键合所述SAW谐振片之前,在所述第一互连结构层上形成第一重布线层及第一焊垫;
    在键合所述SAW谐振片后,将所述第一焊垫与所述第一输入电极、所述第一输出电极电连接,以使所述第一输入电极、第一输出电极通过所述第一焊垫、所述第一重布线层与所述控制电路电连接。
  7. 根据权利要求6所述的集成方法,其特征在于,将所述控制电路与所述第二输入电极、所述第二输出电极电连接包括:
    在键合所述BAW谐振结构之后,将所述第一互连结构层与所述第二输入电极、第二输出电极电连接;或者
    在键合所述BAW谐振结构之前,在所述第一互连结构层上形成第二重布线层及第二焊垫;
    在键合所述BAW谐振结构之后,将所述第二焊垫与所述第二输入电极、所述第二输出电极电连接,以使所述第二输入电极、第二输出电极通过所述第二焊垫、所述第二重布线层与所述控制电路电连接。
  8. 根据权利要求1所述的集成方法,其特征在于,将所述SAW谐振片的所述表面朝向所述基底,使所述SAW谐振片键合于所述基底且封闭所述第一空腔,以及将所述BAW谐振结构的所述表面朝向所述基底,使所述BAW谐振结构键合于所述基底且封闭所述第二空腔的步骤包括:
    在所述基底的表面、所述第一空腔和所述第二空腔的外周分别形成第一粘合结构和第二粘合结构;
    通过所述第一粘合结构将所述SAW谐振片粘结于所述基底;
    通过所述第二粘合结构将所述BAW谐振结构粘结于所述基底。
  9. 根据权利要求8所述的集成方法,其特征在于,所述第一粘合结构和/或第二粘合结构包括干膜。
  10. 根据权利要求9所述的集成方法,其特征在于,通过曝光显影在所述干膜中形成所述第一空腔和/或第二空腔。
  11. 根据权利要求8所述的集成方法,其特征在于,通过丝网印刷图案化的粘结层形成所述第一粘合结构和第二粘合结构。
  12. 根据权利要求1所述的集成方法,其特征在于,还包括:
    在所述基底的背面形成第三重布线层,与所述第一输入电极、所述第一输出电极、所述第二输入电极、所述第二输出电极、所述控制电路电连接。
  13. 根据权利要求12所述的集成方法,其特征在于,所述第三重布线层包括I/O焊垫。
  14. 根据权利要求1所述的集成方法,其特征在于,在键合所述SAW谐振片和BAW谐振结构之后,还包括:
    形成封装层,所述封装层覆盖所述基底、所述SAW谐振片和所述BAW谐振结构。
  15. 根据权利要求14所述的集成方法,其特征在于,还包括:
    在所述封装层上形成第四重布线层,与所述第一输入电极、第二输入电极、第一输出电极、第二输出电极、控制电路电连接。
  16. 根据权利要求1所述的集成方法,其特征在于,所述第一输入电极、第一输出电极、第二输入电极、第二输出电极均包括焊垫。
  17. 一种控制电路与声波滤波器的集成结构,其特征在于,包括:
    基底,所述基底形成有控制电路,所述基底上形成有第一空腔和第二空腔;
    SAW谐振片和BAW谐振结构,所述SAW谐振片的表面设有第一输入电极、第一输出电极,所述SAW谐振片的所述表面朝向所述基底而键合于所述基底且封闭所述第一空腔,所述BAW谐振结构的表面设有第二输入电极、第二输出电极,所述BAW谐振结构包括第三空腔,所述BAW谐振结构的所述表面朝向所述基底而键合于所述基底且封闭所述第二空腔;
    所述控制电路与所述第一输入电极、第一输出电极、第二输入电极、第二输出电极电连接。
  18. 根据权利要求17所述的集成结构,其特征在于,所述基底包括衬底及形成在所述衬底上的第一介质层;所述第一空腔和第二空腔形成于所述第一介质层内;
    或者,所述基底与所述SAW谐振片通过第一粘合结构键合,所述第一空腔形成于所述第一粘合结构内;所述基底与所述BAW谐振结构通过第二粘合结构键合,所述第二空腔形成于所述第二粘合结构内。
  19. 根据权利要求18所述的集成结构,其特征在于,所述第一粘合结构和/或第二粘合结构为干膜。
  20. 根据权利要求18所述的集成结构,其特征在于,所述衬底包括SOI衬底、硅衬底、锗衬底、锗化硅衬底、砷化镓衬底之一。
  21. 根据权利要求18所述的集成结构,其特征在于,所述控制电路包括器件结构及与所述器件结构电连接的第一互连结构层,所述第一互连结构层位于所述第一介质层,与所述第一输入电极、所述第一输出电极、所述第二输入电极、所述第二输出电极电连接。
  22. 根据权利要求21所述的集成结构,其特征在于,所述器件结构包括MOS器件。
  23. 根据权利要求21所述的集成结构,其特征在于,所述基底上形成有第一重布线层、第二重布线层、第一焊垫、第二焊垫,所述第一焊垫与所述第一输入电极、第一输出电极电连接,以使所述第一输入电极、第一输出电极通过所述第一焊垫、所述第一重布线层与所述控制电路电连接,所述第二焊垫与所述第二输入电极、第二输出电极电连接,以使所述第二输入电极、第二输出电极通过所述第二焊垫、所述第二重布线层与所述控制电路电连接。
  24. 根据权利要求17所述的集成结构,其特征在于,还包括形成于所述基底的背面的第三重布线层,与所述第一输入电极、所述第一输出电极、所述第二输入电极、所述第二输出电极、所述控制电路电连接。
  25. 根据权利要求24所述的集成结构,其特征在于,所述第三重布线层包括I/O焊垫。
  26. 根据权利要求17所述的集成结构,其特征在于,还包括封装层,所述封装层覆盖所述基底、所述SAW谐振片和所述BAW谐振结构。
  27. 根据权利要求26所述的集成结构,其特征在于,还包括形成于所述封装层上的第四重布线层,与所述第一输入电极、第二输入电极、第一输出电极、第二输出电极、控制电路电连接。
  28. 根据权利要求17所述的集成结构,其特征在于,所述第一输入电极、第一输出电极、第二输入电极、第二输出电极均包括焊垫。
PCT/CN2019/117790 2018-12-26 2019-11-13 控制电路与声波滤波器的集成方法和集成结构 WO2020134665A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/417,932 US20220094337A1 (en) 2018-12-26 2019-11-13 Integration Method and Integration Structure for Control Circuit and Acoustic Wave Filter
JP2021525267A JP2022507088A (ja) 2018-12-26 2019-11-13 制御回路と弾性波フィルタの集積方法及び集積構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811602834.4A CN111371429B (zh) 2018-12-26 2018-12-26 控制电路与声波滤波器的集成方法和集成结构
CN201811602834.4 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020134665A1 true WO2020134665A1 (zh) 2020-07-02

