WO2020129635A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2020129635A1
WO2020129635A1 PCT/JP2019/047341 JP2019047341W WO2020129635A1 WO 2020129635 A1 WO2020129635 A1 WO 2020129635A1 JP 2019047341 W JP2019047341 W JP 2019047341W WO 2020129635 A1 WO2020129635 A1 WO 2020129635A1
Authority
WO
WIPO (PCT)
Prior art keywords
tsv
wiring layer
semiconductor device
substrate
film
Prior art date
Application number
PCT/JP2019/047341
Other languages
English (en)
French (fr)
Inventor
佐々木 直人
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/299,665 priority Critical patent/US20220037272A1/en
Priority to EP19900822.8A priority patent/EP3901999A4/en
Priority to KR1020217017533A priority patent/KR20210104693A/ko
Priority to CN201980073327.2A priority patent/CN112997304A/zh
Publication of WO2020129635A1 publication Critical patent/WO2020129635A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • H01L2224/02311Additive methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0235Shape of the redistribution layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02372Disposition of the redistribution layers connecting to a via connection in the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0237Disposition of the redistribution layers
    • H01L2224/02381Side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05548Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13024Disposition the bump connector being disposed on a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/16235Connecting to a semiconductor or solid-state bodies, i.e. cap-to-chip

