WO2020122061A1 - 鋼の連続鋳造方法 - Google Patents

鋼の連続鋳造方法 Download PDF

Info

Publication number
WO2020122061A1
WO2020122061A1 PCT/JP2019/048269 JP2019048269W WO2020122061A1 WO 2020122061 A1 WO2020122061 A1 WO 2020122061A1 JP 2019048269 W JP2019048269 W JP 2019048269W WO 2020122061 A1 WO2020122061 A1 WO 2020122061A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
slab
cooling zone
continuous casting
steel
Prior art date
Application number
PCT/JP2019/048269
Other languages
English (en)
French (fr)
Inventor
慎 高屋
村上 敏彦
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=71077298&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020122061(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020559250A priority Critical patent/JP7020568B2/ja
Priority to BR112021006880-5A priority patent/BR112021006880A2/pt
Priority to KR1020217015971A priority patent/KR102493098B1/ko
Priority to CN201980078634.XA priority patent/CN113165060B/zh
Priority to US17/291,028 priority patent/US11577306B2/en
Publication of WO2020122061A1 publication Critical patent/WO2020122061A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1246Nozzles; Spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • B22D11/1245Accessories for subsequent treating or working cast stock in situ for cooling using specific cooling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould

Definitions

  • the present invention relates to a continuous casting method for steel.
  • the present application claims priority based on Japanese Patent Application No. 2018-231136 filed in Japan on December 10, 2018, the contents of which are incorporated herein by reference.
  • the surface crack means a general term for a crack form such as a lateral crack that is not in the casting direction.
  • Patent Document 1 As a method for preventing surface cracking of a slab containing an alloy element in continuous casting, for example, there is a method disclosed in Patent Document 1.
  • the method disclosed in Patent Document 1 increases the average water amount density of a water-cooling nozzle directly below a mold and sprays cooling water at a predetermined collision pressure onto a slab to remove powder adhering to the surface of the slab while casting. Stable cooling of the surface temperature of the piece to below the A 3 transformation temperature is performed, and then the slab is reheated to make the surface temperature of the slab at the bent or straightened portion higher than the embrittlement temperature range. It is something to do.
  • the surface cracks that occur after the secondary cooling zone of continuous casting are cracks along the former austenite grain boundaries in the surface layer of the slab.
  • This crack occurs when stress concentrates on the austenite grain boundary embrittled by precipitation of AlN, NbC, or the like, or on the film-like ferrite formed along the old austenite grain boundary.
  • the morphology of cracks depends on the direction of the applied stress, and lateral cracking is caused by tensile stress in the casting direction. In particular, cracks are likely to occur in the temperature range near the austenite-to-ferrite phase transformation region.
  • the mechanical stress is applied to the surface of the slab, such as bending and the surface temperature in the straightening zone, which is avoided from the temperature range in which the ductility decreases (the embrittlement temperature range), and A method of suppressing the occurrence is taken.
  • An object of the present invention is to provide a continuous casting method for steel capable of suppressing surface cracking of a slab.
  • a vertical portion that pulls a cast piece downward in the vertical direction from a mold, and a bending portion that bends the cast piece that has been pulled from the vertical portion
  • a method for continuously casting steel using a vertical bending type continuous casting device comprising a first cooling zone including a roll and a cooling spray nozzle in the vertical portion, wherein the first cooling zone comprises:
  • the air/water ratio A 1 /R 1 which is the ratio of the air amount A 1 (L/min) to the water amount R 1 (L/min) per cooling spray nozzle is set to 10 or more, and
  • the collision pressure of the cooling water that collides with the surface of the slab is 12 gf/cm 2 or more, the cooling water density W 1 (L/min/m 2 ) in the first cooling zone, and the slab has the first
  • the cooling strength W 1 ⁇ t 1 defined as the product of the time t 1 (min) of passing through the cooling zone is set to 350 or more, and the casting is performed after passing through the first
  • the water amount R 1 (L/min) per cooling spray nozzle is 20 L/min or more and 50 L/min or more. It may be less than or equal to min.
  • the cooling water density W 1 (L/min/m 2 ) is 500 L/min/m in the first cooling zone. It may be 2 or more and 2000 L/min/m 2 or less.
  • the vertical bending type continuous casting device is provided between the first cooling zone and the bent portion. May be provided with a second cooling zone, and in the second cooling zone, the cooling water density W 2 (L/min/m 2 ) is 0 L/min/m 2 or more and 50 L/min/m 2 or less. By doing so, the surface of the slab may be reheated.
  • the surface of the slab is reheated after passing through the first cooling zone, and the slab is
  • the temperature of the surface of the slab at the time of reaching the bent portion may be a temperature of Ac 3 point or higher.
  • the roll may be a split roll.
  • the slab is cooled in the first cooling zone provided in the vertical portion by the mist spray having a high air-water ratio and a high collision.
  • the mist spray having a high air-to-water ratio and a high collision pressure, the mold powder on the surface of the cast piece can be removed, the generation of accumulated water between rolls can be suppressed, and the cast piece is subjected to secondary cooling uniformly. It is considered possible.
  • the cooling strength in the first cooling zone is increased above a predetermined level. It is considered that the microstructure of the surface layer of the cast slab can be controlled more appropriately by setting the cooling strength to a predetermined value or more.
  • the recuperation time after reaching the bent portion after cooling in the first cooling zone is set to a predetermined time or longer, and the slab surface can be reheated appropriately. ..
  • a fine structure can be generated on the surface of the cast piece, and surface cracking of the cast piece in the bent portion can be suppressed.
  • the continuous casting method for steel of the present invention it is possible to control the microstructure of the slab surface layer, suppress slab surface cracking due to non-uniform secondary cooling, and cause distortion in the bent portion. Slab surface cracking can be suppressed.
  • the numerical range represented by “to” means the range including the numerical values before and after “to” as the lower limit value and the upper limit value.
  • the term “process” is used not only as an independent process, but also when the intended purpose of the process is achieved even when the process cannot be clearly distinguished from other processes. included. Further, it is obvious that the respective elements of the following embodiments can be combined with each other.
  • FIG. 1 is a diagram schematically showing a positional relationship among a mold 10, a vertical portion 20, a bending portion 30 and the like in a vertical bending die continuous casting apparatus 100.
  • the cooling spray nozzle and the like are omitted for the sake of clarity.
  • FIG. 2 is an enlarged schematic view of a part of the first cooling zone 21 of the vertical portion 20, and schematically shows the positional relationship between the roll 21a and the cooling spray nozzle 21b.
  • the cooling water discharged from the cooling spray nozzle 21b remains as pooled water W between the slab 1 and the roll 21a, as shown in FIG.
  • the continuous casting method for steel includes a vertical portion 20 that pulls the slab 1 downward in the vertical direction from the mold 10, and a bent portion 30 that bends the slab 1 that has been pulled from the vertical portion 20.
  • the air-water ratio A 1 /R 1 which is the ratio of the air amount A 1 (L/min) to the water amount R 1 (L/min) per cooling spray nozzle 21b is set to 10 or more, and the cooling spray nozzle
  • the collision pressure of the cooling water colliding with the surface of the slab 1 from 21b is 12 gf/cm 2 or more, the cooling water density W 1 (L/min/m 2 ) in the first cooling zone 21 and the slab 1 are
  • the cooling strength W 1 ⁇ t 1 defined as the product of the time t 1 (min) of passing through the first cooling zone 21 is set to 350 or more, and the cooling strength W 1 ⁇ t 1 after passing through the first cooling zone 21 until reaching the bending portion 30.
  • the recuperating time t 2 of the slab 1 is set to 0.5 min or longer.
  • the continuous casting method according to this embodiment can be preferably used in a known vertical bending type continuous casting apparatus.
  • the mold 10 has a cross-sectional shape corresponding to the shape of the slab 1 to be cast.
  • the vertical portion 20 is provided directly below the mold 10, and the bent portion 30 is provided directly below the vertical portion 20.
  • the height of the vertical portion 20 (the distance from immediately below the mold 10 to the bent portion 30) can be, for example, 0.5 m or more and 3.0 m or less.
  • a first cooling zone 21 is provided at least on the upper side of the vertical portion 20.
  • the first cooling zone 21 includes a roll 21a and a cooling spray nozzle 21b.
  • the number of rolls 21a supporting one surface side of the cast slab 1 is not limited to five shown in FIG.
  • the number may be 1 or more and 7 or less. More preferably, it is 6 or less on the one surface side (12 or less in total of the one surface side and the other surface side). That is, the number of cooling stages in the first cooling zone is not limited to 5 stages shown in FIG. 1, and is preferably 6 stages or less.
  • the roll pitch (P in FIG. 2) between the rolls 21a adjacent to each other in the casting direction can be, for example, 50 mm or more and 300 mm or less, and the interval between the rolls (I in FIG. 2). Can be, for example, 10 mm or more and 100 mm or less.
  • a cooling spray nozzle 21b is provided between the mold 10 and the roll 21a immediately below the mold and/or between the rolls 21a adjacent to each other in the casting direction. The cooling water is jetted onto the surface of the piece 1.
  • the number of cooling spray nozzles 21b between each roll 21a is, for example, one in the casting direction and at least one in the slab width direction.
  • the vertical portion 20 may include a second cooling zone 22 between the first cooling zone 21 and the bent portion 30 (immediately below the first cooling zone 21).
  • the number of rolls 22a supporting one surface side of the cast slab 1 can be set to, for example, 0 or more and 10 or less.
  • a cooling spray nozzle (not shown) may be arranged between the rolls 21a and 22a adjacent to each other in the casting direction or between the rolls 22a.
  • the number of cooling spray nozzles in between can be, for example, one in the casting direction and at least one in the slab width direction.
  • the roll 21a may be a split roll.