Family

ID=71128305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117790 WO2020134665A1 (zh) 2018-12-26 2019-11-13 控制电路与声波滤波器的集成方法和集成结构

Country Status (4)

Country Link
US (1) US20220094337A1 (zh)
JP (1) JP2022507088A (zh)
CN (1) CN111371429B (zh)
WO (1) WO2020134665A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884483B (zh) * 2022-05-09 2024-01-30 上海芯波电子科技有限公司 一种saw和baw的混合层叠滤波器芯片及其制造工艺
CN115242215B (zh) * 2022-09-19 2023-02-21 常州承芯半导体有限公司 体声波谐振装置及其形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308681A (ja) * 2000-04-21 2001-11-02 Toyo Commun Equip Co Ltd 圧電フィルタ
JP2002330057A (ja) * 2001-04-27 2002-11-15 Oki Electric Ind Co Ltd 弾性表面波分波器
CN103378817A (zh) * 2012-04-13 2013-10-30 太阳诱电株式会社 滤波器装置、滤波器装置的制造方法和双工器
CN105703736A (zh) * 2016-02-25 2016-06-22 锐迪科微电子(上海)有限公司 一种体声波器件及集成结构
CN108370242A (zh) * 2016-01-20 2018-08-03 追踪有限公司 滤波电路

