WO2020115938A1 - マグネシウム二次電池用非水電解液及びそれを用いたマグネシウム二次電池 - Google Patents

マグネシウム二次電池用非水電解液及びそれを用いたマグネシウム二次電池 Download PDF

Info

Publication number
WO2020115938A1
WO2020115938A1 PCT/JP2019/026873 JP2019026873W WO2020115938A1 WO 2020115938 A1 WO2020115938 A1 WO 2020115938A1 JP 2019026873 W JP2019026873 W JP 2019026873W WO 2020115938 A1 WO2020115938 A1 WO 2020115938A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
secondary battery
magnesium secondary
aromatic heterocyclic
heterocyclic compound
Prior art date
Application number
PCT/JP2019/026873
Other languages
English (en)
French (fr)
Inventor
朋史 濱村
久米 俊郎
名倉 健祐
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020513359A priority Critical patent/JP6775209B1/ja
Priority to CN201980006141.5A priority patent/CN111527637A/zh
Publication of WO2020115938A1 publication Critical patent/WO2020115938A1/ja
Priority to US16/924,134 priority patent/US20200343590A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0031Chlorinated solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a non-aqueous electrolyte solution for a magnesium secondary battery and a magnesium secondary battery using the same.
  • Patent Document 1 discloses an electrolytic solution containing Mg(CH 3 CN) 6 (PF 6 ) 2 .
  • the present disclosure provides a novel non-aqueous electrolyte solution for a magnesium secondary battery, and a magnesium secondary battery using the same.
  • Non-aqueous solvent Containing a magnesium salt and an aromatic heterocyclic compound having an aliphatic hydrocarbon group as a substituent
  • the aromatic heterocyclic compound contains at least one selected from the group consisting of nitrogen atom, oxygen atom, phosphorus atom, and sulfur atom as a ring-constituting atom, and the aromatic heterocyclic compound is a non-electrolyte
  • a non-aqueous electrolytic solution for a magnesium secondary battery Containing a magnesium salt and an aromatic heterocyclic compound having an aliphatic hydrocarbon group as a substituent
  • the aromatic heterocyclic compound contains at least one selected from the group consisting of nitrogen atom, oxygen atom, phosphorus atom, and sulfur atom as a ring-constituting atom
  • the aromatic heterocyclic compound is a non-electrolyte
  • a novel nonaqueous electrolytic solution for a magnesium secondary battery and a magnesium secondary battery using the same can be provided.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a magnesium secondary battery.
  • FIG. 2A is a graph showing a cyclic voltammogram of Sample 1 (sweep range: ⁇ 1 to 2 V).
  • FIG. 2B is a graph showing a cyclic voltammogram of Sample 1 (sweep range: 0 to 2 V).
  • FIG. 2C is a graph showing a cyclic voltammogram of Sample 1 (sweep range: 0.5 to 2 V).
  • FIG. 3 is a graph showing cyclic voltammograms of Samples 1 and 2.
  • FIG. 4 is a graph showing cyclic voltammograms of Samples 1 and 3.
  • the magnesium secondary battery can utilize the two-electron reaction of magnesium, it is expected to be put into practical use as a high-capacity secondary battery.
  • the solvent is difficult to desorb from the magnesium ion. That is, in the magnesium secondary battery electrolytic solution, precipitation and dissolution of magnesium metal are unlikely to occur. This is a problem peculiar to the non-aqueous electrolyte solution for a magnesium secondary battery.
  • a current lithium-ion battery uses a non-aqueous electrolyte obtained by dissolving LiPF 6 in a solvent such as carbonate.
  • the non-aqueous electrolyte obtained by dissolving a magnesium salt such as Mg(AN) 6 (PF 6 ) 2 (AN means acetonitrile) in carbonate does not cause precipitation and dissolution of magnesium metal. Due to such a problem, in the magnesium secondary battery, a strong limitation is imposed on the combination of the non-aqueous solvent and the magnesium salt.
  • a non-aqueous electrolyte solution for a magnesium secondary battery according to the first aspect of the present disclosure Containing a magnesium salt and an aromatic heterocyclic compound having an aliphatic hydrocarbon group as a substituent,
  • the aromatic heterocyclic compound contains at least one selected from the group consisting of nitrogen atom, oxygen atom, phosphorus atom, and sulfur atom as a ring-constituting atom, and the aromatic heterocyclic compound is a non-electrolyte.
  • the aromatic heterocyclic compound having an aliphatic hydrocarbon group forms a coordinate bond with magnesium ion in a solvent competitively, thereby weakening the interaction between magnesium ion and the solvent. , Can accelerate the precipitation and dissolution of metallic magnesium.
  • the aromatic heterocyclic compound may be represented by the following formula (1).
  • R 1 to R 5 are each independently hydrogen or an aliphatic hydrocarbon group, At least one of R 1 to R 5 is an aliphatic hydrocarbon group, and X is a nitrogen atom or a phosphorus atom.
  • R 3 may be an aliphatic hydrocarbon group.
  • R 3 is an aliphatic hydrocarbon group
  • a hetero atom in the aromatic heterocycle that is, as compared to the case where any one of R 1 , R 2 , R 4 , and R 5 is an aliphatic hydrocarbon group (that is, The coordination of X) contained in the above formula (1) to Mg ions can be promoted. This is because R 3 is most distant from the heteroatom in the aromatic heterocycle, and thus it is difficult to prevent the coordination of the heteroatom to the Mg ion.
  • R 1 , R 2 , R 4 , and R 5 other than R 3 are each independently a hydrogen atom or an aliphatic hydrocarbon group.
  • R 1 , R 2 , R 4 , and R 5 may be hydrogen atoms.
  • the aromatic heterocyclic compound may be an additive in the nonaqueous electrolytic solution for magnesium secondary batteries according to the first to fourth aspects.
  • the aromatic heterocyclic compound may include a pyridine ring.
  • the anions contained in the magnesium salt are Cl ⁇ , Br ⁇ , I ⁇ , BF 4 ⁇ , PF 6 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , SiF 6 ⁇ , ClO 4 ⁇ , AlCl 4 ⁇ , FSO 3 ⁇ , CF 3 SO 3 ⁇ , C 4 F 9 SO 3 ⁇ , [N(FSO 2 ) 2 ] -, [N (CF 3 SO 2) 2] -, [N (C 2 F 5 SO 2) 2] -, [N (FSO 2) (CF 3 SO 2)] -, CF 3 BF 3 -, C It may be at least one selected from the group consisting of 2 F 5 BF 3 ⁇ and CB 11 H 12 ⁇ .
  • These anions can form salts with magnesium.
  • the anions contained in the magnesium salt are PF 6 ⁇ , FSO 3 ⁇ , [N(FSO 2 ) 2 ] -, [N (CF 3 SO 2) 2] -, [N (C 2 F 5 SO 2) 2] -, and CB 11 H 12 - may be at least one selected from the group consisting of.
  • the solubility can be improved by forming a magnesium salt with these anions.
  • the aliphatic hydrocarbon group may be chain-like.
  • a magnesium secondary battery according to a tenth aspect of the present disclosure is Positive electrode, A negative electrode, and the non-aqueous electrolyte for a magnesium secondary battery according to any one of the first to ninth aspects, Is equipped with.
  • the ninth aspect for example, by using the nonaqueous electrolytic solution for magnesium secondary battery according to any one of the first to eighth aspects, it is possible to enhance the electrolytic chemical stability of the nonaqueous electrolytic solution. Therefore, the function of the magnesium secondary battery can be exerted.
  • the non-aqueous electrolytic solution for a magnesium secondary battery contains a non-aqueous solvent, a magnesium salt, and an aromatic heterocyclic compound.
  • the aromatic heterocyclic compound has an aliphatic hydrocarbon group as a substituent.
  • the magnesium salt and the aromatic heterocyclic compound are dissolved in a non-aqueous solvent.
  • the selectivity of the non-aqueous solvent can be expanded according to the desired conditions.
  • the “desired conditions” are, for example, high magnesium ion conductivity, electrochemically stable, chemically stable, thermally stable, safe, and environmental load. It may be at least one of low and cheap.
