WO2020121968A1 - メッキ造形物の製造方法 - Google Patents

メッキ造形物の製造方法 Download PDF

Info

Publication number
WO2020121968A1
WO2020121968A1 PCT/JP2019/047828 JP2019047828W WO2020121968A1 WO 2020121968 A1 WO2020121968 A1 WO 2020121968A1 JP 2019047828 W JP2019047828 W JP 2019047828W WO 2020121968 A1 WO2020121968 A1 WO 2020121968A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film
resist pattern
compound
plating
Prior art date
Application number
PCT/JP2019/047828
Other languages
English (en)
French (fr)
Inventor
直希 西口
朋之 松本
石井 亮
彩子 遠藤
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020217017176A priority Critical patent/KR20210101220A/ko
Priority to JP2020560047A priority patent/JP7424313B2/ja
Priority to US17/298,769 priority patent/US20220035246A1/en
Publication of WO2020121968A1 publication Critical patent/WO2020121968A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/085Photosensitive compositions characterised by adhesion-promoting non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/423Stripping or agents therefor using liquids only containing mineral acids or salts thereof, containing mineral oxidizing substances, e.g. peroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31058After-treatment of organic layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/184Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method using masks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/0275Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with dithiol or polysulfide compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76885By forming conductive members before deposition of protective insulating material, e.g. pillars, studs