Definitions

  • the present disclosure relates to semiconductor devices.
  • a semiconductor device converted into a CSP includes a TSV (Through Silicon Via) that connects a wiring layer inside the package and a connection terminal on a mounting board (for example, see Patent Document 1).
  • a through hole that reaches the wiring layer inside the package from the back surface of the substrate is formed, and the through hole is covered with a seed metal film.
  • a TSV is formed on the surface of the seed metal film by growing an RDL (Re Distribution Layer) film such as a copper film by electroplating, for example.
  • RDL Re Distribution Layer
  • a step break may occur in the seed metal film, the RDL film does not grow normally in the step break part of the seed metal film, and a connection failure occurs in the TSV to cause a semiconductor device failure.
  • the yield may decrease.
  • the present disclosure proposes a semiconductor device capable of suppressing a decrease in yield.
  • a semiconductor device has a substrate and a via.
  • the wiring layer is embedded in the substrate.
  • the via extends from the main surface of the substrate in the depth direction, penetrates the wiring layer, and is connected to the wiring layer at the side peripheral surface.
  • FIG. 3 is an explanatory diagram showing a cross section of a semiconductor device according to an embodiment of the present disclosure. It is an explanatory view showing a section of TSV concerning an embodiment of this indication.
  • FIG. 6 is an explanatory diagram showing a TSV forming process according to an embodiment of the present disclosure.
  • FIG. 6 is an explanatory diagram showing a TSV forming process according to an embodiment of the present disclosure.
  • FIG. 6 is an explanatory diagram showing a TSV forming process according to an embodiment of the present disclosure.
  • FIG. 6 is an explanatory diagram showing a TSV forming process according to an embodiment of the present disclosure.
  • FIG. 6 is an explanatory diagram showing a TSV forming process according to an embodiment of the present disclosure.
  • FIG. 6 is an explanatory diagram showing a TSV forming process according to an embodiment of the present disclosure.
  • FIG. 6 is an explanatory diagram showing a TSV forming process according to an embodiment of the present disclosure.
  • FIG. 6 is an explanatory diagram showing a TSV forming process according to an embodiment of the present disclosure.
  • FIG. 11 is an explanatory diagram showing a cross section of a TSV according to Modification Example 1 of the embodiment of the present disclosure.
  • FIG. 11 is an explanatory diagram showing a cross section of a TSV according to a modified example 2 of the embodiment of the present disclosure.
  • FIG. 11 is an explanatory diagram showing a cross section of a TSV according to Modification 3 of the embodiment of the present disclosure.
  • FIG. 11 is an explanatory diagram showing a cross section of a TSV according to Modification 4 of the embodiment of the present disclosure.
  • FIG. 13 is an explanatory diagram showing a cross section of a TSV according to Modification Example 5 of the embodiment of the present disclosure.
  • FIG. 14 is an explanatory diagram showing a cross section of a TSV according to Modification 6 of the embodiment of the present disclosure.
  • FIG. 16 is an explanatory diagram showing a cross section of a TSV according to Modification 7 of the embodiment of the present disclosure.
  • FIG. 16 is an explanatory diagram showing a cross section of a TSV according to a modified example 8 of the embodiment of the present disclosure.
  • FIG. 14 is an explanatory diagram showing a cross section of a TSV according to Modification 9 of the embodiment of the present disclosure.
  • FIG. 1 is an explanatory diagram showing a cross section of a semiconductor device 1 according to an embodiment of the present disclosure.
  • the semiconductor device 1 according to the embodiment is a CSP (Chip Size Package) stacked image sensor.
  • the semiconductor device according to the embodiment is a TSV (Through Silicon Via). ) May be provided.
  • the semiconductor device 1 is mounted on a mounting board 100 for use.
  • the semiconductor device 1 includes, for example, a logic substrate 10 and a sensor substrate 20 stacked on the logic substrate 10.
  • the logic substrate 10 includes a Si (silicon) substrate 11 and an insulating layer 12 formed on the Si substrate 11 by SiO (silicon oxide) or the like.
  • a multilayer wiring layer 13 is embedded inside the insulating layer 12.
  • a signal processing circuit, a memory, and the like are provided inside the insulating layer 12 in addition to the multilayer wiring layer 13.
  • the sensor substrate 20 includes a Si substrate 21, a glass cover 22 provided on the Si substrate 21, and a support member 23 that supports an outer peripheral portion of the glass cover 22.
  • a backside illumination type CMOS (Complementary Metal Oxide Semiconductor) image sensor 24 is provided inside the Si substrate 21, for example.
  • CMOS Complementary Metal Oxide Semiconductor
  • a microlens 25 is provided on the light receiving surface of each of the plurality of light receiving elements included in the CMOS image sensor 24.
  • the CSP semiconductor device 1 includes a TSV 14 for connecting the multilayer wiring layer 13 provided inside the logic substrate 10 and the connection terminal 101 provided on the mounting substrate 100.
  • the TSV 14 extends from the inner peripheral surface of the through hole reaching the multilayer wiring layer 13 from the lower surface of the logic substrate 10 to a part of the lower surface of the logic substrate 10, for example, an RDL (Re Distribution Layer: copper film).
  • RDL Re Distribution Layer: copper film
  • the portion of the RDL film 3 extending to the lower surface of the logic substrate 10 is connected to the connection terminal 101 via the solder bump 15 and mounted on the mounting substrate 100.
  • the RDL film 3 of the TSV 14 and the connection terminal 101 of the mounting substrate 100 are directly connected to each other via the solder bump 15 without using a bonding wire. Can be minimized.
  • the yield of the semiconductor device 1 is improved by devising the shape of the TSV 14 to suppress the occurrence of connection failure in the TSV 14.
  • a specific structure of the TSV 14 will be described with reference to FIG.
  • FIG. 2 is an explanatory diagram showing a cross section of the TSV 14 according to the embodiment of the present disclosure. Note that, in FIG. 2, among the constituent elements of the semiconductor device 1, a portion in the vicinity of the TSV 14 in the logic substrate 10 is selectively illustrated, and the sensor substrate 20 is not illustrated.
  • FIG. 2 shows the logic board 10 in a state where the logic board 10 shown in FIG. 1 is turned upside down. Therefore, in the following description, the lower surface side of the logic board 10 shown in FIG. 1 is referred to as the upper side, and the upper surface side of the logic board 10 shown in FIG. 1 is referred to as the lower side.
  • the TSV 14 extends from the upper surface of the logic substrate 10 in the depth direction and is the uppermost layer of the first wiring layer M1, the second wiring layer M2, and the third wiring layer M3 in the multilayer wiring layer 13. Through the first wiring layer M1 and is connected to the first wiring layer M1 at the side peripheral surface.