  • the magnesium ion conductivity of the non-aqueous electrolyte can be increased by dissolving the magnesium salt in the non-aqueous solvent at a high concentration.
  • a non-aqueous electrolytic solution having electrochemical stability can be obtained.
  • a non-aqueous solvent having low toxicity a highly safe non-aqueous electrolytic solution can be obtained.
  • “Aromatic heterocyclic compound” in the present disclosure means a heterocyclic compound having aromaticity.
  • Heterocyclic compound means a compound containing at least one heteroatom as a ring atom.
  • the hetero atom include a nitrogen atom, an oxygen atom, a phosphorus atom, and a sulfur atom.
  • Aromatic heterocyclic compounds are non-electrolytes. In other words, the aromatic heterocyclic compound is not a salt.
  • the aromatic heterocyclic compound is a substance that does not ionize even when dissolved in a non-aqueous solvent.
  • Aromatic heterocyclic compounds tend to show higher electron donating properties than carbonates, and the coordination bond between the aromatic heterocyclic compound and the magnesium ion is easier than the coordination bond between the carbonate and magnesium ion. It is formed. In other words, the coordination bond between the aromatic heterocycle and the magnesium ion is selectively formed as compared to the coordination bond between the carbonate and magnesium ion. Therefore, the aromatic heterocyclic compound weakens the interaction between the magnesium ion and the solvent, and facilitates precipitation and dissolution of metallic magnesium.
  • the aromatic heterocyclic compound may contain one or more heteroatoms having unshared electron pairs.
  • the aromatic heterocyclic compound may contain two or more heteroatoms.
  • aromatic heterocyclic compound examples include 2H-azirine derivative, azeto derivative, pyridine derivative, imidazole derivative, pyrazole derivative, oxazole derivative, thiazole derivative, imidazoline derivative, 2-oxylene derivative, oxole derivative, oxepin derivative, thiylene derivative, Examples include thiol derivatives and thiepine derivatives.
  • an aromatic heterocyclic compound having a pyridine ring can be used.
  • the pyridine ring has a nitrogen atom having a high electron donating property, and further has a high dielectric constant. Therefore, the aromatic heterocyclic compound having a pyridine ring selectively forms a coordinate bond with a magnesium ion and is uniformly mixed with a non-aqueous solvent.
  • the aromatic heterocyclic compound has an aliphatic hydrocarbon group as a substituent.
  • the aromatic heterocyclic compound may have a plurality of aliphatic hydrocarbon groups.
  • the aliphatic hydrocarbon group may be linear. More specifically, the aliphatic hydrocarbon group may be linear or branched. Having an aliphatic hydrocarbon group increases the steric bulkiness of the aromatic heterocyclic compound and can kinetically improve the electrochemical stability of the aromatic heterocyclic compound. This increases the compatibility between the aromatic heterocyclic compound and the polar solvent.
  • the aliphatic hydrocarbon group may be directly bonded to the heterocycle.
  • the carbon number of the aliphatic hydrocarbon group is, for example, 1 to 4.
  • Examples of the aliphatic hydrocarbon group include methyl group, ethyl group, n-propyl group, iso-propyl group, n-butyl group, iso-butyl group, sec-butyl group and tert-butyl group.
  • the amount of the aromatic hetero compound added increases, the viscosity of the electrolytic solution increases.
  • the amount of the aromatic hetero compound added is preferably 50% or less in volume ratio.
  • Magnesium salt has an anion.
  • the anion is, for example, a monovalent anion.
  • the anion may be a derivative of these.
  • the anion includes BF 4 ⁇ , PF 6 ⁇ , ClO 4 ⁇ , AlCl 4 ⁇ , [N(CF 3 SO 2 ) 2 ] ⁇ , [N(C 2 F 5 SO 2 ). 2 ] ⁇ , and at least one selected from the group consisting of CB 11 H 12 — .
  • the anion includes PF 6 ⁇ , FSO 3 ⁇ , [N(FSO 2 ) 2 ] ⁇ , [N(CF 3 SO 2 ) 2 ] ⁇ , and [N(C 2 F 5 SO 2 ) 2 ] - , and at least one selected from the group consisting of CB 11 H 12 - .
  • These anions can enhance the solubility of the magnesium salt in the solvent and also enhance the ionic dissociation property of the dissolved magnesium salt.
  • the non-aqueous solvent is not particularly limited as long as it is a liquid capable of dissolving a magnesium salt.
  • the non-aqueous solvent may contain a cyclic carbonic acid ester. This can increase the solubility of the magnesium salt in the non-aqueous solvent.
  • the cyclic carbonic acid ester may be, for example, ethylene carbonate or propylene carbonate.
  • the non-aqueous solvent may contain other solvent.
  • Other solvents include cyclic ethers, chain ethers, borate esters, cyclic sulfones, chain sulfones, nitriles, and sultones.
  • the non-aqueous electrolyte solution according to this embodiment can be used for a magnesium secondary battery.
  • the magnesium secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolytic solution having magnesium ion conductivity.
  • the non-aqueous electrolyte is the same as the above [1.
  • the non-aqueous electrolytic solution] described above can be appropriately used.
  • the function of the magnesium secondary battery can be exhibited.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of the magnesium secondary battery 10.
  • the magnesium secondary battery 10 includes a positive electrode 21, a negative electrode 22, a separator 14, a case 11, a sealing plate 15, and a gasket 18.
  • the separator 14 is arranged between the positive electrode 21 and the negative electrode 22.
  • the positive electrode 21, the negative electrode 22, and the separator 14 are impregnated with the nonaqueous electrolytic solution, and these are housed in the case 11.
  • the case 11 is closed by a gasket 18 and a sealing plate 15.
  • the structure of the magnesium secondary battery 10 may be, for example, a cylindrical type, a square type, a button type, a coin type, or a flat type.
  • the positive electrode 21 includes the positive electrode current collector 12 and the positive electrode active material layer 13 disposed on the positive electrode current collector 12.
  • the positive electrode active material layer 13 is arranged between the positive electrode current collector 12 and the separator 14.
  • the positive electrode active material layer 13 contains a positive electrode active material.
  • the positive electrode active material may be, for example, fluorinated graphite, metal oxide, or metal halide.
  • the metal oxide and metal halide may contain, for example, at least one selected from scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, and zinc, and magnesium.
  • the positive electrode active material may be a sulfide such as Mo 6 S 8 or a chalcogenide compound such as Mo 9 Se 11 .
  • the positive electrode active material examples include MgM 2 O 4 (where M is at least one selected from Mn, Co, Cr, Ni, and Fe), MgMO 2 (where M is Mn, Co, Cr, and is at least one selected from Ni and Al), MgMSiO 4 (where, M is at least one selected Mn, Co, Ni and Fe), and Mg x M y AO z F w (
  • M is a transition metal, Sn, Sb or In
  • A is P, Si or S, 0 ⁇ x ⁇ 2, 0.5 ⁇ y ⁇ 1.5, z is 3 or 4, 0. 5 ⁇ w ⁇ 1.5).
  • the positive electrode active material layer 13 may further contain a conductive agent and/or a binder, if necessary.
  • the conductive materials include carbon materials, metals, inorganic compounds, and conductive polymers.
  • Examples of the carbon material include graphite, acetylene black, carbon black, Ketjen black, carbon whiskers, needle coke, and carbon fiber.
  • Examples of graphite include natural graphite and artificial graphite.
  • Examples of natural graphite include massive graphite and flake graphite.
