WO2020113995A1 - 一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法 - Google Patents

一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法 Download PDF

Info

Publication number
WO2020113995A1
WO2020113995A1 PCT/CN2019/100946 CN2019100946W WO2020113995A1 WO 2020113995 A1 WO2020113995 A1 WO 2020113995A1 CN 2019100946 W CN2019100946 W CN 2019100946W WO 2020113995 A1 WO2020113995 A1 WO 2020113995A1
Authority
WO
WIPO (PCT)
Prior art keywords
levulinic acid
furfural
catalyst
sulfate
product
Prior art date
Application number
PCT/CN2019/100946
Other languages
English (en)
French (fr)
Inventor
王奎
蒋剑春
刘超
卫民
徐俊明
李静
夏海虹
刘朋
叶俊
周铭昊
赵佳萍
王瑞珍
Original Assignee
中国林业科学研究院林产化学工业研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国林业科学研究院林产化学工业研究所 filed Critical 中国林业科学研究院林产化学工业研究所
Publication of WO2020113995A1 publication Critical patent/WO2020113995A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • C07D307/50Preparation from natural products
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention belongs to the technology for preparing levulinic acid, in particular to a method for preparing levulinic acid and furfural by direct liquefaction of fibrous biomass.
  • fibrous biomass resources play an important role in the development of human society, and are considered to be the most effective resource for partial replacement of petroleum resources.
  • the conversion of fibrous biomass resources to levulinic acid, furfural and other high value-added products by thermochemical conversion has attracted widespread attention worldwide.
  • the US Department of Energy has also listed levulinic acid and furfural in the twelve most High value-added bio-based chemicals.
  • the carboxyl and carbonyl groups in the molecular structure of levulinic acid give it good reactivity and functional application prospects: it can be used as an intermediate to prepare methyltetrahydrofuran, acrylic acid, ⁇ -angelica lactone, ⁇ -valerolactone, maleic anhydride, bis Phenolic acid, succinic acid, levulinate, pentanediol, nonanone and other high value-added products are widely used in the fields of medicine, cosmetics, plastics, liquid fuel and additives.
  • the good reactivity makes levulinic acid have broad application prospects, but also leads to its instability in the production process and difficulties in purification. Therefore, in the existing process of rapid pyrolysis of biomass to prepare levulinic acid, generally the product yield is low, the purity is poor and separation is difficult.
  • the use of a solvent liquefaction process with excellent selective catalysts helps to improve the selectivity of the target product levulinic acid and reduce the occurrence of side reactions such as repolymerization. Due to the good catalytic activity of liquid acids, it was first favored by researchers: Leahy, JJ and others used H 2 SO 4 catalyst to catalyze the fructose hydrolysis reaction at 150 °C for 2h, and the molar yield of levulinic acid was 71%; Wyman, CE They used HCl catalyst to catalyze the cellulose hydrolysis reaction at 180°C for 20min, and the molar yield of levulinic acid was 61%.
  • Solid acid catalysts have received extensive attention from research researchers due to their excellent selectivity, easy recovery, and low corrosion: ZrO 2 , Amberlyst-15, Amberlyst-70, HY zeolite, MOR zeolite, Graphene oxide and other solid acid catalysts It has been applied to the research of catalyzing the liquefaction of cellulose to produce levulinic acid.
  • Kulkarni, BD and others used ZrO 2 catalyst to catalyze cellulose hydrolysis reaction at 180°C for 3h, and the molar yield of levulinic acid reached 54%;
  • Ebitani, K. et al. used Amberlyst-15 catalyst to catalyze cellulose hydrolysis reaction at 120°C for 24h The molar yield of levulinic acid reaches 52%;
  • Dumesic, JA, etc. use Amberlyst-70 catalyst to catalyze the cellulose hydrolysis reaction at 160 °C for 16h, and the molar yield of levulinic acid is 69%.
  • the above solid acid catalyst has achieved a significant catalytic effect on the yield of levulinic acid, however, the reaction conditions under the solid acid catalyst are more severe: the reaction time is longer or the reaction temperature is too high, and the adsorption of levulinic acid reduces the levulinic acid.
  • the yield of acid and the service life of the catalyst, and the toxicity of the metal catalyst also affect the application range of levulinic acid products.
  • ionic liquids as catalysts to catalyze the hydrolysis of cellulose to produce levulinic acid have attracted wide attention. Ionic liquids have excellent thermal stability, low saturated vapor pressure, easy separation, and mild reaction conditions. Vittayapadung, S. et al.
  • BMIM sulfonated ionic liquid
  • HMO 4 sulfonated ionic liquid
  • BMIM sulfonated ionic liquid
  • HMO 4 sulfonated ionic liquid
  • 369 et al. selected ionic liquid [C 3 SO 3 Hmim] [HSO 4] as a catalyst to catalyze the liquefaction of cellulose under microwave heating at 160°C for 30 min, and the molar yield of levulinic acid was 55%.
  • the high process cost and the difficulty in purifying and separating the target product limit the industrial application of the ionic liquid catalytic process.
  • Supercritical fluids have also attracted the attention of research scholars. Morais et al.
  • the existing levulinic acid and furfural preparation process including the above-mentioned catalytic liquefaction process mainly has the following main problems:
  • the liquid acid catalyst is highly corrosive, difficult to recycle, and has a high process cost.
  • the purpose of the present invention is to provide a method with good raw material adaptability, low cost, strong process operability, easy recovery of solvent system and catalyst, high selectivity of target product levulinic acid, and good industrial application prospects.
  • the technical scheme of the invention is: a method for preparing levulinic acid and furfural by direct liquefaction of fibrous biomass, using fibrous biomass as a raw material, mixed with a polar aprotic solvent/water composite solvent system, and then catalyzed by the catalyst Under hydrolysis, directional liquefaction yields a mixture of levulinic acid; the mixed solution is filtered to recover unreacted lignin, and the filtrate is separated by stages and reduced pressure to gradually separate water, 5-hydroxymethylfurfural, furfural, and the target product, acetyl Propionic acid and polar aprotic solvents; the catalyst is a sulfate catalyst or a liquid acid catalyst.
  • a method for directly liquefying fibrous biomass to prepare levulinic acid and furfural includes the following steps:
  • Step 1 Direct liquefaction of fibrous biomass: After mixing fibrous biomass raw materials, polar aprotic solvent/water composite solvent system and catalyst, stirring and heating to 140 ⁇ 240°C under pressure to fully react and direct liquefaction The reaction produces a mixed liquid of levulinic acid. After the reaction is sufficient, the mixed liquid is filtered to recover unreacted lignin, and the filtrate goes to the next step; the catalyst is a sulfate catalyst or a liquid acid catalyst;
  • Step 2 Separation and purification of the product: The filtrate is subjected to fractional vacuum distillation, and the water, byproduct 5-hydroxymethylfurfural, product furfural and levulinic acid, and polar aprotic solvents are gradually separated.
  • the mass ratio of polar aprotic solvent to water in the polar aprotic solvent/water composite solvent system used is 9:1-9.
  • the mass ratio of the fiber biomass raw material and the polar aprotic solvent/water composite solvent system is 1:1-30.
  • the sulfate catalyst accounts for 1%-10% of the mass of the biomass raw material. When the sulfate catalyst is used, the final distillation under reduced pressure will leave white sulfate.
  • the fibrous biomass raw material is any one of bamboo, willow, birch, eucalyptus, fir, beech, pine, poplar, rice straw, wheat straw, cotton straw, or corn straw.
  • the sulfate catalyst is any one of sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate, aluminum sulfate, zinc sulfate, iron sulfate, copper sulfate, or tin sulfate.
  • the polar aprotic solvent is any one of sulfolane, ⁇ -valerolactone, N,N-dimethylformamide, dimethyl sulfoxide, and tetrahydrofuran.
  • the liquid acid catalyst is any one of sulfuric acid, hydrochloric acid or phosphoric acid.
  • the recovered sulfate catalyst, polar aprotic solvent and fractionated water are recycled.
  • the method of the present invention uses fiber biomass as a raw material to directly mix with a polar aprotic solvent/water composite solvent, and hydrolyzes under the catalysis of a sulfate catalyst to obtain target products levulinic acid and furfural, and a small amount of low boiling point deputies
  • Fibre biomass raw materials have a wide range of sources and low cost.
  • the target products, levulinic acid and furfural have good selectivity, simple process and strong feasibility.
  • the method of the present invention has no special requirements for fiber biomass raw materials, and can be adapted to fiber biomass from various raw materials, such as: poplar, willow, birch, eucalyptus, fir, beech, pine, bamboo, rice straw , Wheat stalks, cotton stalks, corn stalks, etc.
