WO2023173772A1 - 硬碳负极材料的制备方法和应用 - Google Patents
硬碳负极材料的制备方法和应用 Download PDFInfo
- Publication number
- WO2023173772A1 WO2023173772A1 PCT/CN2022/131441 CN2022131441W WO2023173772A1 WO 2023173772 A1 WO2023173772 A1 WO 2023173772A1 CN 2022131441 W CN2022131441 W CN 2022131441W WO 2023173772 A1 WO2023173772 A1 WO 2023173772A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sintering
- hard carbon
- negative electrode
- electrode material
- carbon negative
- Prior art date
Links
- 229910021385 hard carbon Inorganic materials 0.000 title claims abstract description 55
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 238000005245 sintering Methods 0.000 claims abstract description 66
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000002245 particle Substances 0.000 claims abstract description 18
- 229920002472 Starch Polymers 0.000 claims abstract description 17
- 235000019698 starch Nutrition 0.000 claims abstract description 15
- 239000008107 starch Substances 0.000 claims abstract description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 9
- 230000002441 reversible effect Effects 0.000 claims abstract description 6
- 239000001301 oxygen Substances 0.000 claims description 28
- 229910052760 oxygen Inorganic materials 0.000 claims description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 26
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 229910001415 sodium ion Inorganic materials 0.000 claims description 13
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims description 8
- 229920002261 Corn starch Polymers 0.000 claims description 7
- 239000008120 corn starch Substances 0.000 claims description 7
- 239000012298 atmosphere Substances 0.000 claims description 6
- 240000003183 Manihot esculenta Species 0.000 claims description 2
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 claims description 2
- 240000002853 Nelumbo nucifera Species 0.000 claims description 2
- 235000006508 Nelumbo nucifera Nutrition 0.000 claims description 2
- 240000004922 Vigna radiata Species 0.000 claims description 2
- 235000010721 Vigna radiata var radiata Nutrition 0.000 claims description 2
- 235000011469 Vigna radiata var sublobata Nutrition 0.000 claims description 2
- 229920001592 potato starch Polymers 0.000 claims description 2
- 229940100445 wheat starch Drugs 0.000 claims description 2
- 230000001351 cycling effect Effects 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 239000007787 solid Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 13
- 239000011148 porous material Substances 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000010405 anode material Substances 0.000 description 9
- 239000003575 carbonaceous material Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000006258 conductive agent Substances 0.000 description 7
- 238000004132 cross linking Methods 0.000 description 7
- 239000002033 PVDF binder Substances 0.000 description 6
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 6
- 239000006230 acetylene black Substances 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 229910002091 carbon monoxide Inorganic materials 0.000 description 6
- 239000001768 carboxy methyl cellulose Substances 0.000 description 6
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 6
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 5
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 5
- 239000012300 argon atmosphere Substances 0.000 description 5
- 239000011889 copper foil Substances 0.000 description 5
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/318—Preparation characterised by the starting materials
- C01B32/324—Preparation characterised by the starting materials from waste materials, e.g. tyres or spent sulfite pulp liquor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
- C01P2006/13—Surface area thermal stability thereof at high temperatures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention belongs to the technical field of sodium ion battery materials, and specifically relates to the preparation method and application of hard carbon negative electrode materials.
- lithium-ion batteries With the popularity of new energy vehicles, the consumption of lithium-ion batteries has increased sharply. As an important resource in lithium batteries, nickel, cobalt and manganese have gradually become scarce, and their prices have gradually increased. In order to alleviate the pressure of mining resources, sodium-ion batteries, which have a charge and discharge mechanism similar to lithium batteries, have once again attracted people's attention. Sodium salt is found all over the world and can effectively alleviate the pressure caused by insufficient nickel, cobalt and manganese resources.
- graphite a commonly used negative electrode in lithium-ion batteries, is not suitable for sodium-ion batteries because the diameter of sodium ions is larger than the diameter of lithium ions and cannot be deintercalated between graphite layers.