  • the TSV 14 is formed by sequentially forming the seed metal film 31 and the RDL film on the surface of the through hole 30 that reaches the depth of penetrating the first wiring layer M1 from the upper surface of the Si substrate 11.
  • a SiO film 32 is provided in advance between the Si substrate 11 and the seed metal film 31 for insulation. Specific steps of forming the TSV 14 will be described later with reference to FIGS. 3A to 4C.
  • the insulating layer 12 before forming the seed metal film 31 and the RDL film 3, in the step of forming the through hole 30 reaching the depth penetrating the first wiring layer M1 from the upper surface of the logic substrate 10, the insulating layer 12 and It is necessary to etch the first wiring layer M1.
  • RIE Reactive Ion Etching
  • an etching gas mixed with an etching gas suitable for etching the insulating layer 12 and an etching gas suitable for etching the first wiring layer M1 is used.
  • etching proceeds in the depth direction of the logic substrate 10, but does not proceed in the surface direction of the insulating layer 12. Therefore, the diameter of the through hole 30 in the insulating layer 12 does not become larger than the diameter of the through hole 30 in the Si substrate 11.
  • the RDL film 3 is formed on the entire surface of the seed metal film 31 having no break by suppressing the break in the seed metal film 31 formed after the formation of the through hole 30.
  • a general TSV has a depth from the upper surface of the Si substrate 11 to the upper surface of the first wiring layer M1, and is connected to the upper surface of the first wiring layer M1 at the bottom surface.
  • the first wiring layer M1 is used as an etching stopper, and a through hole having a depth reaching from the upper surface of the Si substrate 11 to the upper surface of the first wiring layer M1 is formed by RIE. ..
  • etching gas suitable for etching the insulating layer 12 is used, but an etching gas suitable for etching the first wiring layer M1 is not used. Therefore, if over-etching is performed so that the upper surface of the first wiring layer M1 is completely exposed, the etching in the depth direction stops at the upper surface of the first wiring layer M1, but the surface of the insulating layer 12 is reduced. The etching in the direction continues to proceed.
  • the diameter of the through hole 30 in the insulating layer 12 becomes larger than the diameter of the through hole 30 in the Si substrate 11, and a notch (cut or notch) is formed at the bottom of the through hole 30.
  • a step break occurs in the seed metal film 31 at the notch portion at the bottom of the through hole 30, and the RDL film 3 that covers the entire through hole 30 is formed.
  • a connection failure occurs in the TSV and the yield of semiconductor devices decreases.
  • the RDL film 3 is formed on the entire surface of the seed metal film 31 having no step breakage. Therefore, by suppressing the occurrence of connection failure in the TSV 14, the semiconductor device The yield of 1 can be improved.
  • the TSV 14 has a tapered shape in which the bottom is smoothly continuous from the vertical hole portion of the through hole 30, specifically, a bowl shape.
  • the disconnection of the seed metal film 31 can be prevented more reliably, so that the occurrence of connection failure in the TSV 14 can be suppressed and the yield of the semiconductor device 1 can be improved. ..
  • the joint surface with the first wiring layer M1 is an inclined surface.
  • the TSV 14 has, for example, a bottom portion that is horizontal, completely penetrates the first wiring layer M1, and has a joint surface with the first wiring layer M1 that is vertical, as compared with a shape in which the TSV 14 is formed with the first wiring layer M1. Since the connection area can be increased, the connection resistance can be reduced.
  • TSV forming process Next, a process of forming the TSV 14 according to the embodiment will be described with reference to FIGS. 3A to 4C.
  • a resist 40 is applied to the upper surface of the Si substrate 11, and then the resist 40 is patterned by photolithography to selectively form the resist 40 in the portion where the TSV 14 is formed. To remove.
  • a hole having a diameter of about 50 ⁇ m and having a substantially circular shape in plan view is formed in the resist 40.
  • the through holes 30 are formed in the Si substrate 11 by using the resist 40 as a mask and performing dry etching such as RIE.
  • the resist 40 is removed from the upper surface of the Si substrate 11.
  • CVD Chemical The SiO film 32 is formed by vapor deposition.
  • the SiO film 32 having a thickness of about 5 ⁇ m is formed on the upper surface of the Si substrate 11, and the SiO film 32 having a thickness of about 0.5 ⁇ m is formed on the bottom surface and the side peripheral surface of the through hole 30. It After that, dry etching such as RIE is performed on the entire surface of the SiO film 32.
  • etching In this etching, a fluorine-based etching gas suitable for insulating film etching and a chlorine-based etching gas suitable for metal etching are used. Further, here, etching is performed by mixing a fluorine-based gas or a hydrocarbon-based gas, which functions as a deposition gas for suppressing the progress of the etching in the lateral direction, with the etching gas.
  • the SiO film 32, the insulating layer 12, and the first wiring layer M1 formed at the bottom of the through hole 30 are sequentially etched, and the through hole 30 penetrates the first wiring layer M1. Reach the depth to do.
  • the through hole 30 can be formed into a bowl shape without advancing the etching in the lateral direction as shown by the outline arrow in FIG. 4B.
  • the through hole 30 according to the present embodiment has a bowl shape in which the notch is not formed in the bottom portion and the shape of the bottom portion is smoothly continuous from the vertical hole portion.
  • the deposit film adhering to the surface of the through hole 30 is removed with an organic chemical solution. Then, by sputtering, Ti (titanium), Cu (copper), or Ti (titanium) having a film thickness of 200 nm to 400 nm is formed on the entire bottom surface of the through hole 30, the side surface of the through hole 30, and the upper surface of the SiO film 32.
  • the seed metal film 31 is formed by forming a thin film of Cu (copper).
  • a TSV 14 shown in FIG. 2 is formed by growing a Cu (copper) film having a film thickness of about 5 ⁇ m on the surface of the seed metal film 31 by electroplating to form the RDL film 3.
  • a portion other than the formation position of the RDL film 3 is masked with a resist before performing the electroplating.
  • the resist is removed.
  • the residue of the resist remains inside the notch, which causes cracks in the RDL film 3.
  • the bottom of the through hole 30 is Notch is not formed in As a result, the TSV 14 according to the embodiment can prevent the RDL film 3 from cracking, and thus can prevent contact failure from occurring.
  • the shape of the TSV 14 shown in FIG. 2 is an example of the TSV according to the embodiment.
  • the TSV according to the embodiment can be modified in various ways other than the shape shown in FIG.
  • the shape of the TSV according to the modified example of the embodiment will be described with reference to FIGS. 5A to 8B.