Definitions

  • the present invention relates to a method for manufacturing a plated object.
  • FO-WLP Full-Out Wafer Level Package
  • FO-PLP Full-Out Panel Level Package
  • TSV Through Silicon
  • Via silicon interposer, and other high-density packaging technologies.
  • the resist pattern film used for forming wirings and bumps is also required to be fine and have high density.
  • the wiring and bumps are formed by plating, and a photosensitive resin composition is applied onto a substrate having a metal film such as a copper film to form a resist coating film, and a mask is used for the resist coating film. It is manufactured by exposing and developing to form a resist pattern film, and using the resist pattern film as a mold to perform plating treatment on a substrate (see Patent Documents 1 and 2).
  • the photosensitive resin composition may have, for example, adhesiveness between the resist pattern film and the metal film, or the shape of the plated model. It is required that the resist pattern shape have a rectangular shape that affects the above.
  • One of the factors that influence the adhesiveness of the plated model is the skirt shape (also called footing) of the interface between the metal film and the resist pattern film.
  • a photosensitive resin composition containing a compound having a mercapto group or a sulfide bond is known to improve the adhesiveness (see Patent Document 3).
  • a resist pattern film is formed using a photosensitive resin composition containing a compound having a mercapto group as in Patent Document 3, and a plating treatment is performed using the resist pattern film as a mold. It has been found that when this is done, the formed plated product may not be satisfactorily manufactured, for example, the formed plated product may easily peel off from the substrate.
  • An object of the present invention is to provide a method for producing a plated shaped article, which can favorably produce a plated shaped article.
  • the present inventors have studied to solve the above problems. As a result, they have found that the above problems can be solved by a method for producing a plated molded article having the following steps, and have completed the present invention. That is, the present invention relates to, for example, the following [1] to [8].
  • FIG. 1 is a diagram illustrating footing.
  • Photosensitive resin composition containing a sulfur-containing compound (hereinafter also referred to as "compound (C)") having at least one selected from a mercapto group, a sulfide bond and a polysulfide bond on the metal film of a substrate having a metal film (1) for forming the resin film of A step (2) of exposing the resin film, A step (3) of developing the resin film after exposure to form a resist pattern film, A step (4) of performing a plasma treatment of an oxygen-containing gas on a substrate having the resist pattern film on a metal film; After the plasma treatment, there is a step (5) of performing a plating treatment using the resist pattern film as a mold.
  • compound (C) sulfur-containing compound having at least one selected from a mercapto group, a sulfide bond and a polysulfide bond on the metal film of a substrate having a metal film
  • a resist pattern film having high adhesiveness to a metal film can be formed, and a plated molded article can be satisfactorily manufactured using this resist pattern film as a mold.
  • the present invention exhibits the above-mentioned effects.
  • the adhesiveness between the resist pattern film formed from the photosensitive resin composition and the metal film can be improved. It is considered that the mercapto group, the sulfide bond or the polysulfide bond contained in the compound (C) contributes to the improvement of the adhesiveness of the resist pattern film to the metal film.
  • the compound (C)-containing film which is not removed by the development is formed on the surface of the metal film in the opening of the resist pattern film.
  • the sulfur atom contained in the compound (C) can cause uneven plating and corrosion. Therefore, after the resist pattern film is formed and before the plating process, the compound (C)-containing film on the surface of the metal film in the opening of the resist pattern film is removed by the plasma process to enhance the affinity between the metal film surface and the plating solution. Therefore, the plating process can be performed well.
  • Step (1) a resin film of a photosensitive resin composition containing the compound (C) is formed on the metal film of the substrate having the metal film.
  • the substrate examples include a semiconductor substrate and a glass substrate.
  • the shape of the substrate is not particularly limited, and the surface shape includes a flat plate shape and an uneven shape, and the substrate shape includes a circular shape and a square shape. There is no limitation on the size of the substrate.
  • the metal film examples include a film containing a metal such as aluminum, copper, silver, gold and palladium, and a film containing two or more kinds of alloys containing the metal, including a copper film, that is, copper and/or a copper alloy. Membranes are preferred.
  • the thickness of the metal film is usually 100 to 10,000 ⁇ , preferably 500 to 2,000 ⁇ .
  • the metal film is usually provided on the surface of the substrate.
  • the metal film can be formed by a method such as a sputtering method.
  • the resin film is usually formed by applying the photosensitive resin composition onto the metal film of a substrate having a metal film.
  • the method for applying the composition include a spin coating method, a roll coating method, a screen printing method, and an applicator method. Among these, the spin coating method and the screen printing method are preferable.
  • a heat treatment can be applied to the applied composition for the purpose of volatilizing the organic solvent.
  • the conditions of the heat treatment are usually 50 to 200° C. and 0.5 to 20 minutes.
  • the thickness of the resin film is usually 1 to 100 ⁇ m, preferably 5 to 80 ⁇ m.
  • the photosensitive resin composition used in the step (1) contains a compound (C) having at least one selected from a mercapto group, a sulfide bond and a polysulfide bond.
  • the polysulfide bond means a bond formed between two or more sulfur atoms, and examples thereof include a disulfide bond (-SS-) and a trisulfide bond (-SS-S-). Can be mentioned.
  • the number of sulfur atoms in the polysulfide bond is usually 2 or more, preferably 2 to 3.
  • the photosensitive resin composition a conventionally known photosensitive resin composition can be used as long as it contains the compound (C), and it may be either a positive type or a negative type. Resin composition is preferred, and a positive chemically amplified photosensitive resin composition is more preferred.
  • Examples of the negative photosensitive resin composition include an alkali-soluble resin, a photopolymerizable unsaturated double bond-containing compound (eg: (meth)acrylic compound), a photoradical polymerization initiator and a resin containing the compound (C).
  • a composition is mentioned.
  • Examples of the negative photosensitive resin composition containing an alkali-soluble resin, a photopolymerizable unsaturated double bond-containing compound, and a photoradical polymerization initiator include those disclosed in JP-A-2015-143813 and JP-A-2015-043060. , WO 2013/084886, and the compound (C) may be added to the resin composition.
  • the resin composition described in the above publication is assumed to be described in the present specification.
  • positive composition examples include, for example, a polymer (A) having an acid dissociable group (hereinafter also referred to as “polymer (A)”).
  • each component will be described.
  • each component exemplified in the present specification for example, each component in the photosensitive resin composition and each structural unit in the polymer (A) may be contained alone, unless otherwise specified. Two or more kinds may be included.
  • the compound (C) has at least one selected from a mercapto group, a sulfide bond and a polysulfide bond. In one embodiment, when the photoacid generator (B) having these groups or bonds is used, the compound (C) other than the photoacid generator can be selected and used.
  • the total number of mercapto groups, the number of sulfide bonds and the number of polysulfide bonds in the compound (C) is not particularly limited, but is usually 1 to 10, preferably 1 to 6, and more preferably 2 to 4.
  • Examples of the compound (C) include a compound (C1) represented by the formula (C1), a compound (C2) represented by the formula (C2), a multimer of the compound (C2), and a compound represented by the formula (C3) described below. (C3) may be mentioned.
  • the compound (C1) and the compound (C2) are preferable, and the compound (C2) is more preferable, because peeling of the resist pattern film from the substrate during the plating treatment can be suppressed.
  • the compound (C) tends to be highly hydrophobic in one embodiment.
  • the partition coefficient serves as an index for the hydrophobicity of the compound (C).
  • the partition coefficient of the compound (C) is preferably 2-10, more preferably 3-7.
  • the partition coefficient is the value of the octanol/water partition coefficient (logP) calculated by the ClogP method, and the larger the value, the higher the hydrophobicity (lipophilicity).
  • the positive composition may contain one or more compounds (C).
  • the content of the compound (C) in the positive composition is usually 0.01 part by mass, preferably the lower limit of the content, relative to 100 parts by mass of the polymer component containing the polymer (A). Is 0.05 parts by mass, more preferably 0.1 parts by mass, particularly preferably 0.2 parts by mass, and the upper limit of its content is usually 10 parts by mass, preferably 3.0 parts by mass, It is preferably 2.0 parts by mass, particularly preferably 1.0 part by mass.
  • the positive composition can further exhibit the above-mentioned effects. For example, when the content of the compound (C) is 0.2 parts by mass or more, a resist pattern film having higher rectangularity tends to be formed. Further, for example, when the content of the compound (C) is 2.0 parts by mass or less, the adhesion of the plated shaped article to the substrate having the metal film tends to be higher.
  • the compound (C1) is a compound represented by the formula (C1).
  • R 31 s are each independently a monovalent hydrocarbon group or a group in which at least one hydrogen atom in the monovalent hydrocarbon group is substituted with a mercapto group (hereinafter, also referred to as “mercapto substituent”).
  • mercapto substituent a group in which at least one hydrogen atom in the monovalent hydrocarbon group is substituted with a mercapto group.
  • p is an integer of 1 or more, preferably an integer of 1 to 4, more preferably an integer of 2 to 3.
  • the compound (C1) has a trisulfide bond.
  • at least one R 31 is preferably a group in which at least one hydrogen atom in the monovalent hydrocarbon group is replaced with a mercapto group.
  • the monovalent hydrocarbon group for R 31 is usually a monovalent hydrocarbon group having 1 to 12 carbon atoms.
  • Examples of the monovalent hydrocarbon group include an alkyl group, an aryl group, and an arylalkyl group.
  • Examples of the alkyl group for R 31 include an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a pentyl group and a decyl group.
  • Examples of the aryl group of R 31 include an aryl group having 6 to 10 carbon atoms such as a phenyl group, a methylphenyl group and a naphthyl group.
  • Examples of the arylalkyl group for R 31 include arylalkyl groups having 7 to 12 carbon atoms such as benzyl group and phenethyl group.
  • Examples of the mercapto substituent include a 4-mercaptophenyl group.
  • Examples of the compound (C1) include compounds represented by the following formulas (C1-1) to (C1-3).
  • the compound (C2) is a compound represented by the formula (C2).
  • R 32 is a divalent hydrocarbon group, preferably an alkanediyl group, an arylene group or an arylenealkanediyl group, and among these, an alkanediyl group is preferable because a plated molded article can be favorably produced. Is more preferable.
  • R 33 is a divalent hydrocarbon group, or a group in which at least one —CH 2 — group (excluding both ends) in the divalent hydrocarbon group is substituted with —S— or —O—
  • an alkanediyl group a group in which at least one —CH 2 — group (excluding both ends) in the alkanediyl group is replaced with —S— or —O— (hereinafter also referred to as “substituted alkanediyl group”), It is an arylene group or an arylene alkanediyl group, and among these, an alkanediyl group is more preferable because a plated molded article can be produced well.
  • the carbon number of the alkanediyl group is usually 1 to 12, preferably 2 to 12.
  • Examples of the alkanediyl group include a methylene group, ethylene group, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group.
  • Straight-chain alkanediyl groups such as octane-1,8-diyl group, decane-1,10-diyl group and dodecane-1,12-diyl group; 1-methylpropane-1,3-diyl group, 2- Examples thereof include branched alkanediyl groups such as methylpropane-1,3-diyl group, 1-methylbutane-1,4-diyl group and 2-methylbutane-1,4-diyl group. Of these, a linear alkanediyl group is preferable.
  • Examples of the substituted alkanediyl group include a group represented by —CH 2 —CH 2 —S—CH 2 —CH 2 —, —CH 2 —CH 2 —O—CH 2 —CH 2 —O—CH 2 — Examples thereof include a group represented by CH 2 —.
  • arylene group examples include arylene groups having 6 to 10 carbon atoms such as a phenylene group, a methylphenylene group and a naphthylene group.
  • the arylenealkanediyl group is a divalent group in which one or more arylene groups and one or more alkanediyl groups are bonded in any order. The specific examples mentioned above are mentioned as each arylene group and alkanediyl group.
  • R 34 represents a glycoluril ring structure or an isocyanuric ring structure. Note that the glycoluril ring structure and the isocyanuric ring structure have a bond that can reduce hydrophobicity, but since the structural symmetry is high, it is presumed that the hydrophobicity of the compound (C2) is not deteriorated. It
  • m is 1 or 0.
  • q is an integer of 1 to 4.
  • q is an integer of 1 to 4.
  • R 34 has an isocyanuric ring structure
  • q is an integer of 1 to 3.
  • the groups represented by —(R 32 —S) m —R 33 —SH in formula (C2) may be the same or different.
  • a mercapto group or a sulfide bond (when m is 1) is bonded to a hydrocarbon structure or a structure having a part of —S— or —O— in the hydrocarbon structure. Therefore, the compound (C2) is presumed to have high hydrophobicity.
  • the compound (C2-1) represented by the formula (C2-1) and the compound (C2-2) represented by the formula (C2-2) are preferable, and the compound (C2-1) is more preferable. ..
  • X is independently a hydrogen atom or a monovalent group represented by formula (g2).
  • at least one X is a monovalent group represented by the formula (g2), and preferably all X are monovalent groups represented by the formula (g2).