  • the raw materials are widely available, which greatly reduces the industrial cost of levulinic acid and furfural.
  • the method of the present invention is simple in process and strong in operability.
  • the polar aprotic solvent used has low saturated vapor pressure, excellent thermal stability and chemical stability, and good selectivity to the target products levulinic acid and furfural. Pressure distillation can efficiently separate the target products levulinic acid and furfural, and the low-boiling by-product hydroxymethylfurfural.
  • the solvent and catalyst used in the method of the present invention can be efficiently recovered, reused and environmentally friendly.
  • the sulfate catalyst used in the method of the present invention comes from purchase, it can be used directly without further purification, and can be efficiently recycled for reuse, which simplifies the process flow and realizes the comprehensive utilization of fiber biomass raw materials while reducing the process cost and reaction Unreacted lignin can be recovered during the process.
  • Figure 1 is the GC spectrum of each product in the composition of the liquefied product.
  • FIG. 2 is a flow chart of the method for preparing levulinic acid and furfural by direct liquefaction of fibrous biomass in the present invention.
  • the method for preparing levulinic acid and furfural by direct liquefaction using fiber biomass as raw material after using fiber biomass as raw material and mixing with polar aprotic solvent/water composite solvent system, It is hydrolyzed under the catalysis of sulfate catalyst to obtain the target products levulinic acid, furfural and a small amount of by-product hydroxymethylfurfural. After filtering the reaction solution, the unreacted lignin is recovered, and the filtrate is distilled under reduced pressure to gradually separate water, hydroxymethylfurfural, furfural, levulinic acid, and polar aprotic solvent. The recovered polar aprotic solvent and sulfate The catalyst is directly reused. Fibre biomass raw materials have a wide range of sources, low cost, good selectivity for levulinic acid and furfural, simple process and green environmental protection, and the solvents and catalysts used can be efficiently recovered and reused.
  • a method for preparing levulinic acid and furfural by direct liquefaction of fiber biomass more specific steps are:
  • Step 2 Separation and purification of the product: Put the filtrate into a rectification device, under vacuum conditions, the degree of vacuum can be selected from -0.1MPa ⁇ -0.01MPa, gradually heated and stirred to 40 ⁇ 70 °C, distillation 0.1 ⁇ 0.5h, recovery Moisture in the liquid product. After no water drops are distilled off, continue to heat up to 75 ⁇ 100 °C, distillation 0.1 ⁇ 0.5h, to collect low-boiling point by-product hydroxymethyl furfural in the liquid phase product. After no droplets are distilled off, continue to heat up to 105 ⁇ 125 °C, distillation 0.1 ⁇ 0.5h, collect the product furfural.
  • Catalyst The sulfate catalyst comes from the purchase, it can be used repeatedly without further purification.
  • Solvent polar aprotic solvent, industrial grade.
  • the first step direct liquefaction of fiber biomass raw materials: a mass ratio of 1:1 fiber biomass raw materials bamboo and sulfolane/water composite solvent system (in which the mass ratio of ⁇ -valerolactone to water is 9:1)
  • a sodium sulfate catalyst with a mass fraction of 1% was added and transferred to a pressurized reaction kettle for hydrolysis.
  • the temperature was slowly raised to 140°C under mechanical stirring, and the system temperature was maintained for 3.0 hours.
  • the liquefied system was filtered to collect unreacted lignin, and the filtrate was collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 70.1%, the molar yield of furfural is 22.4%, and the molar yield of 5-hydroxymethylfurfural is 7.8%;
  • Step 2 Separation of the product: Put the filtrate into a rectification device. Under vacuum conditions, the degree of vacuum can be selected -0.1MPa, gradually heated and stirred to 45 °C, distilled for 0.5h, and recover the water in the liquid phase product. After no water droplets are distilled off, continue to heat up to 75 °C, distillation for 0.5h, and collect the low boiling point by-product hydroxymethyl furfural in the liquid phase product. After no droplets are distilled off, continue to heat up to 105 °C, distillation for 0.5h, collect the product furfural. After no droplets are distilled off, continue to heat up to 145 °C, distillation for 0.5h, collect the product levulinic acid.
  • the first step direct liquefaction of fiber biomass raw materials: the mass ratio is 1:5 fiber biomass raw material willow and ⁇ -valerolactone/water composite solvent system (where the mass ratio of ⁇ -valerolactone to water is 9:2)
  • After mixing add 2% potassium sulfate catalyst in mass fraction, transfer to pressurized reaction kettle for hydrolysis, slowly raise the temperature to 160°C under mechanical stirring, and maintain the system temperature to react for 2.0h.
  • the liquefied system was filtered to collect unreacted lignin, and the filtrate was collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 65.1%
  • the molar yield of furfural is 19.4%
  • the molar yield of 5-hydroxymethylfurfural is 13.0%;
  • Step 2 Separation of product: Put the filtrate into a rectification device. Under vacuum conditions, the vacuum degree can be -0.01MPa, gradually heat and stir to 70°C, distill for 0.1h, and recover the water in the liquid phase product. After no water drops are distilled off, continue to heat up to 75 °C, distillation for 0.1h, and collect the low-boiling by-product hydroxymethylfurfural in the liquid phase product. After no droplets are distilled off, continue to heat up to 105 °C, distillation for 0.1h, collect the product furfural. After no droplets are distilled off, continue to heat up to 130 °C, distillation for 0.1h, and collect ⁇ -valerolactone.
  • the first step direct liquefaction of fiber biomass raw materials: a mass ratio of 1:15 fiber biomass raw materials birch and NN-dimethylformamide/water composite solvent system (where NN-dimethylformamide and water The mass ratio is 9:4) After mixing, add a 3% magnesium sulfate catalyst, transfer to a pressurized reaction kettle for hydrolysis, and slowly raise the temperature to 200°C under mechanical stirring to maintain the system temperature for 2.0 h. After the reaction, the liquefied system was filtered to collect unreacted lignin, and the filtrate was collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 59.1%, the molar yield of furfural is 23.3%, and the molar yield of 5-hydroxymethylfurfural is 17.6%;
  • Step 2 Separation of the product: Put the filtrate into a rectification device. Under vacuum conditions, the vacuum degree can be -0.01MPa, gradually heat and stir to 50°C, distill for 0.2h, and recover the water in the liquid phase product. After no water drops are distilled off, continue to heat up to 75 °C, distillation for 0.2h, and collect the low boiling point by-product hydroxymethylfurfural in the liquid phase product. After no droplets are distilled off, continue to heat up to 110 °C, distillation 0.2h, collect N-N-dimethylformamide. After no droplets are distilled off, continue to heat up to 130 °C, distillation 0.2h, collect furfural.
  • the vacuum degree can be -0.01MPa, gradually heat and stir to 50°C, distill for 0.2h, and recover the water in the liquid phase product. After no water drops are distilled off, continue to heat up to 75 °C, distillation for 0.2h, and collect the low boiling point by-product hydroxymethylfurf
  • the first step direct liquefaction of fiber biomass raw materials: a mass ratio of 1:20 fiber biomass raw material eucalyptus and dimethyl sulfoxide/water composite solvent system (where the mass ratio of dimethyl sulfoxide to water 9:5)
  • a mass ratio of 1:20 fiber biomass raw material eucalyptus and dimethyl sulfoxide/water composite solvent system where the mass ratio of dimethyl sulfoxide to water 9:5
  • a 4% calcium sulfate catalyst transfer to a pressurized reaction kettle for hydrolysis, and slowly raise the temperature to 220°C under mechanical stirring to maintain the system temperature for 3.0 h.
  • the liquefied system was filtered to collect unreacted lignin, and the filtrate was collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 69.1%, the molar yield of furfural is 20.4%, and the molar yield of 5-hydroxymethylfurfural is 11.2%;
  • Step 2 Separation of the product: Put the filtrate into a rectification device. Under vacuum, the vacuum degree can be -0.01MPa, gradually heat and stir to 60°C, distill for 0.3h, and recover the water in the liquid phase product. After no water droplets are distilled off, continue to heat up to 80 °C, distillation for 0.3h, to collect low-boiling point by-product hydroxymethyl furfural in the liquid phase product. After no droplets are distilled off, continue to heat up to 110 °C, distillation for 0.3h, collect the product furfural. After no droplets are distilled off, continue to heat up to 130 °C, distillation for 0.3h, and collect dimethyl sulfoxide.
