WO2020111858A1 - 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법 - Google Patents

수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법 Download PDF

Info

Publication number
WO2020111858A1
WO2020111858A1 PCT/KR2019/016697 KR2019016697W WO2020111858A1 WO 2020111858 A1 WO2020111858 A1 WO 2020111858A1 KR 2019016697 W KR2019016697 W KR 2019016697W WO 2020111858 A1 WO2020111858 A1 WO 2020111858A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
less
steel material
pressure vessel
hydrogen
Prior art date
Application number
PCT/KR2019/016697
Other languages
English (en)
French (fr)
Inventor
김대우
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP19888554.3A priority Critical patent/EP3889299A4/en
Priority to US17/296,456 priority patent/US20210395867A1/en
Priority to JP2021530864A priority patent/JP7197699B2/ja
Priority to CN201980078921.0A priority patent/CN113166898A/zh
Publication of WO2020111858A1 publication Critical patent/WO2020111858A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/28Normalising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a steel material for a pressure vessel having excellent hydrogen organic crack resistance and a method for manufacturing the same.
  • the steel material used in all plant facilities for mining, processing, transporting, and storing low-quality crude oil is indispensable to have the property of suppressing crack generation due to wet hydrogen sulfide in the crude oil.
  • environmental pollution caused by accidents in plant facilities has become a global problem, and as the astronomical cost is required to recover it, the level of HIC requirements of steel materials used in the energy industry is gradually increasing.
  • HIC hydrogen organic cracking
  • the method of regularly adding the Cu has an effect of reducing the penetration of hydrogen into the material by forming a stable CuS film on the material surface in a weakly acidic atmosphere, thereby improving the resistance to hydrogen organic cracking. It is known that the effect due to the addition of Cu has no great effect in a strongly acidic atmosphere, and also, due to the addition of Cu, causes cracking on the surface of the steel sheet by causing high temperature cracking, thereby increasing the process cost such as surface polishing.
  • the base phase is ferrite + pearlite (water) through water treatment such as NACT (Normalizing and Accelerated Cooling and Tempering), QT (Quenching and Tempering), DQT (Direct Quenching and Tempering), and TMCP (Thermo-Mechanical Controlled Processing).
  • NACT Normalizing and Accelerated Cooling and Tempering
  • QT Quantenching and Tempering
  • DQT Direct Quenching and Tempering
  • TMCP Thermo-Mechanical Controlled Processing
  • Patent document 1 related to this is mass%, C:0.01 to 0.1%, Si:0.01 to 0.5%, Mn:0.8 to 2%, P:0.025% or less, S:0.002% or less, Ca:0.0005 to 0.005%, Ti:0.005 ⁇ 0.05%, Nb:0.005 ⁇ 0.1%, sol.Al:0.005 ⁇ 0.05%, N:0.01%, V:0.2%, Cu: 0.5% or less, Ni:0.5% or less, Cr:3% or less , Mo: 1.5% or less, B: 0.002% or less slab heating and finish rolling at 700°C ⁇ 850°C, then accelerated cooling at temperature below 30°C in Ar3 to finish at 350 ⁇ 550°C It is disclosed that the HIC characteristics can be improved through.
  • Patent Document 2 also discloses that it is possible to improve the HIC properties by securing a tempered martensite (Dempered Martensite) structure through a direct quenching and tempering (DQT) process.
  • the base phase is composed of a low-temperature phase (martensite, bainite, acyclic ferrite, etc.)
  • the HIC properties are increased, but hot-forming is impossible, so it is difficult to construct a pressure vessel and the surface hardness value is High, the value of the uniform elongation of the product falls, and a problem arises in that the incidence of surface cracks increases during processing.
  • HIC resistance may be deteriorated due to the formation of a MA (Martensite-Austenite constituent) phase that may act as a starting point for HIC Crack.
  • the third method is a method of increasing the HIC characteristics by minimizing inclusions or voids in the slab to increase the blueness, and there is patent document 3 as a representative technique.
  • Patent Document 3 when adding 0.1 Ca (T.[Ca]-(17/18) ⁇ T.[O]-1.25 ⁇ S)/T[O] ⁇ 0.5 when adding Ca in molten steel, It is disclosed that a steel material having excellent HIC properties can be produced.
  • the above method may help improve HIC resistance by preventing crushing of oxidative inclusions when the cumulative reduction amount is large, such as a thin material. However, if there are excessive segregation defects such as Mn center segregation or MnS inclusion, it does not help much.
  • HIC defects are generated due to central porosity defects rather than defects caused by oxidative inclusions, and there is a limitation because rolling cannot sufficiently mechanically bond residual pores present in the center. .
  • the fourth method is a method of minimizing the hardened structure or controlling the shape, and is mainly a method of delaying the crack propagation speed by lowering the B.I (Band Index) value of the band structure occurring on the base after normalizing heat treatment.
  • C 0.1 to 0.30%, Si: 0.15 to 0.40%, Mn: 0.6 to 1.2%, P: 0.035% or less, S: 0.020% or less, Al: 0.001 to 0.05%, Cr: 0.35% or less, Ni: 0.5% or less, Cu: 0.5% or less, Mo: 0.2% or less, V: 0.05% or less, Nb: 0.05% or less, Ca: 0.0005 to 0.005%, Ti: 0.005 to 0.025%, N: Ferrite + pearlite with a banding index (measured according to ASTM E-1268) of 0.25 or less by heating and hot rolling a slab containing 0.0020 to 0.0060%, air cooling at room temperature, and heating at an ac1 to ac3 transformation point,
  • the above-described conventional methods have limitations in producing steel for a pressure vessel having a hydrogen organic cracking property in a thickness of 6 to 100 mm and a tensile strength of 485 to 620 MPa.
  • Patent Document 1 Japanese Patent Publication No. 2003-013175
  • Patent Document 2 Korean Registered Patent Publication No. 0833071
  • Patent Document 3 Japanese Patent Publication No. 2014-005534
  • Patent Document 4 Korean Patent Publication No. 2010-0076727
  • One aspect of the present invention is to provide a pressure vessel steel material having excellent resistance to hydrogen organic cracking (HIC) in a hydrogen sulfide atmosphere and a method for manufacturing the same.