  • at least one X is a monovalent group represented by the formula (g2), and preferably all X are monovalent groups represented by the formula (g2).
  • R 32, R 33 and m are as defined R 32, R 33 and m in each formula (C2), * the formula (C2-1) or (C2-2) in Is a bond with the nitrogen atom of.
  • Examples of the compound (C2-1) include 1,3,4,6-tetrakis[2-mercaptoethyl]glycoluril, 1,3,4,6-tetrakis[3-(2-mercaptoethylsulfanyl)propyl] Glycoluril, 1,3,4,6-tetrakis[3-(3-mercaptopropylsulfanyl)propyl]glycoluril, 1,3,4,6-tetrakis[3-(4-mercaptobutylsulfanyl)propyl]glycoluril 1,3,4,6-tetrakis[3-(5-mercaptopentylsulfanyl)propyl]glycoluril, 1,3,4,6-tetrakis[3-(5
  • the compound (C2) can be synthesized, for example, by the method described in JP-A-2016-169174, JP-A-2016-164135, and JP-A-2016-164134.
  • the compound (C2) may form a multimer.
  • the multimer is a multimer obtained by coupling a plurality of compounds (C2) with a mercapto group to form a disulfide bond.
  • the multimer is, for example, a dimer to pentamer of the compound (C2).
  • the compound (C3) is a compound represented by the formula (C3).
  • R 35 and R 36 are each independently a hydrogen atom or an alkyl group.
  • R 37 is a single bond or an alkanediyl group.
  • R 38 is an r-valent aliphatic group which may contain atoms other than carbon atoms. r is an integer of 2 to 10.
  • Examples of the alkyl group of R 35 and R 36 include an alkyl group having 1 to 10 carbon atoms, preferably 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a pentyl group and a decyl group. Be done.
  • R 35 and R 36 a combination in which one is a hydrogen atom and the other is an alkyl group is preferable.
  • the carbon number of the alkanediyl group of R 37 is usually 1 to 10, preferably 1 to 5.
  • the alkanediyl group include methylene group, ethylene group, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, decane-1,10-diyl group.
  • a linear alkanediyl group such as; 1-methylpropane-1,3-diyl group, 2-methylpropane-1,3-diyl group, 1-methylbutane-1,4-diyl group, 2-methylbutane-1, Examples thereof include branched alkanediyl groups such as 4-diyl group. Of these, a linear alkanediyl group is preferable.
  • R 38 is an r-valent (2 to 10 valent) aliphatic group which may contain atoms other than carbon atoms.
  • the atoms other than carbon atoms include nitrogen atom, oxygen atom, sulfur atom, fluorine atom, chlorine atom, bromine atom and iodine atom.
  • the structure of the aliphatic group may be linear, branched, cyclic, or a combination of these structures.
  • Examples of the aliphatic group include r-valent hydrocarbon groups having 2 to 10 carbon atoms, r-valent oxygen-containing aliphatic groups having 2 to 10 carbon atoms, and trivalent C 6 to 10 carbon atoms having an isocyanuric ring structure. Groups.
  • Examples of the compound (C3) include compounds represented by the following formulas (C3-1) to (C3-4).
  • the polymer (A) has an acid dissociable group.
  • the acid dissociable group is a group capable of being dissociated by the action of an acid generated from the photoacid generator (B).
  • acidic functional groups such as carboxy groups and phenolic hydroxyl groups are produced in the polymer (A).
  • the solubility of the polymer (A) in the alkaline developing solution is changed, and the positive composition can form a resist pattern film.
  • the polymer (A) has an acidic functional group protected by an acid dissociable group.
  • the acidic functional group include a carboxy group and a phenolic hydroxyl group.
  • the polymer (A) include a (meth)acrylic resin in which a carboxy group is protected by an acid dissociable group, and a polyhydroxystyrene resin in which a phenolic hydroxyl group is protected by an acid dissociable group.
  • the polystyrene-equivalent weight average molecular weight (Mw) of the polymer (A) measured by gel permeation chromatography is usually 1,000 to 500,000, preferably 3,000 to 300,000, more preferably 10, It is 000 to 100,000, and more preferably 20,000 to 60,000.
  • the ratio (Mw/Mn) of the Mw of the polymer (A) to the polystyrene-reduced number average molecular weight (Mn) measured by gel permeation chromatography is usually 1 to 5, preferably 1 to 3.
  • the positive composition may contain one or more polymers (A).
  • the content ratio of the polymer (A) in the positive composition is usually 70 to 99.5% by mass, preferably 80 to 99% by mass, and more preferably 90% based on 100% by mass of the solid content of the composition. Is about 98% by mass.
  • the solid content refers to all components other than the organic solvent described below.
  • the polymer (A) usually has a structural unit (a1) having an acid dissociable group.
  • Examples of the structural unit (a1) include the structural unit represented by the formula (a1-10) and the structural unit represented by the formula (a1-20), and the structural unit represented by the formula (a1-10) is preferable.
  • R 11 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or at least one hydrogen atom in the alkyl group, a halogen atom such as a fluorine atom and a bromine atom, an aryl group such as a phenyl group, a hydroxyl group, and an alkoxy group.
  • a group substituted with another group such as a group (hereinafter, also referred to as “substituted alkyl group”).
  • R 12 is a divalent organic group having 1 to 10 carbon atoms.
  • Ar is an arylene group having 6 to 10 carbon atoms.
  • R 13 is an acid dissociable group.
  • n is an integer of 0 to 10, preferably 0 to 5, and more preferably 0 to 3.
  • alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, pentyl group and decyl group.
  • Examples of the divalent organic group having 1 to 10 carbon atoms include methylene group, ethylene group, propane-1,3-diyl group, propane-1,2-diyl group, decane-1,10-diyl group and the like.
  • the group substituted by the group is mentioned.
  • Examples of the arylene group having 6 to 10 carbon atoms include a phenylene group, a methylphenylene group and a naphthylene group.
  • Examples of the acid-dissociable group include groups that are dissociated by the action of an acid and an acidic functional group such as a carboxy group and a phenolic hydroxyl group is generated in the polymer (A) as a result of the dissociation. Specific examples thereof include an acid dissociable group represented by formula (g1) and a benzyl group, and an acid dissociable group represented by formula (g1) is preferable.
  • R a1 to R a3 each independently represent an alkyl group, an alicyclic hydrocarbon group, or at least one hydrogen atom in the alkyl group or the alicyclic hydrocarbon group, a fluorine atom and a A group substituted with a halogen atom such as a bromine atom, an aryl group such as a phenyl group, a hydroxyl group, and another group such as an alkoxy group, wherein R a1 and R a2 are bonded to each other, and R a1 and R a2 are bonded.
  • an alicyclic structure may be formed together with the carbon atom C.
  • Examples of the alkyl group of R a1 to R a3 include an alkyl group having 1 to 10 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, pentyl group and decyl group. Be done.
  • Examples of the alicyclic hydrocarbon group of R a1 to R a3 include monocyclic saturated cyclic hydrocarbon groups such as cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclooctyl group; cyclobutenyl group, cyclopentenyl group Group, a monocyclic unsaturated cyclic hydrocarbon group such as a cyclohexenyl group, and a polycyclic saturated cyclic hydrocarbon group such as a norbornyl group, an adamantyl group, a tricyclodecyl group, and a tetracyclododecyl group.
  • monocyclic saturated cyclic hydrocarbon groups such as cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclooctyl group
  • cyclobutenyl group cyclopenten
  • Examples of the alicyclic structure formed by R a1 , R a2 and carbon atom C include monocyclic saturated cyclic hydrocarbon structures such as cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl; cyclobutenyl, cyclopentenyl, cyclo Examples thereof include monocyclic unsaturated cyclic hydrocarbon structures such as hexenyl; and polycyclic saturated cyclic hydrocarbon structures such as norbornyl, adamantyl, tricyclodecyl and tetracyclododecyl.
  • R a4 is independently an alkyl group having 1 to 10 carbon atoms such as a methyl group, an ethyl group, an isopropyl group, and an n-butyl group, and n is 1 to 4 Is an integer.
  • Each ring structure in the formulas (g11) to (g14) has one or more substituents such as an alkyl group having 1 to 10 carbon atoms, a halogen atom such as a fluorine atom and a bromine atom, a hydroxyl group, and an alkoxy group. You may have. * Indicates a bond.
  • JP-A-2005-208366, JP-A-2000-194127, and JP-A-2000-267283 can be used.
  • structural units having a crosslinkable acid-dissociable group described in JP-A-2000-199960 and the like are examples of the structural units represented by the formulas (a1-10) and (a1-20.
  • the polymer (A) may have one type or two or more types of structural units (a1).
  • the content ratio of the structural unit (a1) in the polymer (A) is usually 10 to 50 mol %, preferably 15 to 45 mol %, more preferably 20 to 40 mol %.
  • the content ratio of each structural unit in the polymer (A) is a value when the total of all structural units constituting the polymer (A) is 100 mol %.
  • Each of the structural units is usually derived from a monomer during the synthesis of the polymer (A).
  • the content ratio of each structural unit can be measured by 1 H-NMR.
  • the polymer (A) can further have a structural unit (a2) having a group that promotes solubility in an alkaline developer (hereinafter, also referred to as “solubility promoting group”).
  • a2 a structural unit having a group that promotes solubility in an alkaline developer
  • the resolution, sensitivity, and lithographic properties such as the depth of focus of the resin film formed from the positive composition can be adjusted.
  • the structural unit (a2) for example, a structural unit having at least one group or structure selected from a phenolic hydroxyl group, a carboxy group, an alcoholic hydroxyl group, a lactone structure, a cyclic carbonate structure, a sultone structure and a fluoroalcohol structure (however, , Except those corresponding to the structural unit (a1)).
  • the structural unit having a phenolic hydroxyl group is preferable because it can form a resist pattern film that is strong against indentation from plating during formation of a plated model.
  • Examples of the structural unit having a phenolic hydroxyl group include 2-hydroxystyrene, 4-hydroxystyrene, 4-isopropenylphenol, 4-hydroxy-1-vinylnaphthalene, 4-hydroxy-2-vinylnaphthalene, 4-hydroxyphenyl.
  • a structural unit derived from a monomer having a hydroxyaryl group such as (meth)acrylate may be mentioned.
  • hydroxyaryl group examples include hydroxyphenyl group, methylhydroxyphenyl group, dimethylhydroxyphenyl group, dichlorohydroxyphenyl group, trihydroxyphenyl group, tetrahydroxyphenyl group and other hydroxyphenyl groups; hydroxynaphthyl group, dihydroxynaphthyl group, etc.
  • Examples of the structural unit having a carboxy group include (meth)acrylic acid, crotonic acid, maleic acid, fumaric acid, cinnamic acid, 2-carboxyethyl(meth)acrylate, 2-carboxypropyl(meth)acrylate, 3- Examples thereof include structural units derived from monomers such as carboxypropyl (meth)acrylate, and structural units described in JP-A-2002-341539.
  • Examples of the structural unit having an alcoholic hydroxyl group include structural units derived from monomers such as 2-hydroxyethyl (meth)acrylate and 3-(meth)acryloyloxy-4-hydroxytetrahydrofuran, and JP-A-2009-276607.
  • monomers such as 2-hydroxyethyl (meth)acrylate and 3-(meth)acryloyloxy-4-hydroxytetrahydrofuran, and JP-A-2009-276607.
  • JP-A-2009-276607 JP-A-2009-276607.
  • the structural units described in JP-A No. 1994-242242 can be mentioned.
  • the polymer (A) may have one type or two or more types of structural units (a2).
  • the content ratio of the structural unit (a2) in the polymer (A) is usually 10 to 80 mol%, preferably 20 to 65 mol%, more preferably 25 to 60 mol%.
  • the content ratio of the structural unit (a2) is within the above range, the dissolution rate in an alkaline developer can be increased, and as a result, the resolution of the positive composition in a thick film can be improved. ..
  • the polymer (A) can have the structural unit (a2) in the same or different polymer as the polymer having the structural unit (a1), but the structural unit (a1) to ((1) to () in the same polymer. It is preferable to have a2).
  • the polymer (A) can further have a structural unit (a3) other than the structural units (a1) and (a2).
  • the structural unit (a3) include aliphatic (meth)acrylic acid ester compounds such as alkyl (meth)acrylate, alkoxyalkyl (meth)acrylate, and alkoxy (poly)alkylene glycol (meth)acrylate, alicyclic (meth) ) Structural units derived from monomers such as acrylic acid ester compounds, aromatic ring-containing (meth)acrylic acid ester compounds, styrene-based vinyl compounds, unsaturated nitrile compounds, unsaturated amide compounds, and unsaturated imide compounds.
  • the polymer (A) may have one type or two or more types of structural units (a3).
  • the content ratio of the structural unit (a3) in the polymer (A) is usually 40 mol% or less.
  • the polymer (A) may have the structural unit (a3) in the same or different polymer as the polymer having the structural unit (a1) and/or the structural unit (a2), but in the same polymer. It is preferable to have structural units (a1) to (a3) in
  • the photo acid generator (B) is a compound that generates an acid when exposed to light.
  • the acid dissociable group in the polymer (A) is dissociated to generate an acidic functional group such as a carboxy group and a phenolic hydroxyl group.
  • an acidic functional group such as a carboxy group and a phenolic hydroxyl group.
  • Examples of the photo-acid generator (B) include JP-A-2004-317907, JP-A-2014-157252, JP-A-2002-268223, JP-A-2017-102260, and JP-A-2016-018075.
  • the compounds described in the publications and JP-A-2016-210761 are mentioned. These are intended to be described herein.
  • Specific examples of the photoacid generator (B) include onium salt compounds, halogen-containing compounds, sulfone compounds, sulfonic acid compounds, sulfonimide compounds, and diazomethane compounds.
  • the positive composition may contain one or more photoacid generators (B).
  • the content of the photo-acid generator (B) in the positive composition is usually 0.1 to 20 parts by mass, preferably 0.3 to 15 parts by mass with respect to 100 parts by mass of the polymer (A). , And more preferably 0.5 to 10 parts by mass.
  • the content of the photo-acid generator (B) is within the above range, a resist pattern film having higher resolution tends to be obtained.
  • the positive composition may further contain other components.
  • the other components include, for example, a quencher (for example, formula (D-1) or (D-2 described later) that controls diffusion of an acid generated by exposure from the photo-acid generator (B) in the resin film.