  • Metals include copper, nickel, aluminum, silver, and gold.
  • Examples of the inorganic compound include tungsten carbide, titanium carbide, tantalum carbide, molybdenum carbide, titanium boride, and titanium nitride. These materials may be used alone or as a mixture of plural kinds.
  • polytetrafluoroethylene PTFE
  • PVdF polyvinylidene fluoride
  • fluorine-containing resin such as fluororubber
  • thermoplastic resin such as polypropylene and polyethylene
  • EPDM ethylene propylene diene monomer
  • Sulfonated EPDM examples include rubber and natural butyl rubber (NBR). These materials may be used alone or as a mixture of plural kinds.
  • N-methylpyrrolidone dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethylenetriamine, N,N-dimethylaminopropyl Included are amines, ethylene oxide, and tetrahydrofuran.
  • a thickener may be added to the dispersant. Examples of the thickener include carboxymethyl cellulose and methyl cellulose.
  • the positive electrode active material layer 13 is formed, for example, by the following method. First, these materials are mixed so that a mixture of the positive electrode active material, the conductive material, and the binder is obtained. Next, a suitable solvent is added to this mixture, and thereby a positive electrode mixture in paste form is obtained. Next, this positive electrode mixture is applied to the surface of the positive electrode current collector 12 and dried. Thereby, the positive electrode active material layer 13 is formed on the positive electrode current collector 12. The positive electrode active material layer 13 may be compressed in order to increase the electrode density.
  • the film thickness of the positive electrode active material layer 13 is not particularly limited and is, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the material of the positive electrode current collector 12 is, for example, a metal or an alloy. More specifically, the material of the positive electrode current collector 12 is at least one metal selected from the group consisting of copper, chromium, nickel, titanium, platinum, gold, aluminum, tungsten, iron, and molybdenum, or a metal thereof. It may be an alloy. The material of the positive electrode current collector 12 may be, for example, stainless steel.
  • the positive electrode current collector 12 may be plate-shaped or foil-shaped.
  • the positive electrode current collector 12 may be a laminated film.
  • the positive electrode current collector 12 may be omitted.
  • the negative electrode 22 includes, for example, a negative electrode active material layer 17 containing a negative electrode active material and a negative electrode current collector 16.
  • the negative electrode active material layer 17 is arranged between the negative electrode current collector 16 and the separator 14.
  • the negative electrode active material layer 17 contains a negative electrode active material into which magnesium ions are inserted during charging and which is desorbed during discharging.
  • the negative electrode active material may be a carbon material.
  • carbon materials include graphite, non-graphite carbon, and graphite intercalation compounds.
  • non-graphite carbon include hard carbon and coke.
  • the negative electrode active material layer 17 may further contain a conductive agent and/or a binder, if necessary.
  • the conductive material, the binder, the solvent, and the thickener are, for example, [2-2.
  • the positive electrode] described above can be appropriately used for the negative electrode active material layer 17.
  • the film thickness of the negative electrode active material layer 17 is not particularly limited and is, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • the negative electrode active material layer 17 contains a negative electrode active material on which magnesium is deposited during charging and from which the magnesium is dissolved in the nonaqueous electrolytic solution during discharging.
  • examples of the negative electrode active material include Mg metal and Mg alloy.
  • the Mg alloy is, for example, an alloy of magnesium with at least one selected from aluminum, silicon, gallium, zinc, tin, manganese, bismuth, and antimony.
  • the material of the negative electrode current collector 16 is, for example, [2-2. A material similar to that of the positive electrode current collector 12 described in “Positive electrode” can be appropriately used.
  • the negative electrode current collector 16 may be plate-shaped or foil-shaped.
  • the negative electrode current collector 16 may be omitted.
  • the negative electrode active material layer 17 may be omitted. That is, the negative electrode 22 may be composed of only the negative electrode current collector 16 on which magnesium is deposited during charging and from which magnesium is dissolved in the non-aqueous electrolyte solution during discharging.
  • the material of the negative electrode current collector 16 may be stainless steel, nickel, copper, or iron.
  • Examples of the material of the separator 14 include a microporous thin film, woven cloth, and non-woven cloth.
  • the material of the separator 14 may be a polyolefin such as polypropylene or polyethylene.
  • the thickness of the separator 14 is, for example, 10 to 300 ⁇ m.
  • the separator 14 may be a single layer film made of one kind of material, a composite film made of two or more kinds of materials, or a multilayer film.
  • the porosity of the separator 14 is in the range of 30 to 70%, for example.
  • FIG. 2A to 2C are graphs showing cyclic voltammograms of Sample 1.
  • the vertical axis represents the current flowing through the working electrode, and the horizontal axis represents the potential of the working electrode with respect to the reference electrode.
  • FIG. 2A shows the results in the sweep range of -1 to 2V.
  • FIG. 2B shows the results in the 0-2V sweep range.
  • FIG. 2C shows the results in the sweep range of 0.5-2V.
  • the potential sweep rate was 5 mV/s.
  • the corresponding oxidation current was observed only when the sweep range was ⁇ 1 to 2 V, that is, when the sweep was performed to a potential lower than the equilibrium potential of Mg/Mg 2+ .
  • the observed oxidation current is not the decomposition current of the solvent but the current corresponding to the redox reaction.
  • the sweep range was 0 to 2V and 0.5 to 2V.
  • FIG. 3 is a graph showing cyclic voltammograms of Samples 1 and 2.
  • the potential sweep rate was 25 mV/s, and the sweep range was -1.0 to 2.0 V.
  • sample 1 a reduction current and an oxidation current were observed.
  • sample 2 almost no reduction current and oxidation current were observed. That is, it is considered that the reason why the reduction current and the oxidation current were observed in Sample 1 is that 4-tert-butylpyridine contained in Sample 1 promotes precipitation and dissolution of magnesium ions.
  • FIG. 4 is a graph showing cyclic voltammograms of Samples 1 and 3.
  • the potential sweep rate was 25 mV/s, and the sweep range was -1.0 to 2.0 V. Reduction and oxidation currents were observed in both Samples 1 and 3.
  • the non-aqueous electrolyte of sample 1 did not discolor after the CV measurement.
  • the nonaqueous electrolytic solution of Sample 3 turned blue. It is considered that the reason why the nonaqueous electrolytic solution of Sample 1 did not discolor is that 4-tert-butylpyridine contained in Sample 1 enhances the electrolytic chemical stability of the nonaqueous electrolytic solution.
  • the non-aqueous electrolyte solution of the present disclosure can be used for a magnesium secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本開示の一態様に係るマグネシウム二次電池用非水電解液は、非水溶媒、マグネシウム塩、および置換基である脂肪族炭化水素基を有する芳香族複素環化合物を含有する。芳香族複素環化合物は、窒素原子、酸素原子、リン原子、及び硫黄原子からなる群より選ばれる少なくとも1つを環の構成原子として含む。芳香族複素環化合物が非電解質である。

