WO2020134242A1 - 锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车 - Google Patents

锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车 Download PDF

Info

Publication number
WO2020134242A1
WO2020134242A1 PCT/CN2019/107753 CN2019107753W WO2020134242A1 WO 2020134242 A1 WO2020134242 A1 WO 2020134242A1 CN 2019107753 W CN2019107753 W CN 2019107753W WO 2020134242 A1 WO2020134242 A1 WO 2020134242A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
ion battery
electrode material
battery
Prior art date
Application number
PCT/CN2019/107753
Other languages
English (en)
French (fr)
Inventor
邵建荣
孙强
秦跃军
Original Assignee
湖南晋烨高科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南晋烨高科股份有限公司 filed Critical 湖南晋烨高科股份有限公司
Priority to US17/293,761 priority Critical patent/US20210408542A1/en
Priority to JP2021522336A priority patent/JP7161045B2/ja
Priority to KR1020217012613A priority patent/KR102620786B1/ko
Priority to EP19906148.2A priority patent/EP3876317A4/en
Publication of WO2020134242A1 publication Critical patent/WO2020134242A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a negative electrode active material of a lithium ion battery, in particular to a negative electrode material of a lithium ion battery, a negative electrode of a lithium ion battery, a lithium ion battery, a battery pack and a battery powered vehicle.
  • Lithium-ion batteries have the advantages of high theoretical specific capacity, long cycle life and high safety, etc., and are the focus of new energy research in recent years.
  • Li + intercalates and deintercalates between the positive electrode and the negative electrode. Therefore, the choice of anode material plays a vital role in the capacity of lithium-ion batteries.
  • lithium ion anode materials mainly choose carbon materials, silicon materials, and metal or alloy materials. Carbon materials are readily available, have high theoretical capacity, and can provide sufficient lithium storage space.
  • commercial lithium ion batteries preferably use carbon materials as The negative electrode of a lithium ion battery.
  • the carbon material of the negative electrode of the lithium ion battery usually selects natural graphite and artificial graphite.
  • Natural graphite has a large specific surface area and a low delithiating potential. It has a large irreversible capacity for the first time, but is prone to side reactions.
  • Artificial graphite usually uses petroleum coke and needle coke as raw materials. The raw material cost is relatively high, and subsequent processes such as coating and modification treatment are required, and the process is complicated.
  • the improvement direction of the anode material for lithium ion batteries mainly improves the sphericity and regularity of graphite particles, and improves the Coulomb efficiency.
  • the carbon materials produced by these methods will have an increase in capacity in the early stages of charging and discharging of lithium-ion batteries, the discharge capacity will decrease accordingly after increasing the rate.
  • the purpose of the present invention is to overcome the problem of poor battery capacity and rate performance existing in the prior art, and to provide a lithium ion battery negative electrode material, a lithium ion battery negative electrode, a lithium ion battery, a battery pack and a battery powered vehicle, the battery negative electrode
  • the material used in the negative electrode of the lithium ion battery can effectively improve the capacity and rate performance of the lithium ion battery.
  • the first aspect of the present invention provides a negative electrode material for a lithium ion battery, wherein the negative electrode material has a half-value width of a peak at 284-290eV measured by XPS of 0.55-7eV; the C/O atomic ratio is ( 65-75): 1, the total peak area, and sp 2 C sp 3 C as a reference, sp 2 C, peak area ratio of sp 3 C is 1: (0.5-5).
  • a second aspect of the present invention provides a method for preparing a negative electrode material for a lithium ion battery, wherein the preparation method includes sequentially crushing, purifying, carbonizing, and graphitizing a carbon source to obtain a negative electrode material.
  • a third aspect of the present invention provides a negative electrode for a lithium ion battery, including the negative electrode material for a lithium ion battery according to the present invention.
  • a fourth aspect of the present invention provides a lithium ion battery including the negative electrode, positive electrode and electrolyte of the lithium ion battery described in the present invention, the positive electrode and negative electrode are separated by a separator, and the positive electrode, negative electrode and separator are infiltrated in the electrolyte.
  • a fifth aspect of the present invention provides a battery pack, which is composed of one or more lithium-ion batteries according to the present invention connected in series and/or in parallel.
  • a sixth aspect of the present invention provides a battery-powered vehicle, including the battery pack of the present invention.
  • the present invention is to obtain a battery having a negative electrode material while the structure 2 3 C and C sp sp, measured by XPS, and sp 2 C, sp 3 C peak area ratio 1: (0.5-5) Within the range of, the C/O atomic ratio is (65-75): 1.
  • Using the negative electrode material with the above structure for the negative electrode of a lithium ion battery can provide a larger lithium storage space, and form a stable SEI film, improve the stability of the negative electrode of the battery during cycling, and improve the rate performance of the lithium ion battery.
  • Example 1 is a C1s spectrum of XPS detection of the anode material in Example 1;
  • FIG. 2 is a graph of thermal weight loss in thermogravimetric analysis of the anode material in Example 1.
  • the first aspect of the present invention provides a negative electrode material for a lithium ion battery, wherein the negative electrode material has a half-value width of a peak at 284-290 eV measured by XPS of 0.55-7 eV; and the C/O atomic ratio is (65-75): 1, the sum of C and sp 3 C sp 2 peak area as a reference, C sp 2, peak area ratio of sp 3 C is 1: (0.5-5).
  • the carbon-carbon bond in the negative electrode material of the present invention mainly exists in the form of sp 2 and sp 3.
  • the spectral peak area ratio of sp 2 C and sp 3 C is 1: (0.5-5), and the C/O atomic ratio is (65-75): 1
  • the prepared negative electrode material has a large lithium storage space, It is convenient for the repeated insertion/extraction of lithium ions and reduces the volume change of the negative electrode material caused by the insertion/extraction of lithium ions. Using it for lithium ion batteries can improve the cycle stability and rate performance of lithium ion batteries.
  • the positions of the sp 2 C and sp 3 C peaks tested by XPS are mainly around 285 eV, and the position of the CO peak is mainly around 286 eV.
  • the negative electrode material has a C/O atomic ratio of (65 -70): 1, sp 2 C sp 3 C spectrum and the peak area of the reference spectrum, spectrum sp 2 C, sp 3 C spectrum of the peak area ratio of 1: (0.5-2), more preferably 1] 0.7-1).
  • the fixed carbon content/surface carbon content ratio of the negative electrode material is 0.9-1.2, preferably 1.0-1.1, and the fixed carbon content is the total carbon measured by thermogravimetric analysis Amount, surface carbon content is the amount of surface carbon measured by XPS.
  • the fixed carbon content is the total carbon content measured by thermogravimetric analysis after the ash is removed from the anode material