  • the vacuum degree can be -0.01MPa, gradually heat and stir to 60°C, distill for 0.3h, and recover the water in the liquid phase product. After no water droplets are distilled off, continue to heat up to 80 °C, distillation for 0.3h, to collect low-boil
  • the first step direct liquefaction of fiber biomass raw materials: mixing the mass ratio of 1:25 fiber biomass raw material Chinese fir and tetrahydrofuran/water composite solvent system (where the mass ratio of tetrahydrofuran to water is 9:6), then adding The mass fraction was 5% aluminum sulfate catalyst, which was transferred to a pressurized reaction kettle for hydrolysis, and slowly heated to 240°C under mechanical stirring, maintaining the system temperature for 0.5 h. After the reaction, the liquefied system was filtered to collect unreacted lignin, and the filtrate was collected for use.
  • Step 2 Separation of the product: Put the filtrate into a rectification device. Under vacuum conditions, the degree of vacuum can be selected -0.01MPa, gradually heated and stirred to 45°C, distilled for 0.5h, and the tetrahydrofuran in the liquid phase product is recovered. After no water drops are distilled off, continue to heat up to 75 °C, distillation for 0.5h, and recover the water in the liquid phase product. After no water droplets are distilled off, continue to heat up to 105 °C, distillation 0.5h to collect low-boiling point by-product hydroxymethyl furfural in the liquid phase product. After the non-droplet distillation, continue to raise the temperature to 130°C and distill for 0.5h.
  • the degree of vacuum can be selected -0.01MPa, gradually heated and stirred to 45°C, distilled for 0.5h, and the tetrahydrofuran in the liquid phase product is recovered. After no water drops are distilled off, continue to heat up to 75 °C
  • the non-droplet distillation continue to increase the temperature to 150°C and distill for 0.5h to collect the product levulinic acid. After no droplets are distilled off, the remaining white powdery solid oven is dried at 105°C and can be used repeatedly as the recovered sulfate catalyst.
  • the first step direct liquefaction of fiber biomass raw materials: the mass ratio of 1:30 fiber biomass raw material beech and ⁇ -valerolactone/water composite solvent system (where the mass ratio of ⁇ -valerolactone to water is 9:7)
  • a zinc sulfate catalyst with a mass fraction of 6% was added, and transferred to a pressurized reaction kettle for hydrolysis. The temperature was slowly raised to 200°C under mechanical stirring, and the system temperature was maintained for 1.5 hours. After the reaction, the liquefied system was filtered to collect unreacted lignin, and the filtrate was collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 68.8%
  • the molar yield of furfural is 21.8%
  • the molar yield of 5-hydroxymethylfurfural is 16.8%
  • the second step product separation: put the filtrate into a rectification device, under vacuum conditions, the vacuum degree can be selected -0.01MPa, gradually heated and stirred to 70 °C, distilled for 0.4h, and recover the water in the liquid phase product. After no water drops are distilled off, continue to heat up to 75 °C, distillation for 0.4h, and collect the low-boiling by-product hydroxymethylfurfural in the liquid phase product. After no droplets are distilled off, continue to raise the temperature to 105 °C, distillation 0.4h, collect the product furfural. After no droplets are distilled off, continue to heat up to 130 °C, distillation for 0.4h, and collect ⁇ -valerolactone.
  • the first step direct liquefaction of fiber biomass raw materials: a mass ratio of 1:20 fiber biomass raw material pine and ⁇ -valerolactone/water composite solvent system (where the mass ratio of ⁇ -valerolactone to water is 9:8)
  • After mixing add 7% iron sulfate catalyst in mass fraction, transfer to pressurized reaction kettle for hydrolysis, slowly warm up to 220°C under mechanical stirring, and maintain the system temperature for 1 hour.
  • the liquefied system was filtered to collect unreacted lignin, and the filtrate was collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 70.2%
  • the molar yield of furfural is 19.9%
  • the molar yield of 5-hydroxymethylfurfural is 8.8%;
  • Step 2 Separation of the product: Put the filtrate into a rectification device. Under vacuum conditions, the degree of vacuum can be -0.1MPa, gradually heat and stir to 55°C, distill for 0.3h, and recover the water in the liquid phase product. After no water drops are distilled off, continue to heat up to 75 °C, distillation for 0.3h, to collect the low-boiling point by-product 5-hydroxymethylfurfural in the liquid phase product. After no droplets are distilled off, continue to heat up to 115 °C, distillation for 0.3h, collect the product furfural. After no droplets are distilled off, continue to heat up to 145 °C, distillation 0.3h, collect ⁇ -valerolactone.
  • the first step direct liquefaction of fiber biomass raw materials: a mass ratio of 1:20 fiber biomass raw material poplar and ⁇ -valerolactone/water composite solvent system (in which the mass ratio of ⁇ -valerolactone to water 9:8)
  • a copper sulfate catalyst with a mass fraction of 8% was added, transferred to a pressurized reaction kettle for hydrolysis, and slowly warmed up to 190°C under mechanical stirring, maintaining the system temperature for 1 hour.
  • the liquefied system was filtered to collect unreacted lignin carbon, and the filtrate was collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 65.9%
  • the molar yield of furfural is 18.6%
  • the molar yield of 5-hydroxymethylfurfural is 9.9%;
  • Step 2 Separation of product: Put the filtrate into a rectification device. Under vacuum conditions, the degree of vacuum can be selected -0.1MPa, gradually heated and stirred to 70°C, distilled for 0.3h, and recover the water in the liquid phase product. After no water drops are distilled off, continue to heat up to 75 °C, distillation for 0.3h, collect the low-boiling point by-product hydroxymethylfurfural in the liquid phase product. After no droplets have been distilled off, continue to heat up to 105 °C, distillation for 0.3h, collect the product furfural. After no droplets are distilled off, continue to heat up to 130 °C, distillation for 0.3h, and collect ⁇ -valerolactone.
  • the first step direct liquefaction of fiber biomass raw materials: the mass ratio of 1:20 fiber biomass raw material rice straw and dimethyl sulfoxide/water composite solvent system (where the mass ratio of dimethyl sulfoxide to water 9:9)
  • a tin sulfate catalyst with a mass fraction of 8%
  • transfer to a pressurized reaction kettle for hydrolysis and slowly raise the temperature to 170°C under mechanical stirring to maintain the system temperature for 0.5 h.
  • the liquefied system is filtered to collect unreacted lignin, and the filtrate is collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 61.6%
  • the molar yield of furfural is 25.1%
  • the molar yield of 5-hydroxymethylfurfural is 16.6.%
  • Step 2 Separation of product: Put the filtrate into a rectification device. Under vacuum conditions, the degree of vacuum can be -0.1MPa, gradually heat and stir to 50°C, distill for 0.5h, and recover the water in the liquid phase product. After no water droplets are distilled off, continue to heat up to 75 °C, distillation for 0.5h, and collect the low boiling point by-product hydroxymethyl furfural in the liquid phase product. After no droplets are distilled off, continue to heat to 115 °C, distillation for 0.5h, collect the product furfural. After no droplets are distilled off, continue to heat up to 140 °C, distillation for 0.5h, and collect ⁇ -valerolactone.
  • the first step direct liquefaction of fiber biomass raw material: the mass ratio is 1:15 fiber biomass raw material cotton stalk and ⁇ -valerolactone/water composite solvent system (where the mass ratio of ⁇ -valerolactone to water 9:1)
  • the aluminum sulfate catalyst with a mass fraction of 1% was added, transferred to a pressurized reaction kettle for hydrolysis, and slowly heated to 200°C under mechanical stirring, and maintained at the system temperature for 2 hours. After the reaction, the liquefied system was filtered to collect unreacted lignin, and the filtrate was collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 69.6%
  • the molar yield of furfural is 15.9%
  • the molar yield of 5-hydroxymethylfurfural is 13.8%
  • Step 2 Separation of the product: Put the filtrate into a rectification device. Under vacuum conditions, the degree of vacuum can be selected -0.1MPa, gradually heated and stirred to 70°C, distilled for 0.1 to 0.5h, and the water in the liquid phase product is recovered. After no water droplets are distilled off, continue to heat up to 100 °C, distillation 0.1 ⁇ 0.5h, to collect the low-boiling point by-product hydroxymethyl furfural in the liquid phase product. After no droplets are distilled off, continue to heat up to 125 °C, distillation 0.1 ⁇ 0.5h, collect the product furfural.
  • the first step direct liquefaction of fiber biomass raw materials: a mass ratio of 1:15 fiber biomass raw material corn stover and ⁇ -valerolactone/water composite solvent system (where the mass ratio of ⁇ -valerolactone to water 9:1)