  • a surfactant having an action of improving the coating property and defoaming property of the positive composition a sensitizer that absorbs exposure light and improves the acid generation efficiency of the photoacid generator, Alkali-soluble resin or low molecular weight phenolic compound that controls the dissolution rate of the resin film formed from the positive-type composition in an alkaline developing solution, and ultraviolet absorption that blocks a photoreaction due to the scattered light from wrapping around during exposure to the unexposed area Agent, a thermal polymerization inhibitor that enhances the storage stability of the positive composition, an antioxidant, an adhesion aid, and an inorganic filler.
  • the polymer component described above may include an alkali-soluble resin and the like in addition to the polymer (A).
  • the positive composition may further contain an organic solvent.
  • the organic solvent is, for example, a component used to uniformly mix the respective components contained in the positive composition.
  • organic solvent examples include alcohol solvent, ester solvent, ketone solvent, alkylene glycol dialkyl ether, and alkylene glycol monoalkyl ether acetate.
  • the positive composition may contain one kind or two or more kinds of organic solvents.
  • the content of the organic solvent in the positive composition is usually 40 to 90% by mass.
  • the positive composition can be manufactured by uniformly mixing the above-mentioned components. Further, in order to remove foreign matter, the above-mentioned components can be uniformly mixed, and then the obtained mixture can be filtered with a filter.
  • step (2) the resin film formed in step (1) is exposed.
  • the exposure is selectively performed on the resin film by equal-magnification projection exposure or reduction projection exposure through a photomask having a predetermined mask pattern.
  • the exposure light include ultraviolet rays or visible rays having a wavelength of 150 to 600 nm, preferably 200 to 500 nm.
  • the light source of the exposure light include a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, and a laser.
  • the exposure dose can be appropriately selected depending on the type of exposure light, the type of photosensitive resin composition, and the thickness of the resin film, and is usually 100 to 20,000 mJ/cm 2 .
  • the heat treatment can be performed on the resin film.
  • the conditions for the heat treatment are usually 70 to 180° C. and 0.5 to 10 minutes.
  • the heat treatment can accelerate the dissociation reaction of the acid dissociable group in the polymer (A) with an acid.
  • step (3) the resin film exposed in step (2) is developed to form a resist pattern film. Development is usually performed using an alkaline developer. Examples of the developing method include a shower method, a spray method, a dipping method, a liquid piling method, and a paddle method. The developing conditions are usually 10 to 30° C. and 1 to 30 minutes.
  • Examples of the alkaline developer include aqueous solutions containing one or more alkaline substances.
  • Examples of the alkaline substance include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, tetramethylammonium hydrol. Examples thereof include oxide, tetraethylammonium hydroxide, choline, pyrrole and piperidine.
  • the concentration of the alkaline substance in the alkaline developer is usually 0.1 to 10% by mass.
  • the alkaline developer may further contain an organic solvent such as methanol and ethanol and/or a surfactant.
  • the resist pattern film formed by development can be washed with water or the like. Then, the resist pattern film can be dried using an air gun or a hot plate.
  • a resist pattern film serving as a mold for forming a plated object can be formed on the metal film of the substrate.
  • the thickness of the resist pattern film is usually 1 to 100 ⁇ m, preferably 5 to 80 ⁇ m.
  • the diameter of the opening (for example, a portion removed by development in the case of a positive type) in the resist pattern film is usually 0.5 to 10000 ⁇ m, preferably 0.8 to 1000 ⁇ m.
  • the shape of the opening of the resist pattern film it is possible to select a shape according to the type of the plated object.
  • the pattern shape is, for example, a line and space pattern
  • the shape of the opening is, for example, a cubic hole pattern.
  • Step (4) By performing the plasma treatment (surface treatment of the substrate) using the oxygen-containing gas in the step (4), the affinity between the metal film surface and the plating solution can be increased.
  • a substrate having a resist pattern film on a metal film is placed in a vacuumed apparatus, oxygen plasma is released, and the surface treatment of the substrate is performed.
  • the plasma processing conditions are such that the power output is usually 50 to 300 W, the flow rate of the oxygen-containing gas is usually 20 to 150 mL, the internal pressure of the device is usually 10 to 30 Pa, and the processing time is usually 0.5. ⁇ 30 minutes.
  • the oxygen-containing gas may contain, in addition to oxygen, one or more selected from hydrogen, argon and tetrafluoromethane.
  • the substrate surface-treated by the plasma treatment can be washed with water or the like.
  • the reason why the affinity between the metal film surface and the plating solution can be increased by performing the plasma treatment using the oxygen-containing gas in the step (4) is as follows.
  • a wet treatment using an aqueous solution of potassium permanganate or an aqueous solution of sulfuric acid, a plasma treatment using an oxygen-containing gas, or ozone and ultraviolet rays are used.
  • the dry treatment such as the heat treatment may be used.
  • the compound (C)-containing film is a hydrophobic film and the compound (C) is considered to be hydrophobic, an aqueous solution of potassium permanganate aqueous solution, sulfuric acid aqueous solution or the like contains the compound (C).
  • the film and the compound (C) are not sufficiently compatible with each other, and as a result, the compound (C)-containing film cannot be satisfactorily removed by the wet treatment, which may increase the affinity between the metal film surface and the plating solution. It is estimated that it could not be done.
  • the reaction on the film surface becomes the main reaction, so that the thin film efficiently reacts with the compound (C)-containing film on the surface of the metal film to form the compound (C)-containing film. It is presumed that the metal was successfully removed, and as a result, the affinity between the metal film surface and the plating solution could be increased.
  • Step (5) In the step (5), after the plasma treatment, using the resist pattern film as a mold, an opening defined by the resist pattern film (for example, in the case of a positive mold, a portion removed by development) is plated by plating. Form a thing.
  • the plated model examples include bumps and wiring.
  • the plated object is made of a conductor such as copper, gold or nickel.
  • the thickness of the plated molded article varies depending on its application, but is typically 5 to 100 ⁇ m, preferably 10 to 80 ⁇ m, more preferably 20 to 60 ⁇ m in the case of bumps, and 1 to 30 ⁇ m in the case of wiring. , Preferably 3 to 20 ⁇ m, more preferably 5 to 15 ⁇ m.
  • the plating treatment may be, for example, a plating liquid treatment using a plating liquid.
  • the plating liquid include a copper plating liquid, a gold plating liquid, a nickel plating liquid, and a solder plating liquid, and specifically, a copper plating liquid containing copper sulfate, copper pyrophosphate, or the like, and gold plating containing potassium potassium cyanide.
  • a nickel plating solution containing nickel sulfate or nickel carbonate is preferable.
  • the plating solution usually contains water and a hydrophilic solvent such as alcohol.
  • plating treatment examples include wet plating treatment such as electrolytic plating treatment, electroless plating treatment, and hot dipping treatment.
  • electroplating is usually performed.
  • the plating film formed on the inner wall of the resist pattern film by sputtering or electroless plating can be used as the seed layer, and the metal film on the substrate can also be used as the seed layer.
  • the barrier layer may be formed before forming the seed layer, and the seed layer can be used as the barrier layer.
  • the conditions of the electrolytic plating treatment can be appropriately selected depending on the type of plating solution and the like.
  • the temperature is usually 10 to 90° C., preferably 20 to 70° C.
  • the current density is usually 0.3 to 30 A/dm 2 , preferably 0.5 to 20 A/dm 2.
  • the temperature is usually 20 to 90° C., preferably 40 to 70° C.
  • the current density is usually 0.3 to 30 A/dm 2 , preferably 0.5 to 20 A/dm 2.
  • ⁇ As for the plating process different plating processes can be performed sequentially.
  • a solder copper pillar bump can be formed by first performing a copper plating process, then performing a nickel plating process, and then performing a molten solder plating process.
  • the method for producing a plated molded article of the present invention can have a step of performing desmear treatment after the step (4) and before the step (5).
  • the desmear treatment include known desmear treatments other than plasma treatment using an oxygen-containing gas.
  • an aqueous potassium permanganate solution for example, an acidic aqueous solution such as a sulfuric acid aqueous solution, a sodium hydroxide aqueous solution, a wet treatment using an alkaline aqueous solution such as a tetramethylammonium hydroxide aqueous solution, that is, a cleaning using these aqueous solutions
  • Another example is dry treatment using ozone and ultraviolet rays.
  • Compound (C) has a high affinity for the surface of the metal film, and a very small amount of compound (C) may remain on the surface of the metal film depending on the composition of the positive composition, the content of each component, the conditions of plasma treatment, and the like. There is a nature. In such a case, by carrying out this step, the effect of the present invention may be improved such that the adhesion strength of the plated molded article can be improved and the contamination of the plating solution can be suppressed. It is considered that if the trace amount of the compound (C) remains after the plasma treatment, the above-mentioned aqueous solution is not sufficiently compatible with the compound (C).
  • the method for producing a plated molded article of the present invention can further include a step of removing the resist pattern film after the step (5). Specifically, this step is a step of peeling and removing the remaining resist pattern film, and for example, a method of immersing the substrate having the resist pattern film and the plating-molded article in a peeling solution can be mentioned.
  • the temperature and immersion time of the stripping solution are usually 20 to 80° C. and 1 to 10 minutes.
  • stripping solution examples include stripping solutions containing at least one selected from tetramethylammonium hydroxide, dimethylsulfoxide and N,N-dimethylformamide.
  • the method for producing a plated molded article of the present invention can further include a step of removing the metal film other than the region where the plated molded article is formed, for example, by a method such as a wet etching method.
  • C-1 dimethyl trisulfide
  • C-2 4,4′-thiobisbenzenethiol
  • C-3 compound represented by the following formula (C-3)
  • C-4 compound C- represented by the following formula (C-4)
  • C-5 Compound represented by the following formula (C-5)
  • D-1 Compound represented by the following formula (D-1)
  • D-2 Compound represented by the following formula (D-2)
  • E-1 Fluorine-based surfactant (trade name "NBX-15", manufactured by Neos Co., Ltd.)
  • F-1 ⁇ -butyrolactone
  • F-2 cyclohexanone
  • F-3 propylene glycol monomethyl ether acetate
  • the substrate on which this resist pattern film is formed is called a "patterning substrate”.
  • the state of the interface between the resist pattern film and the copper sputtered film was observed.
  • the cross section of the obtained 1 L (line) 1S (space) having a line width of 2 ⁇ m was observed using a scanning electron microscope, and the width Lc and the width Ld shown in FIG. 1 were measured and evaluated according to the following criteria. In FIG. 1, the bottom of the pattern is exaggerated than it actually is.
  • electrolytic plating treatment was performed to manufacture a plated object.
  • the following pretreatments A to D were performed as the pretreatments for the electrolytic plating treatment.
  • the patterned substrate after the pretreatment is immersed in 1 L of a copper plating solution (product name “MICROFAB SC-40”, manufactured by McDermid Performance Solutions Japan Co., Ltd.), and the plating bath temperature is 25° C. and the current density is 8.5 A/dm. Setting to 2 , electroplating treatment was performed for 2 minutes and 10 seconds to manufacture a plated molded article.
  • a copper plating solution product name “MICROFAB SC-40”, manufactured by McDermid Performance Solutions Japan Co., Ltd.
  • Pretreatment A Oxygen plasma treatment (output 100 W, oxygen flow rate 100 ml, treatment time 60 seconds) was performed, followed by water washing treatment.
  • Pretreatment B Dip in a 10 mass% sulfuric acid aqueous solution at 23° C. for 60 seconds, and then wash with water.
  • Pretreatment C No pretreatment.
  • Pretreatment D Treatment with oxygen plasma (output 100 W, oxygen flow rate 100 ml, treatment time 60 seconds) was performed, and then immersion in a 1 mass% sulfuric acid aqueous solution at 23° C. for 120 seconds, followed by washing treatment. The state of the manufactured plated object was observed with an electron microscope and evaluated according to the following evaluation criteria. The evaluation results are shown in Table 3 below.
  • AA A rectangular plated molded article was formed without peeling.
  • A The shape of the plated surface at the metal surface interface was thin, There is no peeling.
  • B A rectangular plated model was formed, Peeling occurs in the area of less than 50%.
  • BB 50% or more of the plated model is peeled off from the substrate.
  • Example 1A and Example 1D Two copper plating solutions were prepared, and 50 modeled substrates were each plated with the modeled object under the same conditions as in Example 1A and Example 1D according to ⁇ Production of Plated Object>. Repeatedly formed. With respect to the two copper plating solutions, the plating solutions before the plating and after the completion of the plating of the 50th plate were evaluated for contamination of the plating solutions according to the following criteria. The conductivity of the plating solution was measured with a portable electric conductivity meter ES-71 manufactured by HORIBA, Ltd.
  • Example 1D Change in conductivity of plating solution before and after plating is less than 10% (no plating contamination)
  • -Method of Example 1A Change in conductivity of plating solution before and after plating is 10% or more (plating contamination is present)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