  • the surface carbon content is the carbon atom content of the anode material measured by XPS.
  • the specific surface area of the negative electrode material is 0.6-1.3 m 2 /g, further preferably 0.6-1.1 m 2 /g.
  • the interlayer distance d(002) measured by X-ray diffraction is 0.336 nm or less, and the degree of graphitization is 85-93%.
  • the negative electrode structure of the battery with the above characteristics is more stable and has better conductivity, which can effectively improve the rate performance of the lithium ion battery.
  • the particle size distribution of the anode material is D10 of 1-5 ⁇ m, D50 of 12-18 ⁇ m, and D90 of 25-35 ⁇ m;
  • the maximum particle size of the negative electrode material is 39 ⁇ m.
  • the tap density of the negative electrode material is 0.9-1.2 g/cm 3 .
  • the negative electrode material prepared by the present invention not only has a good degree of graphitization, but also has a sp 3 hybrid structure, which can provide sufficient lithium storage space, and its wettability with the electrolyte Preferably, when it is used in a lithium ion battery, it can effectively improve the cycle stability and rate performance of the lithium ion battery.
  • a second aspect of the present invention provides a method for preparing a negative electrode material for a lithium ion battery, wherein the preparation method includes sequentially crushing, purifying, carbonizing, and graphitizing a carbon source to obtain a negative electrode material;
  • the purification process includes: using HF and/or HCl to treat the broken carbon source.
  • HF and HCl are used to treat the crushed Carbon source, and the molar ratio of HF to HCl is 1: (1-5), preferably 1: (2-3.5).
  • the carbon source may be at least one of foundry coke, metallurgical coke, coke powder, and coal, preferably coke powder, which has a lower cost, and the negative electrode material prepared after the above steps is used in a lithium ion battery. Can effectively improve the capacity and rate performance of lithium-ion batteries.
  • HF and/or HCl are used to treat the broken carbon source, preferably HF and HCl are used in combination with the above-mentioned ratio to process the carbon source, and the carbon source can be modified to facilitate post-carbonization and graphitization.
  • the prepared negative electrode material has both sp 2 C and sp 3 C structures.
  • the carbonization process includes: heating from room temperature to 1500-1600°C, carbonizing time is 20-90min, and the heating rate is 1-10°C/min.
  • the carbonization process includes three heating stages, the first heating stage is heated to 500-600°C and a constant temperature of 20-60min; the second heating stage is heated to 1000-1200°C and a constant temperature of 20-30min; the third heating stage is heated To 1500-1600 °C, constant temperature 20-30min.
  • the heating rate in the first heating stage is preferably 5-10°C/min
  • the heating rate in the second heating stage is preferably 5-8°C/min
  • the heating rate in the third heating stage is preferably 1-4°C/min.
  • the graphitization process includes: a temperature increase process from room temperature to 2800-3000°C; more preferably, the graphitization process It includes three heating stages: the first heating stage is from room temperature to 1350-1450°C, the heating rate r1 meets 3 ⁇ r1 ⁇ 6°C/min; the second heating stage is to 1980-2020°C, the heating rate r2 meets r2 ⁇ 3 °C/min; the third heating stage is heated to 2800-3000°C, the heating rate r3 satisfies r3 ⁇ 3°C/min; the heat preservation stage is set between the three heating stages.
  • the finally prepared anode material has an appropriate C/O atomic ratio, and the spectral peak area ratio of sp 2 C and sp 3 C in the anode material obtained by XPS detection is 1: (0.5-5).
  • Using the negative electrode material with this structure for a lithium ion battery can effectively improve the cycle stability and rate performance of the lithium ion battery.
  • a third aspect of the present invention provides a negative electrode for a lithium ion battery, including the negative electrode material for a lithium ion battery according to the present invention.
  • the battery anode of the present invention further includes a binder.
  • the binder used for the negative electrode of the lithium ion battery is a binder commonly used in the art, preferably polyvinylidene fluoride, carboxystyrene-butadiene latex, polyvinyl alcohol, sodium carboxymethyl cellulose and polytetrafluoroethylene At least one of them. Further preferably, the weight ratio of the negative electrode material to the binder is 1: (0.01-0.04).
  • the negative electrode material prepared by the invention can effectively reduce the dosage of the binder and improve the stability of the negative electrode material.
  • the battery negative electrode further includes a conductive agent, and the weight ratio of the negative electrode material to the conductive agent is 1: (0.01-0.1).
  • the negative electrode material prepared by the invention is used for a lithium ion battery, can reduce the amount of binder, and can effectively improve the cycle stability and rate performance of the lithium ion battery.
  • a fourth aspect of the present invention provides a lithium ion battery including the negative electrode, positive electrode and electrolyte of the lithium ion battery described in the present invention, the positive electrode and negative electrode are separated by a separator, and the positive electrode, negative electrode and separator are infiltrated in the electrolyte.
  • the positive electrode is selected from lithium, nickel, nickel-cobalt binary metal, lithium-nickel-cobalt-manganese composite metal, nickel-cobalt-aluminum ternary metal , At least one of lithium iron phosphate, lithium manganate and lithium cobaltate.
  • the material of the separator is selected from polyethylene and/or polypropylene.
  • the electrolytic solution is selected from at least one of ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, lithium hexafluorophosphate, and phosphorus pentafluoride.
  • the lithium ion battery produced by the present invention has a high discharge specific capacity, and the capacity maintenance rate at a 0.5C rate is over 97%, the capacity maintenance rate at a 1C rate is over 93%, and the capacity maintenance at a 4C rate The rate is above 76%.
  • a fifth aspect of the present invention provides a battery pack, which is composed of one or more lithium-ion batteries according to the present invention connected in series and/or in parallel.
  • a sixth aspect of the present invention provides a battery-powered vehicle, including the battery pack of the present invention.
  • the lithium ion battery of the present invention is connected in series and/or parallel, that is, it can be assembled to form a battery pack with higher coulombic efficiency and rate performance, and the battery pack can be applied to a battery-powered vehicle.
  • V-sorb 2800P specific surface area and pore size analyzer were used to test the BET specific surface area of the negative electrode material by N 2 adsorption and desorption, and BJH was used to analyze the distribution of pore volume between 2-200 nm.
  • the XRD crystal plane structure of the anode material was tested by X-ray diffractometer, and d(002), Lc and graphitization degree, and different peak intensity ratios were analyzed.
  • d(002) is calculated according to ⁇ /(2sin ⁇ ) formula
  • graphitization degree is calculated according to (0.344-d(002))/(0.344-0.3354) ⁇ 100%.