  • HIC hydrogen organic cracking
  • carbon (C) 0.2 to 0.3%
  • silicon (Si) 0.05 to 0.50%
  • manganese (Mn) 0.1% or more to less than 0.5%
  • aluminum (Al) 0.005 ⁇ 0.1%
  • phosphorus (P) 0.010% or less
  • sulfur (S) 0.0015% or less
  • niobium (Nb) 0.001 to 0.03%
  • vanadium (V) 0.001 to 0.03%
  • titanium (Ti) 0.001 to 0.03 %
  • Chromium (Cr) 0.01 to 0.20%
  • Molybdenum (Mo) 0.01 to 0.15%
  • Nickel (Ni) 0.05 to 0.50%
  • Calcium (Ca) 0.0005 to 0.0040 %
  • reheating the steel slab containing residual Fe and other inevitable impurities at 1000 ⁇ 1100°C Hot rolling the reheated slab at an unrecrystallized region temperature of
  • a pressure vessel steel material having excellent resistance to hydrogen organic cracking (HIC) in a hydrogen sulfide atmosphere and a method for manufacturing the same.
  • HIC hydrogen organic cracking
  • the present invention is characterized by further improving the strength and resistance to hydrogen organic cracks by controlling the alloy composition, the microstructure, the degree of thickening of the central Mn, the crystallinity of ferrite, and the like.
  • the main concept of the present invention is divided into two parts, the alloy design part and the process control part as follows.
  • Mn is controlled in the range of 0.1 to 0.5% by weight to suppress Mn segregation and the generation of pearlite having a band structure at the center of the product.
  • the Mn content is usually 1.0 to 1.4% by weight, and when the addition of Mn is excluded, all of the solid solution strengthening effect of Mn in the ferrite matrix is canceled, resulting in a sharp decrease in strength. Occurs.
  • the content of C is increased to compensate for the decrease in strength.
  • the C usually has 0.13 to 0.18% by weight, and in the present invention, the pearlite fraction is increased by increasing the content of C to a level of 0.2 to 0.25% by weight, thereby improving strength.
  • C is the diffusion coefficient between Delta/Liquid or Gamma/Liquid phase at high temperature is lower than Mn, but the diffusion coefficient at austenite single phase is much higher than Mn, so even if segregation occurs, it can diffuse all during normalizing heat treatment. In the product, it is possible to control the occurrence of central segregation.
  • the strain resistance value can be relatively decreased, and the unrecrystallized zone temperature is increased by increasing the average rolling reduction per pass at 850°C from the existing 8% level to 15% or more. Can generate as many ferrite nucleation sites as possible.
  • Nb(C,N) carbonitride grows in the air-cooling process after rolling as the thickness of the product becomes thicker and becomes coarse.
  • the Nb(C,N) carbonitride is most preferably produced in the normalizing process after completion of rolling.
  • coarse Nb(C,N) carbonitride is present after rolling, fine precipitates are not newly generated in the normalizing heat treatment process, but Nb(C,N) carbonitride existing in the base is continuously As it grows, it is impossible to expect a proper precipitation strengthening effect.
  • the present invention in the case of steel having a thickness of 50 mm or more, the growth of the carbonitride is effectively suppressed by performing accelerated cooling to 400° C. or less after completion of rolling.
  • C Since C is the most important element for securing basic strength, it needs to be contained in the steel within an appropriate range, and it is preferable to add 0.2% or more of C to obtain such an additive effect. However, when the content of C exceeds 0.3%, in the case of steel materials having a thickness of less than 10 mm, ferrite + bainite structures, etc. may be formed during the air cooling process, resulting in excessive strength or hardness. In addition, since it is inhibited, it is preferable that the C has a range of 0.2 to 0.3%.
  • Si is a substitutional element, it improves the strength of steel through solid solution strengthening and has a strong deoxidizing effect, so it is preferable to add 0.05% or more since it is an essential element for manufacturing clean steel. However, if it exceeds 0.50%, the MA phase is generated, and the strength of the ferrite matrix structure is excessively increased, which may cause deterioration in HIC properties and impact toughness. Therefore, it is preferable that the Si has a range of 0.05 to 0.50%. The lower limit of the Si content is more preferably 0.20%.
  • Mn is a useful element that improves strength by solid solution strengthening and improves hardenability to produce a low-temperature transformation phase.
  • the Mn is added in the range of 1.0 ⁇ 1.4%.
  • the banded pearlite structure develops in the rolling process, resulting in inferior HIC quality.
  • the degree of segregation of Mn in the center of the product is also increased, and the high-temperature strain resistance value is also rapidly increased, thus limiting the maximum rolling reduction in the non-recrystallized region. Therefore, in the present invention, it is preferable to control the Mn content to less than 0.5% in order to generate a fine ferrite + pearlite microstructure rather than a band in the entire thickness section of the product. Therefore, the Mn content is preferably in the range of 0.1% or more to less than 0.5%.
  • the lower limit of the Mn content is more preferably 0.15%, and even more preferably 0.2%.
  • the upper limit of the Mn content is more preferably 0.45%, and even more preferably 0.4%.
  • Al is one of the strong deoxidizers in the steelmaking process together with Si, and it is preferable to add at least 0.005% in order to obtain such an effect.
  • the content exceeds 0.1%, the fraction of Al 2 O 3 among the oxidative inclusions generated as a result of deoxidation increases excessively, and the size becomes coarse, and there is a problem that it is difficult to remove during refining, resulting in oxidation There is a disadvantage in that the resistance to hydrogen organic cracks due to inclusions is deteriorated. Therefore, it is preferable that the Al has a range of 0.005 to 0.1%.
  • Phosphorus (P) 0.010% or less
  • P is an element that induces brittleness at a grain boundary or forms coarse inclusions, and thus it is preferable to control the content of P to 0.010% or less in order to improve brittle crack propagation resistance.
  • S is an element that induces brittleness at a grain boundary or forms coarse inclusions, and thus it is preferable to control the content of S to 0.0015% or less in order to improve brittle crack propagation resistance.
  • Nb precipitates in the form of NbC or Nb(C,N) to improve the base material strength.
  • Nb employed during reheating at a high temperature is precipitated very finely in the form of NbC during rolling, thereby suppressing recrystallization of austenite, thereby minimizing the structure.
  • the Nb is added 0.001% or more.
  • undissolved Nb is generated in the form of Ti,Nb(C,N), and may be a factor that inhibits UT defect, impact toughness deterioration and hydrogen-organic cracking. Therefore, the content of the Nb is preferably in the range of 0.001 ⁇ 0.03%.
  • V is almost re-used during reheating, so that the effect of strengthening by precipitation or solid solution during subsequent rolling is insignificant, but it has an effect of improving strength by precipitating with very fine carbonitride in a subsequent heat treatment process such as PWHT.
  • a subsequent heat treatment process such as PWHT.