金属膜を有する基板の前記基板上に、メルカプト基、スルフィド結合およびポリスルフィド結合から選ばれる少なくとも1種を有する硫黄含有化合物を含有する感光性樹脂組成物の樹脂膜を形成する工程(1)と、前記樹脂膜を露光する工程(2)と、露光後の前記樹脂膜を現像してレジストパターン膜を形成する工程(3)と、前記レジストパターン膜を金属膜上に有する基板に対して、酸素含有ガスのプラズマ処理を行う工程(4)と、前記プラズマ処理後、前記レジストパターン膜を型としてメッキ処理を行う工程(5)とを有する、メッキ造形物の製造方法。

Description

メッキ造形物の製造方法
 本発明は、メッキ造形物の製造方法に関する。
 スマートフォンおよびタブレット端末等のモバイル機器の高性能化は、異なる機能を有する半導体チップを、FO-WLP(Fan-Out Wafer Level Package)、FO-PLP(Fan-Out Panel Level Package)、TSV(Through Silicon Via)、シリコンインターポーザー等の高密度パッケージング技術を用いてパッケージングすることにより行われている。
 このようなパッケージング技術では、半導体チップ間の電気的接続に用いられる配線およびバンプも高密度になってきている。したがって、配線およびバンプの形成に用いられるレジストパターン膜も、微細かつ高密度のものが求められている。
 通常、配線およびバンプはメッキ造形物であり、銅膜等の金属膜を有する基板上に感光性樹脂組成物を塗布してレジスト塗膜を形成し、そのレジスト塗膜に対してマスクを用いて露光および現像を行ってレジストパターン膜を形成し、そのレジストパターン膜を型にして基板上にメッキ処理を行うことで製造される(特許文献1~2参照)。
 このように、金属膜上にレジストパターン膜を形成し、その後メッキ処理を行うことから、感光性樹脂組成物には、例えば、レジストパターン膜と金属膜との接着性や、メッキ造形物の形状に影響を及ぼすレジストパターン形状の矩形性等が求められる。メッキ造形物の接着性に影響を及ぼす因子の一つには、金属膜とレジストパターン膜との界面のすそ引き形状(フッティングともいう)がある。特に接着性をよくするために、メルカプト基やスルフィド結合を有する化合物を含有する感光性樹脂組成物が知られている(特許文献3参照)。
特開2010-008972号公報 特開2006-330368号公報 特表2016-502142号公報
 本発明者らの検討によれば、例えば特許文献3のようにメルカプト基を有する化合物を含有する感光性樹脂組成物を用いてレジストパターン膜を形成し、前記レジストパターン膜を型としてメッキ処理を行うと、形成されたメッキ造形物が基板から剥がやすいなど、メッキ造形物を良好に製造できない場合があることが判明した。本発明の課題は、メッキ造形物を良好に製造することができるメッキ造形物の製造方法を提供することを目的とする。
 本発明者らは前記課題を解決すべく検討を行った。その結果、以下の工程を有するメッキ造形物の製造方法により前記課題を解決できることを見出し、本発明を完成するに至った。すなわち本発明は、例えば以下の[1]~[8]に関する。
 [1]金属膜を有する基板の前記基板上に、メルカプト基、スルフィド結合およびポリスルフィド結合から選ばれる少なくとも1種を有する硫黄含有化合物を含有する感光性樹脂組成物の樹脂膜を形成する工程(1)と、前記樹脂膜を露光する工程(2)と、露光後の前記樹脂膜を現像してレジストパターン膜を形成する工程(3)と、前記レジストパターン膜を金属膜上に有する基板に対して、酸素含有ガスのプラズマ処理を行う工程(4)と、前記プラズマ処理後、前記レジストパターン膜を型としてメッキ処理を行う工程(5)とを有する、メッキ造形物の製造方法。
 [2]前記感光性樹脂組成物が、酸解離性基を有する重合体(A)および光酸発生剤(B)をさらに含有する、前記[1]に記載のメッキ造形物の製造方法。
 [3]前記硫黄含有化合物の含有量が、感光性樹脂組成物中に含まれる酸解離性基を有する重合体(A)を含む重合体成分を100質量部として、0.2~2.0質量部である、前記[2]に記載のメッキ造形物の製造方法。
 [4]前記レジストパターン膜の厚さが1~100μmである、前記[1]~[3]のいずれかに記載のメッキ造形物の製造方法。
 [5]前記金属膜が銅膜である、前記[1]~[4]のいずれかに記載のメッキ造形物の製造方法。
 [6]前記メッキ処理が銅メッキ処理である、前記[1]~[5]のいずれかに記載のメッキ造形物の製造方法。
 [7]前記工程(5)の前に、プラズマ処理が施されたレジストパターン膜を金属膜上に有する基板を、酸により洗浄する工程を有する、前記[1]~[6]のいずれかに記載のメッキ造形物の製造方法。
 [8]前記工程(5)の前に、プラズマ処理が施されたレジストパターン膜を金属膜上に有する基板を、過マンガン酸カリウム水溶液または硫酸水溶液により洗浄する工程を有する、前記[1]~[6]のいずれかに記載のメッキ造形物の製造方法。
 本発明によれば、メッキ造形物を良好に製造することができるメッキ造形物の製造方法を提供することができる。
図1は、フッティングを説明する図である。
 以下、本発明を実施するための形態について説明する。
 〔メッキ造形物の製造方法〕
 本発明のメッキ造形物の製造方法は、
 金属膜を有する基板の前記金属膜上に、メルカプト基、スルフィド結合およびポリスルフィド結合から選ばれる少なくとも1種を有する硫黄含有化合物(以下「化合物(C)」ともいう)を含有する感光性樹脂組成物の樹脂膜を形成する工程(1)と、
 前記樹脂膜を露光する工程(2)と、
 露光後の前記樹脂膜を現像してレジストパターン膜を形成する工程(3)と、
 前記レジストパターン膜を金属膜上に有する基板に対して、酸素含有ガスのプラズマ処理を行う工程(4)と、
 前記プラズマ処理後、前記レジストパターン膜を型としてメッキ処理を行う工程(5)と
を有する。
 本発明のメッキ造形物の製造方法によれば、金属膜に対する接着性が高いレジストパターン膜を形成でき、このレジストパターン膜を型としてメッキ造形物を良好に製造することができる。
 本発明が前記効果を発現する理由は、以下のように推測される。
 感光性樹脂組成物に化合物(C)を含有させることにより、前記感光性樹脂組成物から形成されるレジストパターン膜と金属膜との接着性を向上させることができる。化合物(C)に含まれるメルカプト基、スルフィド結合またはポリスルフィド結合が、金属膜に対するレジストパターン膜の接着性の向上に寄与していると考えられる。
 前記レジストパターン膜を金属膜上に有する基板に対して、酸素含有ガスを用いたプラズマ処理を行うことで、金属膜から剥がれ難く、形状良好なメッキ造形物を製造することができる。前記製造方法において、前記現像後、レジストパターン膜開口部の金属膜表面には、現像で除去されなかった化合物(C)含有膜が形成されていると考えられる。化合物(C)に含まれる硫黄原子は、メッキムラおよび腐食の原因になりえる。そこで、レジストパターン膜形成後、メッキ処理前に、レジストパターン膜開口部の金属膜表面の化合物(C)含有膜をプラズマ処理により除去することで、金属膜表面とメッキ液との親和性を高めることができ、メッキ処理を良好に行える。
 なお、以上の説明は推測であって、本発明を何ら限定するものではない。
 [工程(1)]
 工程(1)では、金属膜を有する基板の前記金属膜上に、化合物(C)を含有する感光性樹脂組成物の樹脂膜を形成する。
 前記基板としては、例えば、半導体基板、ガラス基板が挙げられる。基板の形状には特に制限はなく、表面形状は平板状および凸凹状が挙げられ、基板の形状としては円形および正方形が挙げられる。また、基板の大きさに制限はない。
 前記金属膜としては、例えば、アルミニウム、銅、銀、金およびパラジウム等の金属、ならびに前記金属を含む2種以上の合金を含む膜が挙げられ、銅膜、すなわち銅および/または銅合金を含む膜が好ましい。金属膜の厚さは、通常、100~10,000Å、好ましくは500~2,000Åである。金属膜は、通常、前記基板の表面に設けられている。金属膜は、スパッタ法等の方法により形成することができる。
 前記樹脂膜は、通常、金属膜を有する基板の前記金属膜上に前記感光性樹脂組成物を塗布して形成される。前記組成物の塗布方法としては、例えば、スピンコート法、ロールコート法、スクリーン印刷法、アプリケーター法が挙げられ、これらの中でもスピンコート法、スクリーン印刷法が好ましい。
 前記感光性樹脂組成物を塗布した後、有機溶剤を揮発させる等の目的のため、塗布された当該組成物に対して加熱処理を行うことができる。前記加熱処理の条件は、通常、50~200℃で0.5~20分間である。
 前記樹脂膜の厚さは、通常、1~100μm、好ましくは5~80μmである。
 以下、工程(1)で用いる感光性樹脂組成物について説明する。前記感光性樹脂組成物は、メルカプト基、スルフィド結合およびポリスルフィド結合から選ばれる少なくとも1種を有する化合物(C)を含有する。
 本明細書において、ポリスルフィド結合とは、2以上の硫黄原子間で形成される結合を意味し、例えば、ジスルフィド結合(-S-S-)、トリスルフィド結合(-S-S-S-)が挙げられる。ポリスルフィド結合における硫黄原子数は、通常、2以上、好ましくは2~3である。
 化合物(C)の詳細については、<化合物(C)>欄に記載する。
 前記感光性樹脂組成物は、化合物(C)を含有すれば、従来公知の感光性樹脂組成物を用いることができ、また、ポジ型およびネガ型のいずれであってもよいが、ポジ型感光性樹脂組成物が好ましく、ポジ型の化学増幅型感光性樹脂組成物がより好ましい。
 ネガ型感光性樹脂組成物としては、例えば、アルカリ可溶性樹脂、光重合性不飽和二重結合含有化合物(例:(メタ)アクリル化合物)、光ラジカル重合開始剤および化合物(C)を含有する樹脂組成物が挙げられる。アルカリ可溶性樹脂、光重合性不飽和二重結合含有化合物および光ラジカル重合開始剤を含有するネガ型感光性樹脂組成物としては、例えば、特開2015-143813号公報、特開2015-043060号公報、国際公開第2013/084886号に記載された樹脂組成物が挙げられ、例えば、この樹脂組成物に化合物(C)を添加すればよい。前記公報に記載の樹脂組成物は、本明細書に記載されているものとする。
 ポジ型の化学増幅型感光性樹脂組成物(以下「ポジ型組成物」ともいう)としては、例えば、酸解離性基を有する重合体(A)(以下「重合体(A)」ともいう)、光酸発生剤(B)および化合物(C)を含有する樹脂組成物が挙げられる。以下、各成分について説明する。
 本明細書中で例示する各成分、例えば感光性樹脂組成物中の各成分や、重合体(A)中の各構造単位は、特に言及しない限り、それぞれ1種単独で含まれてもよく、2種以上が含まれてもよい。
 <化合物(C)>
 化合物(C)は、メルカプト基、スルフィド結合およびポリスルフィド結合から選ばれる少なくとも1種を有する。一実施態様において、これらの基または結合を有する光酸発生剤(B)を用いる場合は、当該光酸発生剤以外の化合物(C)を選択して使用することができる。
 化合物(C)中のメルカプト基数、スルフィド結合数およびポリスルフィド結合数の合計は、特に限定されないが、通常1~10、好ましくは1~6、より好ましくは2~4である。
 化合物(C)としては、以下に説明する、式(C1)に示す化合物(C1)、式(C2)に示す化合物(C2)、前記化合物(C2)の多量体、式(C3)に示す化合物(C3)が挙げられる。メッキ処理中のレジストパターン膜の基板からの剥がれを抑制できることから、前記化合物(C1)および前記化合物(C2)が好ましく、前記化合物(C2)がより好ましい。
 化合物(C)は、一実施態様において、疎水性が高い傾向にある。化合物(C)の疎水性については、分配係数が指標となる。化合物(C)の分配係数は、好ましくは2~10、より好ましくは3~7である。分配係数は、ClogP法により算出したオクタノール/水分配係数(logP)の値であり、数値が大きいほど疎水性(脂溶性)が高いことを意味する。
 前記ポジ型組成物は、1種又は2種以上の化合物(C)を含有することができる。
 前記ポジ型組成物中の化合物(C)の含有量は、重合体(A)を含む重合体成分100質量部に対して、その含有量の下限としては、通常、0.01質量部、好ましくは0.05質量部、より好ましくは0.1質量部、特に好ましくは0.2質量部であり、その含有量の上限としては、通常、10質量部、好ましくは3.0質量部、より好ましくは2.0質量部、特に好ましくは1.0質量部である。このような態様であると、前記ポジ型組成物は前述した効果をより発揮することができる。例えば化合物(C)の含有量が0.2質量部以上であれば、矩形性がより高いレジストパターン膜を形成できる傾向にある。また、例えば化合物(C)の含有量が2.0質量部以下であれば、金属膜を有する基板に対するメッキ造形物の密着性がより高くなる傾向にある。
 ≪化合物(C1)≫
 化合物(C1)は、式(C1)に示す化合物である。
Figure JPOXMLDOC01-appb-C000001
 式(C1)中、R31は、それぞれ独立に1価の炭化水素基、または前記1価の炭化水素基中の少なくとも1つの水素原子をメルカプト基に置換した基(以下「メルカプト置換基」ともいう)である。pは、1以上の整数、好ましくは1~4の整数、より好ましくは2~3の整数である。例えばpが3の場合、化合物(C1)はトリスルフィド結合を有する。pが1である場合は、少なくとも1つのR31は前記1価の炭化水素基中の少なくとも1つの水素原子をメルカプト基に置換した基であることが好ましい。
 R31の1価の炭化水素基は、通常、炭素数1~12の1価の炭化水素基である。前記1価の炭化水素基としては、例えば、アルキル基、アリール基、アリールアルキル基が挙げられる。
 R31のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、ペンチル基、デシル基等の炭素数1~10のアルキル基が挙げられる。
 R31のアリール基としては、例えば、フェニル基、メチルフェニル基、ナフチル基等の炭素数6~10のアリール基が挙げられる。
 R31のアリールアルキル基としては、例えば、ベンジル基、フェネチル基等の炭素数7~12のアリールアルキル基が挙げられる。
 メルカプト置換基としては、例えば、4-メルカプトフェニル基が挙げられる。
 化合物(C1)において、スルフィド結合(p=1の場合)、ポリスルフィド結合(p=2以上の整数の場合)またはメルカプト基(R31がメルカプト置換基の場合)は、炭化水素構造に結合している。このため、化合物(C1)は疎水性が高くなっていると推測される。
 化合物(C1)としては、例えば、下記式(C1-1)~(C1-3)に示す化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 ≪化合物(C2)およびその多量体≫
 化合物(C2)は、式(C2)に示す化合物である。
Figure JPOXMLDOC01-appb-C000003
 式(C2)中の各記号の意味は以下のとおりである。
 R32は、2価の炭化水素基であり、好ましくはアルカンジイル基、アリーレン基またはアリーレンアルカンジイル基であり、これらの中では、メッキ造形物を良好に製造することができることから、アルカンジイル基がより好ましい。
 R33は、2価の炭化水素基、または前記2価の炭化水素基中の少なくとも1つの-CH2-基(両末端を除く)を-S-もしくは-O-に置換した基であり、好ましくはアルカンジイル基、前記アルカンジイル基中の少なくとも1つの-CH2-基(両末端を除く)を-S-もしくは-O-に置換した基(以下「置換アルカンジイル基」ともいう)、アリーレン基またはアリーレンアルカンジイル基であり、これらの中では、メッキ造形物を良好に製造することができることから、アルカンジイル基がより好ましい。
 前記アルカンジイル基の炭素数は、通常、1~12、好ましくは2~12である。前記アルカンジイル基としては、例えば、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、オクタン-1,8-ジイル基、デカン-1,10-ジイル基、ドデカン-1,12-ジイル基等の直鎖状アルカンジイル基;1-メチルプロパン-1,3-ジイル基、2-メチルプロパン-1,3-ジイル基、1-メチルブタン-1,4-ジイル基、2-メチルブタン-1,4-ジイル基等の分岐状アルカンジイル基が挙げられる。これらの中でも、直鎖状アルカンジイル基が好ましい。
 置換アルカンジイル基としては、例えば、-CH2-CH2-S-CH2-CH2-で表される基、-CH2-CH2-O-CH2-CH2-O-CH2-CH2-で表される基が挙げられる。
 前記アリーレン基としては、例えば、フェニレン基、メチルフェニレン基、ナフチレン基等の炭素数6~10のアリーレン基が挙げられる。
 前記アリーレンアルカンジイル基は、1つ以上のアリーレン基と1つ以上のアルカンジイル基とが任意の順序で結合した2価の基である。各々のアリーレン基およびアルカンジイル基としては、上記した具体例が挙げられる。
 R34は、グリコールウリル環構造またはイソシアヌル環構造を示す。なお、グリコールウリル環構造およびイソシアヌル環構造は、疎水性を低下させうる結合を有しているが、その構造対称性が高いため、化合物(C2)の疎水性を悪化させるほどではないと推測される。
 mは、1または0である。
 qは、1~4の整数である。R34がグリコールウリル環構造である場合、qは1~4の整数である。R34がイソシアヌル環構造である場合、qは1~3の整数である。qが2以上の整数の場合、式(C2)中の-(R32-S)m-R33-SHで表される基は同一でも異なってもよい。
 化合物(C2)において、メルカプト基またはスルフィド結合(mが1の場合)は、炭化水素構造、または炭化水素構造において一部に-S-もしくは-O-を有する構造に結合している。このため、化合物(C2)は疎水性が高くなっていると推測される。