Description

マグネシウム二次電池用非水電解液及びそれを用いたマグネシウム二次電池
 本開示は、マグネシウム二次電池用非水電解液及びそれを用いたマグネシウム二次電池に関する。
 近年、マグネシウム二次電池の開発が期待されている。特許文献1は、Mg(CH3CN)6(PF62を含有する電解液を開示している。
特開2017-145197号公報
 本開示は、マグネシウム二次電池用の新規な非水電解液、及びそれを用いたマグネシウム二次電池を提供する。
 本開示は、
 非水溶媒、
 マグネシウム塩、および
 置換基である脂肪族炭化水素基を有する芳香族複素環化合物
 を含有し、
 前記芳香族複素環化合物は、窒素原子、酸素原子、リン原子、及び硫黄原子からなる群より選ばれる少なくとも1つを環の構成原子として含み、かつ
 前記芳香族複素環化合物が非電解質である、
 マグネシウム二次電池用非水電解液を提供する。
 本開示によれば、マグネシウム二次電池用の新規な非水電解液、及びそれを用いたマグネシウム二次電池が提供されうる。
図1は、マグネシウム二次電池の構成例を模式的に示す断面図である。 図2Aは、サンプル1のサイクリックボルタモグラム(掃引範囲:-1~2V)を示すグラフである。 図2Bは、サンプル1のサイクリックボルタモグラム(掃引範囲:0~2V)を示すグラフである。 図2Cは、サンプル1のサイクリックボルタモグラム(掃引範囲:0.5~2V)を示すグラフである。 図3は、サンプル1及び2のサイクリックボルタモグラムを示すグラフである。 図4は、サンプル1及び3のサイクリックボルタモグラムを示すグラフである。
 (本開示の基礎となった知見)
 マグネシウム二次電池は、マグネシウムの二電子反応を利用できるため、高容量な二次電池としての実用化が期待されている。しかし、2価のマグネシウムイオンと周りの溶媒との相互作用が強いため、溶媒がマグネシウムイオンから脱離しにくい。つまり、マグネシウム二次電池用電解液では、マグネシウム金属の析出及び溶解が生じにくい。これは、マグネシウム二次電池用の非水電解液に特有の課題である。例えば、現行のリチウムイオン電池では、LiPF6をカーボネートなどの溶媒に溶解させることによって得られた非水電解液が用いられる。Mg(AN)6(PF62(ANはアセトニトリルを意味する)などのマグネシウム塩をカーボネートに溶解させることによって得られた非水電解液では、マグネシウム金属の析出及び溶解が生じない。このような課題により、マグネシウム二次電池においては、非水溶媒とマグネシウム塩との組み合わせに、強い制限が課されている。
 これに対して、本発明者らは、以下の新規な非水電解液を見出した。
 (本開示に係る一態様の概要)
 本開示の第1態様にかかるマグネシウム二次電池用非水電解液は、
 非水溶媒、
 マグネシウム塩、および
 置換基である脂肪族炭化水素基を有する芳香族複素環化合物
 を含有し、
 前記芳香族複素環化合物は、窒素原子、酸素原子、リン原子、及び硫黄原子からなる群より選ばれる少なくとも1つを環の構成原子として含み、かつ
 前記芳香族複素環化合物が非電解質である。
 第1態様によれば、脂肪族炭化水素基を有する芳香族複素環化合物は、マグネシウムイオンに溶媒と競争的に配位結合を形成することで、マグネシウムイオンと溶媒との間の相互作用を弱め、金属マグネシウムの析出及び溶解を促進しうる。
 本開示の第2態様において、例えば、第1態様にかかるマグネシウム二次電池用非水電解液では、芳香族複素環化合物は、下記式(1)で表されてもよい。
Figure JPOXMLDOC01-appb-C000002
 ここで、
 R~Rは、それぞれ独立して、水素または脂肪族炭化水素基であり、
 R~Rの少なくとも一つは、脂肪族炭化水素基であり、かつ
 Xは、窒素原子又はリン原子である。
 本開示の第3態様において、例えば、第2態様にかかるマグネシウム二次電池用非水電解液では、Rが脂肪族炭化水素基であってもよい。Rを脂肪族炭化水素基にすることで、R、R、R、Rのいずれかを脂肪族炭化水素基にする場合に比べ、芳香族複素環中のヘテロ原子(すなわち、上記の式(1)に含まれるX)のMgイオンへの配位を促進できる。これは、Rが、芳香族複素環中のヘテロ原子から最も離れているため、ヘテロ原子のMgイオンへの配位を阻害しにくい。第3態様においては、R以外のR、R、R、およびRは、それぞれ独立して、水素または脂肪族炭化水素基である。
 本開示の第4態様において、例えば、第3態様にかかるマグネシウム二次電池用非水電解液では、R、R、R、およびRが水素原子であってもよい。
 本開示の第5態様において、例えば、第1~第4態様にかかるマグネシウム二次電池用非水電解液では、芳香族複素環化合物が添加剤であってもよい。
 本開示の第6態様において、例えば、第1~第5態様にかかるマグネシウム二次電池用非水電解液では、芳香族複素環化合物は、ピリジン環を含んでいてもよい。
 本開示の第7態様において、例えば、第1~第6態様にかかるマグネシウム二次電池用非水電解液では、マグネシウム塩に含まれるアニオンが、Cl-、Br-、I-、BF4 -、PF6 -、AsF6 -、SbF6 -、SiF6 -、ClO4 -、AlCl4 -、FSO3 -、CF3SO3 -、C49SO3 -、[N(FSO22-、[N(CF3SO22-、[N(C25SO22-、[N(FSO2)(CF3SO2)]-、CF3BF3 -、C25BF3 -、及びCB1112 -からなる群より選ばれる少なくとも1種であってもよい。これらのアニオンは、マグネシウムと塩を形成することができる。
 本開示の第8態様において、例えば、第7態様にかかるマグネシウム二次電池用非水電解液では、前記マグネシウム塩に含まれるアニオンが、PF6 -、FSO3 -、[N(FSO22-、[N(CF3SO22-、[N(C25SO22-、及びCB1112 -からなる群より選ばれる少なくとも1種であってもよい。これらのアニオンとマグネシウム塩を形成することで、溶解性を向上させることができる。
 本開示の第9態様において、例えば、第1~第8態様にかかるマグネシウム二次電池用非水電解液では、脂肪族炭化水素基が鎖状であってもよい。
 本開示の第10態様にかかるマグネシウム二次電池は、
 正極、
 負極、および
 第1から第9態様のいずれか1つのマグネシウム二次電池用非水電解液、
 を備えている。
 第9態様によれば、例えば、第1から第8態様のいずれか1つのマグネシウム二次電池用非水電解液を用いることで、非水電解液の電解化学安定性を高めることができる。そのためマグネシウム二次電池の機能を発揮させることができる。
 以下、実施形態に係る非水電解液、及び、それを用いたマグネシウム二次電池について、図面を用いて詳細に説明する。
 以下の説明は、いずれも包括的又は具体的な例を示すものである。以下に示される数値、組成、形状、膜厚、電気特性、二次電池の構造などは、一例であり、本開示を限定する主旨ではない。加えて、最上位概念を示す独立請求項に記載されていない構成要素は、任意の構成要素である。
[1.非水電解液]
 本開示の一態様に係るマグネシウム二次電池用非水電解液は、非水溶媒、マグネシウム塩、および芳香族複素環化合物を含有する。芳香族複素環化合物は、置換基である脂肪族炭化水素基を有する。マグネシウム塩及び芳香族複素環化合物は、非水溶媒に溶解している。
 この芳香族複素環化合物は、マグネシウムイオンに溶媒と競争的に配位結合を形成することで、マグネシウムイオンと溶媒との間の相互作用を弱め、金属マグネシウムの析出及び溶解を促進しうる。したがって、所望の条件に応じて非水溶媒の選択性を拡張することができる。「所望の条件」は、例えば、マグネシウムイオン伝導性が高いこと、電気化学的に安定であること、化学的に安定であること、熱的に安定であること、安全であること、環境負荷が低いこと、及び、安価であることのうちの少なくとも1つであってもよい。例えば、非水溶媒にマグネシウム塩を高濃度で溶解させることにより、非水電解液のマグネシウムイオン伝導性を高めることができる。例えば、耐酸化性の高い非水溶媒を選択することにより、電気化学的な安定性を有する非水電解液を得ることができる。例えば、毒性の低い非水溶媒を選択することにより、安全性の高い非水電解液を得ることができる。