  • the divided roll means a roll whose roll surface is divided into two or more in the direction along the axis of the roll.
  • the roll surface may be divided into three, four, or five or more surfaces.
  • the split roll has a shaft portion having a diameter smaller than that of the roll surface between the plurality of split roll surfaces.
  • the vicinity of the end portion of the cast piece 1 is more easily cooled than the center portion of the cast piece 1 in which accumulated water is likely to be generated, and the temperature difference in the width direction of the cast piece 1 caused by this causes the end portion of the cast piece 1 to be cooled.
  • Surface cracks tend to occur in the vicinity.
  • the roll 22a may also be a split roll for the same reason as the roll 21a described above.
  • bent portion means a portion in which the casting direction of the cast slab 1 changes from the vertical direction to the horizontal direction. Since the bent portion 30 may have the same configuration as a conventionally known configuration, detailed description thereof will be omitted here.
  • Air-water ratio in the first cooling zone 21 In order to increase the collision pressure of the cooling water from the cooling spray nozzle 21b, it is effective to increase the cooling water amount or increase the air amount while ensuring the cooling water amount. Here, when the amount of cooling water is simply increased, accumulated water is likely to be generated in the roll 21a. In order to increase the collision pressure of the cooling water while suppressing the pooled water, it is preferable to increase the ratio of the amount of air to the amount of cooling water (air/water ratio). From this point of view, in the continuous steel casting method of the present embodiment, in the first cooling zone 21, the air amount A 1 (L/min) with respect to the water amount R 1 (L/min) per cooling spray nozzle 21 b. The air/water ratio A 1 /R 1 which is the ratio of 10) is 10 or more. The upper limit of the air/water ratio is not particularly limited, but is preferably 100 or less from the viewpoint of spray stability. It is more preferably 50 or less.
  • the water amount R 1 of the cooling spray nozzle 21b may be adjusted in consideration of a collision pressure and a cooling strength described later.
  • the water amount R 1 (L/min) per cooling spray nozzle 21b is set to 20 L/min or more and 50 L/min or less. Preferably. This makes it possible to more easily increase the collision pressure of the spray while suppressing the generation of accumulated water more easily.
  • the present inventor has found that when cooling a high temperature slab (for example, 950° C. or higher) with a mist spray, the cooling capacity (heat transfer coefficient) has a good correlation with the collision pressure of the spray. This is because, in the transition boiling region, the heat transfer resistance of the boiling film predominantly acts on the heat transfer on the surface of the slab, so the boiling film is physically pushed away with the increase of the collision pressure and becomes thin, resulting in This is because the transfer coefficient increases. In addition, when the collision pressure exceeds a certain level, the mold powder adhered to the surface of the slab is peeled off, and temperature unevenness in the width direction due to spray cooling can be reduced.
  • the collision pressure of the cooling water that collides with the surface of the slab 1 from the cooling spray nozzle 21b is set to 12 gf/cm 2 or more. .. It is preferably 13 gf/cm 2 or more, more preferably 15 gf/cm 2 or more, still more preferably 17 gf/cm 2 or more.
  • the collision pressure is too large, the solidified shell of the slab 1 is partially recessed, and the cooling water is blown upward from between the roll 21a and the slab 1, which may cause breakout.
  • the collision pressure of the cooling water that collides with the surface of the slab 1 from the cooling spray nozzle 21b be 50 gf/cm 2 or less. More preferably 40 gf / cm 2 or less, more preferably 30 gf / cm 2 or less.
  • the collision pressure of the cooling water that collides with the surface of the slab 1 can be estimated by, for example, a method of measuring it offline using a pressure sensor or the following simple formula 1.
  • Pc [gf/cm 2 ] collision pressure
  • W [L/min/m 2 ] water amount density
  • Va [m/s] compressed air discharge flow velocity (air flow rate [Nm 3 /s]/air Orifice area [m 2 ])
  • H[m] injection distance
  • A/R[ ⁇ ] air/water ratio (volume ratio of air and water).
  • the “cooling water density W 1 ” means the amount (L) of cooling water injected per unit area (m 2 ) of the surface of the slab and per unit time (min).
  • the “cooling water density W 1 ” is, for example, “the amount of water R 1 (L/min) per cooling spray nozzle 21 b is defined by the roll pitch P(m) in the casting direction and the spray injection width in the width direction of the cast piece ( m) divided by the product”.
  • the cooling water density W 1 may be adjusted in consideration of the air/water ratio, the collision pressure, and the like.
  • the cooling water density W 1 (L/min/m 2 ) is 500 L/min/m 2 or more and 2000 L/min/m 2 in the first cooling zone 21.
  • the following is preferable.
  • the lower limit is more preferably 600 L/min/m 2 or more, and the upper limit is more preferably 1750 L/min/m 2 or less.
  • the surface of the slab 1 is reheated after passing through the first cooling zone 21, and the temperature of the surface of the slab 1 at the time when the slab 1 reaches the bent portion 30. Is preferably a temperature of Ac 3 or higher.
  • the recuperating time t 2 of the cast slab 1 from after passing through the first cooling zone 21 to reaching the bending portion 30 is set to 0. 5 min or more. By setting the recuperation time t 2 to 0.5 min or more, the slab surface cooled to a temperature of Ar 3 points or less in the first cooling zone 21 has an Ac 3 point or more due to sensible heat inside the slab.
  • the upper limit of the recuperation time t 2 is not particularly limited, but it is preferably 2.0 min or less, more preferably 1.75 min or less.
  • the vertical bending type continuous casting apparatus 100 may include the second cooling zone 22 between the first cooling zone 21 and the bent portion 30.
  • the surface of the slab is cooled to a temperature of Ar 3 point or lower in the first cooling zone 21, and then secondary cooling is adjusted to obtain an Ac 3 point or higher. It is good to reheat to the temperature.
  • the second cooling zone 22 by setting the cooling water density W 2 (L/min/m 2 ) to 0 L/min/m 2 or more and 50 L/min/m 2 or less, the surface of the slab 1 Is preferably reheated.
  • the temperature at which A 3 transformation (ferrite transformation) is performed during cooling is performed.
  • the Ar 3 point and the temperature of the A 3 transformation (austenite transformation) during heating are referred to as Ac 3 point.
  • the mist having a high steam-water ratio and a high collision pressure is provided in the first cooling zone 21 provided on the upper side of the vertical portion 20 which is the secondary cooling zone.
  • the mist having a high steam-water ratio and a high collision pressure is provided in the first cooling zone 21 provided on the upper side of the vertical portion 20 which is the secondary cooling zone.
  • the cooling spray nozzle 21b installed in the first cooling zone 21 needs to be designed to have a large flow rate of mist spray nozzle and stable spraying even with a high steam-water ratio. Further, in order to secure the collision pressure, it is desirable that the distance from the slab 1 is small. Specifically, the distance (spray height) from the surface of the slab 1 to the cooling spray nozzle 21b is preferably 50 mm or more and 150 mm or less. If it is 50 mm or less, the distance between the cooling spray nozzle 21b and the slab 1 is short, the risk of nozzle clogging increases, and there is a risk of adverse effects on equipment maintenance such as spray check.
  • conditions other than the above are not particularly limited.
  • the target steel type From the viewpoint of obtaining a more remarkable effect, it is preferable to target the low alloy steel containing at least one alloy element of Ti, Nb, Ni and Cu.
  • the casting speed it is possible to cope with both low speed and high speed.
  • the casting speed Vc is set to 500 mm/min or more and 3000 mm/min or less.
  • the casting conditions after the bent portion 30 may be the same as the conventional one. According to the steel continuous casting method of the present embodiment, for example, a slab can be manufactured.
  • the slab in the first cooling zone 21 provided on the upper side of the vertical portion 20, the slab is cooled by a mist spray having a high air-water ratio and high collision, and By increasing the cooling strength in the first cooling zone 21 to a predetermined level or more, and further, after the cooling by the first cooling zone 21, the recuperating time of the cast slab 1 until reaching the bent portion is set to a predetermined value or more. It is possible to control the microstructure of the surface layer of the slab, suppress the slab surface crack caused by the non-uniform secondary cooling, and suppress the slab surface crack caused by the strain in the bent portion.
  • mist spray nozzles are installed in each width direction of 150 mm between 5 stages of rolls from immediately below the mold to the 1st to 6th rolls, and the cooling water amount of each stage is independent. And controllable.
  • This cooling zone is referred to as a "first cooling zone", and an experiment was conducted by appropriately changing the water amount and the air amount. In addition, an experiment was conducted by appropriately changing the shape of the roll in the first cooling zone.
  • Split roll 1 is a split roll having a bearing portion having a width of 100 mm at one location
  • split roll 2 is a split roll having two bearing portions having a width of 100 mm at two locations. Yes, the single roll is a roll that does not have a division portion and the entire width of the slab comes into contact with the roll.
  • the cooling condition is such that the product of the average water amount density W 2 and the passage time t 2 is 0 to 50 (L/m 2 ). After passing through the first cooling zone, the slab was reheated before reaching the bent portion.
  • Table 3 below shows details of casting conditions and evaluation results of the number of cracks in Examples and Comparative Examples.
  • the cooling conditions of the slab in the secondary cooling zone are as follows. It can be said that doing is effective.
  • the water ratio A 1 /R 1 is 10 or more.
  • Cooling intensity defined as the product of the cooling water density W 1 (L/min/m 2 ) in the first cooling zone and the time t 1 (min) during which the slab passes through the first cooling zone.
  • W 1 ⁇ t 1 is set to 350 or more.
  • the reheating time t 2 of the cast piece after passing through the first cooling zone and before reaching the bent portion is set to 0.5 min or more.
  • the present invention can control the microstructure of the slab surface layer, and can suppress the slab surface crack due to the secondary cooling non-uniformity, the continuous casting method of steel that can suppress the slab surface crack due to the strain in the bending portion Therefore, the industrial availability is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