  • the particle size distribution of the anode material is tested by a particle size distribution analyzer (European and American grams).
  • thermogravimetric curve of the anode material was tested by a thermogravimetric analyzer; the test conditions were: the N 2 flux was 10 mL/min, and the Ar flux was 50 mL/min.
  • the tap density of the negative electrode material is tested by a tap density meter, and the true density is tested by Ultrapycnometer1000.
  • XPS analysis was performed on the surface of the anode material by X-ray photoelectron spectroscopy, and the obtained carbon spectrum curve was peak-divided by XPSPEAK, respectively corresponding to sp 2 C peak, sp 3 C peak and CO peak, and the anode material was analyzed according to the peak area For analysis.
  • room temperature refers to "25°C”.
  • coke powder (purchased from Baotailong New Materials Co., Ltd.) is selected as the carbon source.
  • the crushed carbon source and the pickling solution are stirred and mixed at a volume ratio of 1:1.5, and then the solid obtained by the separation treatment is dried for use.
  • the dried solid is carbonized, and the entire carbonization process is carried out under the protection of nitrogen, and includes three heating stages.
  • the first heating stage is: heating from room temperature to 500°C at a rate of 8°C/min, and constant temperature at 500°C for 60min;
  • the second heating stage is: heating to 1000°C at a rate of 5°C/min, and at 1000°C Constant temperature for 30min;
  • the third heating stage is: heating to 1500°C at a rate of 3°C/min, and keeping the temperature constant at 1500°C for 30min, and then cooling to 300-400°C.
  • the entire graphitization process is carried out under the protection of nitrogen, and includes three heating stages.
  • the XPS detection data of S1 is shown in Figure 1, and the thermal weightlessness curve of S1 is shown in Figure 2.
  • S1 was used as the negative electrode material of the battery, acetylene black as the conductive agent, and polyvinylidene fluoride as the binder.
  • S1 polyvinylidene fluoride and acetylene black weighed 9.5g of the mixture powder of S1 and acetylene black according to a mass ratio of 92:5:3. Then add the prepared N-methyl-2-pyrrolidone solution with a concentration of 5% by weight according to the above ratio, and stir at a speed of 1500r/min for 30min to form a paste.
  • the paste was evenly coated on the copper foil, and baked in a vacuum oven at 100°C for 8 hours to remove the solvent in the paste to prepare a battery negative electrode.
  • the electrode sheet prepared in step 2 is used as the negative electrode of the button cell, and it is punched into a round sheet for use. Lithium metal is also punched into a disc as the positive electrode.
  • the positive electrode and the negative electrode are separated by a polyethylene separator.
  • the electrolyte is 1mol/L lithium hexafluorophosphate ethylene carbonate/methyl ethyl carbonate (the volume ratio of ethylene carbonate to methyl ethyl carbonate is 1 :1)
  • the solution and the battery are assembled and operated in a glove box to prepare the formed button battery.
  • lithium cobalt oxide as the positive electrode, using lithium hexafluorophosphate and ethylene carbonate in a volume ratio of 95:5 as the electrolyte, using lithium hexafluorophosphate and ethylene carbonate in the volume ratio of 95:5 as the electrolyte, and using SC1 as the negative electrode material according to the 18650 lithium battery
  • the standard assembly forms a cylindrical battery. Test the first discharge capacity of the columnar battery under the operating voltage of 2-4.2V, and the discharge capacity measured at 0.5C, 1C and 4C respectively, and detect the capacity retention rate of the discharge capacity at different discharge rates relative to the first discharge capacity .
  • HF and HCl in a molar ratio of 1:3.5 are mixed to form an pickling solution.
  • the crushed carbon source and the pickling solution are stirred and mixed at a volume ratio of 1:1.5, and then the solid obtained by the separation treatment is dried for use.
  • the dried solid is carbonized, and the entire carbonization process is carried out under the protection of nitrogen, and includes three heating stages.
  • the first heating stage is: heating from room temperature to 600°C at a rate of 5°C/min, and constant temperature at 600°C for 60min;
  • the second heating stage is: heating to 1200°C at a rate of 5°C/min, and at 1200°C Constant temperature for 30min;
  • the third heating stage is: heating to 1600°C at a rate of 1°C/min, and holding the temperature at 1600°C for 30min, and then cooling to room temperature.
  • the entire graphitization process is carried out under the protection of nitrogen, and includes three heating stages.
  • HF and HCl in a molar ratio of 1:2 are mixed to form an acid washing solution.
  • the crushed carbon source and the pickling solution are stirred and mixed at a volume ratio of 1:1.5, and then the solid obtained by the separation treatment is dried for use.
  • the dried solid is carbonized, and the entire carbonization process is carried out under the protection of nitrogen, and includes three heating stages.
  • the first heating stage is: heating from room temperature to 500°C at a rate of 10°C/min, and constant temperature at 500°C for 60min;
  • the second heating stage is: heating to 1000°C at a rate of 8°C/min, and at 1000°C Constant temperature for 60min;
  • the third heating stage is: heating to 1500°C at a rate of 4°C/min, and constant temperature at 1500°C for 60min, then naturally cooled to room temperature.
  • the entire graphitization process is carried out under the protection of nitrogen, and includes three heating stages.
  • the dried solid is carbonized, and the entire carbonization process is carried out under the protection of nitrogen.
  • the carbonization process includes: heating from room temperature to 1500°C at a rate of 5°C/min, and constant temperature at 1500°C for 60min, and then naturally cooling to room temperature.
  • the anode material finally produced is named S4.
  • the entire graphitization process is carried out under the protection of nitrogen, and it includes two heating stages.
  • the anode material S5 was obtained.
  • the difference is that when preparing a negative electrode material for a lithium battery, HF and HCl in a molar ratio of 1:5 are mixed to form an acid washing solution.
  • the anode material finally produced is S6.
  • the difference is that when preparing a negative electrode material for a lithium battery, HF and HCl in a molar ratio of 1:10 are mixed to form an acid cleaning solution. Finally, the anode material D1 is prepared.
  • the C/O atomic ratio of the negative electrode materials prepared in the examples of the present invention is between (65-70): 1, and the peak area ratios of sp 2 C spectrum and sp 3 C spectrum are 1: Between (0.5-2), the use of this negative electrode material in a lithium ion battery can effectively improve the cycle performance and rate performance of the battery.
  • Battery performance S6 S7 S8 D1 Discharge specific capacity/mAh/g 354 357 352 350 First Coulomb efficiency/% 88.4 91.7 88.4 87.5 0.5C capacity retention rate/% 97.54 98.2 98.1 96.4 1C capacity retention rate/% 95.25 96.4 96.9 92.51 4C capacity retention rate/% 79.7 88.7 80.5 68.97
  • the lithium ion batteries assembled from the negative electrode materials prepared in the examples of the present invention have higher specific discharge capacity and first-time Coulomb efficiency, and can still maintain better capacity at high rates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