  • FIG. 5A is an explanatory diagram showing a cross section of the TSV according to the first modification of the embodiment.
  • FIG. 5B is an explanatory diagram showing a cross section of a TSV according to Modification 2 of the embodiment.
  • FIG. 6A is an explanatory diagram showing a cross section of a TSV according to Modification 3 of the embodiment.
  • FIG. 6B is an explanatory diagram showing a cross section of a TSV according to Modification 4 of the embodiment.
  • FIG. 6C is an explanatory diagram showing a cross section of a TSV according to Modification Example 5 of the embodiment.
  • FIG. 7A is an explanatory diagram showing a cross section of a TSV according to Modification 6 of the embodiment.
  • FIG. 7B is an explanatory diagram showing a cross section of a TSV according to Modification 7 of the embodiment.
  • FIG. 8A is an explanatory diagram showing a cross section of a TSV according to Modification 8 of the embodiment.
  • FIG. 8B is an explanatory diagram showing a cross section of a TSV according to Modification 9 of the embodiment.
  • the TSV according to the modified example 1 is different from the TSV 14 shown in FIG. 2 only in the shape of the bottom portion, and has a conical shape that tapers toward the deeper position.
  • the conical bottom can be formed at the end of the etching for forming the through hole 30 by adjusting the ratio of the amount of etching gas and the amount of deposition gas.
  • the TSV according to the modified example 1 reaches the depth that penetrates the first wiring layer M1 and is connected to the first wiring layer M1 at the side peripheral surface.
  • the TSV is formed without using the first wiring layer M1 as an etching stopper.
  • the notch is not formed in the bottom, it is possible to improve the yield of the semiconductor device by suppressing the occurrence of the connection failure in the RDL film 3.
  • connection surface with the first wiring layer M1 is an inclined surface
  • the connection area with the first wiring layer M1 should be large like the TSV 14 shown in FIG. Therefore, the connection resistance can be reduced.
  • the TSV according to the second modification is different from the TSV 14 shown in FIG. 2 only in the shape of the bottom, and the bottom has a horizontal plane shape.
  • Such a horizontal bottom can be formed by terminating the etching without changing the amounts of the etching gas and the deposition gas at the end of the etching for forming the through hole 30.
  • the TSV according to the modified example 2 reaches a depth that penetrates the first wiring layer M1 and is connected to the first wiring layer M1 at the side peripheral surface.
  • the TSV is formed without using the first wiring layer M1 as an etching stopper.
  • the TSV according to the modified example 3 is only that the depth in the logic substrate 10 is deeper than the TSV 14 shown in FIG. 2 and reaches the depth penetrating the third wiring layer M3. Is different from the TSV 14 shown in FIG.
  • the TSV according to the modified example 4 has a depth in the logic substrate 10 that is deeper than the TSV of the modified example 1 shown in FIG. 5A and reaches a depth that penetrates the third wiring layer M3. 5A is different from the TSV of Modification 1 shown in FIG. 5A.
  • the TSV according to the modified example 5 has a depth in the logic substrate 10 that is deeper than the TSV of the modified example 2 shown in FIG. 5B and reaches a depth that penetrates the third wiring layer M3. 5B is different from the TSV of Modification 2 shown in FIG. 5B.
  • the first to third wiring layers M1, M2 and M3 can be connected at one time, and similar to the TSV 14 shown in FIG. 2, a poor connection occurs in the RDL film 3. By suppressing this, the yield of semiconductor devices can be improved.
  • the TSVs of Modifications 3 to 5 may have a depth that penetrates the second wiring layer M2. That is, the TSV according to the embodiment is not limited in the number of wiring layers that penetrate as long as the TSV has a depth that penetrates the wiring layers.
  • the TSV according to the embodiment does not necessarily need to penetrate the wiring layer as long as the bottom has a tapered shape.
  • the TSV according to Modification 6 is connected to the upper surface of the first wiring layer M1 at the bottom surface without penetrating the first wiring layer M1.
  • the bottom surface shape of the modified example 6 is a bowl shape similar to the TSV 14 shown in FIG.
  • the through hole 30 is formed by using the first wiring layer M1 as an etching stopper.
  • the bottom of the through hole 30 is shaped like a bowl by adjusting the ratio of the amount of etching gas and the amount of deposition gas. Thereby, it is possible to prevent the notch from being formed at the bottom of the through hole 30.
  • the TSV of Modification 6 can improve the yield of semiconductor devices by suppressing the occurrence of connection failure in the RDL film 3.
  • the TSV according to Modification 7 is connected to the upper surface of the first wiring layer M1 at the tip portion of the conical bottom without penetrating the first wiring layer M1. Similar to the TSV shown in FIG. 7A, this TSV can also improve the yield of the semiconductor device by suppressing the occurrence of connection failure in the RDL film 3.
  • the TSV according to the embodiment is applied to, for example, a semiconductor device in which a wiring layer formed of a metal material such as tungsten is provided at a position shallower than the first wiring layer M1 in the insulating layer 12 of the logic substrate 10. Can also be applied.
  • the TSV according to Modification 8 penetrates a metal wiring layer M0 such as LIC (Local Inter Connect) formed of a metal such as tungsten provided in the shallowest layer of the insulating layer 12. , Are connected to the metal wiring layer M0 on the side peripheral surface.
  • the bottom of the TSV of modification 8 has a bowl shape.
  • the TSV according to the modified example 9 penetrates the metal wiring layer M0 and is connected to the metal wiring layer M0 at the side peripheral surface.
  • the bottom of the TSV of Modification 9 has a conical shape.
  • a substrate in which the wiring layer is embedded A semiconductor device having a via extending from the main surface of the substrate in the depth direction, penetrating the wiring layer, and connected to the wiring layer at a side peripheral surface.
  • the via is The semiconductor device according to (1), wherein the bottom has a tapered shape.
  • the via is The semiconductor device according to (2), wherein the bottom has a bowl shape.
  • the via is The semiconductor device according to (2), wherein the bottom has a conical shape.
  • the via is The semiconductor device according to (2), wherein the bottom has a planar shape.
  • the via is The semiconductor device according to any one of (1) to (5), which penetrates a plurality of the wiring layers to be stacked.
  • the via is The semiconductor device according to any one of (1) to (5), which is connected to a wiring layer formed of a metal material provided in a shallowest layer among the plurality of wiring layers stacked.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本開示に係る半導体装置(1)は、基板(10)と、ビア(14)とを有する。基板(10)は、配線層(13)が埋設される。ビア(14)は、基板(10)の主面から深さ方向へ延伸して配線層(13)を貫通し、側周面で配線層(13)に接続される。