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10163801A (ja) * 1996-11-26 1998-06-19 Matsushita Electric Ind Co Ltd 弾性表面波素子およびその製造方法
FR2789822B1 (fr) * 1999-02-12 2001-06-08 Thomson Csf Dispositif a ondes de surface connecte a une embase avec un adhesif conducteur
US6873529B2 (en) * 2002-02-26 2005-03-29 Kyocera Corporation High frequency module
US7898047B2 (en) * 2003-03-03 2011-03-01 Samsung Electronics Co., Ltd. Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices
KR100631217B1 (ko) * 2005-07-27 2006-10-04 삼성전자주식회사 박막 벌크 음향 공진기 및 표면 음향파 공진기가 집적된인티그레이티드 필터 및 그 제작 방법
US20070057734A1 (en) * 2005-09-09 2007-03-15 Ruby Richard C Oscillatory circuit having two oscillators
KR100719123B1 (ko) * 2006-07-27 2007-05-18 삼성전자주식회사 멀피 밴드 필터모듈 및 그 제조방법
JP5013227B2 (ja) * 2007-04-11 2012-08-29 株式会社村田製作所 圧電薄膜フィルタ
US20100075481A1 (en) * 2008-07-08 2010-03-25 Xiao (Charles) Yang Method and structure of monolithically integrated ic-mems oscillator using ic foundry-compatible processes
FR2951336B1 (fr) * 2009-10-09 2017-02-10 Commissariat A L'energie Atomique Dispositif a ondes acoustiques comprenant un filtre a ondes de surface et un filtre a ondes de volume et procede de fabrication
JP2012217136A (ja) * 2011-03-30 2012-11-08 Nippon Dempa Kogyo Co Ltd 圧電デバイスの製造方法、およびこの方法で製造した圧電デバイス
JP5735099B2 (ja) * 2011-04-01 2015-06-17 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法ならびに携帯電話機
US8910355B2 (en) * 2011-12-12 2014-12-16 International Business Machines Corporation Method of manufacturing a film bulk acoustic resonator with a loading element
CN104609358B (zh) * 2013-11-05 2016-08-31 中芯国际集成电路制造(上海)有限公司 Mems器件及其形成方法
CN105590869A (zh) * 2014-10-24 2016-05-18 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制作方法
CN107181469B (zh) * 2016-03-10 2020-11-17 中芯国际集成电路制造(上海)有限公司 薄膜体声波谐振器、半导体器件及其制造方法
US10985732B2 (en) * 2016-03-11 2021-04-20 Akoustis, Inc. 5.6 GHz Wi-Fi acoustic wave resonator RF filter circuit
CN105897216B (zh) * 2016-04-18 2019-07-05 中国工程物理研究院电子工程研究所 单片集成的体声波双工器及其制造方法
US10333493B2 (en) * 2016-08-25 2019-06-25 General Electric Company Embedded RF filter package structure and method of manufacturing thereof
DE102017107391B3 (de) * 2017-04-06 2018-08-23 Infineon Technologies Ag Verfahren zum Herstellen einer Resonatorstruktur und Resonatorstruktur
WO2019132925A1 (en) * 2017-12-28 2019-07-04 Intel Corporation Rf front end system with co-integrated acoustic wave resonator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308681A (ja) * 2000-04-21 2001-11-02 Toyo Commun Equip Co Ltd 圧電フィルタ
JP2002330057A (ja) * 2001-04-27 2002-11-15 Oki Electric Ind Co Ltd 弾性表面波分波器
CN103378817A (zh) * 2012-04-13 2013-10-30 太阳诱电株式会社 滤波器装置、滤波器装置的制造方法和双工器
CN108370242A (zh) * 2016-01-20 2018-08-03 追踪有限公司 滤波电路
CN105703736A (zh) * 2016-02-25 2016-06-22 锐迪科微电子(上海)有限公司 一种体声波器件及集成结构

Also Published As

Publication number Publication date
CN111371429B (zh) 2022-07-12
CN111371429A (zh) 2020-07-03
US20220094337A1 (en) 2022-03-24
JP2022507088A (ja) 2022-01-18

Similar Documents

Publication Publication Date Title
CN107134986B (zh) 电子器件
US7227429B2 (en) Surface acoustic wave device and method of fabricating the same
TWI239319B (en) Packaging microelectromechanical structures
JP4248180B2 (ja) 導電性ミラーを有するバルク音響波共振器
US7675154B2 (en) RF module with multi-stack structure
JP2005536958A (ja) 気密のカプセル化部材を備えた共振器および素子
JP7134530B2 (ja) バルク音響波共振器のパッケージング方法及びパッケージング構造
WO2021253757A1 (zh) 一种薄膜声波滤波器及其制造方法
JP2021534613A (ja) Baw共振器のパッケージングモジュールおよびパッケージング方法
US20230336157A1 (en) Mems device and fabrication method thereof
WO2020134665A1 (zh) 控制电路与声波滤波器的集成方法和集成结构
JP3913700B2 (ja) 弾性表面波デバイス及びその製造方法
JP6042689B2 (ja) 弾性波デバイス及びその設計方法
JP2000209061A (ja) 弾性表面波素子および弾性表面波装置
JP7426196B2 (ja) 弾性波デバイスおよびその製造方法、フィルタ及びマルチプレクサ
WO2020134666A1 (zh) 控制电路与表面声波滤波器的集成方法和集成结构
WO2020134668A1 (zh) 控制电路与体声波滤波器的集成方法和集成结构
JP4825111B2 (ja) 圧電薄膜デバイスの製造方法
JP4693397B2 (ja) 薄膜バルク音響波共振子およびフィルタならびに通信装置
JP2010141939A (ja) 弾性表面波装置および通信装置
JP2005110017A (ja) 高周波フィルタモジュール及びその製造方法
WO2020228152A1 (zh) 空气隙型半导体器件封装结构及其制作方法
JP5111307B2 (ja) 共振器、フィルタおよびデュプレクサ、ならびに共振器の製造方法
US20050088060A1 (en) Compact electronic component including piezo-electric resonator mounted by face-down bonding with improved reliability
JP2021034746A (ja) 電子デバイスおよびその製造方法、フィルタ並びにマルチプレクサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525267

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901727

Country of ref document: EP

Kind code of ref document: A1