锂离子电池的负极活性材料,具体涉及一种锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车。其中,锂离子电池负极材料通过XPS测得在284-290eV的峰的半值宽度为0.55-7eV;C/O原子比为(65-75)∶1,以sp 2C和sp 3C的谱峰面积总和为基准,sp 2C、sp 3C的峰面积比为1∶(0.5-5)。将具有上述结构的负极材料用于锂离子电池的负极能够提供较大的储锂空间,并且形成稳定的SEI膜,提高电池负极在循环过程中的稳定性,提升锂离子电池的倍率性能。

Description

锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车 技术领域
本发明涉及锂离子电池的负极活性材料,具体涉及一种锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车。
背景技术
锂离子电池具有较高的理论比容量、较长的循环寿命和安全性高等优点,是近年来新能源研究的热点。锂离子电池在充放电的过程中,Li +在正极和负极之间往返嵌入和脱嵌。因此,负极材料的选择对锂离子电池的容量起着至关重要的作用。目前锂离子的负极材料主要选择碳材料、硅材料以及金属或者合金材料,碳材料原料易得、理论容量高,并且可以提供足够的储锂空间,目前商业化的锂离子电池优选采用碳材料作为锂离子电池的负极。
锂离子电池负极的碳材料通常选择天然石墨和人造石墨。天然石墨的比表面积较大,脱锂电位较低,其首次不可逆容量较大,但容易产生副反应。人造石墨通常采用石油焦、针状焦作为原料,原料成本较高,且后续需要经过包覆、改性处理等工序,工艺复杂。
目前,锂离子电池用的负极材料的改进方向主要提高石墨粒子的球形度和规整性,提高库仑效率。采用这些方法制得的碳材料虽然在锂离子电池充放电初期会有容量的提高,但提高倍率后,其放电容量会相应降低。
发明内容
本发明的目的是为了克服现有技术存在的电池容量和倍率性能较差的问题,提供一种锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车,该电池负极材料用于锂离子电池负极能够有效提高锂离子电池的容量和倍率性能。
为了实现上述目的,本发明第一方面提供一种锂离子电池负极材料,其中,该负极材料通过XPS测得在284-290eV的峰的半值宽度为0.55-7eV;C/O原子比为(65-75):1,以sp 2C和sp 3C的谱峰面积总和为基准,sp 2C、sp 3C的谱峰面积比为1:(0.5-5)。
本发明第二方面提供一种锂离子电池负极材料的制备方法,其中,所述制备方法包括将碳源依次经过破碎、提纯、碳化和石墨化制得负极材料。
本发明第三方面提供一种锂离子电池负极,包括本发明所述的锂离子电池负极材料。
本发明第四方面提供一种锂离子电池,包括本发明所述的锂离子电池负极、正极和电解液,正极和负极采用隔膜隔开,正极、负极和隔膜浸润在电解液中。
本发明第五方面提供一种电池组,由一个或者多个本发明所述的锂离子电池串联和/或并联组成。
本发明第六方面提供一种电池动力车,包括本发明所述的电池组。
通过上述技术方案,本发明制得的电池负极材料同时具有sp 2C和sp 3C结构,并且通过XPS测得的sp 2C、sp 3C的谱峰面积比在1:(0.5-5)的范围内,C/O原子比为(65-75):1。将具有上述结构的负极材料用于锂离子电池的负极能够提供较大的储锂空间,并且形成稳定的SEI膜,提高电池负极在循环过程中的稳定性,提升锂离子电池的倍率性能。
附图说明
图1为实施例1中负极材料的XPS检测C1s谱图;
图2为实施例1中负极材料的热重分析中热失重曲线图。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这 些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供一种锂离子电池负极材料,其中,该负极材料通过XPS测得在284-290eV的峰的半值宽度为0.55-7eV;C/O原子比为(65-75):1,以sp 2C和sp 3C的谱峰面积总和为基准,sp 2C、sp 3C的谱峰面积比为1:(0.5-5)。
本发明中的负极材料中碳碳键主要以sp 2和sp 3的形式存在,该负极材料既具有规整的类石墨层的结构,还具有由C-O键、C=O键形成的缺陷位。sp 2C、sp 3C的谱峰面积比为1:(0.5-5),且C/O原子比为(65-75):1时,制得的负极材料具有较大的储锂空间,方便锂离子反复嵌入/脱出,减少由于锂离子嵌入/脱出造成的负极材料体积变化,将其用于锂离子电池,能够提高锂离子电池的循环稳定性和倍率性能。
本发明中经过XPS测试的sp 2C、sp 3C峰的位置主要在285eV左右、C-O峰的位置主要在286eV左右。
为进一步提高负极材料的储锂效果,减少由于锂离子嵌入/脱出造成的负极材料的体积变化,进而提高锂离子电池的倍率性能,优选地,所述负极材料的C/O原子比为(65-70):1,以sp 2C谱和sp 3C谱的峰面积为基准,sp 2C谱、sp 3C谱的峰面积比为1:(0.5-2),更优选为1:(0.7-1)。
为了提高锂离子电池的循环稳定性,优选地,所述负极材料的固定碳含量/表面碳含量比值为0.9-1.2,优选为1.0-1.1,固定碳含量是由热重分析测得的总碳量,表面碳含量是由XPS测得的表面碳量。
如图1和图2所示,固定碳含量是由热重分析测得负极材料去除灰分后的总碳量,表面碳含量是由XPS测得的负极材料碳原子含量。固定碳含量 和表面碳含量在满足上述关系的情况下,使得制得的负极材料sp 2C和sp 3C互相结合,将其用于锂离子电池,能够更有效提高锂离子电池的循环稳定性和倍率性能。
本发明中,为进一步提高锂离子电池的循环稳定性,且降低粘结剂的用量。优选地,所述负极材料的比表面积为0.6-1.3m 2/g,进一步优选为0.6-1.1m 2/g。
为进一步提高电池负极的稳定性,优选地,通过X射线衍射测定的层间距d(002)为0.336nm以下,石墨化度为85-93%。
具有以上特征的电池负极结构更稳定,且具有较好的导电性能,能够有效提高锂离子电池的倍率性能。
为进一步提高负极材料与电解液的浸润性能,提高锂离子电池的循环稳定性,优选地,所述负极材料的粒度分布中D10为1-5μm,D50为12-18μm,D90为25-35μm;负极材料的最大粒径为39μm。
优选地,所述负极材料的振实密度为0.9-1.2g/cm 3
本发明制得的负极材料在满足上述结构特征的情况下,既具有较好的石墨化度,同时还具有sp 3杂化结构,能够提供足够的储锂空间,并且其与电解液的浸润性能较佳,将其用于锂离子电池时,能够有效提高锂离子电池的循环稳定性和倍率性能。
本发明第二方面提供一种锂离子电池负极材料的制备方法,其中,所述制备方法包括将碳源依次经过破碎、提纯、碳化和石墨化制得负极材料;
优选地,所述提纯的过程包括:采用HF和/或HCl处理破碎后的碳源。