Description

半導体装置
 本開示は、半導体装置に関する。
 CSP(Chip Size Package)化された半導体装置は、パッケージ内部の配線層と実装基板上の接続端子とを接続するTSV(Through Silicon Via)を備える(例えば、特許文献1参照)。
 TSVを形成する場合、一般的には、まず、基板の裏面からパッケージ内部の配線層にまで達する貫通孔を形成し、貫通孔をシードメタル膜によって被覆する。その後、シードメタル膜の表面に、例えば、電界メッキによって銅膜等のRDL(Re Distribution Layer)膜を成長させてTSVを形成する。
特開2009-206253号公報
 しかしながら、上記従来の技術では、シードメタル膜に段切れが発生することがあり、シードメタル膜の段切れ部分にRDL膜が正常に成長せずに、TSVに接続不良が発生して半導体装置の歩留まりが低下することがある。
 そこで、本開示では、歩留まりの低下を抑制することができる半導体装置を提案する。
 本開示によれば、半導体装置が提供される。半導体装置は、基板と、ビアとを有する。基板は、配線層が埋設される。ビアは、前記基板の主面から深さ方向へ延伸して前記配線層を貫通し、側周面で前記配線層に接続される。
本開示の実施形態に係る半導体装置の断面を示す説明図である。 本開示の実施形態に係るTSVの断面を示す説明図である。 本開示の実施形態に係るTSVの形成工程を示す説明図である。 本開示の実施形態に係るTSVの形成工程を示す説明図である。 本開示の実施形態に係るTSVの形成工程を示す説明図である。 本開示の実施形態に係るTSVの形成工程を示す説明図である。 本開示の実施形態に係るTSVの形成工程を示す説明図である。 本開示の実施形態に係るTSVの形成工程を示す説明図である。 本開示の実施形態の変形例1に係るTSVの断面を示す説明図である。 本開示の実施形態の変形例2に係るTSVの断面を示す説明図である。 本開示の実施形態の変形例3に係るTSVの断面を示す説明図である。 本開示の実施形態の変形例4に係るTSVの断面を示す説明図である。 本開示の実施形態の変形例5に係るTSVの断面を示す説明図である。 本開示の実施形態の変形例6に係るTSVの断面を示す説明図である。 本開示の実施形態の変形例7に係るTSVの断面を示す説明図である。 本開示の実施形態の変形例8に係るTSVの断面を示す説明図である。 本開示の実施形態の変形例9に係るTSVの断面を示す説明図である。
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
[半導体装置の構造]
 まず、図1を参照し、本開示に係る半導体装置1の構造について説明する。図1は、本開示の実施形態に係る半導体装置1の断面を示す説明図である。ここでは、実施形態に係る半導体装置1がCSP(Chip Size Package)化された積層型のイメージセンサである場合を例に挙げて説明するが、実施形態に係る半導体装置は、TSV(Through Silicon Via)を備える任意の半導体装置であってもよい。
 図1に示すように、半導体装置1は、実装基板100上に実装されて使用される。半導体装置1は、例えば、ロジック基板10と、ロジック基板10上に積層されるセンサ基板20とを備える。
 ロジック基板10は、Si(シリコン)基板11と、Si基板11上に積層されるSiO(酸化シリコン)等によって形成される絶縁層12とを備える。絶縁層12の内部には、多層配線層13が埋設される。また、ここでは、図示を省略しているが、絶縁層12の内部には、多層配線層13以外に信号処理回路やメモリ等が設けられる。
 センサ基板20は、Si基板21と、Si基板21上に設けられるガラスカバー22と、ガラスカバー22の外周部を支持する支持部材23とを備える。Si基板21の内部には、例えば、裏面照射型のCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ24が設けられる。また、CMOSイメージセンサ24が備える複数の各受光素子の受光面には、マイクロレンズ25が設けられる。
 さらに、CSP化された半導体装置1は、ロジック基板10の内部に設けられた多層配線層13と、実装基板100上に設けられた接続端子101とを接続するためのTSV14を備える。
 TSV14は、ロジック基板10の下面から多層配線層13にまで達する貫通孔の内周面からロジック基板10の下面の一部まで延在するように、例えば、銅膜等のRDL(Re Distribution Layer:再配線)膜3が成膜されて形成された貫通電極の一種である。
 そして、半導体装置1は、RDL膜3のロジック基板10における下面に延在する部分が、はんだバンプ15を介して接続端子101に接続されて実装基板100上に実装される。
 このように、CSP化された半導体装置1は、ボンディングワイヤを使用することなく、はんだバンプ15を介してTSV14のRDL膜3と実装基板100の接続端子101とが直接接続されるので、実装面積を最小限に抑えることができる。
 本実施形態では、かかるTSV14の形状を工夫することで、TSV14における接続不良の発生を抑制することにより、半導体装置1の歩留まりを向上させた。次に、図2を参照し、かかるTSV14の具体的な構造について説明する。
[TSVの構造]
 図2は、本開示の実施形態に係るTSV14の断面を示す説明図である。なお、図2には、半導体装置1の構成要素のうち、ロジック基板10におけるTSV14近傍の部分を選択的に図示しており、センサ基板20については、図示を省略している。
 また、図2には、図1に示すロジック基板10の上下を反転させた状態のロジック基板10を示している。このため、以下では、図1に示したロジック基板10における下面側を上、図1に示したロジック基板10における上面側を下と称して説明する。
 図2に示すように、TSV14は、ロジック基板10の上面から深さ方向へ延伸して多層配線層13における第1配線層M1、第2配線層M2、および第3配線層M3のうち最上層の第1配線層M1を貫通し、側周面で第1配線層M1に接続される。
 かかるTSV14は、Si基板11の上面から第1配線層M1を貫通する深さにまで達する貫通孔30の表面にシードメタル膜31と、RDL膜を順次成膜することによって形成される。
 なお、Si基板11とシードメタル膜31との間には、絶縁のため予めSiO膜32が設けられる。かかるTSV14の具体的な形成工程については、図3A~図4Cを参照して後述する。
 ここで、シードメタル膜31およびRDL膜3を成膜する前に、ロジック基板10の上面から第1配線層M1を貫通する深さにまで達する貫通孔30を形成する工程では、絶縁層12および第1配線層M1をエッチングする必要がある。
 このため、貫通孔30を形成する工程では、絶縁層12のエッチングに適したエッチングガスと、第1配線層M1のエッチングに適したエッチングガスとを混合したエッチングガスを使用したRIE(Reactive Ion Etching)によって貫通孔30を形成する。