- sodium ions cannot form a stable phase structure with graphite.
- Other anode materials for sodium-ion batteries were also studied at the same time, including graphitized hard carbon, alloys, oxides and organic composites. However, most current anode materials will produce large volume expansion during the sodium ion intercalation process, resulting in irreversible capacity fading.
- the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention proposes a preparation method and application of hard carbon anode materials.
- the hard carbon anode materials produced by the preparation method have a reversible capacity of no less than 350 mAh/g and excellent cycle stability and first Coulombic efficiency.
- a preparation method of hard carbon negative electrode material including the following steps:
- the starch is sintered for the first time, crushed, air and nitrogen are introduced for the second sintering, and porous hard block particles are obtained;
- Air and nitrogen are introduced for the second sintering: the oxygen concentration in the air is about 20.7%. After compression by the air compressor, the oxygen concentration is about 16%.
- the nitrogen and air introduced at the same time here are to dilute the air.
- the oxygen concentration is controlled, so that the oxygen concentration is controllable.
- the oxygen concentration is controlled within a suitable range, on the one hand, it is to improve the safety issues during the sintering process, and on the other hand, it is to introduce oxygen molecules so that the oxygen molecules can fully react. Part of the molecule reacts with carbon to form oxygen-containing functional groups as active sites. At the same time, another part of the oxygen reacts with part of the carbon to generate CO and CO 2 , forming pores on the surface and inside the material. This pore helps to store sodium ions and improves the electrochemistry of the material. performance.
- the starch is at least one of corn starch, mung bean starch, potato starch, wheat starch, tapioca starch or lotus root starch.
- the first sintering atmosphere is a nitrogen atmosphere.
- the temperature of the first sintering is 180-240°C, and the time of the first sintering is 8-48 hours.
- the first sintering is in a nitrogen atmosphere, which breaks the hydrogen bonds between the glucose chains in the starch, generates ether bonds, and undergoes a cross-linking reaction to stabilize its chemical structure, so that the hard solid solid will not undergo pyrolysis and expansion at higher temperatures. .
- the oxygen volume content of the second sintering is 4 to 10%.
- the temperature of the second sintering is 200-250°C, and the time of the second sintering is 3-12 hours.
- the second sintering is under aerobic conditions:
- oxygen molecules fully react with the material to form oxygen-containing functional groups as active sites.
- oxygen reacts with part of the carbon to generate CO and CO 2 , forming pores on the surface and inside the material, which help to store sodium ions. Thereby improving the electrochemical performance of the material.
- the porous hard block particles are broken into particles with a particle size Dv50 of 5 to 6 ⁇ m.
- the temperature of the third sintering is 400-500°C, and the time of the third sintering is 2-4 hours.
- the atmosphere for the third sintering is nitrogen atmosphere.
- the porous hard block solid is aromaticized.
- the temperature of the fourth sintering is 1200-1400°C, and the time of the fourth sintering is 2-4 hours.
- the fourth sintering atmosphere is a nitrogen atmosphere.
- the oxygen-containing functional groups and bound water of the hard carbon material can be removed to further rearrange the structure and reduce the diameter and specific surface area of the pores caused by low-oxygen sintering, because excessive pores and specific surface area will cause The formation of excessive SEI film reduces the first Coulombic efficiency.
- the particle size Dv50 of the hard carbon negative electrode material is 4 to 6 ⁇ m, and the Dv90 is 9 to 12 ⁇ m.
- a hard carbon negative electrode material is prepared by the above method, and the hard carbon negative electrode material has a reversible capacity of not less than 330mAh/g.
- the main component of the hard carbon negative electrode material is C, which is a kind of amorphous carbon and is difficult to graphitize at high temperatures above 2500°C.
- its shape is block-shaped particles with rounded edges.
- the hard carbon negative electrode material has a specific surface area of 0.8 to 1.2 m 2 /g, a Dv50 of 4 to 6 ⁇ m, and a Dv90 of 9 to 12 ⁇ m.