  • the content of V has a range of 0.001 to 0.003%.
  • Ti is a component that significantly increases low-temperature toughness by inhibiting the growth of the crystal grains of the base material and the weld heat-affected zone by depositing with TiN upon reheating.
  • low-temperature toughness may be reduced by clogging of the performance nozzle or crystallization of the center, and when coarse TiN precipitates are formed in the thickness center by combining with N, the starting point of hydrogen organic cracking Since it can act as, the Ti content is preferably in the range of 0.001 ⁇ 0.03%.
  • the Cr does not have the effect of increasing the yield and tensile strength by solid solution, but it has an effect of preventing a drop in strength by slowing the decomposition rate of cementite during tempering or post-weld heat treatment (PWHT).
  • PWHT post-weld heat treatment
  • the Cr content is preferably in the range of 0.01 to 0.20%.
  • Mo is an element effective for preventing strength drop during tempering or post-weld heat treatment (PWHT), such as Cr, and has an effect of preventing toughness degradation due to grain boundary segregation of impurities such as P. It also increases the strength of the matrix phase as a solid solution strengthening element in ferrite.
  • PWHT tempering or post-weld heat treatment
  • the Mo content is preferably in the range of 0.01 to 0.15%.
  • Copper (Cu) is an advantageous element in the present invention, as it can not only greatly enhance the strength of the matrix phase by solid solution strengthening in ferrite, but also suppress corrosion in a wet hydrogen sulfide atmosphere.
  • the content of Cu is preferably in the range of 0.01 to 0.50%.
  • Ni is an important element in increasing impact strength by increasing lamination defects at low temperatures to easily improve cross-slip of dislocation, and improving hardenability, thereby increasing strength, and 0.05% or more is added to obtain this effect. desirable.
  • the Ni content is preferably in the range of 0.05 to 0.50%. .
  • Ca When Ca is added after deoxidation by Al, it combines with S forming MnS inclusions to suppress the formation of MnS, and at the same time, it has an effect of suppressing the generation of cracks due to hydrogen organic cracks by forming spherical CaS.
  • the content of Ca is preferably in the range of 0.0005 to 0.0040%.
  • the remaining component of the invention is iron (Fe).
  • impurities that are not intended from the raw material or the surrounding environment may be inevitably mixed, and therefore cannot be excluded. Since these impurities are known to anyone skilled in the ordinary manufacturing process, they are not specifically mentioned in this specification.
  • the steel material provided by the present invention preferably has an average grain size of ferrite of 5 to 20 ⁇ m.
  • the average grain size of the ferrite is less than 5 ⁇ m, there is a physical limit to reducing the austenite grain size by rolling, and when it exceeds 20 ⁇ m, DBTT is increased during the impact transition test, thereby deteriorating impact toughness.
  • the steel material of the present invention is preferably ferrite in the area fraction: 70% or more and the remainder pearlite.
  • the ferrite fraction is less than 70%, the pearlite fraction is relatively high, and thus the impact toughness is deteriorated.
  • the steel material of the present invention preferably has a central Mn maximum concentration of 0.6% by weight or less.
  • MnS or low-temperature transformation phase may be generated due to concentration of components by segregation.
  • the center referred to in the present invention means a region occupying ⁇ 5% of the total thickness of the product at 1/2t (t: product thickness).
  • the steel material of the present invention after PWHT It is preferable to include 0.01 to 0.02% by weight of Nb(C,N) or V(C,N) carbonitride having an average diameter of 5 to 20 nm.
  • the average diameter of the Nb(C,N) or V(C,N) carbonitride exceeds 20 nm or is less than 5 nm, there is a disadvantage that the effect of precipitation strengthening cannot be sufficiently obtained.
  • the fraction of the Nb(C,N) or V(C,N) carbonitride is less than 0.01% by weight, the fraction of carbonitride is low, so that the effect of precipitation strengthening cannot be sufficiently obtained, and it exceeds 0.02% by weight. If there is, there is a disadvantage that the hardness of the weld is excessively high and welding cracks may occur.
  • the steel material of the present invention is preferably 6 to 100mm in thickness. If the thickness of the steel material is less than 6mm, there is a disadvantage that it is difficult to manufacture with a heavy plate rolling machine, and when it exceeds 100mm, there is a disadvantage that it is difficult to secure a tensile strength of 485MPa or more targeted by the present invention.
  • the steel material of the present invention provided as described above may have a tensile strength in the range of 485 ⁇ 620MPa.
  • steel slabs having the above-described alloy composition are reheated at 1000 to 1100°C.
  • the steel slab reheating is preferably performed at 1000° C. or higher to prevent excessive temperature drop during the subsequent rolling process.
  • the steel slab reheating temperature exceeds 1100°C, the total rolling reduction in the unrecrystallized zone temperature becomes insufficient, and even if the control rolling start temperature is low, there is a disadvantage in that the cost competitiveness of the furnace operation is poor due to excessive air cooling. Therefore, the steel slab reheating temperature is preferably in the range of 1000 ⁇ 1100 °C.
  • the reheated slab is hot rolled at an unrecrystallized region temperature of 800 to 950°C at an average rolling reduction of 15% or more per pass to obtain a hot rolled steel.
  • the hot rolling temperature is less than 800°C, it can be rolled in the austenite-ferrite or higher region, so it cannot be rolled to a normal target thickness.
  • it exceeds 950°C the grains of austenite are too coarse to refine the grains. It is not expected to improve the strength and HIC characteristics.
  • the average reduction rate per pass is less than 15%, it is not easy to control the average grain size of ferrite to 20 ⁇ m or less after normalizing heat treatment because it cannot sufficiently generate ferrite nucleation sites in the non-recrystallized region. Therefore, it is preferable to control the average reduction rate per pass during hot rolling to 15% or more. However, in consideration of the limit rolling amount and roll life of each mill, it is preferable that the average rolling reduction per pass is 30% or less.
  • the average grain size of the austenite of the hot rolled steel is preferably 30 ⁇ m or less.
  • the average grain size of the ferrite finally obtained can be made fine by controlling the average grain size of the austenite of the hot-rolled steel to 30 ⁇ m or less.
  • the average grain size of the austenite of the hot rolled steel is more preferably 25 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • the hot-rolled steel material is air-cooled to room temperature, and then heated to 800 to 900° C., and then maintained for 15 to 60 minutes to perform normalizing heat treatment.
  • the normalizing heat treatment is for sufficient homogenization of the austenite structure and sufficient diffusion of a solute, and it is difficult to sufficiently obtain the effect when the normalizing heat treatment temperature is less than 800°C or when the normalizing heat treatment time is less than 15 minutes. Can be.