 化合物(C2)としては、式(C2-1)に示す化合物(C2-1)、および式(C2-2)に示す化合物(C2-2)が好ましく、前記化合物(C2-1)がより好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(C2-1)および(C2-2)中、Xは、それぞれ独立に水素原子または式(g2)に示す1価の基である。ただし、式(C2-1)において少なくとも1つのXは式(g2)に示す1価の基であり、好ましくは、全てのXが式(g2)に示す1価の基である。また、式(C2-2)において少なくとも1つのXは式(g2)に示す1価の基であり、好ましくは、全てのXが式(g2)に示す1価の基である。
Figure JPOXMLDOC01-appb-C000005
 式(g2)中、R32、R33およびmは、それぞれ式(C2)中のR32、R33およびmと同義であり、*は、式(C2-1)または(C2-2)中の窒素原子との結合手である。
 化合物(C2-1)としては、例えば、1,3,4,6-テトラキス[2-メルカプトエチル]グリコールウリル、1,3,4,6-テトラキス[3-(2-メルカプトエチルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス[3-(3-メルカプトプロピルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス[3-(4-メルカプトブチルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス[3-(5-メルカプトペンチルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス[3-(6-メルカプトヘキシルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス[3-(8-メルカプトオクチルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス[3-(10-メルカプトデシルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス[3-(12-メルカプトドデシルスルファニル)プロピル]グリコールウリル、1,3,4,6-テトラキス{3-[2-(2-メルカプトエチルスルファニル)エチルスルファニル]プロピル}グリコールウリル、1,3,4,6-テトラキス(3-{2-[2-(2-メルカプトエトキシ)エトキシ]エチルスルファニル}プロピル)グリコールウリルが挙げられる。
 化合物(C2-2)としては、例えば、1,3,5-トリス[2-メルカプトエチル]イソシアヌレート、1,3,5-トリス[3-(2-メルカプトエチルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[3-(3-メルカプトプロピルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[3-(4-メルカプトブチルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[3-(5-メルカプトペンチルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[3-(6-メルカプトヘキシルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[3-(8-メルカプトオクチルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[3-(10-メルカプトデシルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス[3-(12-メルカプトドデシルスルファニル)プロピル]イソシアヌレート、1,3,5-トリス{3-[2-(2-メルカプトエチルスルファニル)エチルスルファニル]プロピル}イソシアヌレート、1,3,5-トリス(3-{2-[2-(2-メルカプトエトキシ)エトキシ]エチルスルファニル}プロピル)イソシアヌレートが挙げられる。
 化合物(C2)は、例えば、特開2016-169174号公報、特開2016-164135号公報、および特開2016-164134号公報に記載された方法により合成することができる。
 化合物(C2)は、多量体を形成していてもよい。前記多量体は、複数の化合物(C2)がメルカプト基のカップリングによりジスルフィド結合を形成することで得られる多量体である。前記多量体は、例えば、化合物(C2)の2~5量体である。
 ≪化合物(C3)≫
 化合物(C3)は、式(C3)に示す化合物である。
Figure JPOXMLDOC01-appb-C000006
 式(C3)中、R35およびR36は、それぞれ独立に水素原子またはアルキル基である。R37は、単結合またはアルカンジイル基である。R38は、炭素原子以外の原子を含んでいてもよいr価の脂肪族基である。rは2~10の整数である。
 R35およびR36のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、ペンチル基、デシル基等の炭素数1~10、好ましくは1~4のアルキル基が挙げられる。R35およびR36としては、一方が水素原子であり他方がアルキル基である組合せが好ましい。
 R37のアルカンジイル基の炭素数は、通常、1~10、好ましくは1~5である。前記アルカンジイル基としては、例えば、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、デカン-1,10-ジイル基等の直鎖状アルカンジイル基;1-メチルプロパン-1,3-ジイル基、2-メチルプロパン-1,3-ジイル基、1-メチルブタン-1,4-ジイル基、2-メチルブタン-1,4-ジイル基等の分岐状アルカンジイル基が挙げられる。これらの中でも、直鎖状アルカンジイル基が好ましい。
 R38は、炭素原子以外の原子を含んでいてもよいr価(2~10価)の脂肪族基である。炭素原子以外の原子としては、例えば、窒素原子、酸素原子、硫黄原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。前記脂肪族基の構造は、直鎖状であってもよく、分岐鎖状であってもよく、環状であってもよく、これらの構造を組み合わせた構造であってもよい。
 前記脂肪族基としては、例えば、炭素数2~10のr価の炭化水素基、炭素数2~10のr価の酸素含有脂肪族基、イソシアヌル環構造を有する炭素数6~10の3価の基が挙げられる。
 化合物(C3)としては、下記式(C3-1)~(C3-4)に示す化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 <重合体(A)>
 重合体(A)は、酸解離性基を有する。
 酸解離性基とは、光酸発生剤(B)から生成する酸の作用により解離可能な基である。前記解離の結果として重合体(A)中にカルボキシ基およびフェノール性水酸基等の酸性官能基が生成する。その結果、重合体(A)のアルカリ性現像液に対する溶解性が変化し、前記ポジ型組成物は、レジストパターン膜を形成することができる。
 重合体(A)は、酸解離性基により保護された酸性官能基を有する。酸性官能基としては、例えば、カルボキシ基、フェノール性水酸基が挙げられる。重合体(A)としては、例えば、カルボキシ基が酸解離性基により保護された(メタ)アクリル樹脂、フェノール性水酸基が酸解離性基により保護されたポリヒドロキシスチレン樹脂が挙げられる。
 重合体(A)のゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量(Mw)は、通常、1,000~500,000、好ましくは3,000~300,000、より好ましくは10,000~100,000、さらに好ましくは20,000~60,000である。
 重合体(A)のMwとゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の数平均分子量(Mn)との比(Mw/Mn)は、通常、1~5、好ましくは1~3である。
 前記ポジ型組成物は、1種又は2種以上の重合体(A)を含有することができる。
 前記ポジ型組成物中の重合体(A)の含有割合は、前記組成物の固形分100質量%中、通常、70~99.5質量%、好ましくは80~99質量%、より好ましくは90~98質量%である。前記固形分とは、後述する有機溶剤以外の全成分をいう。
 ≪構造単位(a1)≫
 重合体(A)は、通常、酸解離性基を有する構造単位(a1)を有する。
 構造単位(a1)としては、例えば、式(a1-10)に示す構造単位、式(a1-20)に示す構造単位が挙げられ、式(a1-10)に示す構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000008
 式(a1-10)および(a1-20)中の各記号の意味は以下のとおりである。
 R11は、水素原子、炭素数1~10のアルキル基、または前記アルキル基中の少なくとも1つの水素原子を、フッ素原子および臭素原子等のハロゲン原子、フェニル基等のアリール基、水酸基、およびアルコキシ基等の別の基に置換した基(以下「置換アルキル基」ともいう)である。
 R12は、炭素数1~10の2価の有機基である。
 Arは、炭素数6~10のアリーレン基である。
 R13は、酸解離性基である。
 mは、0~10の整数、好ましくは0~5、より好ましくは0~3の整数である。
 前記炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、ペンチル基、デシル基が挙げられる。
 前記炭素数1~10の2価の有機基としては、例えば、メチレン基、エチレン基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、デカン-1,10-ジイル基等の炭素数1~10のアルカンジイル基;前記アルカンジイル基中の少なくとも1つの水素原子を、フッ素原子および臭素原子等のハロゲン原子、フェニル基等のアリール基、水酸基、およびアルコキシ基等の別の基に置換した基が挙げられる。
 前記炭素数6~10のアリーレン基としては、例えば、フェニレン基、メチルフェニレン基、ナフチレン基が挙げられる。
 前記酸解離性基としては、酸の作用により解離し、前記解離の結果として重合体(A)中にカルボキシ基およびフェノール性水酸基等の酸性官能基が生成する基が挙げられる。具体的には、式(g1)に示す酸解離性基、ベンジル基が挙げられ、式(g1)に示す酸解離性基が好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(g1)中、Ra1~Ra3は、それぞれ独立にアルキル基、脂環式炭化水素基、または前記アルキル基もしくは前記脂環式炭化水素基中の少なくとも1つの水素原子を、フッ素原子および臭素原子等のハロゲン原子、フェニル基等のアリール基、水酸基、およびアルコキシ基等の別の基に置換した基であり、Ra1およびRa2が相互に結合して、Ra1およびRa2が結合する炭素原子Cとともに脂環構造を形成していてもよい。
 Ra1~Ra3の前記アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、ペンチル基、デシル基等の炭素数1~10のアルキル基が挙げられる。
 Ra1~Ra3の前記脂環式炭化水素基としては、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の単環式飽和環状炭化水素基;シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等の単環式不飽和環状炭化水素基;ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の多環式飽和環状炭化水素基が挙げられる。
 Ra1、Ra2および炭素原子Cにより形成される前記脂環構造としては、例えば、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル等の単環式飽和環状炭化水素構造;シクロブテニル、シクロペンテニル、シクロヘキセニル等の単環式不飽和環状炭化水素構造;ノルボルニル、アダマンチル、トリシクロデシル、テトラシクロドデシル等の多環式飽和環状炭化水素構造が挙げられる。
 式(g1)に示す酸解離性基としては、式(g11)~(g15)に示す基が好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(g11)~(g15)中、Ra4は、それぞれ独立に、メチル基、エチル基、イソプロピル基、n-ブチル基等の炭素数1~10のアルキル基であり、nは、1~4の整数である。式(g11)~(g14)中の各環構造は、炭素数1~10のアルキル基、フッ素原子および臭素原子等のハロゲン原子、水酸基、およびアルコキシ基等の置換基を1つまたは2つ以上有していてもよい。*は結合手を示す。
 構造単位(a1)としては、式(a1-10)および(a1-20)に示す構造単位の他にも、特開2005-208366号公報、特開2000-194127号公報、特開2000-267283号公報、および特開2004-348106号公報に記載のアセタール系酸解離性基を有する構造単位;特開2013-101321号公報に記載のスルトン環を有する構造単位;特開2000-214587号公報、および特開2000-199960号公報等に記載の架橋型酸解離性基を有する構造単位が挙げられる。
 上記公報に記載の構造単位は、本明細書に記載されているものとする。
 重合体(A)は、1種又は2種以上の構造単位(a1)を有することができる。
 重合体(A)中の構造単位(a1)の含有割合は、通常、10~50モル%、好ましくは15~45モル%、より好ましくは20~40モル%である。
 なお、本明細書において、重合体(A)中の各構造単位の含有割合は、重合体(A)を構成する全ての構造単位の合計を100モル%とした場合の値である。前記各構造単位は、通常、重合体(A)合成時の単量体に由来する。各構造単位の含有割合は、1H-NMRにより測定することができる。
 ≪構造単位(a2)≫
 重合体(A)は、アルカリ性現像液への溶解性を促進する基(以下「溶解性促進基」ともいう)を有する構造単位(a2)をさらに有することができる。重合体(A)が構造単位(a2)を有することで、前記ポジ型組成物から形成される樹脂膜の解像性、感度および焦点深度等のリソ性を調節することができる。
 構造単位(a2)としては、例えば、フェノール性水酸基、カルボキシ基、アルコール性水酸基、ラクトン構造、環状カーボネート構造、スルトン構造およびフッ素アルコール構造から選ばれる少なくとも1種の基または構造を有する構造単位(ただし、構造単位(a1)に該当するものを除く)が挙げられる。これらの中でも、メッキ造形物形成時のメッキからの押し込みに対して強いレジストパターン膜を形成できることから、フェノール性水酸基を有する構造単位が好ましい。
 フェノール性水酸基を有する構造単位としては、例えば、2-ヒドロキシスチレン、4-ヒドロキシスチレン、4-イソプロペニルフェノール、4-ヒドロキシ-1-ビニルナフタレン、4-ヒドロキシ-2-ビニルナフタレン、4-ヒドロキシフェニル(メタ)アクリレート等のヒドロキシアリール基を有する単量体由来の構造単位が挙げられる。ヒドロキシアリール基としては、例えば、ヒドロキシフェニル基、メチルヒドロキシフェニル基、ジメチルヒドロキシフェニル基、ジクロロヒドロキシフェニル基、トリヒドロキシフェニル基、テトラヒドロキシフェニル基等のヒドロキシフェニル基;ヒドロキシナフチル基、ジヒドロキシナフチル基等のヒドロキシナフチル基が挙げられる。
 カルボキシ基を有する構造単位としては、例えば、(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、ケイ皮酸、2-カルボキシエチル(メタ)アクリレート、2-カルボキシプロピル(メタ)アクリレート、3-カルボキシプロピル(メタ)アクリレート等の単量体由来の構造単位、および特開2002-341539号公報に記載の構造単位が挙げられる。
 アルコール性水酸基を有する構造単位としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-(メタ)アクリロイロオキシ-4-ヒドロキシテトラヒドロフラン等の単量体由来の構造単位、および特開2009-276607号公報に記載の構造単位が挙げられる。
 重合体(A)は、1種又は2種以上の構造単位(a2)を有することができる。
 重合体(A)中の構造単位(a2)の含有割合は、通常、10~80モル%、好ましくは20~65モル%、より好ましくは25~60モル%である。構造単位(a2)の含有割合が前記範囲内であれば、アルカリ性現像液に対する溶解速度を上げることができ、その結果、前記ポジ型組成物の厚膜での解像性を向上させることができる。
 重合体(A)は、構造単位(a1)を有する重合体と同一のまたは異なる重合体中に構造単位(a2)を有することができるが、同一の重合体中に構造単位(a1)~(a2)を有することが好ましい。
 ≪構造単位(a3)≫
 重合体(A)は、構造単位(a1)~(a2)以外の他の構造単位(a3)をさらに有することができる。構造単位(a3)としては、例えば、アルキル(メタ)アクリレート、アルコキシアルキル(メタ)アクリレート、アルコキシ(ポリ)アルキレングリコール(メタ)アクリレート等の脂肪族(メタ)アクリル酸エステル化合物、脂環式(メタ)アクリル酸エステル化合物、芳香環含有(メタ)アクリル酸エステル化合物、スチレン系ビニル化合物、不飽和ニトリル化合物、不飽和アミド化合物、不飽和イミド化合物等の単量体に由来する構造単位が挙げられる。
 重合体(A)は、1種又は2種以上の構造単位(a3)を有することができる。
 重合体(A)中の構造単位(a3)の含有割合は、通常、40モル%以下である。
 重合体(A)は、構造単位(a1)および/または構造単位(a2)を有する重合体と同一のまたは異なる重合体中に構造単位(a3)を有することができるが、同一の重合体中に構造単位(a1)~(a3)を有することが好ましい。
 <光酸発生剤(B)>
 光酸発生剤(B)は、露光により酸を発生する化合物である。この酸の作用により、重合体(A)中の酸解離性基が解離して、カルボキシ基およびフェノール性水酸基等の酸性官能基が生成する。その結果、前記ポジ型組成物から形成された樹脂膜の露光部がアルカリ性現像液に易溶性となり、ポジ型のレジストパターン膜を形成することができる。