  • the aluminum sulfate catalyst with a mass fraction of 1% was added, transferred to a pressurized reaction kettle for hydrolysis, and slowly heated to 200°C under mechanical stirring, and maintained at the system temperature for 2 hours.
  • the liquefied system was filtered to collect unreacted lignin, and the filtrate was collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 68.5%
  • the molar yield of furfural is 14.3%
  • the molar yield of 5-hydroxymethylfurfural is 13.2%
  • Step 2 Separation of the product: Put the filtrate into a rectification device. Under vacuum conditions, the degree of vacuum can be selected -0.1MPa, gradually heated and stirred to 70 °C, distilled for 0.5h, and recover the water in the liquid phase product. After no water drops are distilled off, continue to heat up to 90 °C, distillation for 0.5h, collect the low-boiling point by-product hydroxymethylfurfural in the liquid phase product. After no droplets are distilled off, continue to heat up to 110 °C, distillation for 0.5h, collect the product furfural. After no droplets are distilled off, continue to heat up to 140 °C, distillation for 0.5h, and collect ⁇ -valerolactone.
  • the first step direct liquefaction of fiber biomass raw materials: a mass ratio of 1:15 fiber biomass raw materials bamboo and ⁇ -valerolactone/water composite solvent system (where the mass ratio of ⁇ -valerolactone to water is 9:1)
  • the aluminum sulfate catalyst with a mass fraction of 1% is added, and transferred to a pressurized reaction kettle for hydrolysis.
  • the temperature is slowly raised to 200°C under mechanical stirring, and the system temperature is maintained for 2 hours.
  • the liquefied system was filtered to collect unreacted lignin, and the filtrate was collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 58.5%
  • the molar yield of furfural is 23.1%
  • the molar yield of 5-hydroxymethylfurfural is 16.2%
  • Step 2 Separation of the product: Put the filtrate into a rectification device. Under vacuum conditions, the degree of vacuum can be selected -0.1MPa, gradually heated and stirred to 70 °C, distilled for 0.5h, and recover the water in the liquid phase product. After no water drops are distilled off, continue to heat up to 90 °C, distillation for 0.5h, collect the low-boiling point by-product hydroxymethylfurfural in the liquid phase product. After no droplets are distilled off, continue to heat up to 110 °C, distillation for 0.5h, collect the product furfural. After no droplets are distilled off, continue to heat up to 140 °C, distillation for 0.5h, and collect ⁇ -valerolactone.
  • the first step direct liquefaction of fiber biomass raw materials: a mass ratio of 1:15 fiber biomass raw materials bamboo and ⁇ -valerolactone/water composite solvent system (where the mass ratio of ⁇ -valerolactone to water is 9:1)
  • the aluminum sulfate catalyst with a mass fraction of 1% is added, and transferred to a pressurized reaction kettle for hydrolysis.
  • the temperature is slowly raised to 200°C under mechanical stirring, and the system temperature is maintained for 2 hours.
  • the liquefied system was filtered to collect unreacted lignin, and the filtrate was collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 52.5%
  • the molar yield of furfural is 18.8%
  • the molar yield of 5-hydroxymethylfurfural is 14.6%;
  • Step 2 Separation of the product: Put the filtrate into a rectification device. Under vacuum conditions, the degree of vacuum can be selected -0.1MPa, gradually heated and stirred to 70 °C, distilled for 0.5h, and recover the water in the liquid phase product. After no water drops are distilled off, continue to heat up to 90 °C, distillation for 0.5h, collect the low-boiling point by-product hydroxymethylfurfural in the liquid phase product. After no droplets are distilled off, continue to heat up to 110 °C, distillation for 0.5h, collect the product furfural. After no droplets are distilled off, continue to heat up to 140 °C, distillation for 0.5h, and collect ⁇ -valerolactone.
  • the catalyst used in this example is dilute sulfuric acid.
  • the first step direct liquefaction of fiber biomass raw materials: a mass ratio of 1:15 fiber biomass raw materials bamboo and ⁇ -valerolactone/water composite solvent system (where the mass ratio of ⁇ -valerolactone to water is 9:1)
  • a dilute sulfuric acid catalyst with a mass fraction of 1%
  • transfer to a pressurized reaction kettle for hydrolysis and slowly raise the temperature to 200°C under mechanical stirring, and maintain the system temperature for 2 hours.
  • the liquefied system was filtered to collect unreacted lignin, and the filtrate was collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 72.5%
  • the molar yield of furfural is 17.4%
  • the molar yield of 5-hydroxymethylfurfural is 7.5%
  • the second step product separation: put the filtrate into a rectification device, under vacuum conditions, the vacuum degree can be selected -0.05MPa, gradually heated and stirred to 70 °C, distilled for 0.5h, and recover the water in the liquid phase product. After no water drops are distilled off, continue to heat up to 100 °C, distillation for 0.5h, collect the low-boiling point by-product hydroxymethyl furfural in the liquid phase product. After no droplets are distilled off, continue to heat to 115 °C, distillation for 0.5h, collect the product furfural. After no droplets are distilled off, continue to heat up to 150 °C, distillation for 0.5h, and collect ⁇ -valerolactone. After no droplets are distilled off, continue to heat up to 1180 °C, distillation for 0.5h, collect the product levulinic acid.
  • the catalyst used in this example is dilute hydrochloric acid.
  • the first step direct liquefaction of fiber biomass raw materials: the mass ratio is 1:20 fiber biomass raw material bamboo and ⁇ -valerolactone/water composite solvent system (where the mass ratio of ⁇ -valerolactone to water is 9:1)
  • a dilute sulfuric acid catalyst with a mass fraction of 1%
  • transfer to a pressurized reaction kettle for hydrolysis and slowly raise the temperature to 200°C under mechanical stirring, and maintain the system temperature for 2 hours.
  • the liquefied system was filtered to collect unreacted lignin, and the filtrate was collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 65.5%
  • the molar yield of furfural is 21.7%
  • the molar yield of 5-hydroxymethylfurfural is 13.7%
  • Step 2 Separation of the product: Put the filtrate into a rectification device. Under vacuum conditions, the vacuum degree can be -0.01MPa, gradually heat and stir to 70°C, distill for 0.5h, and recover the water in the liquid phase product. After no water droplets are distilled off, continue to heat up to 85 °C, distillation for 0.5h, and collect the low-boiling by-product hydroxymethylfurfural in the liquid phase product. After no droplets are distilled off, continue to heat up to 120 °C, distillation for 0.5h, collect the product furfural. After no droplets are distilled off, continue to heat up to 150 °C, distillation for 0.5h, and collect ⁇ -valerolactone. After no droplets are distilled off, continue to heat up to 180 °C, distillation 0.1 ⁇ 0.5h, collect the product levulinic acid.
  • the catalyst used in this example is dilute phosphoric acid.
  • the first step direct liquefaction of fiber biomass raw materials: the mass ratio is 1:1 fiber biomass raw material bamboo and ⁇ -valerolactone/water composite solvent system (where the mass ratio of ⁇ -valerolactone to water is 9:1)
  • dilute sulfuric acid catalyst with a mass fraction of 10%
  • transfer to a pressurized reaction kettle for hydrolysis and slowly raise the temperature to 240°C under mechanical stirring, and maintain the system temperature for 0.5 h.
  • the liquefied system was filtered to collect unreacted lignin, and the filtrate was collected for use.
  • the molar yield of levulinic acid in the liquid phase system is 51.5%
  • the molar yield of furfural is 22.4%
  • the molar yield of 5-hydroxymethylfurfural is 16.3%
  • Step 2 Separation of product: Put the filtrate into a rectification device. Under vacuum conditions, the degree of vacuum can be -0.7MPa, gradually heat and stir to 65°C, distill for 0.5h, and recover the water in the liquid phase product. After no water droplets are distilled off, continue to heat up to 80 °C, distillation for 0.5h, collect the low-boiling point by-product hydroxymethyl furfural in the liquid phase product. After no droplets are distilled off, continue to heat up to 125 °C, distillation for 0.5h, collect the product furfural. After no droplets are distilled off, continue to heat up to 150 °C, distillation for 0.5h, and collect ⁇ -valerolactone. After no droplets are distilled off, continue to heat up to 160 °C, distillation for 0.5h, collect the product levulinic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供了一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法,以纤维类生物质为原料,在极性非质子溶剂/水复合溶剂体系中与硫酸盐催化剂混合催化水解,直接液化定向制备乙酰丙酸;将液化后的体系过滤回收未反应的木质素,滤液通过分级减压蒸馏,逐步分离水、羟甲基糠醛、糠醛、极性非质子溶剂以及乙酰丙酸;回收的极性非质子溶剂和硫酸盐催化剂与分级分离得到的水进行循环使用。所述方法以原料来源广泛、价格低廉并且可再生的纤维类生物质为原料,绿色环保,工艺简单。在极性非质子溶剂/水复合溶剂体系中,目标产物乙酰丙酸和糠醛的选择性好,产率高,易于分离,且所用溶剂、催化剂等均可高效回收利用,环境友好,适用于工业化大规模生产。