垂直部(20)の上部側における第1の冷却ゾーン(21)において、冷却スプレーノズルの一本当たりの水量R1(L/min)と空気量A1(L/min)とにより定義される気水比A1/R1を10以上とし、冷却スプレーノズルから鋳片(1)の表面に衝突する冷却水の衝突圧を12gf/cm2以上とし、冷却水密度W1(L/min/m2)と第1の冷却ゾーン(21)通過時間t1(min)とにより定義される冷却強度W1×t1を350以上とし、第1の冷却ゾーン(21)通過後から曲げ部(30)までの復熱時間を0.5min以上とする。

Description

鋼の連続鋳造方法
 本発明は鋼の連続鋳造方法に関する。
 本願は、2018年12月10日に日本に出願された特願2018-231136号に基づき優先権を主張し、その内容をここに援用する。
 近年、厚鋼板等の鉄鋼材料において、機械特性向上のため、Ti、Nb、Ni、Cu等の合金元素を含有した低合金鋼が多く製造されている。しかしながら、これら合金元素の添加に伴い、連続鋳造において製造された鋳片に表面割れ欠陥が生じ、操業上および製品の品質上の問題となっている。ここでの表面割れとは、横ひび割れといった鋳造方向でない割れ形態の総称を意味する。
 連続鋳造において合金元素を含有する鋳片の表面割れを防止する方法としては、例えば、特許文献1に開示されたような方法がある。特許文献1に開示された方法は、鋳型直下の水冷ノズルについて平均水量密度を高めるとともに所定の衝突圧で冷却水を鋳片へと吹き付けることで、鋳片表面に付着したパウダーを剥離しながら鋳片の表面温度をA変態温度以下に安定的に冷却し、その後、鋳片の復熱を行って、曲げ部又は矯正部における鋳片の表面温度を脆化温度域よりも高温として鋳造を行うものである。
 連続鋳造の二次冷却帯以降で発生する表面割れは鋳片表層の旧オーステナイト粒界に沿った割れであることが知られている。この割れはAlNやNbC等の析出により脆化したオーステナイト粒界や、旧オーステナイト粒界に沿って生成するフィルム状フェライトに応力が集中することで発生する。割れの形態はかかる応力の方向により異なり、横ひび割れは鋳造方向への引張応力によって生じる。特に、オーステナイトからフェライトへの相変態領域近傍の温度域において割れが発生しやすい。したがって、特許文献1に開示されているように、機械的な応力が鋳片表面にかかる曲げや矯正帯での表面温度を延性が低下する温度域(脆化温度域)から回避し、割れの発生を抑制する方法が取られる。
日本国特開2018-099704号公報
 近年、機械特性向上のため様々な元素が添加された合金鋼種が増えるにつれ、鋳片表面割れ感受性が高い鋼種が増加しており、脆化温度域を回避する上記の連続鋳造方法のみでは必ずしも鋳片表面割れ発生を防止することができない。このように、従来の鋼の連続鋳造方法にあっては、目的とする冷却能力を確保しつつ鋳片表面割れを防止する点において改善の余地がある。
 本発明は、上記の事情に鑑みてなされたものであり、鋳片表層のミクロ組織を制御でき、二次冷却不均一に起因した鋳片表面割れを抑制できるとともに、曲げ部における歪に起因した鋳片表面割れを抑制できる鋼の連続鋳造方法を提供することを目的とする。
(1)本発明の一態様に係る鋼の連続鋳造方法では、鋳型から鋳片を鉛直方向下方に引き抜く垂直部と、前記垂直部から引き抜かれた前記鋳片を曲げる曲げ部とを備えるとともに、前記垂直部にロールと冷却スプレーノズルとを含む第1の冷却ゾーンを備える垂直曲げ型の連続鋳造装置を用いて鋼を連続的に鋳造する方法であって、前記第1の冷却ゾーンにおいて、前記冷却スプレーノズルの一本当たりの水量R(L/min)に対する空気量A(L/min)の比である気水比A/Rを10以上とするとともに、前記冷却スプレーノズルから前記鋳片の表面に衝突する冷却水の衝突圧を12gf/cm以上とし、前記第1の冷却ゾーンにおける冷却水密度W(L/min/m)と、前記鋳片が前記第1の冷却ゾーンを通過する時間t(min)との積として定義される冷却強度W×tを350以上とし、前記第1の冷却ゾーン通過後から前記曲げ部に到達するまでの前記鋳片の復熱時間tを0.5min以上とする。
(2)上記(1)に記載の鋼の連続鋳造方法においては、前記第1の冷却ゾーンにおいて、前記冷却スプレーノズルの一本当たりの水量R(L/min)を20L/min以上50L/min以下としてもよい。
(3)上記(1)又は(2)に記載の鋼の連続鋳造方法においては、前記第1の冷却ゾーンにおいて、前記冷却水密度W(L/min/m)を500L/min/m以上2000L/min/m以下としてもよい。
(4)上記(1)から(3)のいずれか1項に記載の鋼の連続鋳造方法においては、前記垂直曲げ型の連続鋳造装置が、前記第1の冷却ゾーンから前記曲げ部までの間に第2の冷却ゾーンを備えていてもよく、前記第2の冷却ゾーンにおいて、冷却水密度W(L/min/m)を0L/min/m以上50L/min/m以下とすることで前記鋳片の表面を復熱させてもよい。
(5)上記(1)から(4)のいずれか1項に記載の鋼の連続鋳造方法においては、前記第1の冷却ゾーンを通過後に前記鋳片の表面を復熱させ、前記鋳片が前記曲げ部に到達する時点で前記鋳片の表面の温度をAc点以上の温度としてもよい。
(6)上記(1)から(5)のいずれか1項に記載の鋼の連続鋳造方法においては、前記ロールが分割ロールであってもよい。
 本発明の鋼の連続鋳造方法においては、垂直部に設けられた第1の冷却ゾーンにおいて高気水比かつ高衝突のミストスプレーにより鋳片を冷却している。高気水比かつ高衝突圧のミストスプレーとすることで、鋳片表面のモールドパウダーを剥離できるとともに、ロール間におけるたまり水の発生を抑制でき、鋳片に対して均一に二次冷却を行うことができるものと考えられる。
 また、本発明の鋼の連続鋳造方法においては、第1の冷却ゾーンにおける冷却強度を所定以上に高めている。冷却強度を所定以上とすることで、鋳片表層のミクロ組織をより適切に制御することができるものと考えられる。
 さらに、本発明の鋼の連続鋳造方法においては、第1の冷却ゾーンによる冷却後、曲げ部に到達するまでの復熱時間を所定以上としており、鋳片表面を適切に復熱させることができる。これにより、鋳片表面に微細組織を生成させることができ、曲げ部における鋳片の表面割れを抑制することができる。
 以上のとおり、本発明の鋼の連続鋳造方法によれば、鋳片表層のミクロ組織を制御でき、二次冷却不均一に起因した鋳片表面割れを抑制できるとともに、曲げ部における歪に起因した鋳片表面割れを抑制できる。
本発明の鋼の連続鋳造方法を説明するための概略図である。 図1の第1の冷却ゾーン21の一部を拡大して概略的に示す図である。
 以下、本発明の一実施形態について、図面を参照しながら説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