 本開示における「芳香族複素環化合物」は、芳香族性を有する複素環化合物を意味する。複素環化合物は、少なくとも1つのヘテロ原子を環の構成原子として含む化合物を意味する。ヘテロ原子としては、窒素原子、酸素原子、リン原子、及び硫黄原子が挙げられる。芳香族複素環化合物は非電解質である。言い換えれば、芳香族複素環化合物は塩ではない。芳香族複素環化合物は、非水溶媒に溶解しても電離しない物質である。
 芳香族複素環化合物は、カーボネートに比べて高い電子供与性を示す傾向があり、芳香族複素環化合物およびマグネシウムイオンの間の配位結合は、カーボネートおよびマグネシウムイオンの間の配位結合より容易に形成される。言い換えれば、カーボネートおよびマグネシウムイオンの間の配位結合と比較して、芳香族複素環化合物およびマグネシウムイオンの間の配位結合は、選択的に形成される。そのため、芳香族複素環化合物は、マグネシウムイオンと溶媒との間の相互作用を弱め、金属マグネシウムを析出及び溶解しやすくする。芳香族複素環化合物は、非共有電子対を有するヘテロ原子を1つ以上含んでいてもよい。芳香族複素環化合物は、2つ以上のヘテロ原子を含んでいてもよい。
 芳香族複素環化合物としては、例えば、2H-アジリン誘導体、アゼト誘導体、ピリジン誘導体、イミダゾール誘導体、ピラゾール誘導体、オキサゾール誘導体、チアゾール誘導体、イミダゾリン誘導体、2-オキシレン誘導体、オキソール誘導体、オキセピン誘導体、チイレン誘導体、チオール誘導体、及びチエピン誘導体が挙げられる。
 本実施形態では、ピリジン環を有する芳香族複素環化合物を使用できる。ピリジン環は、高い電子供与性を持つ窒素原子を有し、更に誘電率も高い。そのため、ピリジン環を有する芳香族複素環化合物は、マグネシウムイオンとの配位結合を選択的に形成し、かつ非水溶媒と均一に混ざり合う。
 芳香族複素環化合物は、置換基である脂肪族炭化水素基を有する。芳香族複素環化合物は、複数の脂肪族炭化水素基を有していてもよい。脂肪族炭化水素基は、鎖状であってもよい。より詳細には、脂肪族炭化水素基は、直鎖状であってもよいし、分岐鎖状であってもよい。脂肪族炭化水素基を有していると芳香族複素環化合物の立体的な嵩高さが増し、速度論的に芳香族複素環化合物の電気化学的安定性を向上させることができる。これにより、芳香族複素環化合物と極性溶媒との相溶性が高くなる。脂肪族炭化水素基は、複素環に直接結合していてもよい。脂肪族炭化水素基の炭素数は、例えば、1~4である。脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基及びtert-ブチル基が挙げられる。芳香族複素化合物の添加量が増加すると、電解液の粘性が増加する。この電解液の粘性の増加を抑制するため、芳香族複素化合物の添加量は、体積比率で50%以下が適当である。
 マグネシウム塩はアニオンを有する。アニオンは、例えば、1価のアニオンである。
 アニオンは、Cl-、Br-、I-、BF4 -、PF6 -、AsF6 -、SbF6 -、SiF6 -、ClO4 -、AlCl4 -、FSO3 -、CF3SO3 -、C49SO3 -、[N(FSO22-、[N(CF3SO22-、[N(C25SO22-、[N(FSO2)(CF3SO2)]-、CF3BF3 -、C25BF3 -、及びCB1112 -からなる群より選ばれる少なくとも1つでありうる。アニオンは、これらの誘導体であってもよい。これらのアニオンは、マグネシウムと塩を形成しうる。
 電気化学的安定性の観点から、アニオンは、BF4 -、PF6 -、ClO4 -、AlCl4 -、[N(CF3SO22-、[N(C25SO22-、及びCB1112 -からなる群より選ばれる少なくとも1つであってもよい。
 溶解性の観点から、アニオンは、PF6 -、FSO3 -、[N(FSO22-、[N(CF3SO22-、[N(C25SO22-、及びCB1112 -からなる群より選ばれる少なくとも1つであってもよい。これらのアニオンは、溶媒へのマグネシウム塩の溶解性を高めることができるとともに、溶解したマグネシウム塩のイオン解離性を高めることができる。
 非水溶媒は、マグネシウム塩を溶解させることができる液体である限り特に限定されない。高誘電率の観点から、非水溶媒は、環状炭酸エステルを含んでいてもよい。これにより、非水溶媒へのマグネシウム塩の溶解性を高めることができる。環状炭酸エステルは、例えば、エチレンカーボネート又はプロピレンカーボネートであってもよい。
 非水溶媒は、その他の溶媒を含有していてもよい。その他の溶媒としては、環状エーテル、鎖状エーテル、ホウ酸エステル、環状スルホン、鎖状スルホン、ニトリル、及びスルトンが挙げられる。
[2.マグネシウム二次電池]
[2-1.全体構成]
 本実施形態に係る非水電解液は、マグネシウム二次電池に利用されうる。マグネシウム二次電池は、正極と、負極と、マグネシウムイオン伝導性を有する非水電解液と、を備える。非水電解液は、上記[1.非水電解液]で説明されたものを適宜利用することができる。本開示の非水電解液を用いることによって、マグネシウム二次電池の機能を発揮させることができる。
 図1は、マグネシウム二次電池10の構成例を模式的に示す断面図である。
 マグネシウム二次電池10は、正極21と、負極22と、セパレータ14と、ケース11と、封口板15と、ガスケット18と、を備えている。セパレータ14は、正極21と負極22との間に配置されている。正極21、負極22、及びセパレータ14には、非水電解液が含浸されており、これらがケース11の中に収められている。ケース11は、ガスケット18及び封口板15によって閉じられている。
 マグネシウム二次電池10の構造は、例えば、円筒型、角型、ボタン型、コイン型、又は扁平型であってもよい。
[2-2.正極]
 正極21は、正極集電体12と、正極集電体12の上に配置された正極活物質層13と、を含む。正極活物質層13は、正極集電体12とセパレータ14との間に配置されている。
 正極活物質層13は、正極活物質を含有する。正極活物質は、例えば、フッ化黒鉛、金属酸化物、又は金属ハロゲン化物であってもよい。金属酸化物及び金属ハロゲン化物は、例えば、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、及び亜鉛から選択される少なくとも1種と、マグネシウムとを含有してもよい。正極活物質は、Mo68のような硫化物であってもよく、Mo9Se11のようなカルコゲナイド化合物であってもよい。
 正極活物質としては、MgM24(ここで、MはMn、Co、Cr、Ni及びFeから選択される少なくとも1種である)、MgMO2(ここで、MはMn、Co、Cr、Ni及びAlから選択される少なくとも1種である)、MgMSiO4(ここで、MはMn、Co、Ni及びFeから選択される少なくとも1種である)、及びMgxyAOzw(ここで、Mは遷移金属、Sn、Sb又はInであり、AはP、Si又はSであり、0<x≦2、0.5≦y≦1.5、zは3又は4、0.5≦w≦1.5)が挙げられる。
 正極活物質層13は、必要に応じて、導電剤及び/又は結着剤をさらに含んでいてもよい。
 導電材としては、炭素材料、金属、無機化合物、及び導電性高分子が挙げられる。炭素材料としては、黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、及び、炭素繊維が挙げられる。黒鉛としては、天然黒鉛及び人造黒鉛が挙げられる。天然黒鉛としては、塊状黒鉛及び鱗片状黒鉛が挙げられる。金属としては、銅、ニッケル、アルミニウム、銀、及び金が挙げられる。無機化合物としては、タングステンカーバイド、炭化チタン、炭化タンタル、炭化モリブデン、ホウ化チタン、チッ化チタンが挙げられる。これらの材料は単独で用いられてもよいし、複数種が混合されて用いられてもよい。
 結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、及び、天然ブチルゴム(NBR)が挙げられる。これらの材料は単独で用いられてもよいし、複数種が混合されて用いられてもよい。