本发明中,为了使制得的负极材料兼具sp 2C和sp 3C结构,且便于后续的碳化和石墨化过程,优选地,所述提纯的过程中,采用HF和HCl处理破碎后的碳源,且HF与HCl的摩尔比为1:(1-5),优选为1:(2-3.5)。
本发明中,碳源可以是铸造焦炭、冶金焦炭、焦粉和煤炭中的至少一种, 优选为焦粉,成本更低,且经过上述步骤处理后制得的负极材料用于锂离子电池,能够有效提高锂离子电池的容量和倍率性能。
本发明中的提纯过程,采用HF和/或HCl处理破碎的碳源,优选采用HF和HCl按照上述比例配合处理碳源,能够对碳源进行改性处理,便于经过后期碳化和石墨化后,制得负极材料兼具sp 2C和sp 3C结构。
本发明中,碳源经过提纯处理后,依次在不同温度下分步进行碳化和石墨化,有利于形成同时具备sp 2C和sp 3C的负极材料,将其用于锂离子电池负极,具有更好的循环稳定性和倍率性能。优选地,所述碳化的过程包括:自室温升温至1500-1600℃,碳化时间为20-90min,升温速率为1-10℃/min。进一步优选地,碳化的过程包括三个升温阶段,第一升温阶段升温至500-600℃,恒温20-60min;第二升温阶段升温至1000-1200℃,恒温20-30min;第三升温阶段升温至1500-1600℃,恒温20-30min。且第一升温阶段的升温速率优选为5-10℃/min,第二升温阶段的升温速率优选为5-8℃/min,第三升温阶段的升温速率优选为1-4℃/min。
为提高碳源的石墨化程度,形成的负极材料结构更稳定,优选地,所述石墨化的过程包括:自室温升温至2800-3000℃的升温过程;更优选地,所述石墨化的过程包括三个升温阶段:第一升温阶段自室温升温至1350-1450℃,升温速率r1满足3≤r1≤6℃/min;第二升温阶段升温至1980-2020℃,升温速率r2满足r2<3℃/min;第三升温阶段升温至2800-3000℃,升温速率r3满足r3<3℃/min;在三个升温阶段之间设置保温阶段。
采用上述碳源经过以上方法进行处理,最终制得的负极材料具有合适的C/O原子比,并且经过XPS检测得到的负极材料中的sp 2C、sp 3C的谱峰面积比为1:(0.5-5)。采用具有该结构的负极材料用于锂离子电池,能够有效提高锂离子电池的循环稳定性和倍率性能。
本发明第三方面提供一种锂离子电池负极,包括本发明所述的锂离子电池负极材料。
为进一步提高负极材料的结构稳定性,优选地,本发明的电池负极还包括粘结剂。本发明中,锂离子电池负极所用的粘结剂为本领域常规使用的粘结剂,优选为聚偏氟乙烯、羧基丁苯胶乳、聚乙烯醇、羧甲基纤维素钠和聚四氟乙烯中的至少一种。进一步优选地,所述负极材料和粘结剂的重量比为1:(0.01-0.04)。
采用本发明制得的负极材料,能够有效降低粘结剂的用量,提高负极材料的稳定性。
为进一步提高电池负极的导电性,以及电池负极与电解液的接触效果,优选地,电池负极还包括导电剂,所述负极材料与导电剂的重量比为1:(0.01-0.1)。
采用本发明制得的负极材料用于锂离子电池,能够减少粘结剂的用量,且能够有效提高锂离子电池的循环稳定性和倍率性能。
本发明第四方面提供一种锂离子电池,包括本发明所述的锂离子电池负极、正极和电解液,正极和负极采用隔膜隔开,正极、负极和隔膜浸润在电解液中。
为了使锂离子电池具有高容量和较好的循环稳定性,所述正极选自锂、镍、镍-钴二元金属、锂-镍-钴-锰复合金属、镍-钴-铝三元金属、磷酸铁锂、锰酸锂和钴酸锂中的至少一种。
为了促进锂离子电池中的电解液中的离子在正负极之间快速移动,优选地,隔膜的材质选自聚乙烯和/或聚丙烯。电解液选自碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、碳酸二甲酯、碳酸甲乙酯、六氟磷酸锂和五氟化磷中的至少一种。
本发明制得的锂离子电池的放电比容量较高,且在0.5C倍率下的容量 维持率达97%以上、在1C倍率下的容量维持率在93%以上、在4C倍率下的容量维持率在76%以上。
本发明第五方面提供一种电池组,由一个或者多个本发明所述的锂离子电池串联和/或并联组成。
本发明第六方面提供一种电池动力车,包括本发明所述的电池组。
将本发明的锂离子电池进行串联和/或并联连接,即能够组装形成更高库仑效率和倍率性能的电池组,该电池组可应用于电池动力车中。
以下将通过实施例对本发明进行详细描述。以下实施例和对比例中,
采用V-sorb 2800P比表面积及孔径分析仪通过N 2吸脱附测试负极材料的BET比表面积,并采用BJH分析2-200nm之间孔体积的分布情况。
通过X射线衍射仪测试负极材料的XRD晶面结构,并分析d(002),Lc和石墨化度,和不同的峰强比值。X射线衍射仪型号:达芬奇,生产厂家:德国布鲁克AXS有限公司,规格3kw,扫描范围10度到90度,扫描速度12度每分,测试条件:40kV/40mA。其中,d(002)按照λ/(2sinθ)公式计算;石墨化度按照(0.344-d(002))/(0.344-0.3354)×100%计算。
通过粒度分布仪(欧美克)测试负极材料的粒度分布。
通过热重分析仪测试负极材料的热重曲线;测试条件为:N 2的通入量为10mL/min,Ar的通入量为50mL/min。
通过振实密度仪测试负极材料的振实密度,真密度采用Ultrapycnometer1000进行测试。
通过X射线光电子能谱分析仪对负极材料表面进行XPS分析,采用XPSPEAK对得到的碳谱曲线进行分峰处理,各自对应sp 2C峰、sp 3C峰和C-O峰,根据峰面积对负极材料进行分析。
以下实施例和对比例中的“室温”均指“25℃”。
实施例1
1、制备锂电池负极材料:
本实施例选择焦粉(购自宝泰隆新材料有限公司)作为碳源,碳源烘干至水分低于1重量%后,将其破碎至D50=10-19μm,之后将摩尔比为1:3的HF和HCl混合形成酸洗液。将破碎后的碳源与酸洗液以体积比为1:1.5的比例搅拌混合,之后进行分离处理得到的固体烘干备用。
烘干后的固体进行碳化处理,整个碳化过程在氮气保护下进行,且包括三个升温阶段。第一升温阶段为:自室温起以8℃/min的速率升温至500℃,并在500℃恒温60min;第二升温阶段为:以5℃/min的速率升温至1000℃,并在1000℃恒温30min;第三升温阶段为:以3℃/min的速率升温至1500℃,并在1500℃恒温30min,之后冷却至300-400℃。
对碳化后的固体进行石墨化处理,整个石墨化过程在氮气保护下进行,且包括三个升温阶段。第一升温阶段为:在r1=5℃/min的升温速率下加热至1400℃,并在1400℃下恒温60min;第二升温阶段为:在r2=2℃/min的升温速率下加热至1980℃,并在1980℃下恒温30min;第三升温阶段为:在r3=2℃/min的升温速率下加热至3000℃,并在3000℃下恒温60min。之后降温出炉,得到负极材料S1。S1的XPS检测数据如图1所示,S1的热失重曲线如图2所示。
2、制备锂离子电池负极
将S1作为电池负极材料、乙炔黑作为导电剂、聚偏氟乙烯作为粘结剂。S1、聚偏氟乙烯和乙炔黑按照质量比为92:5:3的比例称取9.5g S1和乙炔黑的混合物粉末。之后按照上述比例加入配制好的浓度为5重量%的N-甲基-2-吡咯烷酮溶液,并在1500r/min的速度下搅拌30min形成膏状物。将膏状物均匀涂布在铜箔上,在真空烘箱中100℃下烘烤8h,去除膏状物中的溶剂,制得电池负极。