 なお、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。本明細書中において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また、以下の実施形態の各要素は、それぞれの組み合わせが可能であることは自明である。
 図1を参照しつつ本発明の鋼の連続鋳造方法について説明する。図1が垂直曲げ型の連続鋳造装置100における鋳型10、垂直部20、曲げ部30等の位置関係を概略的に示す図である。図1(A)においては分かりやすさのため冷却スプレーノズル等を省略して示している。図2が垂直部20の第1の冷却ゾーン21の一部を拡大して概略的に示す図であり、ロール21a及び冷却スプレーノズル21bの位置関係を概略的に示している。冷却水の水量などの条件によっては、図2に示すように、冷却スプレーノズル21bから放出された冷却水は、鋳片1とロール21aとの間にたまり水Wとして残存する。
 本実施形態の鋼の連続鋳造方法は、鋳型10から鋳片1を鉛直方向下方に引き抜く垂直部20と、垂直部20から引き抜かれた鋳片1を曲げる曲げ部30とを備えるとともに、垂直部20にロール21aと冷却スプレーノズル21bとを含む第1の冷却ゾーン21を備える垂直曲げ型の連続鋳造装置100を用いて鋼を連続的に鋳造する方法であって、第1の冷却ゾーン21において、冷却スプレーノズル21bの一本当たりの水量R(L/min)に対する空気量A(L/min)の比である気水比A/Rを10以上とするとともに、冷却スプレーノズル21bから鋳片1の表面に衝突する冷却水の衝突圧を12gf/cm以上とし、第1の冷却ゾーン21における冷却水密度W(L/min/m)と、鋳片1が第1の冷却ゾーン21を通過する時間t(min)との積として定義される冷却強度W×tを350以上とし、第1の冷却ゾーン21通過後から曲げ部30に到達するまでの鋳片1の復熱時間tを0.5min以上とする。
(連続鋳造装置100の構成)
 本実施形態に係る連続鋳造方法は、公知の垂直曲げ型の連続鋳造装置に好ましく用いることができる。鋳型10は鋳造対象である鋳片1の形状に応じた断面形状を有する。鋳型10の直下には垂直部20が設けられ、垂直部20の直下に曲げ部30が設けられる。
 垂直部20の高さ(鋳型10の直下から曲げ部30に至るまでの距離)は、例えば、0.5m以上3.0m以下とすることができる。垂直部20の少なくとも上部側には第1の冷却ゾーン21が設けられる。第1の冷却ゾーン21はロール21aと冷却スプレーノズル21bとを含んで構成される。第1の冷却ゾーン21において、鋳片1の一面側をサポートするロール21aの数は、図1に示す5本に限定されるものではない。例えば1本以上7本以下とすることができる。より好ましくは一面側で6本以下(一面側と他面側との合計で12本以下)である。すなわち、第1の冷却ゾーンにおける冷却段数は、図1に示す5段に限定されず、好ましくは6段以下とする。
 第1の冷却ゾーン21において、鋳造方向に隣り合う各々のロール21aの間のロールピッチ(図2のP)は例えば50mm以上300mm以下とすることができ、ロール間の間隔(図2のI)は例えば10mm以上100mm以下とすることができる。第1の冷却ゾーン21において、鋳型10と鋳型直下のロール21aとの間及び/又は鋳造方向に隣り合うロール21aの間には冷却スプレーノズル21bが備えられており、当該冷却スプレーノズル21bから鋳片1の表面へと冷却水を噴射する。各々のロール21aの間の冷却スプレーノズル21bの本数は、鋳造方向に例えば1本であり、鋳片幅方向に少なくとも1本である。
 垂直部20は、第1の冷却ゾーン21と曲げ部30との間(第1の冷却ゾーン21の直下)に第2の冷却ゾーン22を備えていてもよい。第2の冷却ゾーン22において、鋳片1の一面側をサポートするロール22aの数は、例えば0本以上10本以下とすることができる。第2の冷却ゾーン22において、鋳造方向に隣接するロール21aとロール22aとの間やロール22aの間には冷却スプレーノズル(不図示)を配置してもよく、この場合、各々のロール22aの間の冷却スプレーノズルの本数は、鋳造方向に例えば1本、鋳片幅方向に少なくとも1本とすることができる。
 ロール21aは、分割ロールであってもよい。分割ロールとは、ロールの軸に沿った方向において、ロール面が2以上に分けられたロールを意味する。ロール面は3面、4面、あるいは5面かそれ以上に分割されてもよい。分割ロールは、分割された複数のロール面の間に、ロール面よりも径が小さい軸部を有する。ロール21aが分割ロールではない場合には、ロールの両端部を軸受け部によって支えるが、分割ロールの場合には、このロール面間の軸部を軸受け部によって支える。
 たまり水が発生しやすい鋳片1の幅方向の中央部に比べて鋳片1の端部近傍は冷却され易く、これによって生じる鋳片1の幅方向における温度差によって、鋳片1の端部近傍で表面割れが生じ易い傾向にある。ロール21aを分割ロールとすることで、複数のロール面の間の軸部からたまり水が排出されるようになり、鋳片1の幅方向における温度差が緩和され、鋳片の表面割れを抑制することができる。また、ロール21aの両端部のみならず、ロールの中間にある軸部においてロールを支えることで、ロール径が小さい場合でもロールの曲がりを抑制することができる。
 ロール22aについても、上記のようなロール21aと同様の理由で分割ロールを採用してもよい。
 垂直部20を経た鋳片1は、曲げ部30での曲げ及び矯正を経て、水平方向に搬送される。尚、本願にいう「曲げ部」とは、鋳片1の鋳造方向が鉛直方向から水平方向へと変化する部分をいう。曲げ部30については従来公知の構成と同様とすればよいことから、ここでは詳細な説明を省略する。
(第1の冷却ゾーン21における気水比)
 冷却スプレーノズル21bからの冷却水の衝突圧を増加させるには、冷却水量を増加させるか、もしくは、冷却水量を担保した状態で空気量を増加させることが有効である。ここで、冷却水量を単に増加させた場合、ロール21aにおけるたまり水が発生し易い。たまり水を抑制しつつ冷却水の衝突圧を増加させるには、冷却水量に対する空気量の比(気水比)を増大させることが好ましい。この観点から、本実施形態の鋼の連続鋳造方法においては、第1の冷却ゾーン21において、冷却スプレーノズル21bの一本当たりの水量R(L/min)に対する空気量A(L/min)の比である気水比A/Rを10以上とする。気水比の上限は特に限定されるものではないが、噴霧安定性の観点から100以下とすることが好ましい。より好ましくは50以下である。
(第1の冷却ゾーン21における水量R
 冷却スプレーノズル21bの水量Rは後述する衝突圧や冷却強度を考慮して調整すればよい。特に、本実施形態の鋼の連続鋳造方法においては、第1の冷却ゾーン21において、冷却スプレーノズル21bの一本当たりの水量R(L/min)を20L/min以上50L/min以下とすることが好ましい。これにより、たまり水の発生をより容易に抑制しつつ、スプレーの衝突圧をより容易に増大させることができる。