 正極活物質、導電材、及び、結着材を分散させる溶剤としては、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチレントリアミン、N,N-ジメチルアミノプロピルアミン、エチレンオキシド、及びテトラヒドロフランが挙げられる。例えば、分散剤に増粘剤を加えてもよい。増粘剤としては、カルボキシメチルセルロース、及び、メチルセルロースが挙げられる。
 正極活物質層13は、例えば、次の方法によって形成される。まず、正極活物質と導電材と結着材との混合物が得られるように、これらの材料が混合される。次に、この混合物に適切な溶剤が加えられ、これによりペースト状の正極合剤が得られる。次に、この正極合剤が正極集電体12の表面に塗布され、乾燥される。これにより、正極集電体12の上に正極活物質層13が形成される。なお、正極活物質層13は、電極密度を高めるために、圧縮されてもよい。
 正極活物質層13の膜厚は、特に限定されず、例えば、1μm以上、100μm以下である。
 正極集電体12の材料は、例えば、金属又は合金である。より具体的には、正極集電体12の材料は、銅、クロム、ニッケル、チタン、白金、金、アルミニウム、タングステン、鉄、及び、モリブデンからなる群から選択される少なくとも1種の金属またはその合金であってもよい。正極集電体12の材料は、例えば、ステンレス鋼であってもよい。
 正極集電体12は、板状又は箔状であってもよい。正極集電体12は、積層膜であってもよい。
 ケース11が正極集電体を兼ねている場合は、正極集電体12は省略されてもよい。
[2-3.負極]
 負極22は、例えば、負極活物質を含有する負極活物質層17と、負極集電体16とを含む。負極活物質層17は、負極集電体16とセパレータ14との間に配置されている。
 負極活物質層17は、充電時にマグネシウムイオンが挿入され、かつ放電時にマグネシウムイオンが脱離する負極活物質を含有する。この場合、負極活物質としては、炭素材料が挙げられる。炭素材料としては、黒鉛、非黒鉛系炭素、及び黒鉛層間化合物が挙げられる。非黒鉛系炭素としては、ハードカーボン及びコークスが挙げられる。
 負極活物質層17は、必要に応じて、導電剤及び/又は結着剤をさらに含んでいてもよい。導電材、結着材、溶剤及び増粘剤は、例えば、[2-2.正極]で説明されたものを負極活物質層17に適宜利用することができる。
 負極活物質層17の膜厚は、特に限定されず、例えば、1μm以上、50μm以下である。
 あるいは、負極活物質層17は、充電時にマグネシウムがその上に析出し、放電時に当該マグネシウムがそこから非水電解液に溶解する負極活物質を含有する。この場合、負極活物質としては、Mg金属、及びMg合金が挙げられる。Mg合金は、例えば、アルミニウム、シリコン、ガリウム、亜鉛、錫、マンガン、ビスマス、及びアンチモンから選択される少なくとも1種と、マグネシウムとの合金である。
 負極集電体16の材料は、例えば、[2-2.正極]で説明された正極集電体12と同様の材料を適宜利用することができる。負極集電体16は、板状又は箔状であってもよい。
 封口板15が負極集電体を兼ねている場合は、負極集電体16は省略されてもよい。
 負極集電体16が、充電時にマグネシウムがその上に析出し、放電時に当該マグネシウムがそこから非水電解液に溶解する材料で構成される場合、負極活物質層17は省略されてもよい。すなわち、負極22は、充電時にマグネシウムがその上に析出し、放電時に当該マグネシウムがそこから非水電解液に溶解する負極集電体16のみからなってもよい。この場合、負極集電体16の材料は、ステンレス鋼、ニッケル、銅、又は、鉄であってもよい。
[2-4.セパレータ]
 セパレータ14の材料としては、微多孔性薄膜、織布、不織布が挙げられる。セパレータ14の材料は、ポリプロピレン、ポリエチレンなどのポリオレフィンであってもよい。セパレータ14の厚さは、例えば、10~300μmである。セパレータ14は、1種の材料で構成された単層膜であってもよく、2種以上の材料で構成された複合膜、又は、多層膜であってもよい。セパレータ14の空孔率は、例えば、30~70%の範囲にある。
 (実施例)
[3.実験結果]
[3-1.非水電解液の作製]
[3-1-1.サンプル1]
 まず、エチレンカーボネートとジメチルカーボネートの混合溶媒(体積比率1:1)を調製した。得られた混合溶媒に、芳香族複素環化合物として4-tert-ブチルピリジン(CAS 3978-81-2, Mw:135)を、体積比率1:1になるように添加して非水溶媒を得た。次に、マグネシウム塩であるMg(CH3CN)6(PF62を、非水溶媒に対して濃度0.12mol/Lとなるように溶解させた。これにより、サンプル1の非水電解液を得た。非水電解液の調製は、アルゴングローブボックス内で行った。添加前に、4-tert-ブチルピリジンは、乾燥剤(商品名:モレキュラーシーブ(4A))を用いて一晩脱水された。
[3-1-2.サンプル2]
 4-tert-ブチルピリジンを非水電解液に加えなかったことを除き、サンプル1と同様の方法で、非水電解液を調製した。
[3-1-3.サンプル3]
 4-tert-ブチルピリジンに代えてピリジンを使用したことを除き、サンプル1と同様の方法で、非水電解液を調製した。
[3-2.CV特性評価]
 得られた非水電解液に対してサイクリックボルタンメトリー(CV)測定を行った。測定セルとしてビーカーセルを用い、測定装置としてポテンシオガルバノスタット(バイオロジック社製、VSP-300)を用いた。作用極として、5mm×40mmのアルミニウム箔を用いた。参照極及び対極として、5mm×40mmのマグネシウムリボンを用いた。結果を図2A、図2B、図2C、図3、および図4に示す。
 図2A~2Cは、サンプル1のサイクリックボルタモグラムを示すグラフである。縦軸は作用極に流れた電流を示し、横軸は参照極に対する作用極の電位を示している。図2Aは、-1~2Vの掃引範囲での結果を示している。図2Bは、0~2Vの掃引範囲での結果を示している。図2Cは、0.5~2Vの掃引範囲での結果を示している。電位の掃引速度は5mV/sであった。図2Aに示すように、掃引範囲が-1~2Vの場合、すなわちMg/Mg2+の平衡電位よりも卑の電位に掃引した場合のみ、対応する酸化電流が観測された。つまり、観測された酸化電流は、溶媒の分解電流ではなく、レドックス反応に対応する電流であると考えられる。図2B及び図2Cに示すように、掃引範囲が0~2V及び0.5~2Vであるとき、電流は観測されなかった。
 図3は、サンプル1及び2のサイクリックボルタモグラムを示すグラフである。電位の掃引速度は25mV/sとし、掃引範囲は-1.0~2.0Vとした。サンプル1において、還元電流及び酸化電流が観測された。サンプル2では、還元電流及び酸化電流ほとんど観測されなかった。つまり、サンプル1において還元電流及び酸化電流が観測された理由は、サンプル1に含有される4-tert-ブチルピリジンが、マグネシウムイオンの析出及び溶解を促進しているためであると考えられる。
 図4は、サンプル1及び3のサイクリックボルタモグラムを示すグラフである。電位の掃引速度は25mV/sとし、その掃引範囲は-1.0~2.0Vとした。サンプル1及び3の両方において、還元電流及び酸化電流が観測された。サンプル1の非水電解液は、CV測定後、変色しなかった。これに対し、サンプル3の非水電解液は青色に変色した。サンプル1の非水電解液が変色しなかった理由としては、サンプル1に含有される4-tert-ブチルピリジンが、非水電解液の電解化学安定性を高めているためであると考えられる。
 以上の結果から、サンプル1の非水電解液は、マグネシウム二次電池に適していると考えられる。
 本開示の非水電解液は、マグネシウム二次電池に利用されうる。
 10 マグネシウム二次電池
 11 ケース
 12 正極集電体
 13 正極活物質層
 14 セパレータ
 15 封口板
 16 負極集電体
 17 負極活物質層
 18 ガスケット
 21 正極
 22 負極