  • fine precipitates such as NbC and VC may be coarsened.
  • the air cooling process can be applied to all of the hot rolled steel having a thickness of 6 ⁇ 100mm targeted in the present invention.
  • the hot-rolled steel material is replaced by an accelerated cooling process at a temperature of 5° C. You may.
  • Nb(C,N) carbonitride may grow coarsely in the air cooling process after rolling.
  • the normalized heat treatment process is not newly generated as fine NbC precipitates, but the proper precipitation strengthening effect as the coarsening of existing Nb(C,N) precipitates continues. Can be reduced. Therefore, for hot-rolled steel having a thickness exceeding 50 mm, carbonitride growth in the air-cooling process is performed by accelerated cooling at a cooling rate of 5° C./s or more based on 1/4 t (t: steel thickness) to 400° C. or less after completion of rolling. Can be effectively suppressed. On the other hand, when considering the limitations of the accelerated cooling facility, the cooling rate during the accelerated cooling may be 20° C./s or less based on 1/4 t of the thickness direction of a 100 mm thick steel material.
  • hot rolling was performed under the conditions shown in Table 2 below to obtain a hot-rolled steel material having a thickness of 100mm, and then air-cooled to room temperature, and then maintained at 890°C for 30 minutes. Then, normalizing heat treatment was performed.
  • the maximum concentration of the central Mn for each hot-rolled steel thus manufactured was measured using EBSD (Electron Back Scattered Diffraction), and the microstructure of the 1/4t (t: thickness) and the center (1/2t) of the steel sheet was measured using an optical microscope. It was analyzed, and after the normalizing heat treatment, the average grain size of ferrite was measured and shown in Table 2 below.
  • the results are shown in Table 2 below.
  • the hydrogen organic crack crack length ratio (CLR, %) in the plate length direction used as an index of the hydrogen organic crack (HIC) resistance of steel is saturated with 1 atmosphere of H 2 S gas according to the relevant international standard NACE TM0284.
  • the length of the crack was measured by ultrasonic flaw detection method, and the sum of each crack length in the longitudinal direction of the specimen was divided by the total length of the specimen. It was calculated and evaluated.
  • the tensile test was evaluated at room temperature, and was expressed as the average value of the two evaluation results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명의 일 실시형태는 중량%로, 탄소(C): 0.2~0.3%, 실리콘(Si): 0.05~0.50%, 망간(Mn): 0.1%이상~0.5%미만, 알루미늄(Al): 0.005~0.1%, 인(P): 0.010% 이하, 황(S): 0.0015% 이하, 니오븀(Nb): 0.001~0.03%, 바나듐(V): 0.001~0.03%, 티타늄(Ti): 0.001~0.03%, 크롬(Cr): 0.01~0.20%, 몰리브덴(Mo): 0.01~0.15%, 구리(Cu): 0.01~0.50%, 니켈(Ni): 0.05~0.50%, 칼슘(Ca): 0.0005~0.0040%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 페라이트의 평균 결정립도가 5~20㎛인 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법을 제공한다.

Description

수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
본 발명은 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법에 관한 것이다.
최근 들어 석유화학 제조설비, 저장탱크 등에 사용되는 압력용기 강재는 사용시간 증대에 따라 설비 대형화 및 강재의 후물화가 지속되고 있으며, 대형 구조물을 제조함에 있어서 모재와 함께 용접부의 구조적 안정성을 확보하기 위하여 탄소 당량(Ceq)을 낮추고 불순물을 극한으로 제어하는 추세에 있다. 또한 H 2S가 다량으로 함유된 원유의 생산이 증대됨에 따라 내 수소유기균열(HIC)에 대한 품질 특성이 더욱 까다로워지고 있다.
특히, 저품질의 원유를 채굴, 처리, 수송, 저장하는 모든 플랜트 설비에 사용되는 강재에도 원유 속의 습윤 황화수소에 의한 크랙 발생을 억제하는 특성이 필수적으로 요구되고 있는 실정이다. 최근 플랜트 설비의 사고에 의한 환경오염이 전 지구적인 문제가 되고 있고, 이를 복구함에 있어서 천문학적인 비용이 소요됨에 따라 에너지 산업에 사용되는 철강재의 내 HIC 요구특성의 수준이 점차 엄격해지는 추세에 있다.
한편, 수소유기균열(HIC)은 다음과 같은 원리로 발생한다. 강판이 원유에 함유된 습윤 황화수소와 접촉함에 따라 부식이 일어나고, 상기 부식에 의해 발생된 수소는 강 내부로 침입 및 확산하여 강 내부에서 원자 상태로 존재하게 된다. 이러한 수소원자가 강 내부에서 수소가스 형태로 분자화되면서 가스 압력이 발생하고 그 압력에 의해 강 내부의 취약한 조직, 예컨대, 개재물, 편석대, 내부공극 등에서 취성균열이 생성되며 크랙이 점차 성장하여 재료가 견딜 수 있는 강도를 초과할 경우 파괴가 일어나게 된다.
이에, 황화수소 분위기에서 사용되는 강재의 수소유기균열 저항성을 향상시키는 방안들이 제안되었으며, 그 예로서, 첫째, 구리(Cu) 등의 원소를 첨가하는 방법, 둘째, 가공 공정을 바꿔 NACT, QT, DQT 등 수처리를 통하여 기지조직을 템퍼드 마르텐사이트(Tempered Martensite), 템퍼드 베이나이트(Tempered Bainite) 등의 경질조직으로 만들어 크랙 개시(initiation)에 대한 저항성을 증대시키는 방법, 셋째, 수소의 집적 및 크랙의 개시점으로 작용할 수 있는 강 내부 개재물 및 공극 등의 내부결함을 제어하는 방법, 넷째, 크랙이 쉽게 발생 및 전파하는 경화 조직(예컨대, 펄라이트 상 등)을 최소화 하거나 그 형상을 제어하는 방법 등이 있다.
상기 Cu를 일정 첨가하는 방법은 약산성 분위기에서 재료 표면에 안정적인 CuS 피막을 형성함으로써 수소가 재료 내부에 침투하는 것을 줄여주는 효과가 있어 수소유기균열 저항성을 향상시켜준다. 이러한 Cu 첨가에 의한 효과는 강산성 분위기에서는 큰 효과가 없다고 알려져 있으며, 또한, Cu의 첨가로 인해 고온균열을 일으켜 강판 표면에 크랙을 발생시켜 표면 연마 등 공정원가를 증가시키는 문제가 있다.