(第1の冷却ゾーン21における冷却水の衝突圧)
 本発明者は、高温の鋳片(例えば950℃以上)に対しミストスプレーで冷却を行う際に、冷却能力(熱伝達係数)がスプレーの衝突圧とよい相関があることを見出した。これは、遷移沸騰領域においては沸騰膜の伝熱抵抗が鋳片表面の伝熱において支配的に働くため、衝突圧の増加に伴い沸騰膜が物理的に押しのけられることによって薄くなり、結果として熱伝達係数が増加するためである。加えて、一定の衝突圧以上となると鋳片表面に固着したモールドパウダーが剥離され、スプレー冷却による幅方向の温度ムラを低減できる。この観点から、本実施形態の鋼の連続鋳造方法においては、第1の冷却ゾーン21において、冷却スプレーノズル21bから鋳片1の表面に衝突する冷却水の衝突圧を12gf/cm以上とする。好ましくは13gf/cm以上、より好ましくは15gf/cm以上、さらに好ましくは17gf/cm以上である。一方で、衝突圧が大きすぎると、鋳片1の凝固シェルが部分的に凹み、ロール21aと鋳片1との間から上方に冷却水が吹き上がり、ブレークアウトの虞がある。この観点から、本実施形態の鋼の連続鋳造方法においては、冷却スプレーノズル21bから鋳片1の表面に衝突する冷却水の衝突圧を50gf/cm以下とすることが好ましい。より好ましくは40gf/cm以下、さらに好ましくは30gf/cm以下である。
 尚、鋳片1の表面に衝突する冷却水の衝突圧は、例えば、受圧センサーを用いてオフラインで測定する方法、もしくは、以下の簡易な式1により見積もることができる。
Figure JPOXMLDOC01-appb-M000001
 上記式1において、Pc[gf/cm]:衝突圧、W[L/min/m]:水量密度、Va[m/s]:圧空吐出流速(エアー流量[Nm/s]/エアーオリフィス面積[m])、H[m]:噴射距離、A/R[-]:気水比(エアーと水の体積比)である。
(第1の冷却ゾーン21における冷却強度)
 本発明者の新たな知見によると、第1の冷却ゾーン21における冷却強度(W×t)を増大させることで、鋳片表層に微細組織を生成させ、割れの発生を抑制できる。第1の冷却ゾーン21において冷却強度を増大させることで、鋳片表面をAr点以下の温度にまで適切かつ速やかに冷却することができ、鋳片表面の微細組織の制御がより容易となるためと考えられる。この観点から、本実施形態の鋼の連続鋳造方法においては、第1の冷却ゾーン21における冷却水密度W(L/min/m)と、鋳片1が第1の冷却ゾーン21を通過する時間t(min)との積として定義される冷却強度W×tを350以上とする。冷却強度の上限は特に限定されるものではないが、例えば1500以下とすることが好ましい。より好ましくは1200以下である。
 尚、「冷却水密度W」とは、鋳片表面の単位面積(m)当たり、単位時間(min)当たりに噴射される冷却水の量(L)をいう。「冷却水密度W」は、例えば、「冷却スプレーノズル21bの一本当たりの水量R(L/min)を、鋳造方向のロールピッチP(m)と鋳片幅方向におけるスプレー噴射幅(m)との積で除したもの」として定義することができる。
 冷却水密度Wは上記の気水比や衝突圧等を考慮して調整すればよい。ここで、第1の冷却ゾーン21において、二次元的に冷却されるコーナー近傍は過冷却になりやすく、また、特に高水量の場合にロールにおけるたまり水が発生し易く、鋳片表面の二次冷却が不均一となる虞がある。一方で、あまりに低水量とした場合、上記の衝突圧等を達成し難くなる。この点、本実施形態の鋼の連続鋳造方法においては、第1の冷却ゾーン21において、冷却水密度W(L/min/m)を500L/min/m以上2000L/min/m以下とすることが好ましい。下限がより好ましくは600L/min/m以上であり、上限がより好ましくは1750L/min/m以下である。
(第1の冷却ゾーン21通過後の復熱)
 本実施形態の鋼の連続鋳造方法においては、第1の冷却ゾーン21を通過後に鋳片1の表面を復熱させ、鋳片1が曲げ部30に到達する時点で鋳片1の表面の温度をAc点以上の温度とすることが好ましい。これをより容易に実現すべく、本実施形態の鋼の連続鋳造方法においては、第1の冷却ゾーン21通過後から曲げ部30に到達するまでの鋳片1の復熱時間tを0.5min以上とする。復熱時間tを0.5min以上とすることで、第1の冷却ゾーン21においてAr点以下の温度にまで冷却された鋳片表面が、鋳片内部の顕熱によってAc点以上の温度にまで復熱され、鋳片表層が安定してγ粒界が不明瞭な微細組織となる。復熱時間tの上限は特に限定されるものではないが、好ましくは2.0min以下であり、より好ましくは1.75min以下である。
(その他)
 本実施形態の鋼の連続鋳造方法においては、垂直曲げ型の連続鋳造装置100が、第1の冷却ゾーン21から曲げ部30までの間に第2の冷却ゾーン22を備えていてもよい。ここで、本実施形態の鋼の連続鋳造方法においては、第1の冷却ゾーン21において鋳片表面をAr点以下の温度まで冷却し、その後二次冷却を調整して、Ac点以上の温度にまで復熱させるとよい。この場合、鋳片内部に十分な顕熱を持った状態で第1の冷却ゾーン21を通過し、機械的な歪のかかる曲げ部30までにAc点までの復熱を完了する必要がある。よって、第2の冷却ゾーン22においては、第1の冷却ゾーン21と比較して、冷却水密度を低下させる必要がある。具体的には、第2の冷却ゾーン22において、冷却水密度W(L/min/m)を0L/min/m以上50L/min/m以下とすることで鋳片1の表面を復熱させることが好ましい。
 尚、本願においては、体心立方格子(bccのフェライト相)からオーステナイトの面心立方格子(fcc)に変態する温度のA点において、冷却する際のA変態(フェライト変態)する温度をAr点、加熱する際のA変態(オーステナイト変態)する温度をAc点と記載する。
 上述したように、本実施形態の鋼の連続鋳造方法においては、二次冷却帯である垂直部20の上部側に設けられた第1の冷却ゾーン21において高気水比かつ高衝突圧のミストスプレーにより鋳片1を冷却することで、鋳片表層のミクロ組織を制御するとともに、二次冷却不均一に起因した鋳片表面割れを防止することができる。ここで、垂直曲げ型の連続鋳造装置100にて鋼を連続鋳造する場合、鋳型10の直下で強冷却して、鋳片表面から少なくとも2mmをAr点以下の温度まで冷却することが好ましい。その後、曲げ部30に到達するまでに鋳片表面をAc点以上の温度にまで復熱させることで、鋳片表面割れをより適切に抑制できる。
 第1の冷却ゾーン21に設置する冷却スプレーノズル21bは、大流量のミストスプレーノズルかつ高気水比でも安定した噴霧が得られる設計とする必要がある。また、衝突圧を担保するため、鋳片1との距離が小さいことが望ましい。具体的には、鋳片1の表面から冷却スプレーノズル21bまでの距離(スプレー高さ)を50mm以上150mm以下とすることが好ましい。50mm以下であると冷却スプレーノズル21bと鋳片1との距離が近く、ノズルづまりの危険性が大きくなり、また、スプレーチェック等の設備保全の弊害となる虞がある。