- a sodium ion battery includes the hard carbon negative electrode material prepared by the above preparation method.
- the sodium ion battery further includes sodium carboxymethyl cellulose, a conductive agent, and an adhesive.
- the conductive agent is acetylene black.
- the binder is polyvinylidene fluoride.
- the present invention uses starch as the raw material of the hard carbon negative electrode material. After four sinterings, the hydrogen bonds between the glucose chains in the starch are first broken to generate ether bonds and a cross-linking reaction occurs; and then the third step is carried out in an oxygen-containing atmosphere. During secondary sintering, oxygen molecules fully react with the material to form oxygen-containing functional groups as active sites. At the same time, oxygen reacts with part of the carbon to generate CO and CO 2 , and pores are formed on the surface and inside of the material. This pore helps to store sodium ions, thus Improve the electrochemical performance of the material; continue with the third sintering to aromatize the porous hard solid solid.
- the hard carbon negative electrode material prepared by the present invention has a reversible capacity of no less than 330 mAh/g and a first Coulombic efficiency of no less than 88%.
- the multi-stage sintering method of the present invention prepares high-performance hard carbon materials.
- the synthesis method is simple and easy to operate.
- the raw material is starch, which comes from a wide range of sources. The price is cheaper than commonly used sugar and cellulose raw materials.
- Figure 1 is an SEM image of the hard carbon negative electrode material prepared in Example 1 of the present invention.
- Figure 2 is a pore size distribution diagram of the hard carbon negative electrode material prepared in Example 1 of the present invention.
- Figure 3 is an XRD pattern of the hard carbon negative electrode material prepared in Example 1 of the present invention.
- Figure 4 is a charge-discharge curve of the hard carbon negative electrode material in Example 2 of the present invention.
- the hard carbon negative electrode material of Example 1, sodium carboxymethyl cellulose, acetylene black conductive agent, and PVDF (polyvinylidene fluoride) adhesive were dissolved in deionized water in a mass ratio of 95:2:1:2. Prepare a slurry in water, and then apply it on the copper foil to obtain the pole piece. The pole piece is then dried in a drying oven at 80°C for 8 hours. Finally, the button battery is assembled in a glove box filled with argon atmosphere. The electrolytic The liquid is NaClO 4 dissolved in ethylene carbonate and propylene carbonate with a volume ratio of 1:1, and sodium metal foil is used as the counter electrode and reference electrode.
- Figure 1 is a scanning electron microscope image of the hard carbon negative electrode material of Example 1. It can be seen from the figure that the morphology of the material is block-shaped particles with relatively rounded edges.
- Figure 2 is a pore size distribution diagram of the hard carbon negative electrode material of Example 1. It can be seen from the figure that the pore width in the material is concentrated below 3nm.
- Figure 3 is an XRD pattern of the hard carbon negative electrode material of Example 1. It can be seen from the figure that the half-peak width of the diffraction peak (002) is larger and the angle is smaller, indicating that the material has higher disorder and larger interlayer spacing.
- the hard carbon negative electrode material of Example 2 sodium carboxymethyl cellulose, acetylene black conductive agent, and PVDF (polyvinylidene fluoride) adhesive were dissolved in deionized water in a mass ratio of 95:2:1:2. Prepare a slurry in water, and then apply it on the copper foil to obtain the pole piece. The pole piece is then dried in a drying oven at 80°C for 8 hours. Finally, the button battery is assembled in a glove box filled with argon atmosphere. The electrolytic The liquid is NaClO 4 dissolved in ethylene carbonate and propylene carbonate with a volume ratio of 1:1, and sodium metal foil is used as the counter electrode and reference electrode.
- Figure 4 is a charge-discharge curve of the hard carbon negative electrode material in Example 2 of the present invention. It can be seen from the figure that the charge specific capacity of the material is as high as 336.7mAh/g, and the first efficiency is as high as 88.19%, indicating that the hard carbon anode material prepared in Example 2 has high reversible capacity and first efficiency.