Description

一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法 技术领域
本发明属于制备乙酰丙酸的技术,特别是一种由纤维类生物质直接液化制备乙酰丙酸和糠醛的方法。
背景技术
近年来,随着地球上不可再生的化石资源日渐枯竭,人们对利用可再生资源生产能源或化学品以满足人类社会需求越来越感兴趣。纤维类生物质资源作为一种储量丰富的可再生廉价资源,在人类社会的发展过程中发挥着重要的作用,被认为是石油资源部分替代的最有效资源。采用热化学转化的方法将纤维类生物质资源转化为乙酰丙酸、糠醛等高附加值产品引起了世界范围的广泛关注,美国能源部也已将乙酰丙酸和糠醛列入十二个最具高附加值的生物基化学品。
乙酰丙酸分子结构中的羧基和羰基赋予其良好的反应活性与功能化应用前景:可以作为中间体制备甲基四氢呋喃、丙烯酸、α-当归内酯、γ-戊内酯、马来酸酐、双酚酸、琥珀酸、乙酰丙酸酯、戊二醇、壬酮等高附加值产品,被广泛应用于医药、化妆品、塑料、液体燃料及其添加剂等领域。良好的反应活性使得乙酰丙酸具有广阔的应用前景,同时也导致了其在生产过程中的不稳定和精制困难等问题。因此,现有生物质快速热解制备乙酰丙酸的工艺中,普遍产品得率较低,纯度差且分离困难。
为了解决上述问题,选用具有优良选择性催化剂的溶剂液化工艺,有助于提高目标产物乙酰丙酸的选择性,降低重聚等副反应的发生。由于液体酸良好的催化活性,最先受到研究者们的青睐:Leahy,J.J.等人采用H 2SO 4催化剂在150℃催化果糖水解反应2h,乙酰丙酸摩尔得率为71%;Wyman,C.E.等人采用HCl催化剂在180℃催化纤维素水解反应20min,乙酰丙酸摩尔得率为61%。然而在高收率的同时,液体酸引起了许多不必要的副反应的发生,而且难以分离、腐蚀性强等问题无形中增加了额外的设备投入和运行成本。固体酸催化剂由于其优良的选择性、易回收和腐蚀性低等优点,受到了研究学者的广泛关注:ZrO 2、Amberlyst-15、Amberlyst-70、HY zeolite、MOR zeolite、Graphene oxide等固体酸催化剂被应用于催化纤维素液化制备乙酰丙酸的研究。Kulkarni,B.D.等人采用ZrO 2催化剂在180℃下催化纤维素水解反应3h,乙酰丙酸摩尔得率达到54%;Ebitani,K.等采用Amberlyst-15催化剂在120℃下催化纤维素水解反应24h,乙酰丙酸摩尔得率达到52%;Dumesic,J.A.等采用Amberlyst-70催化剂在160℃下催化纤维素水解反应16h,乙酰丙酸摩尔得率为69%。上述固体酸催化剂在乙酰丙酸得率上取得了显著催化效果,然而固体酸催化剂催化下反应条件比较苛刻:反应时间较长或反应温度过高,而且对于乙酰丙酸的吸附作用降低了乙酰丙酸的得率和催化剂的使用寿命,同时金属催化剂的毒性也影响了乙酰丙酸产品的应用范围。最近,离子液体作为催化剂催化纤维素水解制备乙酰丙酸引起了广泛关注,离子液体具有优良的热稳定性、较低的饱和蒸气压、易于分离、反应条件温和。Vittayapadung,S.等选用磺 化离子液体[BMIM][HSO 4]作为催化剂,催化葡萄糖在145℃条件下液化104min,乙酰丙酸摩尔得率为71%。369等选用离子液体[C 3SO 3Hmim][HSO 4]作为催化剂,催化纤维素在微波加热160℃条件下液化30min,乙酰丙酸摩尔得率为55%。然而较高的工艺成本,以及目标产物难以纯化分离等问题,限制了离子液体催化工艺的工业化应用。超临界流体同样引起了研究学者的关注,Morais等将超临界CO 2作为反应体系,应用于纤维素液化制备乙酰丙酸,取得了较好的催化效果,乙酰丙酸得率显著高于传统工艺。然后较高的反应压力,增加了设备成本,影响其工业化应用前景
包括上述催化液化工艺在内的现有乙酰丙酸和糠醛制备工艺主要存在以下主要问题:
(1)液体酸催化剂腐蚀性大,难以回收利用,工艺成本较高。
(2)常规固体酸催化剂催化活性低,反应时间较长,反应温度较高。
(3)离子液体和超临界流体等新型催化剂,成本较高,反应条件苛刻。
(4)多分别以纤维素和半纤维素为原料,原料成本高,难以应用于纤维类生物质原料的直接转化中。
因此,选择一种具有优良选择性和催化活性的反应体系,高效转化纤维类生物质原料制备乙酰丙酸和糠醛是解决现有工艺存在问题的关键。
发明内容
本发明的目的在于提供一种原料适应性好、成本低廉,工艺可操作性强、溶剂体系及催化剂易于回收,目标产物乙酰丙酸选择性高,具有良好工业化应用前景的方法。
本发明的技术方案为:一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法,以纤维类生物质为原料,与极性非质子溶剂/水复合溶剂体系混合后,在催化剂的催化下水解,定向液化得到主要产物为乙酰丙酸的混合液;将混合液过滤回收未反应的木质素,滤液通过分级减压蒸馏,逐步分离水、5-羟甲基糠醛、糠醛、目标产物乙酰丙酸以及极性非质子溶剂;所述的催化剂为硫酸盐催化剂或液体酸催化剂。
一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法,包括以下步骤:
第一步:纤维类生物质的直接液化:将纤维类生物质原料、极性非质子溶剂/水复合溶剂体系和催化剂混合后,加压条件下搅拌升温至140~240℃充分反应,定向液化反应得到主要产物为乙酰丙酸的混合液,反应充分后将混合液过滤回收未反应的木质素,滤液进入下一步;所述的催化剂为硫酸盐催化剂或液体酸催化剂;
第二步:产物的分离纯化:将滤液进行分级减压蒸馏,逐步分离水、副产物5-羟甲基糠醛、产物糠醛和乙酰丙酸,以及极性非质子溶剂。
所用极性非质子溶剂/水复合溶剂体系中极性非质子溶剂和水的质量比为9:1~9。
所述的纤维类生物质原料和极性非质子溶剂/水复合溶剂体系的质量比为1:1~30。
所述的硫酸盐催化剂占生物质原料质量1%-10%,当采用硫酸盐催化剂时,最后减压蒸馏会 留下白色硫酸盐。
所述的纤维类生物质原料为竹子、柳木、桦木、桉木、杉木、榉木、松木、杨木、稻秆、麦秆、棉秆或玉米秸秆中的任一种。
所述的硫酸盐催化剂为硫酸钠、硫酸钾、硫酸镁、硫酸钙、硫酸铝、硫酸锌、硫酸铁、硫酸铜或硫酸锡中的任一种。
所述的极性非质子溶剂为环丁砜、γ-戊内酯、N,N-二甲基甲酰胺、二甲基亚砜、四氢呋喃中的任一种。
所述的液体酸催化剂为:硫酸、盐酸或磷酸中的任一种。
回收的硫酸盐催化剂、极性非质子溶剂和分级分离得到的水进行循环使用。
有益效果:
1、本发明方法以纤维类生物质为原料直接与极性非质子溶剂/水的复合溶剂混合,在硫酸盐催化剂的催化下水解,制得目标产物乙酰丙酸和糠醛,及少量低沸点副产物5-羟甲基糠醛;过滤后得到的滤饼为未反应的木质素;滤液通过减压蒸馏分级分离,逐步分离水、低沸点附产物、目标产物糠醛和乙酰丙酸,以及极性非质子溶剂;极性非质子溶剂和硫酸盐催化剂与分级分离得到的水进行循环使用。纤维类生物质原料来源广泛,成本低廉,目标产物乙酰丙酸和糠醛选择性好,工艺简单且可行性强。
2、本发明方法对纤维类生物质原料没有特殊要求,可适应于各种原料来源的纤维类生物质,如:杨木、柳木、桦木、桉木、杉木、榉木、松木、竹子、稻秆、麦秆、棉秆和玉米秸秆等。原料来源广泛,极大降低了乙酰丙酸和糠醛的工业成本。
3、本发明方法工艺简单且可操作性强,所用溶剂极性非质子溶剂饱和蒸气压低,热稳定性和化学稳定性优良,对目标产物乙酰丙酸和糠醛的选择性好,通过简单的减压蒸馏,可高效分离目标产物乙酰丙酸和糠醛,以及低沸点的副产物羟甲基糠醛。
4、本发明方法所用溶剂及催化剂均可高效回收,重复使用,环境友好。
5、本发明方法采用的硫酸盐催化剂来自于购买,无需进一步提纯就可直接使用,可高效回收重复使用,在简化工艺流程和实现纤维类生物质原料的综合利用的同时降低了工艺成本,反应过程中未反应的木质素可回收。
附图说明
图1是液化产物组成中各产物GC谱图。
图2是本发明用纤维类生物质直接液化制备乙酰丙酸和糠醛的方法的流程图。
具体实施方式
下面结合附图对本发明作进一步详细描述。
本发明以纤维类生物质为原料,通过直接液化制备乙酰丙酸和糠醛的方法,如图5所示,以纤维类生物质为原料,与极性非质子溶剂/水复合溶剂体系混合后,在硫酸盐催化剂的催化下水解,制得目标产物乙酰丙酸、糠醛和少量副产物羟甲基糠醛等。将反应液过滤后回收未反应的木质素,滤液经减压蒸馏,逐步分离水、羟甲基糠醛、糠醛、乙酰丙酸和极性非质子溶剂目,回收的极性非质子溶剂和硫酸盐催化剂直接重复使用。纤维类生物质原料来源广泛,成本低廉,乙酰丙酸和糠醛选择性好,工艺简单且绿色环保,所用溶剂和催化剂均可高效回收,重复使用。
一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法,更具体的步骤为:
第一步:纤维类生物质原料的直接液化:将质量比为1:1~30纤维类生物质原料和极性非质子溶剂/水复合溶剂体系混合后,加入质量分数为1%-10%硫酸盐(为硫酸钠、硫酸钾、硫酸镁、硫酸钙、硫酸铝、硫酸锌、硫酸铁、硫酸铜、硫酸锡中的任一)催化剂,转移至高压反应釜,在机械搅拌下140℃~240℃,反应0.5~3h,所述的纤维类生物质原料为竹子、柳木、桦木、桉木、杉木、榉木、松木、杨木、稻秆、麦秆、棉秆和玉米秸秆中的任一,无级别要求;
第二步:产物的分离纯化:将滤液放入精馏装置,真空条件下,真空度可以选择-0.1MPa~-0.01MPa,逐渐加热搅拌升温至40~70℃,蒸馏0.1~0.5h,回收液相产物中的水分。待无水滴馏出后,继续升温至75~100℃,蒸馏0.1~0.5h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至105~125℃,蒸馏0.1~0.5h,收集产物糠醛。待无液滴馏出后,继续升温至130~150℃,蒸馏0.1~0.5h,收集极性非质子溶剂。待无液滴馏出后,继续升温至150~180℃,蒸馏0.1~0.5h,收集产物乙酰丙酸。待无液滴馏出后,剩余白色粉末状固体烘箱105℃干燥,作为回收的硫酸盐催化剂可重复使用。
所用的所有的溶剂和催化剂均可回收,重复使用。
催化剂:硫酸盐催化剂来自于购买,无需进一步提纯,可重复使用。
溶剂:极性非质子溶剂,工业级。
下面以实施例来说明上述反应过程。
实施例1:
第一步:纤维类生物质原料的直接液化:将质量比为1:1纤维类生物质原料竹子和环丁砜/水复合溶剂体系(其中γ-戊内酯与水的质量比为9:1)混合后,加入质量分数为1%硫酸钠催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至140℃,保持体系温度反应3.0h。反应结束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为70.1%,糠醛摩尔得率为22.4%,5-羟甲基糠醛摩尔得率为7.8%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.1MPa,逐渐加热搅拌升温至45℃,蒸馏0.5h,回收液相产物中的水分。待无水滴馏出后,继续升温至75℃,蒸馏0.5h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至105℃,蒸馏0.5h,收集产物糠醛。待无液滴馏出后,继续升温至145℃,蒸馏0.5h,收集产物乙酰丙酸。待无液滴馏出后,继续升温至180℃,蒸馏0.5h,收集环丁砜。待无液滴馏出后,剩余白色粉末状固体烘箱105℃干燥,作为回收的硫酸钠催化剂可重复使用。
实施例2:
第一步:纤维类生物质原料的直接液化:将质量比为1:5纤维类生物质原料柳木和γ-戊内酯/水复合溶剂体系(其中γ-戊内酯与水的质量比为9:2)混合后,加入质量分数为2%硫酸钾催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至160℃,保持体系温度反应2.0h。反应结束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为65.1%,糠醛摩尔得率为19.4%,5-羟甲基糠醛摩尔得率为13.0%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.01MPa,逐渐加热搅拌升温至70℃,蒸馏0.1h,回收液相产物中的水分。待无水滴馏出后,继续升温至75℃,蒸馏0.1h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至105℃,蒸馏0.1h,收集产物糠醛。待无液滴馏出后,继续升温至130℃,蒸馏0.1h,收集γ-戊内酯。待无液滴馏出后,继续升温至150℃,蒸馏0.1h,收集产物乙酰丙酸。待无液滴馏出后,剩余白色粉末状固体烘箱105℃干燥,作为回收的硫酸盐催化剂可重复使用。
实施例3:
第一步:纤维类生物质原料的直接液化:将质量比为1:15纤维类生物质原料桦木和N-N-二甲基甲酰胺/水复合溶剂体系(其中N-N-二甲基甲酰胺与水的质量比为9:4)混合后,加入质量分数为3%硫酸镁催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至200℃,保持体系温度反应2.0h。反应结束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为59.1%,糠醛摩尔得率为23.3%,5-羟甲基糠醛摩尔得率为17.6%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.01MPa,逐渐加热搅拌升温至50℃,蒸馏0.2h,回收液相产物中的水分。待无水滴馏出后,继续升温至75℃,蒸馏0.2h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至110℃,蒸馏0.2h,收集N-N-二甲基甲酰胺。待无液滴馏出后,继续升温至130℃,蒸馏0.2h,收集糠醛。待无液滴馏出后,继续升温至150℃,蒸馏0.2h,收集产物乙酰丙酸。待无液滴馏出后,剩余白色粉末状固体烘箱105℃干燥,作为回收的硫酸盐催化剂可重复使用。
实施例4:
第一步:纤维类生物质原料的直接液化:将质量比为1:20纤维类生物质原料桉木和二甲基亚砜/水复合溶剂体系(其中二甲基亚砜与水的质量比为9:5)混合后,加入质量分数为4%硫酸钙催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至220℃,保持体系温度反应3.0h。反应结束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为69.1%,糠醛摩尔得率为20.4%,5-羟甲基糠醛摩尔得率为11.2%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.01MPa,逐渐加热搅拌升温至60℃,蒸馏0.3h,回收液相产物中的水分。待无水滴馏出后,继续升温至80℃,蒸馏0.3h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至110℃,蒸馏0.3h,收集产物糠醛。待无液滴馏出后,继续升温至130℃,蒸馏0.3h,收集二甲基亚砜。待无液滴馏出后,继续升温至150℃,蒸馏0.3h,收集产物乙酰丙酸。待无液滴馏出后,剩余白色粉末状固体烘箱105℃干燥,作为回收的硫酸盐催化剂可重复使用。
实施例5:
第一步:纤维类生物质原料的直接液化:将质量比为1:25纤维类生物质原料杉木和四氢呋喃/水复合溶剂体系(其中四氢呋喃与水的质量比为9:6)混合后,加入质量分数为5%硫酸铝催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至240℃,保持体系温度反应0.5h。反应结束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为66.1%,糠醛摩尔得率为22.4%,5-羟甲基糠醛摩尔得率为11.9%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.01MPa,逐渐加热搅拌升温至45℃,蒸馏0.5h,回收液相产物中的四氢呋喃。待无水滴馏出后,继续升温至75℃,蒸馏0.5h,回收液相产物中的水分。待无水滴馏出后,继续升温至105℃,蒸馏0.5h收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至130℃,蒸馏0.5h,待无液滴馏出后,继续升温至150℃,蒸馏0.5h,收集产物乙酰丙酸。待无液滴馏出后,剩余白色粉末状固体烘箱105℃干燥,作为回收的硫酸盐催化剂可重复使用。
实施例6:
第一步:纤维类生物质原料的直接液化:将质量比为1:30纤维类生物质原料榉木和γ-戊内酯/水复合溶剂体系(其中γ-戊内酯与水的质量比为9:7)混合后,加入质量分数为6%硫酸锌催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至200℃,保持体系温度反应1.5h。反应结束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为68.8%,糠醛摩尔得率为21.8%,5-羟甲基糠醛摩尔得率为16.8%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.01MPa,逐渐加热搅拌升温至70℃,蒸馏0.4h,回收液相产物中的水分。待无水滴馏出后,继续升温至75℃,蒸馏0.4h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至105℃, 蒸馏0.4h,收集产物糠醛。待无液滴馏出后,继续升温至130℃,蒸馏0.4h,收集γ-戊内酯。待无液滴馏出后,继续升温至150℃,蒸馏0.4h,收集产物乙酰丙酸。待无液滴馏出后,剩余白色粉末状固体烘箱105℃干燥,作为回收的硫酸盐催化剂可重复使用。
实施例7:
第一步:纤维类生物质原料的直接液化:将质量比为1:20纤维类生物质原料松木和γ-戊内酯/水复合溶剂体系(其中γ-戊内酯与水的质量比为9:8)混合后,加入质量分数为7%硫酸铁催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至220℃,保持体系温度反应1h。反应结束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为70.2%,糠醛摩尔得率为19.9%,5-羟甲基糠醛摩尔得率为8.8%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.1MPa,逐渐加热搅拌升温至55℃,蒸馏0.3h,回收液相产物中的水分。待无水滴馏出后,继续升温至75℃,蒸馏0.3h,收集液相产物中低沸点的副产物5-羟甲基糠醛。待无液滴馏出后,继续升温至115℃,蒸馏0.3h,收集产物糠醛。待无液滴馏出后,继续升温至145℃,蒸馏0.3h,收集γ-戊内酯。待无液滴馏出后,继续升温至170℃,蒸馏0.3h,收集产物乙酰丙酸。待无液滴馏出后,剩余白色粉末状固体烘箱105℃干燥,作为回收的硫酸盐催化剂可重复使用。。
实施例8:
第一步:纤维类生物质原料的直接液化:将质量比为1:20纤维类生物质原料杨木和γ-戊内酯/水复合溶剂体系(其中γ-戊内酯与水的质量比为9:8)混合后,加入质量分数为8%硫酸铜催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至190℃,保持体系温度反应1h。反应结束后,将液化后的体系过滤收集未反应的木质素炭,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为65.9%,糠醛摩尔得率为18.6%,5-羟甲基糠醛摩尔得率为9.9%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.1MPa,逐渐加热搅拌升温至70℃,蒸馏0.3h,回收液相产物中的水分。待无水滴馏出后,继续升温至75℃,蒸馏0.3h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至105℃,蒸馏0.3h,收集产物糠醛。待无液滴馏出后,继续升温至130℃,蒸馏0.3h,收集γ-戊内酯。待无液滴馏出后,继续升温至175℃,蒸馏0.3h,收集产物乙酰丙酸。待无液滴馏出后,剩余白色粉末状固体烘箱105℃干燥,作为回收的硫酸盐催化剂可重复使用。