두번째 방법은 NACT(Normalizing and Accelerated Cooling and Tempering), QT(Quenching and Tempering), DQT(Direct Quenching and Tempering), TMCP(Thermo-Mechanical Controlled Processing) 등의 수처리를 통하여 기지상이 페라이트(Ferrite)+펄라이트(Pearlite)가 아닌 템퍼드 마르텐사이트(Tempered Martensite), 템퍼드 베이나이트(Tempered Bainite) 혹은 이들의 복합조직을 형성하여 기지상의 강도를 증대시키는 것이다. 기지상의 강도가 증대될 경우 크랙 개시(Crack Initiation)에 대한 저항성이 증대되기 때문에 상대적으로 발생빈도가 줄어들 수가 있다. 이와 관련된 특허문헌 1은 질량%로, C:0.01~0.1%, Si:0.01~0.5%, Mn:0.8~2%, P:0.025%이하, S:0.002%이하, Ca:0.0005~0.005%, Ti:0.005~0.05%, Nb:0.005~0.1%, sol.Al:0.005~0.05%, N:0.01%, V:0.2%, Cu: 0.5%이하, Ni:0.5%이하, Cr:3%이하, Mo:1.5%이하, B:0.002%이하로 구성된 슬라브를 가열 및 700℃~850℃에서 마무리 압연을 한 후, Ar3에서 30℃ 이하 온도에서 가속냉각을 개시하여 350~550℃에서 마무리하는 과정을 통해 내 HIC특성을 향상시킬 수 있다고 개시하고 있다. 또한, 특허문헌 2에서 역시, DQT(Direct Quenching and Tempering) 공정을 통하여 템퍼드 마르텐사이트(Tempered Martensite) 조직을 확보함으로써, 내 HIC 특성을 향상시킬 수 있다고 개시하고 있다. 하지만 기지상이 저온상(마르텐사이트, 베이나이트, 애시큘러 페라이트 등)등으로 구성될 경우 내 HIC 특성은 증대되나, 열간 성형(Hot-forming)이 불가능하여 압력용기 조관시 어려움이 있으며 표면 경도값이 높아 제품의 균일 연신률 값이 떨어지며, 가공과정에서 표면 크랙 발생률이 높아지는 문제점이 발생한다. 또한 Quenching시 냉각능이 충분치 않을 경우 저온변태조직을 확보하기 어렵고, 오히려 HIC Crack의 개시점으로 작용할 수 있는 MA(Martensite-Austenite constituent) 상의 생성으로 인해 HIC 저항성이 저하될 수 있다.
세번째 방법은 Slab내 개재물이나 공극을 극소화하여 청청도를 높임으로써, HIC 특성을 증대시키는 방법으로서, 대표적인 기술로는 특허문헌 3이 있다. 특허문헌 3은 용강중 Ca를 첨가할 때 0.1 ≤ (T.[Ca]-(17/18) ×T.[O]-1.25×S)/T[O] ≤ 0.5를 만족하도록 제어하는 경우, 내 HIC 특성이 우수한 강재를 제조할 수 있다고 개시하고 있다. 상기 방법은 박물재와 같이 누적압하량이 많은 경우, 산화성 개재물의 파쇄를 방지함으로써, HIC 저항성을 개선하는데 도움을 줄 수 있다. 하지만 Mn 중심편석이나 MnS 개재물 등 편석성 결함이 과다할 경우, 큰 도움을 주지 못한다. 또한 두께가 두꺼워 질수록, 산화성 개재물에 의한 결함보다는 중심 공극성 결함에 의해 HIC 결함이 발생하며, 압연으로써는 중심부에 존재하는 잔류 공극을 충분히 기계적 압착(Full Mechanical Bonding)할 수 없기 때문에 한계가 있다.
네번째 방법은 경화조직을 최소화하거나 형상을 제어하는 방법으로서, 주로 Normalizing 열처리 후 기지상에 발생하는 밴드조직의 B.I(Band Index) 값을 낮추어 크랙 전파 속도를 지연시키는 방법이다. 이와 관련된 특허 문헌 4에서는 중량%로, C: 0.1~0.30%, Si: 0.15~0.40%, Mn: 0.6~1.2%, P: 0.035% 이하, S: 0.020% 이하, Al: 0.001~0.05%, Cr: 0.35% 이하, Ni: 0.5% 이하, Cu: 0.5% 이하, Mo: 0.2% 이하, V: 0.05%이하, Nb: 0.05% 이하, Ca: 0.0005~0.005%, Ti: 0.005~0.025%, N: 0.0020~0.0060%를 포함한 슬라브를 가열 및 열간압연한 후 실온에서 공냉하고 Ac1~Ac3 변태점에서 가열한 뒤 서냉하는 공정을 통해 Banding Index(ASTM E-1268에 따라 측정)가 0.25이하인 페라이트+펄라이트 미세조직을 얻을 수 있으며, 이러한 공정에 의해 인장강도가 500MPa급의 내 HIC 특성이 우수한(NACE 기준 평균 CLR: 0)강을 만들 수 있다고 개시하고 있다. 하지만 Banding index는 C 및 Mn 함량이 높을수록 또는 후판 압하량이 높을수록 증대되므로, 제시된 C 및 Mn 조건범위 내에서는 두께가 50mm이하 박물재를 제조하는 데에는 한계가 있다. 또한 연주공정에서 경압하 및 2차 냉각조건이 적절하지 않을 경우, 중심부 Mn 편석도는 더욱 증대되어 강판의 표층부 및 1/4t부는 Banding index가 낮을지라도 중심부로 갈수록 국부적으로 Banding index 값이 높은 부분이 존재할 수 있기 때문에 전 두께 구간에서 우수한 HIC 저항성을 확보하기 힘들다.
따라서, 상술한 종래의 방법들은 두께 6~100mm, 인장강도 485~620MPa급 내 수소유기균열 특성을 가진 압력용기용 강을 제작하는데 있어서 한계가 있다.
[선행기술문헌]
(특허문헌 1) 일본 공개특허공보 제2003-013175호
(특허문헌 2) 한국 등록특허공보 제0833071호
(특허문헌 3) 일본 공개특허공보 제2014-005534호
(특허문헌 4) 한국 공개특허공보 제2010-0076727호
본 발명의 일측면은 황화수소 분위기에서 수소유기균열(HIC)에 대한 저항성이 우수한 압력용기용 강재 및 그 제조방법을 제공하고자 하는 것이다.