- the hard carbon negative electrode material of Example 3 sodium carboxymethylcellulose, acetylene black conductive agent, and PVDF (polyvinylidene fluoride) adhesive were dissolved in deionized water in a mass ratio of 95:2:1:2. Prepare a slurry in water, and then apply it on the copper foil to obtain the pole piece. The pole piece is then dried in a drying oven at 80°C for 8 hours. Finally, the button battery is assembled in a glove box filled with argon atmosphere. The electrolytic The liquid is NaClO 4 dissolved in ethylene carbonate and propylene carbonate with a volume ratio of 1:1, and sodium metal foil is used as the counter electrode and reference electrode.
- the preparation method of the hard carbon negative electrode material in this comparative example includes the following steps:
- Example 1 Dissolve the hard carbon material, sodium carboxymethyl cellulose, acetylene black conductive agent, and PVDF (polyvinylidene fluoride) adhesive in Example 1 in deionized water in a ratio of 95:2:1:2 to form a slurry. The material is then coated on the copper foil, and the pole piece is placed in a drying oven and dried at 80°C for 8 hours. Finally, the button cell was assembled in a glove box filled with argon atmosphere. The electrolyte used was NaClO 4 dissolved in ethylene carbonate and propylene carbonate with a volume ratio of 1:1. Sodium metal foil served as counter and reference electrodes.
- Example 2 Dissolve the hard carbon material, sodium carboxymethyl cellulose, acetylene black conductive agent, and PVDF (polyvinylidene fluoride) adhesive in Example 2 in deionized water in a ratio of 95:2:1:2 to form a slurry. The material is then coated on the copper foil, and the pole piece is placed in a drying oven and dried at 80°C for 8 hours. Finally, the button cell was assembled in a glove box filled with argon atmosphere. The electrolyte used was NaClO 4 dissolved in ethylene carbonate and propylene carbonate with a volume ratio of 1:1. Sodium metal foil served as counter and reference electrodes.
- Table 1 is a comparison of the specific surface area of the samples prepared in Examples 1, 2, 3 and Comparative Examples 1 and 2. It is found that as the oxygen content increases during the sintering process, the specific surface area of the material increases slightly, while the carbonization process changes the material. The structure is rearranged, the pores are filled, and the specific surface area is reduced. In Comparative Example 1, the specific surface area was too large because the carbon material was not aromatized and carbonized. Comparative Example 2 did not perform aerobic sintering, resulting in a very low specific surface area of the hard carbon material.
- Table 2 is a comparison of the electrochemical properties of the samples prepared in Examples 1, 2, 3 and Comparative Examples 1 and 2. It is found that as the oxygen content increases during the sintering process, the specific capacity and first effect of the prepared materials increase. Increase, but excessive specific surface area leads to a large increase in SEI film, which will lead to a reduction in specific capacity and first effect.