 光酸発生剤(B)としては、例えば、特開2004-317907号公報、特開2014-157252号公報、特開2002-268223号公報、特開2017-102260号公報、特開2016-018075号公報、および特開2016-210761号公報に記載の化合物が挙げられる。これらは本明細書に記載されているものとする。光酸発生剤(B)としては、具体的には、オニウム塩化合物、ハロゲン含有化合物、スルホン化合物、スルホン酸化合物、スルホンイミド化合物、ジアゾメタン化合物が挙げられる。
 前記ポジ型組成物は、1種又は2種以上の光酸発生剤(B)を含有することができる。
 前記ポジ型組成物中の光酸発生剤(B)の含有量は、重合体(A)100質量部に対して、通常、0.1~20質量部、好ましくは0.3~15質量部、より好ましくは0.5~10質量部である。光酸発生剤(B)の含有量が前記範囲内であると、解像性により優れたレジストパターン膜が得られる傾向にある。
 <その他成分>
 前記ポジ型組成物は、その他成分をさらに含有することができる。
 前記その他成分としては、例えば、光酸発生剤(B)から露光により生成した酸が樹脂膜中で拡散することを制御するクエンチャー(例えば、後述する式(D-1)または(D-2)に示す化合物)、前記ポジ型組成物の塗布性、消泡性等を改良する作用を示す界面活性剤、露光光を吸収して光酸発生剤の酸発生効率を向上させる増感剤、前記ポジ型組成物から形成した樹脂膜のアルカリ性現像液への溶解速度を制御するアルカリ可溶性樹脂や低分子フェノール化合物、露光時の散乱光の未露光部への回り込みによる光反応を阻止する紫外線吸収剤、前記ポジ型組成物の保存安定性を高める熱重合禁止剤、その他、酸化防止剤、接着助剤、無機フィラーが挙げられる。前述した重合体成分には、重合体(A)の他、アルカリ可溶性樹脂等が含まれえる。
 <有機溶剤>
 前記ポジ型組成物は、有機溶剤をさらに含有することができる。有機溶剤は、例えば、前記ポジ型組成物中に含まれる各成分を均一に混合するために用いられる成分である。
 有機溶剤としては、例えば、アルコール溶剤、エステル溶剤、ケトン溶剤、アルキレングリコールジアルキルエーテル、アルキレングリコールモノアルキルエーテルアセテートが挙げられる。
 前記ポジ型組成物は、1種又は2種以上の有機溶剤を含有することができる。
 前記ポジ型組成物中の有機溶剤の含有割合は、通常、40~90質量%である。
 <ポジ型組成物の製造>
 前記ポジ型組成物は、前述した各成分を均一に混合することにより製造することができる。また、異物を取り除くために、前述した各成分を均一に混合した後、得られた混合物をフィルターで濾過することができる。
 [工程(2)]
 工程(2)では、工程(1)で形成した樹脂膜を露光する。
 前記露光は、通常、所定のマスクパターンを有するフォトマスクを介して、等倍投影露光または縮小投影露光で、樹脂膜に選択的に行う。露光光としては、例えば、波長150~600nm、好ましくは波長200~500nmの紫外線または可視光線が挙げられる。露光光の光源としては、例えば、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、レーザーが挙げられる。露光量は、露光光の種類、感光性樹脂組成物の種類、および樹脂膜の厚さによって適宜選択でき、通常、100~20,000mJ/cm2である。
 前記樹脂膜に対する露光後、現像前に、前記樹脂膜に対して加熱処理を行うことができる。前記加熱処理の条件は、通常、70~180℃で0.5~10分間である。前記ポジ型組成物を用いる場合、前記加熱処理により、重合体(A)において酸解離性基の酸による解離反応を促進することができる。
 [工程(3)]
 工程(3)では、工程(2)で露光した樹脂膜を現像して、レジストパターン膜を形成する。現像は、通常、アルカリ性現像液を用いて行う。現像方法としては、例えば、シャワー法、スプレー法、浸漬法、液盛り法、パドル法が挙げられる。現像条件は、通常、10~30℃で1~30分間である。
 アルカリ性現像液としては、例えば、アルカリ性物質を1種または2種以上含有する水溶液が挙げられる。アルカリ性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムハイドロオキサイド、テトラエチルアンモニウムハイドロオキサイド、コリン、ピロール、ピペリジンが挙げられる。アルカリ性現像液におけるアルカリ性物質の濃度は、通常、0.1~10質量%である。アルカリ性現像液は、例えば、メタノール、エタノール等の有機溶剤および/または界面活性剤をさらに含有することができる。
 現像により形成されたレジストパターン膜を水等により洗浄することができる。その後、前記レジストパターン膜をエアーガンまたはホットプレートを用いて乾燥することができる。
 以上のようにして、基板の金属膜上に、メッキ造形物を形成するための型となるレジストパターン膜を形成することができる。
 レジストパターン膜の厚さは、通常、1~100μm、好ましくは5~80μmである。レジストパターン膜における開口部(例えばポジ型の場合、現像で除去された部分)の直径は、通常、0.5~10000μm、好ましくは0.8~1000μmである。
 レジストパターン膜の開口部の形状としては、メッキ造形物の種類に即した形状を選択することができる。メッキ造形物が配線の場合、パターンの形状は例えばラインアンドスペースパターンであり、メッキ造形物がバンプの場合、前記開口部の形状は例えば立方体形状のホールパターンである。
 [工程(4)]
 工程(4)において酸素含有ガスを用いたプラズマ処理(前記基板の表面処理)を行うことにより、金属膜表面とメッキ液との親和性を高めることができる。工程(4)では、例えば、レジストパターン膜を金属膜上に有する基板を真空状態にした装置内に入れ、酸素のプラズマを放出させて、前記基板の表面処理を行う。プラズマ処理条件は、電源出力が通常、50~300Wであり、酸素含有ガスの流量が通常、20~150mLであり、装置内圧力が通常、10~30Paであり、処理時間が通常、0.5~30分である。酸素含有ガスは、酸素の他、例えば水素、アルゴンおよび四フッ化メタンから選ばれる1種または2種以上を含有することができる。前記プラズマ処理により表面処理された基板を水等により洗浄することができる。
 工程(4)において酸素含有ガスを用いたプラズマ処理を行うことにより、金属膜表面とメッキ液との親和性を高めることができるのは以下の理由によるものと推測される。
 メッキ処理前に金属膜表面に付着した有機物を除去する処理としては、例えば過マンガン酸カリウム水溶液や、硫酸水溶液等を用いたウェット処理、酸素含有ガスを用いたプラズマ処理や、オゾンと紫外線を用いた処理等のドライ処理が挙げられる。ところで化合物(C)含有膜は疎水性膜であり、また、化合物(C)は疎水性であると考えられることから、過マンガン酸カリウム水溶液や、硫酸水溶液等の水溶液は、化合物(C)含有膜や化合物(C)とは充分にはなじまず、その結果、ウェット処理では化合物(C)含有膜を良好に除去することができず、金属膜表面とメッキ液との親和性を高めることができなかったと推定される。
 また、ドライ処理の中でもオゾンと紫外線を用いた処理の場合、オゾンは膜の奥深くでの反応が主反応となるため、薄膜で金属膜表面にある化合物(C)含有膜と良好に反応できなかったものと推定される。
 一方、酸素含有ガスを用いたプラズマ処理は、膜表面での反応が主反応となるため、薄膜で金属膜表面にある化合物(C)含有膜と効率的に反応し、化合物(C)含有膜を良好に除去でき、その結果、金属膜表面とメッキ液との親和性を高めることができたものと推定される。
 なお、以上の説明は推測であって、本発明を何ら限定するものではない。
 [工程(5)]
 工程(5)では、前記プラズマ処理後、前記レジストパターン膜を型として、前記レジストパターン膜によって画定される開口部(例えばポジ型の場合、現像で除去された部分)に、メッキ処理によりメッキ造形物を形成する。
 メッキ造形物としては、例えば、バンプ、配線が挙げられる。メッキ造形物は、例えば、銅、金、ニッケル等の導体からなる。メッキ造形物の厚さは、その用途によって異なるが、例えば、バンプの場合、通常、5~100μm、好ましくは10~80μm、更に好ましくは20~60μmであり、配線の場合、通常、1~30μm、好ましくは3~20μm、更に好ましくは5~15μmである。
 メッキ処理は、例えば、メッキ液を用いたメッキ液処理が挙げられる。メッキ液としては、例えば、銅メッキ液、金メッキ液、ニッケルメッキ液、はんだメッキ液が挙げられ、具体的には、硫酸銅またはピロリン酸銅等を含む銅メッキ液、シアン化金カリウムを含む金メッキ液、硫酸ニッケルまたは炭酸ニッケルを含むニッケルメッキ液が挙げられる。これらの中でも、銅メッキ液が好ましい。メッキ液は、通常、水およびアルコール等の親水性溶剤を含有する。
 メッキ処理としては、具体的には、電解メッキ処理、無電解メッキ処理、溶融メッキ処理等の湿式メッキ処理が挙げられる。ウエハーレベルでの加工におけるバンプや配線を形成する場合、通常、電解メッキ処理により行われる。
 電解メッキ処理の場合、スパッタ法または無電解メッキ処理によりレジストパターン膜の内壁に形成したメッキ膜をシード層として用いることができ、また、基板上の前記金属膜をシード層として用いることもできる。また、シード層を形成する前にバリア層を形成してもよく、シード層をバリア層として用いることもできる。
 電解メッキ処理の条件は、メッキ液の種類等により適宜選択できる。銅メッキ液の場合、温度が、通常、10~90℃、好ましくは20~70℃であり、電流密度が、通常、0.3~30A/dm2、好ましくは0.5~20A/dm2である。ニッケルメッキ液の場合、温度が、通常、20~90℃、好ましくは40~70℃であり、電流密度が、通常、0.3~30A/dm2、好ましくは0.5~20A/dm2である。
 メッキ処理は、異なるメッキ処理を順次行うことができる。例えば、はじめに銅メッキ処理を行った後、ニッケルメッキ処理を行い、次に溶融はんだメッキ処理を行うことで、はんだ銅ピラーバンプを形成することができる。
 [他の工程]
 本発明のメッキ造形物の製造方法は、工程(4)の後、工程(5)の前に、デスミア処理を行う工程を有することができる。前記デスミア処理としては、酸素含有ガスを用いたプラズマ処理を除く公知のデスミア処理が挙げられる。前記デスミア処理としては、例えば、過マンガン酸カリウム水溶液、硫酸水溶液等の酸性水溶液、水酸化ナトリウム水溶液、水酸化テトラメチルアンモニウム水溶液等のアルカリ性水溶液を用いたウェット処理、すなわちこれらの水溶液を用いた洗浄や、オゾンと紫外線を用いたドライ処理が挙げられる。化合物(C)は金属膜表面との親和性が高く、ポジ型組成物の組成や各成分の含有量、プラズマ処理の条件等によってはごく微量の化合物(C)が金属膜表面に残存する可能性がある。その様な場合には本工程を行うことにより、メッキ造形物の密着強度の向上や、メッキ液の汚染の抑制が期待できるなど、本発明の効果を向上させることができる場合がある。プラズマ処理後に残存したごく微量の化合物(C)であれば、上述した水溶液が化合物(C)とは充分にはなじまないという点は顕在化しないと考えられる。
 本発明のメッキ造形物の製造方法は、工程(5)の後に、前記レジストパターン膜を除去する工程をさらに有することができる。この工程は、具体的には、残存するレジストパターン膜を剥離して除去する工程であり、例えば、レジストパターン膜およびメッキ造形物を有する基板を剥離液に浸漬する方法が挙げられる。剥離液の温度および浸漬時間は、通常、20~80℃で1~10分間である。
 剥離液としては、例えば、テトラメチルアンモニウムハイドロオキサイド、ジメチルスルホキシドおよびN,N-ジメチルホルムアミドから選ばれる少なくとも1種を含有する剥離液が挙げられる。
 本発明のメッキ造形物の製造方法は、メッキ造形物を形成した領域以外の前記金属膜を、例えば、ウェットエッチング法等の方法により除去する工程をさらに有することができる。
 以下、本発明を実施例に基づいてさらに具体的に説明するが、本発明はこれら実施例に限定されない。
 <重合体の重量平均分子量(Mw)>
 下記条件下でゲルパーミエーションクロマトグラフィー法にて重合体の重量平均分子量(Mw)を測定した。
・GPC装置:東ソー株式会社製、装置名「HLC-8220-GPC」
・カラム:東ソー株式会社製カラムのTSK-MおよびTSK2500を直列に接続
・溶媒:テトラヒドロフラン
・温度:40℃
・検出方法:屈折率法
・標準物質:ポリスチレン
 [合成例1および2]
 2,2'-アゾビス(イソ酪酸メチル)をラジカル重合開始剤として用いたラジカル重合により、表1に示す構造単位およびその含有割合を有する重合体(A-1)および(A-2)を製造した。表1中に示す構造単位の詳細を下記式(a1-1)~(a1-4)、(a2-1)~(a2-2)、(a3-1)~(a3-2)に示す。なお、表1中のa1-1~a3-2欄の数値の単位はモル%である。各構造単位の含有割合は、1H-NMRにより測定した。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-T000012
 <感光性樹脂組成物の製造>
 [製造例1~11]感光性樹脂組成物の製造
 下記表2に示す種類および量の各成分を均一に混合することにより、製造例1~11の感光性樹脂組成物を製造した。重合体成分以外の各成分の詳細は以下のとおりである。なお、表2中の数値の単位は質量部である。
B-1:下記式(B-1)に示す化合物
B-2:下記式(B-2)に示す化合物
Figure JPOXMLDOC01-appb-C000013
C-1:ジメチルトリスルフィド
C-2:4,4'-チオビスベンゼンチオール
C-3:下記式(C-3)に示す化合物
C-4:下記式(C-4)に示す化合物
C-5:下記式(C-5)に示す化合物
Figure JPOXMLDOC01-appb-C000014
D-1:下記式(D-1)に示す化合物
D-2:下記式(D-2)に示す化合物
Figure JPOXMLDOC01-appb-C000015
E-1:フッ素系界面活性剤
    (商品名「NBX-15」、ネオス株式会社製)
F-1:γ-ブチロラクトン
F-2:シクロヘキサノン
F-3:プロピレングリコールモノメチルエーテルアセテート
Figure JPOXMLDOC01-appb-T000016
 <メッキ造形物の製造>
 [実施例1A~11A、実施例1D、比較例1B~5B、比較例1C~11C]
 銅スパッタ膜を備えてなるシリコンウエハ基板の銅スパッタ膜上にスピンコーターを用いて、製造例1~11の感光性樹脂組成物を塗布し、120℃で60秒間加熱し、膜厚6μmの塗膜を形成した。前記塗膜を、ステッパー(ニコン社製、型式「NSR-i10D」)を用い、パターンマスクを介して、露光した。露光後の塗膜を、90℃で60秒間加熱し、次いで、2.38質量%のテトラメチルアンモニウムハイドロオキサイド水溶液に180秒間浸漬して現像した。その後、流水洗浄し、窒素ブローして、基板の銅スパッタ膜上にレジストパターン膜(ライン幅:2μm、ライン幅/スペース幅=1/1)を形成した。このレジストパターン膜を形成した基板を、「パターニング基板」という。
 得られたパターニング基板について、レジストパターン膜と銅スパッタ膜との界面の状態を観察した。得られた線幅2μmの1L(ライン)1S(スペース)の断面を、走査型電子顕微鏡を用いて観察し、図1に示す幅Lcと幅Ldを測定して、下記基準で評価した。なお図1において、パターンの裾部は実際より誇張されている。
 Lc/Ld<0.005:「フッティング」が「◎」
 0.005≦Lc/Ld<0.05:「フッティング」が「〇」
 0.05≦Lc/Ld<0.1:「フッティング」が「△」
 0.1≦Lc/Ld  :「フッティング」が「×」
 評価結果を表3に示す。
 前記レジストパターン膜を型として、電解メッキ処理を行い、メッキ造形物を製造した。電解メッキ処理の前処理として、下記に示す前処理A~Dの処理を行った。前処理後のパターニング基板を銅メッキ液(製品名「MICROFAB SC-40」、マクダーミッド・パフォーマンス・ソリューションズ・ジャパン株式会社製)1L中に浸漬し、メッキ浴温度25℃、電流密度8.5A/dm2に設定して、2分10秒間電界メッキ処理を行い、メッキ造形物を製造した。
 前処理A:酸素プラズマによる処理(出力100W、酸素流量100ミリリットル、処理時間60秒間)を行い、次いで水洗処理。
 前処理B:10質量%硫酸水溶液に23℃で60秒間浸漬し、次いで水洗処理。
 前処理C:前処理なし。
 前処理D:酸素プラズマによる処理(出力100W、酸素流量100ミリリットル、処理時間60秒間)を行い、次いで1質量%硫酸水溶液に23℃で120秒間浸漬した後、水洗処理。
 製造したメッキ造形物の状態を電子顕微鏡で観察し下記評価基準にて評価した。評価結果を下記表3に示す。
 AA:剥がれがなく、矩形なメッキ造形物を形成した。
 A :メッキ造形物の金属表面界面における形状が細くなっていたが、
    剥がれはない。
 B :矩形なメッキ造形物が形成されたが、
    50%未満の領域で剥がれが起こっている。
 BB:メッキ造形物が、その50%以上が基板から剥がれている。
Figure JPOXMLDOC01-appb-T000017
 [メッキ液汚染]
 実施例1Aおよび実施例1Dについて、銅メッキ液を2つ用意し、<メッキ造形物の製造>に従い、実施例1Aおよび実施例1Dと同様の条件でそれぞれ50枚のパターニング基板にメッキ造形物を繰り返し形成した。
 2つの銅メッキ液について、メッキを行う前と、50枚目のメッキ終了後のメッキ液について、以下の基準で、メッキ液の汚染性を評価した。なお、めっき液の伝導度は、(株)堀場製作所製、ポータブル型 電気伝導率計  ES-71で測定した。
 ・実施例1Dの方法:メッキ前後のメッキ液の伝導度変化が10%未満
           (メッキ汚染なし)
 ・実施例1Aの方法:メッキ前後のメッキ液の伝導度変化が10%以上
           (メッキ汚染あり)
10…金属膜を有する基板
20…レジストパターン膜
30…フッティング