Claims (10)

  1.  非水溶媒、
     マグネシウム塩、および
     置換基である脂肪族炭化水素基を有する芳香族複素環化合物
     を含有し、
     ここで、
     前記芳香族複素環化合物は、窒素原子、酸素原子、リン原子、及び硫黄原子からなる群より選ばれる少なくとも1つを環の構成原子として含み、かつ
     前記芳香族複素環化合物が非電解質である、
     マグネシウム二次電池用非水電解液。
  2.  前記芳香族複素環化合物は、下記式(1)で表される、請求項1記載のマグネシウム二次電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000001
     ここで、
     R~Rは、それぞれ独立して、水素原子または脂肪族炭化水素基であり、
     R~Rの少なくとも一つは、脂肪族炭化水素基であり、かつ
     Xは、窒素原子又はリン原子である。
  3.  Rが脂肪族炭化水素基である、
     請求項2記載のマグネシウム二次電池用非水電解液。
  4.  R、R、R、およびRが水素原子である、
     請求項3記載のマグネシウム二次電池用非水電解液。
  5.  前記芳香族複素環化合物が添加剤である、
     請求項1-4のいずれか1項に記載のマグネシウム二次電池用非水電解液。
  6.  前記芳香族複素環化合物は、ピリジン環を含む、
     請求項1-5のいずれか1項に記載のマグネシウム二次電池用非水電解液。
  7.  前記マグネシウム塩に含まれるアニオンが、Cl-、Br-、I-、BF4 -、PF6 -、AsF6 -、SbF6 -、SiF6 -、ClO4 -、AlCl4 -、FSO3 -、CF3SO3 -、C49SO3 -、[N(FSO22-、[N(CF3SO22-、[N(C25SO22-、[N(FSO2)(CF3SO2)]-、CF3BF3 -、C25BF3 -、及びCB1112 -からなる群より選ばれる少なくとも1つである、
     請求項1-6のいずれか1項に記載のマグネシウム二次電池用非水電解液。
  8.  前記マグネシウム塩に含まれるアニオンが、PF6 -、FSO3 -、[N(FSO22-、[N(CF3SO22-、[N(C25SO22-、及びCB1112 -からなる群より選ばれる少なくとも1つである、
     請求項7に記載のマグネシウム二次電池用非水電解液。
  9.  前記脂肪族炭化水素基が鎖状である、
     請求項1-8のいずれか1項に記載のマグネシウム二次電池用非水電解液。
  10.  正極、
     負極、および
     請求項1-9のいずれか1項に記載のマグネシウム二次電池用非水電解液、
     を備えた、マグネシウム二次電池。
     