- Example 1 331.2 85.75
- Example 2 336.7 88.19
- Example 3 337.1 86.29 Comparative example 1 269.2 66.12 Comparative example 2 285.3 74.69
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
样品 | 比表面积(m 2/g) |
实施例1 | 0.83 |
实施例2 | 1.02 |
实施例3 | 1.17 |
对比例1 | 18.16 |
对比例2 | 0.15 |
样品 | 充电比容量(mAh g -1) | 库伦效率(%) |
实施例1 | 331.2 | 85.75 |
实施例2 | 336.7 | 88.19 |
实施例3 | 337.1 | 86.29 |
对比例1 | 269.2 | 66.12 |
对比例2 | 285.3 | 74.69 |
Claims (10)
- 一种硬碳负极材料的制备方法,其特征在于,包括以下步骤:(1)将淀粉进行第一次烧结,破碎,通入空气和氮气进行第二次烧结,得到多孔硬块颗粒;(2)将所述多孔硬块颗粒,进行第三次烧结,继续升温,进行第四次烧结,得到硬碳负极材料。
- 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述淀粉为玉米淀粉、绿豆淀粉、马铃薯淀粉、小麦淀粉、木薯淀粉或莲藕淀粉中的至少一种。
- 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述第一次烧结的温度为180~240℃,第一次烧结的时间为8~48h。
- 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述第二次烧结的气氛中的氧体积含量为4~10%。
- 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述第二次烧结的温度为200~250℃,第二次烧结的时间为3~12h。
- 根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述第三次烧结的温度为400~500℃,第三次烧结的时间为2~4h;所述第三次烧结的气氛为氮气气氛。
- 根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述第四次烧结的温度为1200~1400℃,第四次烧结的时间为2~4h。
- 一种硬碳负极材料,其特征在于,是由权利要求1-7任一项所述的制备方法制备得到,且所述硬碳负极材料具有不低于330mAh/g的可逆容量。
- 根据权利要求8所述的硬碳负极材料,其特征在于,所述硬碳负极材料的比表面积为0.8~1.2m 2/g,Dv50为4~6μm,Dv90为9~12μm。
- 一种钠离子电池,其特征在于,包括权利要求8-9任一项所述的硬碳负极材料。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MA62914A MA62914A1 (fr) | 2022-03-15 | 2022-11-11 | Procédé de préparation et d'utilisation d'un matériau carboné d'électrode négative dur |
DE112022000884.9T DE112022000884T5 (de) | 2022-03-15 | 2022-11-11 | Herstellungsverfahren eines hartkohlenstoff-anodenmaterials und dessen verwendung |
GB2313102.2A GB2618729B (en) | 2022-03-15 | 2022-11-11 | Preparation method of hard carbon anode material and use thereof |
HU2400038A HUP2400038A1 (hu) | 2022-03-15 | 2022-11-11 | Eljárás keményszén anódanyag elõállítására, és annak alkalmazása |
US18/284,763 US20240088388A1 (en) | 2022-03-15 | 2022-11-11 | Preparation method of hard carbon anode material and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210253128.3 | 2022-03-15 | ||
CN202210253128.3A CN114702022B (zh) | 2022-03-15 | 2022-03-15 | 硬碳负极材料的制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023173772A1 true WO2023173772A1 (zh) | 2023-09-21 |
Family
ID=82168815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/131441 WO2023173772A1 (zh) | 2022-03-15 | 2022-11-11 | 硬碳负极材料的制备方法和应用 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240088388A1 (zh) |
CN (1) | CN114702022B (zh) |
DE (1) | DE112022000884T5 (zh) |
GB (1) | GB2618729B (zh) |
HU (1) | HUP2400038A1 (zh) |
MA (1) | MA62914A1 (zh) |
WO (1) | WO2023173772A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114702022B (zh) * | 2022-03-15 | 2023-09-12 | 广东邦普循环科技有限公司 | 硬碳负极材料的制备方法和应用 |