 かかるRIEでは、エッチングはロジック基板10の深さ方向へ進行するが、絶縁層12の面方向へは進行しない。したがって、絶縁層12における貫通孔30の径がSi基板11における貫通孔30の径よりも大きくなることがない。
 これにより、貫通孔30の形成後に成膜されるシードメタル膜31に段切れが発生することを抑制することで、段切れのないシードメタル膜31の表面全体にRDL膜3を成膜することができる。
 これに対して、一般的なTSVは、Si基板11の上面から第1配線層M1の上面に達する深さまでしかなく、底面で第1配線層M1の上面に接続される。かかる一般的なTSVを形成する場合には、第1配線層M1がエッチングストッパとして使用され、Si基板11の上面から第1配線層M1の上面に達する深さの貫通孔がRIEによって形成される。
 このときのRIEでは、絶縁層12のエッチングに適したエッチングガスが使用されるが、第1配線層M1のエッチングに適したエッチングガスは使用されない。このため、第1配線層M1の上面を完全に露出させるようにオーバーエッチングを行うと、深さ方向へのエッチングは、第1配線層M1の上面で進行が停止するが、絶縁層12における面方向へのエッチングは、進行が継続する。
 その結果、絶縁層12における貫通孔30の径がSi基板11における貫通孔30の径よりも大きくなり、貫通孔30の底部にノッチ(切り込みや切欠き)ができる。かかる貫通孔30の表面にシードメタル膜31を成膜した場合、貫通孔30底部のノッチ部分でシードメタル膜31に段切れが発生し、貫通孔30の全体を被覆するRDL膜3を形成することができず、結果としてTSVに接続不良が発生して半導体装置の歩留まりが低下する。
 一方、実施形態に係るTSV14は、上記したように、段切れのないシードメタル膜31の表面全体にRDL膜3が成膜されるので、TSV14における接続不良の発生を抑制することにより、半導体装置1の歩留まりを向上させることができる。
 また、図2に示すように、実施形態に係るTSV14は、底部が貫通孔30の縦孔部分から滑らかに連続する先細り形状、具体的には、椀形状となっている。これにより、本実施形態によれば、より確実にシードメタル膜31の段切れを防止することができるので、TSV14における接続不良の発生を抑制して、半導体装置1の歩留まりを向上させることができる。
 また、実施形態に係るTSV14は、底部が椀形状となっているため、第1配線層M1との接合面が傾斜面となる。これにより、TSV14は、例えば、底部が水平で第1配線層M1を完全に貫通し、第1配線層M1との接合面が垂直となるような形状に比べて、第1配線層M1との接続面積を大きくとることができるので、接続抵抗を低減することが可能となる。
[TSVの形成工程]
 次に、図3A~図4Cを参照し、実施形態に係るTSV14の形成工程について説明する。TSV14を形成する場合には、まず、図3Aに示すように、Si基板11の上面にレジスト40を塗布した後、フォトリソグラフィーによってレジスト40をパターニングし、TSV14を形成する部分のレジスト40を選択的に除去する。
 このとき、例えば、直径が50μm程度の平面視略円形の穴をレジスト40に形成する。続いて、図3Bに示すように、レジスト40をマスクとして使用し、例えば、RIE等のドライエッチングを行うことにより、Si基板11に貫通孔30を形成する。
 このときのエッチングでは、Si(シリコン)のエッチングに適した塩素系やフッ素系のエッチングガスを使用する。これにより、Si基板11におけるレジスト40によってマスクされていない部分が深さ方向へ、例えば、100μm程度エッチングされて絶縁層12の上面が露出する。
 その後、図3Cに示すように、Si基板11の上面からレジスト40を除去する。続いて、図4Aに示すように、Si基板11と後に形成するRDL膜3とを絶縁するため、Si基板11の上面と、貫通孔30の底面および側周面とに、例えば、CVD(Chemical Vapor Deposition)によってSiO膜32を成膜する。
 このとき、Si基板11の上面には、厚さが5μm程度のSiO膜32が形成され、貫通孔30の底面および側周面には、厚さが0.5μm程度のSiO膜32が形成される。その後、SiO膜32の全面に対して、例えば、RIE等のドライエッチングを行う。
 このときのエッチングでは、絶縁膜のエッチングに適したフッ素系のエッチングガスと、金属系のエッチングに適した塩素系のエッチングガスとを使用する。さらに、ここでは、横方向へのエッチングの進行を抑制するためのデポガスとして機能する炭化フッ素系又は炭化水素系のガスをエッチングガスに混合してエッチングを行う。
 これにより、図4Bに示すように、貫通孔30の底部に形成されているSiO膜32、絶縁層12、および第1配線層M1が順次エッチングされ、貫通孔30が第1配線層M1を貫通する深さにまで達する。
 このとき、エッチングの終盤では、徐々にエッチングガスの量を低減すると共に、デポガスの量を増大させる。これにより、図4Bに白抜き矢印で示すような横方向へエッチングを進行させずに、貫通孔30の底部を椀形状にすることができる。このように、本実施形態に係る貫通孔30は、底部にノッチが形成されることがなく、底部の形状が縦孔部分から滑らかに連続する椀形状となる。
 その後、貫通孔30の表面に付着しているデポ膜を有機薬液によって除去する。続いて、貫通孔30の底面、貫通孔30の側面、およびSiO膜32の上面の全体に、スパッタリングによって、膜厚が200nm~400nmのTi(チタン)、Cu(銅)、またはTi(チタン)及びCu(銅)の薄膜を成膜することでシードメタル膜31を形成する。
 最後に、シードメタル膜31の表面に、電界メッキによって膜厚が5μm程度のCu(銅)膜を成長させてRDL膜3を形成することにより、図2に示すTSV14を形成する。なお、RDL膜3を形成する工程では、電界メッキを行う前に、RDL膜3の形成位置以外の部分をレジストによってマスクする。
 そして、RDL膜3の形成後に、レジストを除去する。このとき、貫通孔30の底部にノッチがある場合、ノッチ内にレジストの残さが残り、RDL膜3に亀裂が生じる原因となるが、上述したように、本実施形態では、貫通孔30の底部にノッチが形成されない。これにより、実施形態に係るTSV14は、RDL膜3に亀裂が生じることを抑制することができるので、接触不良の発生を未然に防止することができる。
 なお、図2に示したTSV14の形状は、実施形態に係るTSVの一例である。実施形態に係るTSVは、図2に示す形状以外に種々の変形が可能である。以下、図5A~図8Bを参照し、実施形態の変形例に係るTSVの形状について説明する。
 図5Aは、実施形態の変形例1に係るTSVの断面を示す説明図である。図5Bは、実施形態の変形例2に係るTSVの断面を示す説明図である。図6Aは、実施形態の変形例3に係るTSVの断面を示す説明図である。図6Bは、実施形態の変形例4に係るTSVの断面を示す説明図である。図6Cは、実施形態の変形例5に係るTSVの断面を示す説明図である。