본 발명의 일 실시형태는 중량%로, 탄소(C): 0.2~0.3%, 실리콘(Si): 0.05~0.50%, 망간(Mn): 0.1%이상~0.5%미만, 알루미늄(Al): 0.005~0.1%, 인(P): 0.010% 이하, 황(S): 0.0015% 이하, 니오븀(Nb): 0.001~0.03%, 바나듐(V): 0.001~0.03%, 티타늄(Ti): 0.001~0.03%, 크롬(Cr): 0.01~0.20%, 몰리브덴(Mo): 0.01~0.15%, 구리(Cu): 0.01~0.50%, 니켈(Ni): 0.05~0.50%, 칼슘(Ca): 0.0005~0.0040%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 페라이트의 평균 결정립도가 5~20㎛인 수소유기균열 저항성이 우수한 압력용기용 강재를 제공한다.
본 발명의 다른 실시 형태는 중량%로, 탄소(C): 0.2~0.3%, 실리콘(Si): 0.05~0.50%, 망간(Mn): 0.1%이상~0.5%미만, 알루미늄(Al): 0.005~0.1%, 인(P): 0.010% 이하, 황(S): 0.0015% 이하, 니오븀(Nb): 0.001~0.03%, 바나듐(V): 0.001~0.03%, 티타늄(Ti): 0.001~0.03%, 크롬(Cr): 0.01~0.20%, 몰리브덴(Mo): 0.01~0.15%, 구리(Cu): 0.01~0.50%, 니켈(Ni): 0.05~0.50%, 칼슘(Ca): 0.0005~0.0040%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강 슬라브를 1000~1100℃에서 재가열하는 단계; 상기 재가열된 슬라브를 미재결정 영역 온도인 800~950℃에서 패스당 평균 압하율 15% 이상으로 열간압연하여 열연강재를 얻는 단계; 및 상기 열연강재를 상온까지 공냉한 뒤, 800~900℃까지 가열 후 15~60분간 유지하여 노말라이징 열처리하는 단계를 포함하는 수소유기균열 저항성이 우수한 압력용기용 강재의 제조방법을 제공한다.
본 발명의 일측면에 따르면, 황화수소 분위기에서 수소유기균열(HIC)에 대한 저항성이 우수한 압력용기용 강재 및 그 제조방법을 제공할 수 있다.
본 발명은 합금조성, 미세조직, 중심부 Mn 농화 정도, 페라이트의 결정립도 등을 제어하여 강재의 강도 및 수소유기균열에 대한 저항성을 보다 향상시키는 것을 특징으로 한다.
본 발명의 주요 개념은 다음과 같이 합금설계부분, 공정제어 부분의 두 부분으로 나뉜다.
1) 본 발명에서는 제품 중심부에 Mn 편석 및 밴드구조의 펄라이트 생성을 억제하기 위하여 Mn을 0.1~0.5중량%의 범위로 제어한다. 본 발명과 유사한 강도를 갖는 노말라이징(Normalizing)재의 경우, 통상 Mn 함량이 1.0~1.4중량%이며, Mn의 첨가를 배제하였을 경우 페라이트 기지 내 Mn의 고용강화 효과가 모두 상쇄되기 때문에 급격한 강도저하가 발생한다. 본 발명에서는 이러한 강도 저하를 보완하기 위하여 C의 함량을 높인다. 본 발명과 유사 강도를 가지는 노말라이징재 경우 상기 C는 통상적으로 0.13~0.18중량%를 가지는데, 본 발명에서는 상기 C의 함량을 0.2~0.25중량% 수준으로 증대시킴으로써 펄라이트 분율을 높여 강도를 향상시켰다. C는 고온에서의 Delta/Liquid 혹은 Gamma/Liquid 상간의 확산계수가 Mn보다 낮으나 오스테나이트 단상에서의 확산계수는 Mn보다 매우 높기 때문에 편석이 발생한다고 할지라도 노말라이징 열처리시 모두 확산시킬 수 있기 때문에 최종 제품에서는 중심부 편석이 발생하지 않도록 제어할 수 있다.
2) 상변태 후 페라이트의 결정립을 미세화시킬 경우, 강판의 강도 및 인성을 모두 향상시킬 뿐만 아니라, 수소유기균열이 발생한 후 균열의 평균 전파길이를 증대시킴으로써 균열의 전파속도를 감소시키기 때문에 수소유기균열 전파 저항성 또한 향상시킬 수 있다. 페라이트의 결정립 크기를 미세화하기 위해서는 상변태 이전의 오스테나이트 입도를 미세화할 필요가 있으나, 고온에서는 압연후 결정립 성장(Grain growth)이 발생하며 미재결정 영역의 낮은 온도에서는 오스테나이트의 변형저항값이 증대되기 때문에 압연시 부가할 수 있는 최대 하중에 제한이 걸린다. 따라서, 페라이트 핵생성 사이트를 효과적으로 증대시킬 수 없기 때문에 페라이트 평균 결정립도를 20㎛ 이하로 제어하기가 용이하지 않다. 본 발명에서는 Mn함량을 0.1~0.5%로 낮게 제어함으로써 변형저항값을 상대적으로 감소시킬 수 있으며, 850℃ 기준 패스당 평균 압하율을 기존의 8% 수준에서 15% 이상으로 높임으로써 미재결정역 온도에서 페라이트 핵생성 사이트를 최대한 많이 생성시킬 수 있다.
3) 제품의 두께가 두꺼워질수록 압연 이후 공냉과정에서 Nb(C,N) 탄질화물이 성장하게 되어 조대화된다. Nb(C,N) 탄질화물은 압연 종료후 노말라이징 과정에서 생성되는 것이 가장 바람직하다. 그러나, 압연 후 조대한 Nb(C,N) 탄질화물이 존재한다면, 노말라이징 열처리 과정에서는 미세한 석출물이 신규로 생성되는 것이 아니라, 기존에 기지에 존재하던 Nb(C,N) 탄질화물이 지속적으로 성장하게 되면서 적절한 석출강화 효과를 기대할 수 없다. 이를 방지하기 위하여 본 발명에서는 두께가 50mm 이상인 강재 경우, 압연 종료후 400℃ 이하까지 가속냉각을 실시함으로써 상기 탄질화물의 성장을 효과적으로 억제한다.
이하, 본 발명의 일 실시형태에 따른 수소유기균열 저항성이 우수한 압력용기용 강재에 대하여 상세히 설명한다. 먼저, 본 발명의 합금조성에 대하여 설명한다. 단, 하기 설명되는 합금조성의 단위는 별도의 언급이 없는 한 중량%를 의미한다.