 本実施形態の鋼の連続鋳造方法において、上記以外の条件は特に限定されるものではない。対象となる鋼種に特に限定はない。より顕著な効果が得られる観点からは、Ti、Nb、Ni及びCuのうちの少なくとも一つの合金元素を含有した低合金鋼を対象とすることが好ましい。鋳造速度については、低速から高速のいずれにも対応可能である。好ましくは、鋳造速度Vcを500mm/min以上3000mm/min以下とする。本実施形態の連続鋳造方法において、曲げ部30以降の鋳造条件は従来と同様とすればよい。本実施形態の鋼の連続鋳造方法によれば、例えば、スラブを製造することができる。
 本発明の他の実施形態によれば、上述した実施形態の各構成を採用した鋼の連続鋳造装置が提供される。
 以上の通り、本発明の鋼の連続鋳造方法においては、垂直部20の上部側に設けられた第1の冷却ゾーン21において高気水比かつ高衝突のミストスプレーにより鋳片を冷却し、かつ、第1の冷却ゾーン21における冷却強度を所定以上に高め、さらには、第1の冷却ゾーン21による冷却後、曲げ部に到達するまでの鋳片1の復熱時間を所定以上とすることで、鋳片表層のミクロ組織を制御でき、二次冷却不均一に起因した鋳片表面割れを抑制できるとともに、曲げ部における歪に起因した鋳片表面割れを抑制できる。
 以下、実施例を示しつつ、本発明の鋼の連続鋳造方法についてより詳細に説明する。
1.実験条件
 垂直曲げ型連続鋳造装置を使用して幅2200mm、厚み300mmの鋳片を製造した。鋼種は表1に示す組成(質量%)を有する割れ感受性の高い低合金鋼とした。
 なお、鋼種A、BのAc点温度は、それぞれ898℃、872℃である。
Figure JPOXMLDOC01-appb-T000002
 連続鋳造装置の二次冷却帯において、鋳型直下から1~6本目までの5段のロール間に、1段あたりミストスプレーノズルを幅方向150mmごとに15本設置し、各段の冷却水量を独立して制御できるものとした。この冷却ゾーンを「第1の冷却ゾーン」と称し、水量および空気量を適宜変更して実験を行った。加えて、第1の冷却ゾーンのロールの形状を適宜変更して実験を行った。「分割ロール1」は幅方向の大きさが100mmの軸受け部を1箇所備えた分割ロールであり、「分割ロール2」は幅方向の大きさが100mmの軸受け部を2箇所備えた分割ロールであり、一本ロールは分割箇所を備えず鋳片全幅とロールとが接触するロールである。
 第1の冷却ゾーン直下から曲げ部までの冷却ゾーン(第2の冷却ゾーン)においては、平均水量密度Wと通過時間tの積が0~50(L/m)となる冷却条件として、第1の冷却ゾーン通過後、曲げ部に到達するまでに鋳片を復熱させるようにした。
 下記表2にその他の鋳造条件を示す。
Figure JPOXMLDOC01-appb-T000003
2.評価条件
 鋳片の表面割れ発生状況に関し、それぞれの鋳造条件の定常部において鋳造方向に100mm長さの全幅サンプルを鋳造方向に2箇所切り出し、鋳片表面を酸洗浄し、観察された5mm以上の長さの表面割れの個数の合計を「割れ個数」として評価した。また、同サンプルの表層から30mm、幅50mmの顕微鏡観察用のサンプルを幅方向に5つ切り出し、鋳造組織の観察も行った。なお、定常部とは、目標の鋳造速度で引き抜かれた鋳片の部位を意味する。
 下記表3に、実施例及び比較例にかかる鋳造条件の詳細及び割れ個数の評価結果を示す。
Figure JPOXMLDOC01-appb-T000004
 表3に示す結果から明らかなように、実施例1~6では、上記のような表面割れは皆無であり、実施例7~10では浅い表面割れが見られたのみであり問題なかった。また、表層の断面をナイタールエッチングし、光学顕微鏡で観察したところ、少なくとも表面から2mmにおいて50μm以下の微細なフェライト・パーライトからなる組織が幅方向に均一に生成していることが確認できた。
 実施例1~6においては、鋳型直下の第1の冷却ゾーンにおいて、鋳片表面に固着したパウダーを剥離しつつ、たまり水を低減した冷却を行うことができたものと考えられ、これにより、鋳片幅方向においても安定的に鋳片表層をAr点以下の温度まで冷却することができ、その後、曲げ部に到達するまでに鋳片表面の温度をAc点以上の温度にまで復熱させることができ、割れ難い組織に制御できたものと考えられる。
 実施例7~10では、表層の微細な組織に若干のムラが生じており、たまり水の影響を受けたとみられ、これが浅い割れの原因となったものと考えられる。
 実施例1~10のいずれにおいても、鋳片表面に固着したパウダーおよびスケールはなく、十分な衝突圧により、これらを剥離できていることが確認できた。
 一方、比較例1では冷却強度(W×t)が不十分であり、表層の微細な組織が1mm以下となる位置(鋳片の厚さ方向における組織の長さが1mm以下となる位置)において表面割れが多数発生していた。
 比較例2では冷却強度(W×t)は十分であるが、復熱時間(t)が短かったことから、鋳片表面に微細組織が生成する前に曲げ部での歪を受け、表面割れが多数発生したものと考えられる。特に、二次元的に冷却されるコーナー近傍で顕著に割れが観察された。
 比較例3では、冷却強度(W×t)は充分であったが、気水比(A/R)が小さく、たまり水の排出が悪化したものと考えられる。これにより、幅方向に不均一に割れが多数発生した。
 比較例4、5では衝突圧が不十分であり、冷却ムラによる不均一な割れが多数発生した。表層サンプルからも固着したパウダーとスケールが確認され、これらを剥離するに十分な衝突圧が与えられなかったことがわかった。
 以上の結果から、垂直曲げ型連続鋳造装置を用いて鋼の連続鋳造を行う場合に発生する鋳片表面割れを防止するためには、二次冷却帯における鋳片の冷却条件を以下の通りとすることが有効といえる。
(1)垂直部の上部側に設けられた第1の冷却ゾーンにおいて、冷却スプレーノズルの一本当たりの水量R(L/min)に対する空気量A(L/min)の比である気水比A/Rを10以上とする。
(2)第1の冷却ゾーンにおいて、冷却スプレーノズルから前記鋳片の表面に衝突する冷却水の衝突圧を12gf/cm以上とする。
(3)第1の冷却ゾーンにおける冷却水密度W(L/min/m)と、鋳片が第1の冷却ゾーンを通過する時間t(min)との積として定義される冷却強度W×tを350以上とする。
(4)第1の冷却ゾーン通過後から曲げ部に到達するまでの鋳片の復熱時間tを0.5min以上とする。
 本発明は、鋳片表層のミクロ組織を制御でき、二次冷却不均一に起因した鋳片表面割れを抑制できるとともに、曲げ部における歪に起因した鋳片表面割れを抑制できる鋼の連続鋳造方法を提供できるため、産業上の利用可能性が高い。
1 鋳片
10 鋳型
20 垂直部
21 第1の冷却ゾーン
21a ロール
21b 冷却スプレーノズル
22 第2の冷却ゾーン
22a ロール
30 曲げ部
100 連続鋳造装置