3、组装扣式电池
步骤2制得的电极片作为扣式电池的负极,将其冲制成圆片备用。将金属锂也冲制成圆片作为正极,正极和负极采用聚乙烯隔膜分开,电解液为1mol/L的六氟磷酸锂的碳酸乙烯脂/碳酸甲乙脂(碳酸乙烯脂与碳酸甲乙脂的体积比为1:1)溶液,电池组装在手套箱中进行操作,制备形成的扣式电池。
采用LAND CT2001测试扣式电池在0.001-2V vs.Li/Li +的电压范围内,测试其首次放电比容量和首次库伦效率。
4、组装柱状电池
采用钴酸锂做正极,采用体积比为95:5的六氟磷酸锂和碳酸乙烯酯作为电解液,采用体积比为95:5的六氟磷酸锂和碳酸乙烯酯作为电解液,将SC1作为负极材料按照18650锂电池的标准组装形成柱状电池。测试柱状电池在2-4.2V工作电压下的首次放电容量,以及分别以0.5C、1C和4C下测得的放电容量,并检测不同放电倍率下的放电容量相对于首次放电容量的容量保持率。
实施例2
按照实施例1的方法,其区别在于:
制备锂电池负极材料时,将摩尔比为1:3.5的HF和HCl混合形成酸洗液。将破碎后的碳源与酸洗液以体积比为1:1.5的比例搅拌混合,之后进行分离处理得到的固体烘干备用。
烘干后的固体进行碳化处理,整个碳化过程在氮气保护下进行,且包括三个升温阶段。第一升温阶段为:自室温起以5℃/min的速率升温至600℃,并在600℃恒温60min;第二升温阶段为:以5℃/min的速率升温至1200℃,并在1200℃恒温30min;第三升温阶段为:以1℃/min的速率升温至1600℃,并在1600℃恒温30min,之后冷却至室温。
对碳化后的固体进行石墨化处理,整个石墨化过程在氮气保护下进行,且包括三个升温阶段。第一升温阶段为:在r1=3℃/min的升温速率下加热至1400℃,并在1400℃下恒温60min;第二升温阶段为:在r2=2℃/min的升温速率下加热至1980℃,并在1980℃下恒温30min;第三升温阶段为:在r3=1℃/min的升温速率下加热至3000℃,并在3000℃下恒温60min。之后以5℃/min的降温速率降低至2000℃,然后自然冷却至室温得到负极材料S2。
实施例3
按照实施例1的方法,其区别在于:
制备锂电池负极材料时,将摩尔比为1:2的HF和HCl混合形成酸洗液。将破碎后的碳源与酸洗液以体积比为1:1.5的比例搅拌混合,之后进行分离处理得到的固体烘干备用。
烘干后的固体进行碳化处理,整个碳化过程在氮气保护下进行,且包括三个升温阶段。第一升温阶段为:自室温起以10℃/min的速率升温至500℃,并在500℃恒温60min;第二升温阶段为:以8℃/min的速率升温至1000℃,并在1000℃恒温60min;第三升温阶段为:以4℃/min的速率升温至1500℃,并在1500℃恒温60min,之后自然冷却至室温。
对碳化后的固体进行石墨化处理,整个石墨化过程在氮气保护下进行,且包括三个升温阶段。第一升温阶段为:在r1=6℃/min的升温速率下加热至1400℃,并在1400℃下恒温60min;第二升温阶段为:在r2=2℃/min的升温速率下加热至1980℃,并在1980℃下恒温60min;第三升温阶段为:在r3=2℃/min的升温速率下加热至3000℃,并在3000℃下恒温60min。之后以5℃/min的降温速率降低至2000℃,然后自然冷却至室温得到负极材料S3。
实施例4
按照实施例1的方法,其区别在于:
烘干后的固体进行碳化处理,整个碳化过程在氮气保护下进行,碳化过程包括:自室温起以5℃/min的速率升温至1500℃,并在1500℃恒温60min,之后自然冷却至室温。
最后制得的负极材料命名为S4。
实施例5
按照实施例1的方法,其区别在于:
对碳化后的固体进行石墨化处理,整个石墨化过程在氮气保护下进行,且包括两个升温阶段。第一升温阶段为:在r1=5℃/min的升温速率下加热至2000℃,并在2000℃下恒温60min;第二升温阶段为:在r2=2℃/min的升温速率下加热至3000℃,并在3000℃下恒温60min。之后降温出炉得到负极材料S5。
实施例6
按照实施例1的方法,其区别在于:制备锂电池负极材料时,将摩尔比为1:5的HF和HCl混合形成酸洗液。最终制得负极材料为S6。
实施例7
按照实施例1的方法,其区别在于:所述碳源选择煤炭(无烟煤:烟煤:褐煤=3:6:2,粉碎配比制得),碳源烘干至水分低于1重量%后,将其破碎至D50=10-19μm,之后将摩尔比为1:3的HF和HCl混合形成酸洗液。将破碎后的碳源与酸洗液以体积比为1:1.5的比例搅拌混合,之后进行分离处理得到的固体烘干备用。
实施例8
按照实施例1的方法,其区别在于:所述碳源选择煤炭(无烟煤:烟煤:褐煤=3:6:2,粉碎配比制得),碳源烘干至水分低于1重量%后,将其破碎至D50=10-19μm,之后将摩尔比为1:10的HF和HCl混合形成酸洗液。将破碎后的碳源与酸洗液以体积比为1:1.5的比例搅拌混合,之后进行分离处理得到的固体烘干备用。
对比例1
按照实施例1的方法,其区别在于:制备锂电池负极材料时,将摩尔比为1:10的HF和HCl混合形成酸洗液。最终制得负极材料D1。
测试例
以上各实施例和对比例制得的负极材料的性能测试结果如表1所示,由以上各实施例和对比例制得的负极材料组装形成锂离子电池的性能测试结果如表2所示。
表1
Figure PCTCN2019107753-appb-000001
Figure PCTCN2019107753-appb-000002
表1(续)
Figure PCTCN2019107753-appb-000003
通过表1的结果可以看出,本发明各实施例制得的负极材料的C/O原子比在(65-70):1之间,sp 2C谱、sp 3C谱的峰面积比在1:(0.5-2)之间,将该负极材料用于锂离子电池能够有效提高电池的循环性能和倍率性能。
表2
电池性能 S1 S2 S3 S4 S5
放电比容量/mAh/g 358 357 365 365 362
首次库伦效率/% 92.5 92.7 91.8 90 89.5
0.5C容量保持率/% 99.1 99 98.5 98.2 98
1C容量保持率/% 98.85 98.2 98.1 97.47 97.8
4C容量保持率/% 90.67 90.73 88.9 89.8 88.5
表2(续)
电池性能 S6 S7 S8 D1
放电比容量/mAh/g 354 357 352 350
首次库伦效率/% 88.4 91.7 88.4 87.5
0.5C容量保持率/% 97.54 98.2 98.1 96.4
1C容量保持率/% 95.25 96.4 96.9 92.51
4C容量保持率/% 79.7 88.7 80.5 68.97
通过表2的结果可以看出,本发明各实施例制得的负极材料组装形成的锂离子电池具有较高的放电比容量和首次库伦效率,并且在高倍率下依然能够保持较好的容量。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (15)