实施例9:
第一步:纤维类生物质原料的直接液化:将质量比为1:20纤维类生物质原料稻秆和二甲基亚砜/水复合溶剂体系(其中二甲基亚砜与水的质量比为9:9)混合后,加入质量分数为8%硫酸锡催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至170℃,保持体系温度反应0.5h。反应结 束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为61.6%,糠醛摩尔得率为25.1%,5-羟甲基糠醛摩尔得率为16.6.%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.1MPa,逐渐加热搅拌升温至50℃,蒸馏0.5h,回收液相产物中的水分。待无水滴馏出后,继续升温至75℃,蒸馏0.5h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至115℃,蒸馏0.5h,收集产物糠醛。待无液滴馏出后,继续升温至140℃,蒸馏0.5h,收集γ-戊内酯。待无液滴馏出后,继续升温至170℃,蒸馏0.5h,收集产物乙酰丙酸。待无液滴馏出后,剩余白色粉末状固体烘箱105℃干燥,作为回收的硫酸盐催化剂可重复使用。
实施例10:
第一步:纤维类生物质原料的直接液化:将质量比为1:15纤维类生物质原料棉秆和γ-戊内酯/水复合溶剂体系(其中γ-戊内酯与水的质量比为9:1)混合后,加入质量分数为1%硫酸铝催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至200℃,保持体系温度反应2h。反应结束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为69.6%,糠醛摩尔得率为15.9%,5-羟甲基糠醛摩尔得率为13.8%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.1MPa,逐渐加热搅拌升温至70℃,蒸馏0.1~0.5h,回收液相产物中的水分。待无水滴馏出后,继续升温至100℃,蒸馏0.1~0.5h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至125℃,蒸馏0.1~0.5h,收集产物糠醛。待无液滴馏出后,继续升温至150℃,蒸馏0.5h,收集γ-戊内酯。待无液滴馏出后,继续升温至180℃,蒸馏0.5h,收集产物乙酰丙酸。待无液滴馏出后,剩余白色粉末状固体烘箱105℃干燥,作为回收的硫酸盐催化剂可重复使用。
实施例11:
第一步:纤维类生物质原料的直接液化:将质量比为1:15纤维类生物质原料玉米秸秆和γ-戊内酯/水复合溶剂体系(其中γ-戊内酯与水的质量比为9:1)混合后,加入质量分数为1%硫酸铝催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至200℃,保持体系温度反应2h。反应结束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为68.5%,糠醛摩尔得率为14.3%,5-羟甲基糠醛摩尔得率为13.2%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.1MPa,逐渐加热搅拌升温至70℃,蒸馏0.5h,回收液相产物中的水分。待无水滴馏出后,继续升温至90℃,蒸馏0.5h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至110℃,蒸馏0.5h,收集产物糠醛。待无液滴馏出后,继续升温至140℃,蒸馏0.5h,收集γ-戊内酯。 待无液滴馏出后,继续升温至160℃,蒸馏0.5h,收集产物乙酰丙酸。待无液滴馏出后,剩余白色粉末状固体烘箱105℃干燥,作为回收的硫酸盐催化剂可重复使用。
实施例12:
本实施例所用溶剂和催化剂均为实施例11回收所得
第一步:纤维类生物质原料的直接液化:将质量比为1:15纤维类生物质原料竹子和γ-戊内酯/水复合溶剂体系(其中γ-戊内酯与水的质量比为9:1)混合后,加入质量分数为1%硫酸铝催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至200℃,保持体系温度反应2h。反应结束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为58.5%,糠醛摩尔得率为23.1%,5-羟甲基糠醛摩尔得率为16.2%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.1MPa,逐渐加热搅拌升温至70℃,蒸馏0.5h,回收液相产物中的水分。待无水滴馏出后,继续升温至90℃,蒸馏0.5h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至110℃,蒸馏0.5h,收集产物糠醛。待无液滴馏出后,继续升温至140℃,蒸馏0.5h,收集γ-戊内酯。待无液滴馏出后,继续升温至160℃,蒸馏0.5h,收集产物乙酰丙酸。待无液滴馏出后,剩余白色粉末状固体烘箱105℃干燥,作为回收的硫酸盐催化剂可重复使用。
实施例13:
本实施例所用溶剂和催化剂均为实施例12回收所得
第一步:纤维类生物质原料的直接液化:将质量比为1:15纤维类生物质原料竹子和γ-戊内酯/水复合溶剂体系(其中γ-戊内酯与水的质量比为9:1)混合后,加入质量分数为1%硫酸铝催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至200℃,保持体系温度反应2h。反应结束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为52.5%,糠醛摩尔得率为18.8%,5-羟甲基糠醛摩尔得率为14.6%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.1MPa,逐渐加热搅拌升温至70℃,蒸馏0.5h,回收液相产物中的水分。待无水滴馏出后,继续升温至90℃,蒸馏0.5h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至110℃,蒸馏0.5h,收集产物糠醛。待无液滴馏出后,继续升温至140℃,蒸馏0.5h,收集γ-戊内酯。待无液滴馏出后,继续升温至160℃,蒸馏0.5h,收集产物乙酰丙酸。待无液滴馏出后,剩余白色粉末状固体烘箱105℃干燥,作为回收的硫酸盐催化剂可重复使用。
实施例14:
本实施例所用催化剂为稀硫酸。
第一步:纤维类生物质原料的直接液化:将质量比为1:15纤维类生物质原料竹子和γ-戊内酯/水复合溶剂体系(其中γ-戊内酯与水的质量比为9:1)混合后,加入质量分数为1%稀硫酸催 化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至200℃,保持体系温度反应2h。反应结束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为72.5%,糠醛摩尔得率为17.4%,5-羟甲基糠醛摩尔得率为7.5%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.05MPa,逐渐加热搅拌升温至70℃,蒸馏0.5h,回收液相产物中的水分。待无水滴馏出后,继续升温至100℃,蒸馏0.5h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至115℃,蒸馏0.5h,收集产物糠醛。待无液滴馏出后,继续升温至150℃,蒸馏0.5h,收集γ-戊内酯。待无液滴馏出后,继续升温至1180℃,蒸馏0.5h,收集产物乙酰丙酸。
实施例15:
本实施例所用催化剂为稀盐酸。
第一步:纤维类生物质原料的直接液化:将质量比为1:20纤维类生物质原料竹子和γ-戊内酯/水复合溶剂体系(其中γ-戊内酯与水的质量比为9:1)混合后,加入质量分数为1%稀硫酸催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至200℃,保持体系温度反应2h。反应结束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为65.5%,糠醛摩尔得率为21.7%,5-羟甲基糠醛摩尔得率为13.7%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.01MPa,逐渐加热搅拌升温至70℃,蒸馏0.5h,回收液相产物中的水分。待无水滴馏出后,继续升温至85℃,蒸馏0.5h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至120℃,蒸馏0.5h,收集产物糠醛。待无液滴馏出后,继续升温至150℃,蒸馏0.5h,收集γ-戊内酯。待无液滴馏出后,继续升温至180℃,蒸馏0.1~0.5h,收集产物乙酰丙酸。
实施例16:
本实施例所用催化剂为稀磷酸。
第一步:纤维类生物质原料的直接液化:将质量比为1:1纤维类生物质原料竹子和γ-戊内酯/水复合溶剂体系(其中γ-戊内酯与水的质量比为9:1)混合后,加入质量分数为10%稀硫酸催化剂,转移至加压反应釜水解,机械搅拌下缓慢升温至240℃,保持体系温度反应0.5h。反应结束后,将液化后的体系过滤收集未反应的木质素,收集滤液待用。经GC和HPLC分析结果可知,液相体系中乙酰丙酸摩尔得率为51.5%,糠醛摩尔得率为22.4%,5-羟甲基糠醛摩尔得率为16.3%;
第二步:产物的分离:将滤液放入精馏装置,真空条件下,真空度可以选择-0.7MPa,逐渐加热搅拌升温至65℃,蒸馏0.5h,回收液相产物中的水分。待无水滴馏出后,继续升温至80℃,蒸馏0.5h,收集液相产物中低沸点的副产物羟甲基糠醛。待无液滴馏出后,继续升温至125℃,蒸馏0.5h,收集产物糠醛。待无液滴馏出后,继续升温至150℃,蒸馏0.5h,收集γ-戊内酯。待无液滴馏出后,继续升温至160℃,蒸馏0.5h,收集产物乙酰丙酸。