Claims (6)

  1.  鋳型から鋳片を鉛直方向下方に引き抜く垂直部と、前記垂直部から引き抜かれた前記鋳片を曲げる曲げ部とを備えるとともに、前記垂直部にロールと冷却スプレーノズルとを含む第1の冷却ゾーンを備える垂直曲げ型の連続鋳造装置を用いて鋼を連続的に鋳造する方法であって、
     前記第1の冷却ゾーンにおいて、前記冷却スプレーノズルの一本当たりの水量R(L/min)に対する空気量A(L/min)の比である気水比A/Rを10以上とするとともに、前記冷却スプレーノズルから前記鋳片の表面に衝突する冷却水の衝突圧を12gf/cm以上とし、
     前記第1の冷却ゾーンにおける冷却水密度W(L/min/m)と、前記鋳片が前記第1の冷却ゾーンを通過する時間t(min)との積として定義される冷却強度W×tを350以上とし、
     前記第1の冷却ゾーン通過後から前記曲げ部に到達するまでの前記鋳片の復熱時間tを0.5min以上とする
    ことを特徴とする鋼の連続鋳造方法。
  2.  前記第1の冷却ゾーンにおいて、前記冷却スプレーノズルの一本当たりの水量R(L/min)を20L/min以上50L/min以下とする
    ことを特徴とする請求項1に記載の鋼の連続鋳造方法。
  3.  前記第1の冷却ゾーンにおいて、前記冷却水密度W(L/min/m)を500L/min/m以上2000L/min/m以下とする
    ことを特徴とする請求項1又は2に記載の鋼の連続鋳造方法。
  4.  前記垂直曲げ型の連続鋳造装置が、前記第1の冷却ゾーンから前記曲げ部までの間に第2の冷却ゾーンを備え、
     前記第2の冷却ゾーンにおいて、冷却水密度W(L/min/m)を0L/min/m以上50L/min/m以下とすることで前記鋳片の表面を復熱させる
    ことを特徴とする請求項1~3のいずれか1項に記載の鋼の連続鋳造方法。
  5.  前記第1の冷却ゾーンを通過後に前記鋳片の表面を復熱させ、前記鋳片が前記曲げ部に到達する時点で前記鋳片の表面の温度をAc点以上の温度とする
    ことを特徴とする請求項1~4のいずれか1項に記載の鋼の連続鋳造方法。
  6.  前記ロールが分割ロールである
    ことを特徴とする請求項1~5のいずれか1項に記載の鋼の連続鋳造方法。
PCT/JP2019/048269 2018-12-10 2019-12-10 鋼の連続鋳造方法 WO2020122061A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020559250A JP7020568B2 (ja) 2018-12-10 2019-12-10 鋼の連続鋳造方法
BR112021006880-5A BR112021006880A2 (pt) 2018-12-10 2019-12-10 método de lingotamento contínuo para aço
KR1020217015971A KR102493098B1 (ko) 2018-12-10 2019-12-10 강의 연속 주조 방법
CN201980078634.XA CN113165060B (zh) 2018-12-10 2019-12-10 钢的连续铸造方法
US17/291,028 US11577306B2 (en) 2018-12-10 2019-12-10 Continuous casting method for steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018231136 2018-12-10
JP2018-231136 2018-12-10