CN115159502A (zh) * | 2022-08-18 | 2022-10-11 | 广东邦普循环科技有限公司 | 一种碳质材料、其制备方法和钠离子电池 |
CN118255347B (zh) * | 2024-05-31 | 2024-08-16 | 中国科学技术大学先进技术研究院 | 硬碳材料及其制备方法、电池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1360403A (en) * | 1970-10-30 | 1974-07-17 | Kureha Chemical Ind Co Ltd | Process for producing porous carbonaceous material |
CN101181987A (zh) * | 2007-11-21 | 2008-05-21 | 天津大学 | 淀粉基炭微球的制备方法 |
CN106006603A (zh) * | 2016-05-21 | 2016-10-12 | 中国船舶重工集团公司第七〇二研究所 | 一种锂离子电池硬炭微球负极材料的制备方法 |
JP2017107856A (ja) * | 2015-12-01 | 2017-06-15 | 学校法人東京理科大学 | ナトリウムイオン二次電池用負極活物質、その製造方法およびナトリウムイオン二次電池 |
CN107425181A (zh) * | 2016-05-23 | 2017-12-01 | 宁波杉杉新材料科技有限公司 | 一种氧化锰/淀粉基硬碳复合负极材料的制备方法 |
CN114702022A (zh) * | 2022-03-15 | 2022-07-05 | 广东邦普循环科技有限公司 | 硬碳负极材料的制备方法和应用 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080032196A1 (en) * | 2005-04-13 | 2008-02-07 | Lg Chem, Ltd. | Method of preparing material for lithium secondary battery of high performance |
CN105185997B (zh) * | 2015-10-27 | 2017-02-01 | 中国科学院物理研究所 | 一种钠离子二次电池负极材料及其制备方法和用途 |
CN105633380A (zh) * | 2016-03-04 | 2016-06-01 | 中国科学院新疆理化技术研究所 | 一种锂离子电池淀粉基多孔硬炭负极材料的制备方法 |
CN106299365B (zh) * | 2016-11-04 | 2018-09-25 | 郑州大学 | 一种钠离子电池用生物质硬碳负极材料、制备方法及钠离子电池 |
CN112534000B (zh) * | 2018-06-27 | 2022-08-02 | 伊梅科技 | 表面功能化碳质颗粒、其制备方法和应用 |
CN110719891A (zh) * | 2018-11-23 | 2020-01-21 | 辽宁星空钠电电池有限公司 | 基于生物质的钠离子电池硬碳负极材料及其制备方法和应用 |
CN112758911B (zh) * | 2020-12-31 | 2023-02-10 | 宁波杉杉新材料科技有限公司 | 硬炭材料及其制备方法和应用、锂离子电池 |
CN113184828A (zh) * | 2021-04-27 | 2021-07-30 | 昆山宝创新能源科技有限公司 | 硬碳负极复合材料及其制备方法和应用 |
CN113735095A (zh) * | 2021-08-06 | 2021-12-03 | 深圳市德方纳米科技股份有限公司 | 一种多孔硬碳材料及其制备方法和应用 |
CN113942991B (zh) * | 2021-09-13 | 2023-04-28 | 惠州市贝特瑞新材料科技有限公司 | 硅碳-石墨复合负极材料及其制备方法 |
KR20230106158A (ko) * | 2021-12-31 | 2023-07-12 | 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 | 경질 탄소 및 이의 제조 방법, 이를 포함하는 이차 전지 및 전기 장치 |
CN116940522A (zh) * | 2021-12-31 | 2023-10-24 | 宁德时代新能源科技股份有限公司 | 硬碳及其制备方法、含有其的二次电池及用电装置 |
-
2022
- 2022-03-15 CN CN202210253128.3A patent/CN114702022B/zh active Active
- 2022-11-11 DE DE112022000884.9T patent/DE112022000884T5/de active Pending
- 2022-11-11 GB GB2313102.2A patent/GB2618729B/en active Active
- 2022-11-11 HU HU2400038A patent/HUP2400038A1/hu unknown
- 2022-11-11 WO PCT/CN2022/131441 patent/WO2023173772A1/zh active Application Filing
- 2022-11-11 MA MA62914A patent/MA62914A1/fr unknown
- 2022-11-11 US US18/284,763 patent/US20240088388A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1360403A (en) * | 1970-10-30 | 1974-07-17 | Kureha Chemical Ind Co Ltd | Process for producing porous carbonaceous material |
CN101181987A (zh) * | 2007-11-21 | 2008-05-21 | 天津大学 | 淀粉基炭微球的制备方法 |