Claims (10)

  1. 一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法,其特征在于,以纤维类生物质为原料,与极性非质子溶剂/水复合溶剂体系混合后,在催化剂的催化下水解,定向液化得到主要产物为乙酰丙酸的混合液;将混合液过滤回收未反应的木质素,滤液通过分级减压蒸馏,逐步分离水、5-羟甲基糠醛、糠醛、目标产物乙酰丙酸以及极性非质子溶剂;所述的催化剂为硫酸盐催化剂或液体酸催化剂。
  2. 根据权利要求1所述的一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法,其特征在于,包括以下步骤:
    第一步:纤维类生物质的直接液化:将纤维类生物质原料、极性非质子溶剂/水复合溶剂体系和催化剂混合后,加压条件下搅拌升温至140~240℃充分反应,定向液化反应得到主要产物为乙酰丙酸的混合液,反应充分后将混合液过滤回收未反应的木质素,滤液进入下一步;所述的催化剂为硫酸盐催化剂或液体酸催化剂;
    第二步:产物的分离纯化:将滤液进行分级减压蒸馏,逐步分离水、副产物5-羟甲基糠醛、产物糠醛和乙酰丙酸,以及极性非质子溶剂。
  3. 根据权利要求1或2所述的一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法,其特征在于:所用极性非质子溶剂/水复合溶剂体系中极性非质子溶剂和水的质量比为9:1~9。
  4. 根据权利要求1或2所述的一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法,其特征在于:所述的纤维类生物质原料和极性非质子溶剂/水复合溶剂体系的质量比为1:1~30。
  5. 根据权利要求1或2所述的一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法,其特征在于:所述的硫酸盐催化剂占生物质原料质量1%-10%,当采用硫酸盐催化剂时,最后减压蒸馏会留下白色硫酸盐。
  6. 根据权利要求1或2所述的一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法:所述的纤维类生物质原料为竹子、柳木、桦木、桉木、杉木、榉木、松木、杨木、稻秆、麦秆、棉秆或玉米秸秆中的任一种。
  7. 根据权利要求1或2所述的一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法,其特征在于:所述的硫酸盐催化剂为硫酸钠、硫酸钾、硫酸镁、硫酸钙、硫酸铝、硫酸锌、硫酸铁、硫酸铜或硫酸锡中的任一种。
  8. 根据权利要求1或2所述的一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法,其特征在于:所述的极性非质子溶剂为环丁砜、γ-戊内酯、N,N-二甲基甲酰胺、二甲基亚砜、四氢呋喃中的任一种。
  9. 根据权利要求1或2所述的一种纤维类生物质定向液化制备乙酰丙酸的方法,其特征在于:所述的液体酸催化剂为:硫酸、盐酸或磷酸中的任一种。
  10. 根据权利要求1或2所述的一种纤维类生物质定向液化制备乙酰丙酸的方法,其特征在于:回收的硫酸盐催化剂、极性非质子溶剂和分级分离得到的水进行循环使用。
PCT/CN2019/100946 2018-12-05 2019-08-16 一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法 WO2020113995A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811477722.0A CN109467542A (zh) 2018-12-05 2018-12-05 一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法
CN201811477722.0 2018-12-05

Publications (1)

Publication Number Publication Date
WO2020113995A1 true WO2020113995A1 (zh) 2020-06-11

Family

ID=65675609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100946 WO2020113995A1 (zh) 2018-12-05 2019-08-16 一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法

Country Status (3)

Country Link
CN (1) CN109467542A (zh)
AU (1) AU2019101040A4 (zh)
WO (1) WO2020113995A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608378A (zh) * 2022-09-23 2023-01-17 昆明理工大学 一种固体酸耦合共溶剂催化体系综合转化生物质的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110304992B (zh) * 2019-06-27 2022-12-02 北京林业大学 木质纤维素全组分高值化利用制备化学品的方法
CN111393279A (zh) * 2019-12-02 2020-07-10 南京林业大学 一种纤维素催化降解转化成乙酰丙酸的方法
CN111875568A (zh) * 2020-07-27 2020-11-03 齐鲁工业大学 一种生物质分级炼制综合利用的方法
CN112796134A (zh) * 2020-10-13 2021-05-14 中国林业科学研究院林产化学工业研究所 一种生物基极性非质子溶剂体系中木质纤维预处理的方法
CN112662417A (zh) * 2020-12-08 2021-04-16 杨清萍 一种直接液化生物质制取液体燃料的连续化生产系统及方法
CN115368324A (zh) * 2021-05-18 2022-11-22 南京林业大学 一种分子筛负载双金属催化纤维素降解转化成高附加值化学品的方法
CN113277940B (zh) * 2021-05-21 2023-01-13 齐鲁工业大学 生物质在单相酸性溴化锂-水体系下制备乙酰丙酸的方法
CN113385197A (zh) * 2021-06-16 2021-09-14 华东理工大学 一种掺杂二氧化锆和二氧化钛的固体酸催化剂及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617524A (zh) * 2012-03-28 2012-08-01 中国科学院广州能源研究所 一种利用生物质原料制备5-羟甲基糠醛的方法
CN105859545A (zh) * 2016-04-07 2016-08-17 中国科学技术大学 一种糠醛与乙酰丙酸的制备方法
CN107021878A (zh) * 2015-12-23 2017-08-08 耐斯特公司 由生物质联合生产乙酰丙酸和糠醛
CN107382714A (zh) * 2017-08-16 2017-11-24 中国林业科学研究院林产化学工业研究所 一种木质纤维定向液化制备乙酰丙酸的综合利用方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103012335B (zh) * 2012-11-30 2015-03-11 中国科学院广州能源研究所 一种利用木质纤维素生物质联产糠醛和5-羟甲基糠醛的方法
CN103554067A (zh) * 2013-10-31 2014-02-05 安徽理工大学 一种木质纤维素类生物质催化水解制备糠醛的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617524A (zh) * 2012-03-28 2012-08-01 中国科学院广州能源研究所 一种利用生物质原料制备5-羟甲基糠醛的方法
CN107021878A (zh) * 2015-12-23 2017-08-08 耐斯特公司 由生物质联合生产乙酰丙酸和糠醛
CN105859545A (zh) * 2016-04-07 2016-08-17 中国科学技术大学 一种糠醛与乙酰丙酸的制备方法
CN107382714A (zh) * 2017-08-16 2017-11-24 中国林业科学研究院林产化学工业研究所 一种木质纤维定向液化制备乙酰丙酸的综合利用方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608378A (zh) * 2022-09-23 2023-01-17 昆明理工大学 一种固体酸耦合共溶剂催化体系综合转化生物质的方法
CN115608378B (zh) * 2022-09-23 2024-05-10 昆明理工大学 一种固体酸耦合共溶剂催化体系综合转化生物质的方法

Also Published As

Publication number Publication date
CN109467542A (zh) 2019-03-15
AU2019101040A4 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
WO2020113995A1 (zh) 一种纤维类生物质直接液化制备乙酰丙酸和糠醛的方法
Zuo et al. An effective pathway for converting carbohydrates to biofuel 5-ethoxymethylfurfural via 5-hydroxymethylfurfural with deep eutectic solvents (DESs)
Xu et al. Conversion of levulinic acid to valuable chemicals: a review
CN104557801B (zh) 一种金属/固体酸催化剂上由糠醛制备γ-戊内酯的方法
CN103012335B (zh) 一种利用木质纤维素生物质联产糠醛和5-羟甲基糠醛的方法
Agirrezabal-Telleria et al. Production of furfural from pentosan-rich biomass: analysis of process parameters during simultaneous furfural stripping
CN102558106B (zh) 一种利用废弃生物质制备2-甲基四氢呋喃的方法
CN109535109A (zh) 一种木质纤维定向液化制备5-羟甲基糠醛的方法
CN113214196B (zh) 以木质纤维素类生物质为原料制备生物基化学品的方法
Nasrollahzadeh et al. Biomass valorization: Sulfated lignin-catalyzed production of 5-hydroxymethylfurfural from fructose
CN102559941A (zh) 一种利用玉米芯水解糖化的方法
CN112094187B (zh) 一种由果糖制备及分离乙酰丙酸的方法
NL2021194B1 (en) A comprehensive utilization method for preparing levulinic acid through directional liquefaction of lignocellulosic biomass
CN105498801A (zh) 一种磺酸化炭化玉米芯催化剂的制备及其催化木糖制备糠醛的方法
CN103193623B (zh) 一种由生产木糖的废渣一步催化制备乙酰丙酸的方法
CN103467418A (zh) 一种果糖基生物质催化转化制呋喃衍生物的方法
CN104138753A (zh) 一种锡基蒙脱土催化剂与制法及其催化木糖为糠醛的应用
CN111689932A (zh) 一种海水催化木质纤维类生物质定向液化制备呋喃类衍生物的方法
Mishra et al. Furfuryl alcohol—a promising platform chemical
US20140303420A1 (en) Process for the production of hydrocarbons
Quereshi et al. Catalytic conversion of lignocellulosic biomass into fuels and value-added chemicals
CN105523783A (zh) 一种秸秆生产高附加值化学品联产缓释肥的方法
CN109824912B (zh) 一种木质纤维生物质水解联产丁烯二酸和木质素的方法
CN112279758B (zh) 一种由葡萄糖制备及分离乙酰丙酸的方法
CN104164519A (zh) 一种纤维素水解制备葡萄糖的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893050

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19893050

Country of ref document: EP

Kind code of ref document: A1