Publications (1)

Publication Number Publication Date
WO2020122061A1 true WO2020122061A1 (ja) 2020-06-18

Family

ID=71077298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048269 WO2020122061A1 (ja) 2018-12-10 2019-12-10 鋼の連続鋳造方法

Country Status (7)

Country Link
US (1) US11577306B2 (ja)
JP (1) JP7020568B2 (ja)
KR (1) KR102493098B1 (ja)
CN (1) CN113165060B (ja)
BR (1) BR112021006880A2 (ja)
TW (1) TW202033292A (ja)
WO (1) WO2020122061A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11905567B1 (en) 2023-03-28 2024-02-20 King Faisal University High pressure, high temperature spray cooling system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237858A (ja) * 1999-02-17 2000-09-05 Sumitomo Metal Ind Ltd 連続鋳造方法
JP2010253525A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 2流体ミストスプレーノズルによる連続鋳造鋳片の二次冷却方法
JP2011131242A (ja) * 2009-12-24 2011-07-07 Nippon Steel Corp 鋼の連続鋳造方法
JP2014050873A (ja) * 2012-09-10 2014-03-20 Nippon Steel & Sumitomo Metal 連続鋳造の二次冷却方法
JP2018099704A (ja) * 2016-12-20 2018-06-28 新日鐵住金株式会社 鋼の連続鋳造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719144A (en) * 1980-07-10 1982-02-01 Nippon Steel Corp Conveying method for high-temperature ingot
JP2001138019A (ja) * 1999-11-16 2001-05-22 Sumitomo Metal Ind Ltd 連続鋳造方法
JP3622687B2 (ja) * 2001-04-09 2005-02-23 住友金属工業株式会社 鋼の連続鋳造方法
JP4556720B2 (ja) * 2005-03-15 2010-10-06 Jfeスチール株式会社 連続鋳造における鋳片の冷却方法
JP4987545B2 (ja) * 2007-04-09 2012-07-25 新日本製鐵株式会社 連続鋳造機の二次冷却装置およびその二次冷却方法
CN102233415B (zh) * 2010-04-20 2013-02-13 宝山钢铁股份有限公司 连铸生产中铁素体不锈钢板坯宽度的设定方法
KR101421841B1 (ko) * 2012-12-21 2014-07-22 주식회사 포스코 하이브리드 냉각노즐장치 및 이를 이용한 연속주조설비의 냉각노즐 제어방법
JP5962625B2 (ja) * 2013-09-25 2016-08-03 Jfeスチール株式会社 鋼の連続鋳造方法
CN107206474B (zh) * 2015-01-15 2019-07-09 日本制铁株式会社 铸坯的连续铸造方法
JP5896067B1 (ja) * 2015-04-06 2016-03-30 Jfeスチール株式会社 連続鋳造機を用いた鋳片の製造方法
CN107414049B (zh) * 2016-05-23 2020-01-21 上海梅山钢铁股份有限公司 连铸板坯角部表层金相组织的细化控制方法
CN106513617B (zh) * 2016-12-30 2019-02-12 中国重型机械研究院股份公司 一种改善连铸生产铸坯质量的装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000237858A (ja) * 1999-02-17 2000-09-05 Sumitomo Metal Ind Ltd 連続鋳造方法
JP2010253525A (ja) * 2009-04-28 2010-11-11 Jfe Steel Corp 2流体ミストスプレーノズルによる連続鋳造鋳片の二次冷却方法
JP2011131242A (ja) * 2009-12-24 2011-07-07 Nippon Steel Corp 鋼の連続鋳造方法
JP2014050873A (ja) * 2012-09-10 2014-03-20 Nippon Steel & Sumitomo Metal 連続鋳造の二次冷却方法
JP2018099704A (ja) * 2016-12-20 2018-06-28 新日鐵住金株式会社 鋼の連続鋳造方法

Also Published As

Publication number Publication date
JP7020568B2 (ja) 2022-02-16
KR102493098B1 (ko) 2023-01-31
TW202033292A (zh) 2020-09-16
KR20210082225A (ko) 2021-07-02
CN113165060B (zh) 2022-12-06
CN113165060A (zh) 2021-07-23
BR112021006880A2 (pt) 2021-07-13
JPWO2020122061A1 (ja) 2021-09-27
US11577306B2 (en) 2023-02-14
US20210387248A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP5200653B2 (ja) 熱間圧延鋼板およびその製造方法
JP6094722B2 (ja) 金属板の製造方法および急冷焼入れ装置
KR101797383B1 (ko) 재질편차가 적고 표면품질이 우수한 고강도 열연강판 및 그 제조방법
KR101128316B1 (ko) 연속 소둔 설비
KR101998952B1 (ko) 재질편차가 적고 표면품질이 우수한 초고강도 열연강판 및 그 제조방법
JP6343842B2 (ja) 鋼材の冷却方法、鋼材の製造方法、鋼材の冷却装置および鋼材の製造設備
JP5604946B2 (ja) 鋼の連続鋳造方法
JP3622687B2 (ja) 鋼の連続鋳造方法
US20220090228A1 (en) Hot-rolled steel sheet
JP4767652B2 (ja) 冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯及びその製造方法
WO2020122061A1 (ja) 鋼の連続鋳造方法
JP6841028B2 (ja) 鋼の連続鋳造方法
JP2001138019A (ja) 連続鋳造方法
JP2008189984A (ja) 熱延鋼板及びその製造方法
JP2007245232A (ja) 連続鋳造鋳片の表面割れ防止方法
JP5895772B2 (ja) 外観に優れ、靭性と降伏強度の等方性に優れた高強度熱延鋼板及びその製造方法
JP2006022390A (ja) 高強度冷延鋼板及びその製造方法
JP6687090B2 (ja) 急冷焼入れ装置及び急冷焼入れ方法並びに金属板製品の製造方法
JP6024401B2 (ja) 表面品質に優れる厚鋼板の製造方法
JP4987786B2 (ja) 熱延鋼板の製造方法
JP2019081198A (ja) 鋼材の製造方法及び製造設備
WO2023002741A1 (ja) 金属板の焼入装置、連続焼鈍設備、金属板の焼入方法、冷延鋼板の製造方法及びめっき鋼板の製造方法
JP7460894B2 (ja) 熱延鋼板の製造方法及び熱延鋼板製造装置
JP2008307599A (ja) 連続鋳造方法及び連続鋳造機
JP5195636B2 (ja) 連続鋳造鋳片の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895352

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021006880

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020559250

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217015971

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021006880

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210409

122 Ep: pct application non-entry in european phase

Ref document number: 19895352

Country of ref document: EP

Kind code of ref document: A1