탄소(C): 0.2~0.3%
C은 기본적인 강도를 확보하는데 가장 중요한 원소이므로 적절한 범위 내에서 강 중에 함유될 필요가 있으며, 이러한 첨가효과를 얻기 위해서는 C은 0.2%이상 첨가하는 것이 바람직하다. 그러나, C의 함량이 0.3%를 초과하게 되면, 10mm 두께 미만의 강재의 경우 공냉 과정에서 페라이트+베이나이트 조직 등이 형성되어 강도나 경도가 과도하게 높아질 수 있으며, 특히 MA조직 생성시, HIC 특성 또한 저해되므로, 상기 C는 0.2~0.3%의 범위를 갖는 것이 바람직하다.
실리콘(Si): 0.05~0.50%
Si는 치환형 원소로서 고용강화를 통해 강재의 강도를 향상시키고, 강력한 탈산효과를 가지고 있으므로 청정강 제조에 필수적인 원소이므로 0.05% 이상 첨가되는 것이 바람직하다. 그러나 0.50%를 초과하는 경우, MA상을 생성시키고, 페라이트 기지 조직의 강도를 지나치게 증대시켜 내 HIC 특성 및 충격인성 등에 열화를 야기할 수 있다. 따라서, 상기 Si는 0.05~0.50%의 범위를 갖는 것이 바람직하다. 상기 Si 함량의 하한은 0.20%인 것이 보다 바람직하다.
망간(Mn): 0.1%이상~0.5%미만
Mn은 고용강화에 의해 강도를 향상시키고 저온변태상이 생성되도록 경화능을 향상시키는 유용한 원소이다. 본 발명에서는 상기 효과를 충분히 얻기 위해서는 상기 Mn을 0.1% 이상 첨가하는 것이 바람직하다. 한편, 내 HIC 특성을 향상시키기 위한 기존의 인장강도 485~620MPa급 강재에서는 상기 Mn이 1.0~1.4%의 범위로 첨가되는 것이 통상적이다. 하지만, Mn함량이 높아질수록 압연과정에서 Banded 펄라이트 조직이 발달하게 되어 HIC 품질이 열위해진다. 또한, 제품 중심부의 Mn 편석도도 증대되고, 고온 변형저항값 역시 급격히 증대되므로 미재결정역에서의 최대 압하량 설정에 한계가 발생한다. 따라서, 본 발명에서는 제품의 전 두께구간에서 Band 형태가 아닌 미세한 페라이트+펄라이트 미세조직을 생성시키기 위하여 상기 Mn 함량을 0.5%미만으로 제어하는 것이 바람직하다. 따라서, 상기 Mn의 함량은 0.1%이상~0.5%미만의 범위를 갖는 것이 바람직하다. 상기 Mn 함량의 하한은 0.15%인 것이 보다 바람직하고, 0.2%인 것이 보다 더 바람직하다. 상기 Mn 함량의 상한은 0.45%인 것이 보다 바람직하고, 0.4%인 것이 보다 더 바람직하다.
알루미늄(Al): 0.005~0.1%
Al은 상기 Si과 더불어 제강공정에서 강력한 탈산제의 하나로서, 이러한 효과를 얻기 위해서는 0.005% 이상으로 첨가하는 것이 바람직하다. 그러나 그 함량이 0.1%를 초과하는 경우에는 탈산의 결과물로 생성되는 산화성 개재물 중 Al 2O 3의 분율이 과다하게 증가하고, 크기가 조대해질 뿐만 아니라, 정련 중에 제거가 어려워지는 문제가 있어, 산화성 개재물에 의한 수소유기균열 저항성이 저하되는 단점이 있다. 따라서, 상기 Al은 0.005~0.1%의 범위를 갖는 것이 바람직하다.
인(P): 0.010% 이하
P는 결정립계에 취성을 유발하거나 조대한 개재물을 형성시켜 취성을 유발하는 원소로써 취성균열전파 저항성을 향상시키기 위해서 상기 P의 함량을 0.010% 이하로 제어하는 것이 바람직하다.
황(S): 0.0015% 이하
S는 결정립계에 취성을 유발하거나 조대한 개재물을 형성시켜 취성을 유발하는 원소로써 취성균열전파 저항성을 향상시키기 위해서 상기 S의 함량을 0.0015% 이하로 제어하는 것이 바람직하다.
니오븀(Nb): 0.001~0.03%
Nb는 NbC 또는 Nb(C,N)의 형태로 석출하여 모재 강도를 향상시킨다. 또한, 고온으로 재가열시 고용된 Nb는 압연시 NbC의 형태로 매우 미세하게 석출되어 오스테나이트의 재결정을 억제하여 조직을 미세화시키는 효과가 있다. 상기 효과를 위해서 상기 Nb는 0.001% 이상 첨가되는 것이 바람직하다. 다만, 0.03%를 초과할 경우에는 미용해된 Nb가 Ti,Nb(C,N) 형태로 생성되며, UT 불량, 충격인성 열화 및 내수소유기균열성을 저해시키는 요인이 될 수 있다. 따라서, 상기 Nb의 함량은 0.001~0.03%의 범위를 갖는 것이 바람직하다.
바나듐(V): 0.001~0.03%
V는 재가열시 거의 모두 재고용됨으로써 후속하는 압연시 석출이나 고용에 의한 강화효과는 미비하나, 이후의 PWHT 등 열처리 과정에서 매우 미세한 탄질화물로 석출하여 강도를 향상시키는 효과가 있다. 이러한 효과를 충분히 얻기 위해서는 상기 V를 0.001% 이상으로 첨가할 필요가 있으나, 그 함량이 0.03%를 초과하게 되면 용접부의 강도 및 경도를 지나치게 증가시켜 압력용기 등으로 가공시 표면크랙 등의 요인으로 작용할 수 있다. 또한, 제조원가가 급격히 상승하여 경제적으로 불리하게 된다. 따라서, 상기 V의 함량은 0.001~0.003%의 범위를 갖는 것이 바람직하다.
티타늄(Ti): 0.001~0.03%
Ti은 재가열시 TiN으로 석출하여 모재 및 용접 열영향부의 결정립의 성장을 억제하여 저온인성을 크게 향상시키는 성분으로서, 이러한 첨가효과를 얻기 위해서는 0.001% 이상 첨가되는 것이 바람직하다. 그러나, Ti가 0.03%를 초과하여 첨가되면, 연주 노즐의 막힘이나 중심부 정출에 의해 저온인성이 감소될 수 있으며 N과 결합하여 두께 중심부에 조대한 TiN 석출물이 형성될 경우, 수소유기균열의 개시점으로 작용할 수 있으므로, 상기 Ti 함량은 0.001~0.03%의 범위를 갖는 것이 바람직하다.