 また、図7Aは、実施形態の変形例6に係るTSVの断面を示す説明図である。図7Bは、実施形態の変形例7に係るTSVの断面を示す説明図である。図8Aは、実施形態の変形例8に係るTSVの断面を示す説明図である。図8Bは、実施形態の変形例9に係るTSVの断面を示す説明図である。
 図5Aに示すように、変形例1に係るTSVは、底部の形状だけが図2に示すTSV14とは異なり、底部が深い位置になるほど先細りとなる円錐形状をしている。かかる円錐形状の底部は、貫通孔30を形成するエッチングの終盤で、エッチングガスの量およびデポガスの量の比率調整を行うことで形成することができる。
 変形例1に係るTSVは、図2に示すTSV14と同様に、第1配線層M1を貫通する深さまで達しており、側周面で第1配線層M1に接続されている。かかるTSVは、第1配線層M1をエッチングストッパとして使用せずに形成される。
 このため、変形例1に係るTSVは、底部にノッチが形成されないので、RDL膜3に接続不良が発生することを抑制することにより、半導体装置の歩留まりを向上させることができる。
 また、変形例1に係るTSVは、第1配線層M1との接続面が傾斜面となっているため、図2に示すTSV14と同様に、第1配線層M1との接続面積を大きくとることができるので、接続抵抗を低減することが可能である。
 また、図5Bに示すように、変形例2に係るTSVは、底部の形状だけが図2に示すTSV14とは異なり、底部が水平面形状をしている。かかる水平面形状の底部は、貫通孔30を形成するエッチングの終盤でエッチングガスの量およびデポガスの量を変更せずにエッチングを終了することで形成することができる。
 変形例2に係るTSVは、図2に示すTSV14と同様に、第1配線層M1を貫通する深さまで達しており、側周面で第1配線層M1に接続されている。かかるTSVは、第1配線層M1をエッチングストッパとして使用せずに形成される。
 このため、変形例2に係るTSVは、底部にノッチが形成されないので、RDL膜3に接続不良が発生することを抑制することにより、半導体装置の歩留まりを向上させることができる。
 また、図6Aに示すように、変形例3に係るTSVは、ロジック基板10における深さが図2に示すTSV14よりも深く、第3配線層M3を貫通する深さにまで達している点だけが図2に示すTSV14とは異なる。
 また、図6Bに示すように、変形例4に係るTSVは、ロジック基板10における深さが図5Aに示す変形例1のTSVよりも深く、第3配線層M3を貫通する深さにまで達している点だけが図5Aに示す変形例1のTSVとは異なる。
 また、図6Cに示すように、変形例5に係るTSVは、ロジック基板10における深さが図5Bに示す変形例2のTSVよりも深く、第3配線層M3を貫通する深さにまで達している点だけが図5Bに示す変形例2のTSVとは異なる。
 これら変形例3~5のTSVによれば、第1~第3配線層M1,M2,M3を一度に接続することができ、図2に示すTSV14と同様に、RDL膜3に接続不良が発生することを抑制することにより、半導体装置の歩留まりを向上させることができる。
 なお、変形例3~5のTSVは、第2配線層M2を貫通する深さであってもよい。つまり、実施形態に係るTSVは、配線層を貫通する深さがあれば、貫通する配線層の数に制限はない。
 また、実施形態に係るTSVは、底部が先細りとなる形状であれば、必ずしも配線層を貫通している必要はない。例えば、図7Aに示すように、変形例6に係るTSVは、第1配線層M1を貫通することなく、底面で第1配線層M1の上面に接続される。なお、変形例6の底面形状は、図2に示すTSV14と同様の椀形状である。
 かかるTSVを形成する場合には、第1配線層M1をエッチングストッパとして使用して貫通孔30を形成する。ただし、貫通孔30を形成するエッチングの終盤では、エッチングガスの量およびデポガスの量の比率調整を行うことで貫通孔30の底部を椀形状にする。これにより、貫通孔30の底部にノッチが形成されることを防止することができる。
 したがって、変形例6のTSVは、図2に示すTSV14と同様に、RDL膜3に接続不良が発生することを抑制することにより、半導体装置の歩留まりを向上させることができる。
 また、図7Bに示すように、変形例7に係るTSVは、第1配線層M1を貫通することなく、円錐形状の底部における先端部分で第1配線層M1の上面に接続される。かかるTSVによっても、図7Aに示すTSVと同様に、RDL膜3に接続不良が発生することを抑制することにより、半導体装置の歩留まりを向上させることができる。
 また、実施形態に係るTSVは、例えば、ロジック基板10の絶縁層12における第1配線層M1よりも浅い位置に、例えば、タングステン等の金属材料によって形成される配線層が設けられた半導体装置にも適用することが可能である。
 例えば、図8Aに示すように、変形例8に係るTSVは、絶縁層12における最浅層に設けられるタングステン等の金属によって形成されたLIC(Local Inter Connect)等の金属配線層M0を貫通し、側周面で金属配線層M0に接続される。なお、変形例8のTSVにおける底部は、椀形状をなしている。
 また、図8Bに示すように、変形例9に係るTSVは、金属配線層M0を貫通し、側周面で金属配線層M0に接続される。なお、変形例9のTSVにおける底部は、円錐形状をなしている。このように、変形例8,9に係るTSVは、LICを備える半導体装置に適用することで、LICを備える半導体装置の歩留まりを向上させることができる。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 配線層が埋設される基板と、
 前記基板の主面から深さ方向へ延伸して前記配線層を貫通し、側周面で前記配線層に接続されるビアと
 を有する半導体装置。
(2)
 前記ビアは、
 底部が先細り形状である
 前記(1)に記載の半導体装置。
(3)
 前記ビアは、
 底部が椀形状をなす
 前記(2)に記載の半導体装置。
(4)
 前記ビアは、
 底部が円錐形状をなす
 前記(2)に記載の半導体装置。
(5)
 前記ビアは、
 底部が平面形状をなす
 前記(2)に記載の半導体装置。
(6)
 前記ビアは、
 積層される複数の前記配線層を貫通する
 前記(1)~(5)のいずれかに記載の半導体装置。
(7)
 前記ビアは、
 積層される複数の前記配線層のうち、最浅層に設けられる金属材料によって形成された配線層に接続される
 前記(1)~(5)のいずれかに記載の半導体装置。
(8)
 配線層が埋設される基板と、
 前記基板の主面から深さ方向へ延伸し、先細り形状をなす底部の一部で前記配線層の表面に接続されるビアと
 を備える半導体装置。
 1 半導体装置
 10 ロジック基板
 11 Si基板
 12 絶縁層
 13 多層配線層
 14 TSV
 15 はんだバンプ
 20 センサ基板
 21 Si基板
 22 ガラスカバー
 23 支持部材
 24 CMOSイメージセンサ
 25 マイクロレンズ
 3 RDL膜
 31 シードメタル膜
 32 SiO膜
 M0 金属配線層
 M1 第1配線層
 M2 第2配線層
 M3 第3配線層
 100 実装基板
 101 接続端子