  1. 一种锂离子电池负极材料,其中,该负极材料通过XPS测得在284-290eV的峰的半值宽度为0.55-7eV;C/O原子比为(65-75):1,以sp 2C和sp 3C的谱峰面积总和为基准,sp 2C、sp 3C的峰面积比为1:(0.5-5)。
  2. 根据权利要求1所述的锂离子电池负极材料,其中,所述负极材料的C/O原子比为(65-70):1,以sp 2C谱和sp 3C谱的峰面积为基准,sp 2C谱、sp 3C谱的峰面积比为1:(0.5-2)。
  3. 根据权利要求1或2所述的锂离子电池负极材料,其中,所述负极材料的固定碳含量/表面碳含量比值为0.9-1.2,固定碳含量是由热重分析测得的总碳量,表面碳含量是由XPS测得的表面碳量。
  4. 根据权利要求1-3中任意一项所述的锂离子电池负极材料,其中,所述负极材料的比表面积为0.6-1.3m 2/g,优选为0.6-1.1m 2/g。
  5. 根据权利要求1-4中任意一项所述的锂离子电池负极材料,其中,所述负极材料通过X射线衍射测定的层间距d(002)为0.336nm以下,石墨化度为85-93%。
  6. 根据权利要求1-5中任意一项所述的锂离子电池负极材料,其中,所述负极材料的粒度分布中D10为1-5μm,D50为12-18μm,D90为25-35μm;负极材料的最大粒径为39μm。
  7. 根据权利要求1-6中任意一项所述的锂离子电池负极材料,其中, 所述负极材料的振实密度为0.9-1.2g/cm 3
  8. 一种权利要求1-7中任意一项所述的锂离子电池负极材料的制备方法,其中,所述制备方法包括将碳源依次经过破碎、提纯、碳化和石墨化制得负极材料;
    优选地,所述提纯的过程包括:采用HF和/或HCl处理破碎后的碳源。
  9. 根据权利要求8所述的制备方法,其中,所述提纯的过程中,采用HF和HCl处理破碎后的碳源,且HF与HCl的摩尔比为1:(1-5),优选为1:(2-3.5)。
  10. 根据权利要求8所述的制备方法,其中,所述碳化的过程包括:自室温升温至1500-1600℃,碳化时间为20-90min,升温速率为1-10℃/min;
    优选地,碳化的过程包括三个升温阶段,第一升温阶段升温至500-600℃,恒温20-60min;第二升温阶段升温至1000-1200℃,恒温20-30min;第三升温阶段升温至1500-1600℃,恒温20-30min。
  11. 根据权利要求8-10中任意一项所述的制备方法,其中,所述石墨化的过程包括:自室温升温至2800-3000℃的升温过程;
    优选地,所述石墨化的过程包括三个升温阶段:第一升温阶段自室温升温至1350-1450℃,升温速率r1满足3≤r1≤6℃/min;第二升温阶段升温至1980-2020℃,升温速率r2满足r2<3℃/min;第三升温阶段升温至2800-3000℃,升温速率r3满足r3<3℃/min;在三个升温阶段之间设置保温阶段。
  12. 一种锂离子电池负极,包括权利要求1-7中任意一项所述的锂离子 电池负极材料;
    优选地,负极还包括粘结剂,所述负极材料和粘结剂的重量比为1:(0.04-0.09);
    优选地,负极还包括导电剂,所述负极材料与导电剂的重量比为1:(0.01-0.1)。
  13. 一种锂离子电池,包括权利要求12所述的锂离子电池负极、正极和电解液,正极和负极采用隔膜隔开,正极、负极和隔膜浸润在电解液中。
  14. 一种电池组,由一个或者多个权利要求13所述的锂离子电池串联和/或并联组成。
  15. 一种电池动力车,包括权利要求14所述的电池组。
PCT/CN2019/107753 2018-12-29 2019-09-25 锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车 WO2020134242A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/293,761 US20210408542A1 (en) 2018-12-29 2019-09-25 Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, lithium ion battery, battery pack and battery powered vehicle
JP2021522336A JP7161045B2 (ja) 2018-12-29 2019-09-25 リチウムイオン電池負極材料およびその製造方法
KR1020217012613A KR102620786B1 (ko) 2018-12-29 2019-09-25 리튬 이온 배터리 음극 재료, 리튬 이온 배터리 음극, 리튬 이온 배터리, 배터리 팩 및 배터리 동력차
EP19906148.2A EP3876317A4 (en) 2018-12-29 2019-09-25 LITHIUM-ION BATTERY NEGATIVE ELECTRODE MATERIAL, LITHIUM-ION BATTERY NEGATIVE ELECTRODE, LITHIUM-ION BATTERY, BATTERY PACK AND BATTERY-POWERED VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811643308.2A CN109888284B (zh) 2018-12-29 2018-12-29 锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车
CN201811643308.2 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020134242A1 true WO2020134242A1 (zh) 2020-07-02