Claims (8)

  1.  金属膜を有する基板の前記基板上に、メルカプト基、スルフィド結合およびポリスルフィド結合から選ばれる少なくとも1種を有する硫黄含有化合物を含有する感光性樹脂組成物の樹脂膜を形成する工程(1)と、
     前記樹脂膜を露光する工程(2)と、
     露光後の前記樹脂膜を現像してレジストパターン膜を形成する工程(3)と、
     前記レジストパターン膜を金属膜上に有する基板に対して、酸素含有ガスのプラズマ処理を行う工程(4)と、
     前記プラズマ処理後、前記レジストパターン膜を型としてメッキ処理を行う工程(5)と
    を有する、メッキ造形物の製造方法。
  2.  前記感光性樹脂組成物が、酸解離性基を有する重合体(A)および光酸発生剤(B)をさらに含有する、請求項1に記載のメッキ造形物の製造方法。
  3.  前記硫黄含有化合物の含有量が、感光性樹脂組成物中に含まれる酸解離性基を有する重合体(A)を含む重合体成分を100質量部として、0.2~2.0質量部である、請求項2に記載のメッキ造形物の製造方法。
  4.  前記レジストパターン膜の厚さが1~100μmである、請求項1~3のいずれか1項に記載のメッキ造形物の製造方法。
  5.  前記金属膜が銅膜である、請求項1~4のいずれか1項に記載のメッキ造形物の製造方法。
  6.  前記メッキ処理が銅メッキ処理である、請求項1~5のいずれか1項に記載のメッキ造形物の製造方法。
  7.  前記工程(5)の前に、プラズマ処理が施されたレジストパターン膜を金属膜上に有する基板を、酸により洗浄する工程を有する、請求項1~6のいずれか1項に記載のメッキ造形物の製造方法。
  8.  前記工程(5)の前に、プラズマ処理が施されたレジストパターン膜を金属膜上に有する基板を、過マンガン酸カリウム水溶液または硫酸水溶液により洗浄する工程を有する、請求項1~6のいずれか1項に記載のメッキ造形物の製造方法。
PCT/JP2019/047828 2018-12-12 2019-12-06 メッキ造形物の製造方法 WO2020121968A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217017176A KR20210101220A (ko) 2018-12-12 2019-12-06 도금 조형물의 제조 방법
JP2020560047A JP7424313B2 (ja) 2018-12-12 2019-12-06 メッキ造形物の製造方法
US17/298,769 US20220035246A1 (en) 2018-12-12 2019-12-06 Method for producing plated formed product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018232869 2018-12-12
JP2018-232869 2018-12-12

Publications (1)

Publication Number Publication Date
WO2020121968A1 true WO2020121968A1 (ja) 2020-06-18

Family

ID=71075580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047828 WO2020121968A1 (ja) 2018-12-12 2019-12-06 メッキ造形物の製造方法

Country Status (4)

Country Link
US (1) US20220035246A1 (ja)
JP (1) JP7424313B2 (ja)
KR (1) KR20210101220A (ja)
WO (1) WO2020121968A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095437A1 (ja) * 2019-11-12 2021-05-20 東京応化工業株式会社 化学増幅型感光性組成物の製造方法、化学増幅型感光性組成物調製用プレミックス液、化学増幅型感光性組成物、感光性ドライフィルムの製造方法及びパターン化されたレジスト膜の製造方法
WO2023162552A1 (ja) * 2022-02-24 2023-08-31 東京応化工業株式会社 化学増幅型ポジ型感光性組成物、鋳型付き基板の製造方法、及びめっき造形物の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008972A (ja) * 2008-06-30 2010-01-14 Jsr Corp メッキ造形物製造用ポジ型感放射線性樹脂組成物、転写フィルムおよびメッキ造形物の製造方法
JP2011075864A (ja) * 2009-09-30 2011-04-14 Shin-Etsu Chemical Co Ltd レジストパターン形成方法及びメッキパターン形成方法
JP2014106306A (ja) * 2012-11-26 2014-06-09 Tokyo Ohka Kogyo Co Ltd メッキ造形物の形成方法
JP2016194691A (ja) * 2015-03-31 2016-11-17 住友化学株式会社 レジスト組成物及びレジストパターンの製造方法
WO2019187591A1 (ja) * 2018-03-27 2019-10-03 東京応化工業株式会社 めっき造形物の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI262041B (en) * 2003-11-14 2006-09-11 Hitachi Chemical Co Ltd Formation method of metal layer on resin layer, printed wiring board, and production method thereof
JP4670480B2 (ja) 2005-05-26 2011-04-13 Jsr株式会社 ポジ型感放射線性樹脂組成物、転写フィルムおよびメッキ造形物の製造方法
US8334203B2 (en) * 2010-06-11 2012-12-18 International Business Machines Corporation Interconnect structure and method of fabricating
JP5440515B2 (ja) * 2011-01-14 2014-03-12 信越化学工業株式会社 レジスト材料及びパターン形成方法
US8841062B2 (en) 2012-12-04 2014-09-23 Az Electronic Materials (Luxembourg) S.A.R.L. Positive working photosensitive material
JP6342683B2 (ja) 2014-03-20 2018-06-13 東京応化工業株式会社 化学増幅型ポジ型感光性樹脂組成物
JP6845050B2 (ja) * 2017-03-10 2021-03-17 東京応化工業株式会社 化学増幅型ポジ型感光性樹脂組成物、鋳型付き基板の製造方法、及びめっき造形物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008972A (ja) * 2008-06-30 2010-01-14 Jsr Corp メッキ造形物製造用ポジ型感放射線性樹脂組成物、転写フィルムおよびメッキ造形物の製造方法
JP2011075864A (ja) * 2009-09-30 2011-04-14 Shin-Etsu Chemical Co Ltd レジストパターン形成方法及びメッキパターン形成方法
JP2014106306A (ja) * 2012-11-26 2014-06-09 Tokyo Ohka Kogyo Co Ltd メッキ造形物の形成方法
JP2016194691A (ja) * 2015-03-31 2016-11-17 住友化学株式会社 レジスト組成物及びレジストパターンの製造方法
WO2019187591A1 (ja) * 2018-03-27 2019-10-03 東京応化工業株式会社 めっき造形物の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095437A1 (ja) * 2019-11-12 2021-05-20 東京応化工業株式会社 化学増幅型感光性組成物の製造方法、化学増幅型感光性組成物調製用プレミックス液、化学増幅型感光性組成物、感光性ドライフィルムの製造方法及びパターン化されたレジスト膜の製造方法
WO2023162552A1 (ja) * 2022-02-24 2023-08-31 東京応化工業株式会社 化学増幅型ポジ型感光性組成物、鋳型付き基板の製造方法、及びめっき造形物の製造方法

Also Published As

Publication number Publication date
US20220035246A1 (en) 2022-02-03
JPWO2020121968A1 (ja) 2021-11-11
JP7424313B2 (ja) 2024-01-30
KR20210101220A (ko) 2021-08-18

Similar Documents

Publication Publication Date Title
TWI460535B (zh) 酚系聚合物及含該酚系聚合物之光阻
TWI667261B (zh) 正型光阻組成物、使用此組成物的光阻圖案以及所述光阻圖案的製造方法
JP7424313B2 (ja) メッキ造形物の製造方法
JP7477011B2 (ja) 感光性樹脂組成物、レジストパターン膜の製造方法、およびメッキ造形物の製造方法
JP7347430B2 (ja) 感光性樹脂組成物、レジストパターンの形成方法、メッキ造形物の製造方法、および半導体装置
JP2021182042A (ja) 化学増幅型感光性組成物、感光性ドライフィルム、パターン化されたレジスト膜の製造方法、めっき造形物の製造方法、化合物、及び化合物の製造方法
JP7377848B2 (ja) フォトレジスト組成物及びパターン形成方法
JP2022042954A (ja) 感光性樹脂組成物、レジストパターン膜の製造方法、およびメッキ造形物の製造方法
JP7416052B2 (ja) 感光性樹脂組成物、レジストパターン膜の製造方法、メッキ造形物の製造方法、および錫銀メッキ造形物の製造方法
TWI843647B (zh) 感光性樹脂組成物、抗蝕劑圖案膜的製造方法、及鍍敷造形物的製造方法
WO2021131522A1 (ja) 化学増幅型ポジ型感光性組成物、感光性ドライフィルム、感光性ドライフィルムの製造方法、パターン化されたレジスト膜の製造方法及び酸拡散抑制剤
JP7342945B2 (ja) 感光性樹脂組成物、レジストパターン膜の製造方法、およびメッキ造形物の製造方法
WO2023176868A1 (ja) 感光性樹脂組成物、レジストパターン膜の形成方法、および、メッキ造形物の製造方法
TWI840549B (zh) 感光性樹脂組成物、抗蝕劑圖案膜的製造方法、及鍍敷造形物的製造方法
JP2023169213A (ja) 感光樹脂組成物、レジストパターンの形成方法、およびメッキ造形物の製造方法
WO2023157801A1 (ja) 感光性樹脂組成物、レジストパターン膜の製造方法、およびメッキ造形物の製造方法
WO2021131538A1 (ja) 化学増幅型ポジ型感光性樹脂組成物、感光性ドライフィルム、感光性ドライフィルムの製造方法、パターン化されたレジスト膜の製造方法、鋳型付き基板の製造方法及びめっき造形物の製造方法
JP2020079858A (ja) 感光性組成物、レジストパターンの形成方法、およびメッキ造形物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560047

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19895347

Country of ref document: EP

Kind code of ref document: A1