Claims (8)

  1.  配線層が埋設される基板と、
     前記基板の主面から深さ方向へ延伸して前記配線層を貫通し、側周面で前記配線層に接続されるビアと
     を有する半導体装置。
  2.  前記ビアは、
     底部が先細り形状である
     請求項1に記載の半導体装置。
  3.  前記ビアは、
     底部が椀形状をなす
     請求項2に記載の半導体装置。
  4.  前記ビアは、
     底部が円錐形状をなす
     請求項2に記載の半導体装置。
  5.  前記ビアは、
     底部が平面形状をなす
     請求項2に記載の半導体装置。
  6.  前記ビアは、
     積層される複数の前記配線層を貫通する
     請求項1に記載の半導体装置。
  7.  前記ビアは、
     積層される複数の前記配線層のうち、最浅層に設けられる金属材料によって形成された配線層に接続される
     請求項1に記載の半導体装置。
  8.  配線層が埋設される基板と、
     前記基板の主面から深さ方向へ延伸し、先細り形状をなす底部の一部で前記配線層の表面に接続されるビアと
     を備える半導体装置。
PCT/JP2019/047341 2018-12-18 2019-12-04 半導体装置 WO2020129635A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/299,665 US20220037272A1 (en) 2018-12-18 2019-12-04 Semiconductor device
EP19900822.8A EP3901999A4 (en) 2018-12-18 2019-12-04 SEMICONDUCTOR DEVICE
KR1020217017533A KR20210104693A (ko) 2018-12-18 2019-12-04 반도체 장치
CN201980073327.2A CN112997304A (zh) 2018-12-18 2019-12-04 半导体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-236071 2018-12-18
JP2018236071A JP2020098849A (ja) 2018-12-18 2018-12-18 半導体装置

Publications (1)

Publication Number Publication Date
WO2020129635A1 true WO2020129635A1 (ja) 2020-06-25

Family

ID=71102786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047341 WO2020129635A1 (ja) 2018-12-18 2019-12-04 半導体装置

Country Status (7)

Country Link
US (1) US20220037272A1 (ja)
EP (1) EP3901999A4 (ja)
JP (1) JP2020098849A (ja)
KR (1) KR20210104693A (ja)
CN (1) CN112997304A (ja)
TW (1) TW202032717A (ja)
WO (1) WO2020129635A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288595A (ja) * 2007-05-18 2008-11-27 Samsung Electronics Co Ltd 半導体パッケージ、その製造方法、半導体パッケージを利用したパッケージモジュール及び電子製品
JP2009206253A (ja) 2008-02-27 2009-09-10 Zycube:Kk 半導体装置
JP2012099548A (ja) * 2010-10-29 2012-05-24 Fujikura Ltd 貫通配線基板の製造方法及び貫通配線基板
JP2012190900A (ja) * 2011-03-09 2012-10-04 Sony Corp 半導体装置及びその製造方法
JP2016225471A (ja) * 2015-05-29 2016-12-28 株式会社東芝 半導体装置および半導体装置の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080101635A (ko) * 2007-05-18 2008-11-21 삼성전자주식회사 반도체 패키지, 그 제조 방법, 및 반도체 패키지를 이용한패키지 모듈 및 전자 제품
US8698316B2 (en) * 2010-03-11 2014-04-15 Yu-Lin Yen Chip package
JP5352534B2 (ja) * 2010-05-31 2013-11-27 パナソニック株式会社 半導体装置及びその製造方法
US8232626B2 (en) * 2010-06-14 2012-07-31 Hong Kong Applied Science & Technology Research Institute Co. Ltd. Via and method of via forming and method of via filling
US8624342B2 (en) * 2010-11-05 2014-01-07 Invensas Corporation Rear-face illuminated solid state image sensors
US8742564B2 (en) * 2011-01-17 2014-06-03 Bai-Yao Lou Chip package and method for forming the same
KR102493464B1 (ko) * 2018-07-19 2023-01-30 삼성전자 주식회사 집적회로 장치 및 이의 제조 방법
KR102593534B1 (ko) * 2018-10-10 2023-10-25 삼성디스플레이 주식회사 디스플레이 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288595A (ja) * 2007-05-18 2008-11-27 Samsung Electronics Co Ltd 半導体パッケージ、その製造方法、半導体パッケージを利用したパッケージモジュール及び電子製品
JP2009206253A (ja) 2008-02-27 2009-09-10 Zycube:Kk 半導体装置
JP2012099548A (ja) * 2010-10-29 2012-05-24 Fujikura Ltd 貫通配線基板の製造方法及び貫通配線基板
JP2012190900A (ja) * 2011-03-09 2012-10-04 Sony Corp 半導体装置及びその製造方法
JP2016225471A (ja) * 2015-05-29 2016-12-28 株式会社東芝 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
KR20210104693A (ko) 2021-08-25
EP3901999A4 (en) 2022-02-09
US20220037272A1 (en) 2022-02-03
TW202032717A (zh) 2020-09-01
JP2020098849A (ja) 2020-06-25
CN112997304A (zh) 2021-06-18
EP3901999A1 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
JP4937842B2 (ja) 半導体装置およびその製造方法
JP4439976B2 (ja) 半導体装置およびその製造方法
JP4327644B2 (ja) 半導体装置の製造方法
US8106518B2 (en) Semiconductor device and method of manufacturing the same
JP4415984B2 (ja) 半導体装置の製造方法
US8338958B2 (en) Semiconductor device and manufacturing method thereof
US9240373B2 (en) Semiconductor devices with close-packed via structures having in-plane routing and method of making same
TWI421994B (zh) 用於半導體基板的導體柱結構以及製造方法
JP2007123857A (ja) 半導体装置およびその製造方法
KR20000052334A (ko) 반도체 장치
WO2010035375A1 (ja) 半導体装置及びその製造方法
US10269748B2 (en) Semiconductor device and manufacturing method of semiconductor device
TW201919160A (zh) 半導體結構
US9478509B2 (en) Mechanically anchored backside C4 pad
US8709915B2 (en) Method of manufacturing semiconductor device
JP2015099827A (ja) 半導体装置および半導体装置の製造方法
JP2013247139A (ja) 半導体装置及びその製造方法
US20130020721A1 (en) Semiconductor device and method for manufacturing the same
WO2020129635A1 (ja) 半導体装置
TWI512923B (zh) 中介板及其製法
JP2011071175A (ja) 半導体装置および半導体装置の製造方法
JP2015211100A (ja) 半導体装置の製造方法
TWI836378B (zh) 具有密封tsv之半導體裝置及其製造方法
US11715704B2 (en) Scribe structure for memory device
KR20110126994A (ko) 반도체 소자 및 반도체 소자의 형성방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900822

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019900822

Country of ref document: EP

Effective date: 20210719