Family

ID=66925414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107753 WO2020134242A1 (zh) 2018-12-29 2019-09-25 锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车

Country Status (6)

Country Link
US (1) US20210408542A1 (zh)
EP (1) EP3876317A4 (zh)
JP (1) JP7161045B2 (zh)
KR (1) KR102620786B1 (zh)
CN (1) CN109888284B (zh)
WO (1) WO2020134242A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888284B (zh) * 2018-12-29 2020-05-01 湖南晋烨高科股份有限公司 锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车
CN112289986B (zh) * 2020-09-28 2022-11-04 合肥国轩高科动力能源有限公司 一种高倍率快充石墨负极材料的制备方法
CN114956037B (zh) * 2022-05-13 2024-06-14 溧阳中科海钠科技有限责任公司 一种钠离子电池负极用碳材料及其制备方法以及钠离子电池负极极片和钠离子电池
CN115028156A (zh) * 2022-05-30 2022-09-09 山西水木新碳材科技有限公司 一种机械化学法制备氮掺杂无烟煤基碳材料的方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138508A (ja) * 2002-10-17 2004-05-13 Fuji Electric Holdings Co Ltd カーボン膜中の状態分析方法
CN101728449A (zh) * 2008-10-31 2010-06-09 宋健民 类钻碳电子装置及其制造方法
CN101924209A (zh) * 2009-06-16 2010-12-22 上海宝钢化工有限公司 一种锂离子电池负极材料及其制备方法
JP2011258348A (ja) * 2010-06-07 2011-12-22 Toyota Central R&D Labs Inc リチウム二次電池用負極、リチウム二次電池及びリチウム二次電池用負極の製造方法
CN104039697A (zh) * 2012-06-29 2014-09-10 昭和电工株式会社 碳材料、电池电极用碳材料以及电池
CN105408248A (zh) * 2013-07-29 2016-03-16 昭和电工株式会社 碳材料、电池电极用材料以及电池
CN109888284A (zh) * 2018-12-29 2019-06-14 湖南晋烨高科股份有限公司 锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531274B2 (ja) * 1995-04-20 2004-05-24 三菱化学株式会社 非水系二次電池
WO2004100291A1 (ja) * 2003-05-09 2004-11-18 Sony Corporation 負極材料およびその製造方法並びに電池
JP2005097010A (ja) * 2003-09-22 2005-04-14 Showa Denko Kk 炭素材料、その製造方法及び用途
CN100464446C (zh) * 2004-06-30 2009-02-25 三菱化学株式会社 锂二次电池用负极材料及其制备方法和使用该材料的锂二次电池用负极和锂二次电池
CN1326267C (zh) * 2005-05-27 2007-07-11 深圳市贝特瑞电子材料有限公司 锂离子电池复合碳负极材料及其制备方法
CN103190018B (zh) * 2010-09-24 2017-02-08 日立化成株式会社 锂离子电池、以及使用该电池的电池模块
WO2012098970A1 (ja) * 2011-01-17 2012-07-26 昭栄化学工業株式会社 リチウムイオン二次電池用の正極材料及びその製造方法
US8865351B2 (en) * 2011-03-14 2014-10-21 Ut-Battelle, Llc Carbon composition with hierarchical porosity, and methods of preparation
JP2012216545A (ja) * 2011-03-30 2012-11-08 Mitsubishi Chemicals Corp 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
WO2012133700A1 (ja) * 2011-03-30 2012-10-04 三菱化学株式会社 非水系二次電池用炭素材、及び負極、並びに、非水系二次電池
JP5754686B2 (ja) * 2011-05-11 2015-07-29 石福金属興業株式会社 高活性な燃料電池用カソード白金触媒
US20150280210A1 (en) * 2012-10-12 2015-10-01 Nissan Motor Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary cell, method for producing positive electrode active material for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
CN103066243B (zh) * 2012-12-06 2015-05-13 中南大学 一种锂离子动力电池用煤焦粉基负极材料及其制备方法
DE112013006722B4 (de) * 2013-02-22 2020-10-15 Kabushiki Kaisha Toyota Jidoshokki Negativelektrodenaktivmaterial, Herstellungsverfahren für selbiges und elektrischer Speicherapparat
CN105050952A (zh) * 2013-03-26 2015-11-11 三菱化学株式会社 碳材料、使用该碳材料的非水系二次电池
KR101568022B1 (ko) * 2013-12-24 2015-11-11 주식회사 포스코 리튬 이차 전지용 인조흑연 음극재의 제조 방법 및 이로부터 제조된 리튬 이차 전지용 인조흑연 음극재
JP6906891B2 (ja) * 2015-09-02 2021-07-21 三菱ケミカル株式会社 非水系二次電池用炭素材、及び、リチウムイオン二次電池
CN107112536B (zh) * 2015-01-16 2021-11-16 三菱化学株式会社 碳材料及使用了碳材料的非水系二次电池
JP2016152223A (ja) * 2015-02-19 2016-08-22 株式会社クレハ 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極ならびに非水電解質二次電池
EP3333945B1 (en) * 2015-08-05 2024-05-22 Kuraray Co., Ltd. Method of charging nonaqueous electrolyte secondary battery
CN106672960A (zh) * 2016-12-23 2017-05-17 巴中意科碳素股份有限公司 一种高密度石墨材料及其生产工艺
CN107814383B (zh) * 2017-09-28 2020-01-14 广东东岛新能源股份有限公司 一种锂离子电池用改性微晶石墨负极材料及其制备方法和用途
CN107799770A (zh) * 2017-10-31 2018-03-13 湖南国盛石墨科技有限公司 一种用于锂电池负极材料的微晶石墨及其制备方法
CN107732152A (zh) * 2017-10-31 2018-02-23 湖南国盛石墨科技有限公司 一种微晶石墨负极电极片及其扣式锂电池制备方法
WO2020073803A1 (zh) * 2018-10-10 2020-04-16 湖南晋烨高科股份有限公司 锂离子电池负极活性材料、锂离子电池负极、锂离子电池、电池组及电池动力车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138508A (ja) * 2002-10-17 2004-05-13 Fuji Electric Holdings Co Ltd カーボン膜中の状態分析方法
CN101728449A (zh) * 2008-10-31 2010-06-09 宋健民 类钻碳电子装置及其制造方法
CN101924209A (zh) * 2009-06-16 2010-12-22 上海宝钢化工有限公司 一种锂离子电池负极材料及其制备方法
JP2011258348A (ja) * 2010-06-07 2011-12-22 Toyota Central R&D Labs Inc リチウム二次電池用負極、リチウム二次電池及びリチウム二次電池用負極の製造方法
CN104039697A (zh) * 2012-06-29 2014-09-10 昭和电工株式会社 碳材料、电池电极用碳材料以及电池
CN105408248A (zh) * 2013-07-29 2016-03-16 昭和电工株式会社 碳材料、电池电极用材料以及电池
CN109888284A (zh) * 2018-12-29 2019-06-14 湖南晋烨高科股份有限公司 锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3876317A4 *

Also Published As

Publication number Publication date
US20210408542A1 (en) 2021-12-30
KR102620786B1 (ko) 2024-01-04
JP2022505691A (ja) 2022-01-14
KR20210062694A (ko) 2021-05-31
EP3876317A1 (en) 2021-09-08
CN109888284B (zh) 2020-05-01
EP3876317A4 (en) 2022-01-26
JP7161045B2 (ja) 2022-10-25
CN109888284A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
WO2020134242A1 (zh) 锂离子电池负极材料、锂离子电池负极、锂离子电池、电池组及电池动力车
JP7209089B2 (ja) リチウム二次電池用負極活物質、その製造方法、およびこれを含むリチウム二次電池
CN109553080B (zh) 锂离子电池负极活性材料、锂离子电池负极、锂离子电池、电池组及电池动力车
CN109553085B (zh) 锂离子电池负极活性材料、锂离子电池负极、锂离子电池、电池组及电池动力车
TW201420497A (zh) 非水電解質二次電池負極用碳質材料及其製造方法
WO2020073803A1 (zh) 锂离子电池负极活性材料、锂离子电池负极、锂离子电池、电池组及电池动力车
WO2016202164A1 (zh) 一种炭/石墨/锡复合负极材料的制备方法
WO2014038494A1 (ja) 非水電解質二次電池負極用材料
CN113380998A (zh) 一种硅碳负极材料及其制备方法和应用
WO2023173772A1 (zh) 硬碳负极材料的制备方法和应用
JP2023505134A (ja) 二次電池、当該二次電池を含む電池モジュール、電池パック及び装置
JP2011060467A (ja) リチウムイオン二次電池用負極材料およびその製造方法
CN109961967A (zh) 锂离子电容器及其制备方法
CN108923027B (zh) 一种有机酸修饰的Si/TiO2/rGO@C锂离子电池负极材料及其制备方法与应用
CN113066988B (zh) 一种负极极片及其制备方法和用途
WO2022057278A1 (zh) 一种快充石墨及电池
CN115663154A (zh) 负极材料、负极片和电池
CN110911643B (zh) 一种基于硅藻土基的锂离子电池负极材料及其制备方法
CN115838170A (zh) 改性石墨、制备方法以及包含该改性石墨的二次电池和用电装置
CN114477162B (zh) 一种石墨负极材料的制备方法及其制品、应用
WO2024077607A1 (zh) 负极活性材料及其制备方法、以及包含其的二次电池及用电装置
CN110120507B (zh) 一种石墨烯改性的异质复合材料及其制备方法和应用
CN109546094B (zh) 一种碳纳米管和三氧化二铁复合碳化钛的锂离子电池负极材料及其制备方法
CN105810908B (zh) 一种Fe2O3|FeF3-2xOx|Bi3+,La3+掺杂氟化铁层结构锂电正极材料及其制备方法
CN117712375A (zh) 石墨负极活性材料、负极极片、二次电池和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522336

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217012613

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019906148

Country of ref document: EP

Effective date: 20210531

NENP Non-entry into the national phase

Ref country code: DE