     
PCT/JP2019/026873 2018-12-05 2019-07-05 マグネシウム二次電池用非水電解液及びそれを用いたマグネシウム二次電池 WO2020115938A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020513359A JP6775209B1 (ja) 2018-12-05 2019-07-05 マグネシウム二次電池用非水電解液及びそれを用いたマグネシウム二次電池
CN201980006141.5A CN111527637A (zh) 2018-12-05 2019-07-05 镁二次电池用非水电解液和使用它的镁二次电池
US16/924,134 US20200343590A1 (en) 2018-12-05 2020-07-08 Non-aqueous electrolyte liquid for magnesium secondary battery and magnesium secondary battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-228378 2018-12-05
JP2018228378 2018-12-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/924,134 Continuation US20200343590A1 (en) 2018-12-05 2020-07-08 Non-aqueous electrolyte liquid for magnesium secondary battery and magnesium secondary battery using same

Publications (1)

Publication Number Publication Date
WO2020115938A1 true WO2020115938A1 (ja) 2020-06-11

Family

ID=70973478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026873 WO2020115938A1 (ja) 2018-12-05 2019-07-05 マグネシウム二次電池用非水電解液及びそれを用いたマグネシウム二次電池

Country Status (4)

Country Link
US (1) US20200343590A1 (ja)
JP (1) JP6775209B1 (ja)
CN (1) CN111527637A (ja)
WO (1) WO2020115938A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145896A1 (ja) * 2022-01-31 2023-08-03 パナソニックIpマネジメント株式会社 非水電解質電池用の非水電解質および非水電解質電池
WO2023238912A1 (ja) * 2022-06-09 2023-12-14 株式会社村田製作所 マグネシウム電池用電解液およびマグネシウム電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115190713A (zh) * 2021-04-02 2022-10-14 成都鼎桥通信技术有限公司 通信设备的外壳和通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012048874A (ja) * 2010-08-25 2012-03-08 Yamaguchi Univ マグネシウム二次電池用電解液及びそれを用いたマグネシウム二次電池
CN106384844A (zh) * 2016-07-27 2017-02-08 中国科学院苏州纳米技术与纳米仿生研究所 非亲核双盐体系镁电池电解液、其制备方法及应用
WO2017106337A1 (en) * 2015-12-15 2017-06-22 The Board Of Trustees Of The Leland Stanford Junior University Improved electrolytes, current collectors, and binders for rechargeable metal-ion batteries
US10044060B1 (en) * 2017-08-18 2018-08-07 Edgar D Young Secondary batteries with improved electrolyte

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245108B2 (ja) * 2007-07-11 2013-07-24 ソニー株式会社 マグネシウムイオン含有非水電解液及びその製造方法、並びに電気化学デバイス
JP2012134082A (ja) * 2010-12-24 2012-07-12 Hitachi Ltd 二次電池用正極活物質及びこれを用いたマグネシウム二次電池
CN102916220B (zh) * 2011-08-05 2015-10-14 丰田自动车株式会社 镁电池电解液
KR20140122033A (ko) * 2013-04-09 2014-10-17 한국과학기술연구원 마그네슘 이차전지용 전해질 및 이의 제조방법
JP6235313B2 (ja) * 2013-11-18 2017-11-22 旭化成株式会社 非水電解液及び当該非水電解液を用いたリチウムイオン二次電池
KR102156319B1 (ko) * 2013-11-21 2020-09-15 삼성전자주식회사 전해액, 이의 제조방법 및 상기 전해액을 포함하는 마그네슘 전지
US10826125B2 (en) * 2015-12-28 2020-11-03 Suzhou Institute Of Nano-Tech And Nano-Bionics (Sinano), Chinese Academy Of Sciences Mono-nuclei cationized magnesium salt, preparation method and applications thereof
JP6671709B2 (ja) * 2016-03-22 2020-03-25 学校法人日本大学 電解液の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012048874A (ja) * 2010-08-25 2012-03-08 Yamaguchi Univ マグネシウム二次電池用電解液及びそれを用いたマグネシウム二次電池
WO2017106337A1 (en) * 2015-12-15 2017-06-22 The Board Of Trustees Of The Leland Stanford Junior University Improved electrolytes, current collectors, and binders for rechargeable metal-ion batteries
CN106384844A (zh) * 2016-07-27 2017-02-08 中国科学院苏州纳米技术与纳米仿生研究所 非亲核双盐体系镁电池电解液、其制备方法及应用
US10044060B1 (en) * 2017-08-18 2018-08-07 Edgar D Young Secondary batteries with improved electrolyte

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023145896A1 (ja) * 2022-01-31 2023-08-03 パナソニックIpマネジメント株式会社 非水電解質電池用の非水電解質および非水電解質電池
WO2023238912A1 (ja) * 2022-06-09 2023-12-14 株式会社村田製作所 マグネシウム電池用電解液およびマグネシウム電池

Also Published As

Publication number Publication date
JPWO2020115938A1 (ja) 2021-02-15
US20200343590A1 (en) 2020-10-29
JP6775209B1 (ja) 2020-10-28
CN111527637A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
KR101954600B1 (ko) 축전 장치용 수계 전해액, 및 당해 수계 전해액을 포함하는 축전 장치
JP5923747B2 (ja) ナトリウム二次電池
WO2017122597A1 (ja) 蓄電装置用水系電解液、及び当該水系電解液を含む蓄電装置
CN112805793B (zh) 固体电解质材料和使用它的电池
JP2011210694A (ja) 非水電解質二次電池
WO2013051309A1 (ja) リチウム空気電池用の電解液
US20200343590A1 (en) Non-aqueous electrolyte liquid for magnesium secondary battery and magnesium secondary battery using same
JP5742865B2 (ja) リチウム金属電池用の電解液
Swiderska-Mocek Electrolyte based on 1-ethyl-3-vinylimidazolium bis (trifluoromethanesulphonyl) imide for Li-ion batteries
JP5621745B2 (ja) 空気電池用電解液
CN106207261A (zh) 电解液及电池
US20210265663A1 (en) Nonaqueous electrolyte solution for magnesium secondary battery and magnesium secondary battery using the same
JP5124170B2 (ja) リチウムイオン二次電池
KR20160070025A (ko) 전해질 및 이를 포함하는 이차 전지
WO2019208733A1 (ja) 蓄電デバイス用正極及び蓄電デバイス
JP2017147169A (ja) マグネシウム二次電池用電解液およびそれを用いたマグネシウム二次電池
CN109119689B (zh) 非水电解液以及锂离子电池
JP5482303B2 (ja) 非水系二次電池用活物質及び非水系二次電池
JP4998392B2 (ja) 非水電解質電池
JP6652814B2 (ja) リチウム電池及びその製造方法
US20220246986A1 (en) Magnesium secondary battery and non-aqueous electrolyte solution for magnesium secondary battery
JP2019061825A (ja) リチウムイオン二次電池
JP2019061827A (ja) リチウムイオン二次電池
JP2011249155A (ja) 非水電解液空気電池
WO2020196747A1 (ja) 蓄電デバイス及び蓄電デバイスの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020513359

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891695

Country of ref document: EP

Kind code of ref document: A1