JP2017107856A (ja) * | 2015-12-01 | 2017-06-15 | 学校法人東京理科大学 | ナトリウムイオン二次電池用負極活物質、その製造方法およびナトリウムイオン二次電池 |
CN106006603A (zh) * | 2016-05-21 | 2016-10-12 | 中国船舶重工集团公司第七〇二研究所 | 一种锂离子电池硬炭微球负极材料的制备方法 |
CN107425181A (zh) * | 2016-05-23 | 2017-12-01 | 宁波杉杉新材料科技有限公司 | 一种氧化锰/淀粉基硬碳复合负极材料的制备方法 |
CN114702022A (zh) * | 2022-03-15 | 2022-07-05 | 广东邦普循环科技有限公司 | 硬碳负极材料的制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
GB202313102D0 (en) | 2023-10-11 |
CN114702022A (zh) | 2022-07-05 |
CN114702022B (zh) | 2023-09-12 |
US20240088388A1 (en) | 2024-03-14 |
MA62914A1 (fr) | 2024-05-31 |
GB2618729B (en) | 2024-07-24 |
GB2618729A8 (en) | 2023-12-27 |
HUP2400038A1 (hu) | 2024-06-28 |
GB2618729A (en) | 2023-11-15 |
DE112022000884T5 (de) | 2023-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021056981A1 (zh) | 一种锂电池硅基复合负极材料的制备方法 | |
WO2023173772A1 (zh) | 硬碳负极材料的制备方法和应用 | |
CN109360946B (zh) | 多次混合包覆高压实密度硅碳负极材料及其制备方法 | |
CN111326715B (zh) | 一种电池正极材料及其制备方法与应用 | |
CN108155353B (zh) | 一种石墨化碳包覆电极材料及其制备方法和作为储能器件电极材料的应用 | |
Liu et al. | A facile synthesis of core-shell structured ZnO@ C nanosphere and their high performance for lithium ion battery anode | |
CN115064676B (zh) | 一种钠离子电池正极材料及其制备方法与应用 | |
CN112174220B (zh) | 二氧化钛包覆四氧化三钴蜂窝孔纳米线材料及其制备和应用 | |
CN114639809B (zh) | 一种复合硬碳负极材料、制备方法及应用 | |
KR20210124887A (ko) | 사전리튬화된 음극, 그 제조방법 및 사전리튬화된 음극을 포함하는 리튬 이온 전지 및 슈퍼 커패시터 | |
Yang et al. | A surface multiple effect on the ZnO anode induced by graphene for a high energy lithium-ion full battery | |
CN112357956B (zh) | 碳/二氧化钛包覆氧化锡纳米颗粒/碳组装介孔球材料及其制备和应用 | |
CN108767203B (zh) | 一种二氧化钛纳米管-石墨烯-硫复合材料及其制备方法和应用 | |
CN108110235B (zh) | 一种中空镍-氧化镍纳米粒子/多孔碳纳米片层复合材料及其制备方法与应用 | |
CN114551871A (zh) | 一种球形硬碳复合材料及其制备方法和应用 | |
CN113690420B (zh) | 一种氮硫掺杂硅碳复合材料及其制备方法和应用 | |
CN111370656B (zh) | 一种硅碳复合材料及其制备方法和应用 | |
CN115207304A (zh) | 一种石墨负极复合材料及其制备方法和锂离子电池 | |
CN113003559A (zh) | 一种锂离子电池用碳负极材料的制备方法 | |
CN116247188A (zh) | 一种钠离子电池用核壳结构锑@多孔碳负极材料及其制备方法、应用 | |
CN111661877B (zh) | 二硫化钨/碳复合纳米棒的制备方法及其制品、应用 | |
CN111276683B (zh) | 一种富含铝羟基的二氧化硅硫正极及其制备方法 | |
CN114792791A (zh) | 负极材料、其制备方法及应用 | |
Zheng et al. | Yeast derived Fe-doped Hollow Carbon as a Superior Sulfur Host for Li-S Batteries | |
CN111348685A (zh) | 石墨烯基复合材料及其制备方法和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 202313102 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20221111 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112022000884 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: P202390135 Country of ref document: ES |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18284763 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22931784 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: P2400038 Country of ref document: HU |