크롬(Cr): 0.01~0.20%
Cr은 고용에 의한 항복 및 인장강도를 증대시키는 효과는 미비하나, 후공정인 템퍼링이나 용접후열처리(PWHT) 동안 시멘타이트의 분해 속도를 늦춤으로써 강도 하락을 방지하는 효과가 있다. 상술한 효과를 얻기 위해서는 상기 Cr을 0.01% 이상 첨가하는 것이 바람직하나, 그 함량이 0.20%를 초과하게 되면 M 23C 6 등과 같은 Cr-Rich 조대 탄화물의 크기 및 분율이 증대되어 충격인성이 크게 하락하게 되며, 제조비용이 상승하고, 용접성이 저하되는 문제가 있다. 따라서, 상기 Cr의 함량은 0.01~0.20%의 범위를 갖는 것이 바람직하다.
몰리브덴(Mo): 0.01~0.15%
Mo은 Cr과 같이 후공정인 템퍼링 또는 용접후열처리(PWHT) 동안의 강도 하락 방지에 유효한 원소이며, P 등 불순물의 입계 편석에 의한 인성 저하를 방지하는 효과가 있다. 또한 페라이트 내 고용강화 원소로써 기지상의 강도를 증대시킨다. 상술한 효과를 얻기 위해서는 상기 Mo를 0.01% 이상 첨가하는 것이 바람직하나, 고가의 원소로서 과도하게 첨가하는 경우 제조비용이 크게 상승할 수 있으므로 0.15% 이하로 첨가하는 것이 바람직하다. 따라서, 상기 Mo의 함량은 0.01~0.15%의 범위를 갖는 것이 바람직하다.
구리(Cu): 0.01~0.50%
구리(Cu)는 페라이트 내 고용강화에 의해 기지상의 강도를 크게 향상시킬 수 있을 뿐만 아니라, 습윤 황화수소 분위기에서의 부식을 억제하는 효과가 있어, 본 발명에서 유리한 원소이다. 상술한 효과를 충분히 얻기 위해서는 상기 Cu를 0.01% 이상 첨가할 필요가 있으나, 그 함량이 0.50%를 초과하게 되면 강판의 표면에 스타크랙을 유발할 가능성이 커지며, 고가의 원소로서 제조비용이 크게 상승하는 문제가 있다. 따라서, 상기 Cu의 함량은 0.01~0.50%의 범위를 갖는 것이 바람직하다.
니켈(Ni): 0.05~0.50%
Ni은 저온에서 적층결함을 증대시켜 전위의 교차슬립(Cross slip)을 용이하게 만들어 충격인성을 향상시키고 경화능을 향상시켜 강도를 증가시키는데 중요한 원소로서, 이러한 효과를 얻기 위해서는 0.05% 이상 첨가되는 것이 바람직하다. 그러나, 상기 Ni이 0.50%를 초과하여 첨가되면 경화능이 과도하게 상승되고 타 경화능 원소 대비 비싼 원가로 인해 제조원가를 상승시킬 수 있으므로, 상기 Ni의 함량은 0.05~0.50%의 범위를 갖는 것이 바람직하다.
칼슘(Ca): 0.0005~0.0040%
Ca는 Al에 의한 탈산 후 첨가하게 되면 MnS 개재물을 형성하는 S와 결합하여 MnS의 생성을 억제함과 동시에, 구상의 CaS를 형성하여 수소유기균열에 의한 크랙의 발생을 억제하는 효과가 있다. 본 발명에서는 불순물로 함유되는 S를 충분히 CaS로 형성시키기 위해서 상기 Ca를 0.0005% 이상 첨가하는 것이 바람직하다. 다만, 0.0040%를 초과하는 경우에는 CaS를 형성하고 남은 Ca가 O와 결합하여 조대한 산화성 개재물을 생성하게 되며, 이는 압연시 연신, 파괴되어 수소유기균열을 조장하는 문제가 있다. 따라서, 상기 Ca의 함량은 0.0005~0.0040%의 범위를 갖는 것이 바람직하다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
본 발명이 제공하는 강재는 페라이트의 평균 결정립도가 5~20㎛인 것이 바람직하다. 상기 페라이트의 평균 결정립도가 5㎛ 미만인 경우에는 압연으로 오스테나이트 결정립 크기를 줄이는데 물리적인 한계가 있고, 20㎛를 초과하는 경우에는 충격천이 시험시 DBTT가 증대되어 충격인성이 열화되는 단점이 있다.
한편, 본 발명의 강재는 면적분율로 페라이트: 70% 이상, 잔부 펄라이트인 것이 바람직하다. 상기 페라이트 분율이 70% 미만인 경우에는 상대적으로 펄라이트 분율이 높아 충격인성이 열화되는 단점이 있다.
또한, 본 발명의 강재는 중심부 Mn 최대 농도가 0.6중량% 이하인 것이 바람직하다. 중심부 Mn 최대 농도가 0.6중량% 초과인 경우에는 편석에 의한 성분 농화로 인해 MnS 또는 저온변태상 등이 생성될 수 있다. 한편, 본 발명에서 언급한 상기 중심부란 1/2t(t: 제품두께)에서 제품 전체 두께의 ±5%를 차지하는 영역을 의미한다.
더하여, 본 발명의 강재는 PWHT후 평균 직경 5~20nm의 Nb(C,N) 또는 V(C,N) 탄질화물을 0.01~0.02중량% 포함하는 것이 바람직하다. 상기 Nb(C,N) 또는 V(C,N) 탄질화물의 평균 직경이 20nm를 초과하거나 5nm 미만인 경우에는 석출강화에 의한 효과를 충분히 얻을 수 없다는 단점이 있다. 상기 Nb(C,N) 또는 V(C,N) 탄질화물의 분율이 0.01중량% 미만인 경우에는 탄질화물의 분율이 낮아 석출강화에 의한 효과를 충분히 얻을 수 없다는 단점이 있고, 0.02중량%를 초과하는 경우에는 용접부의 경도가 지나치게 높아져 용접균열이 발생할 수 있는 단점이 있다.
아울러, 본 발명의 강재는 두께가 6~100mm인 것이 바람직하다. 강재의 두께가 6mm 미만인 경우에는 후판 압연기로 제조하기 어려운 단점이 있고, 100mm를 초과하는 경우에는 본 발명이 목표로 하는 인장강도 485MPa 이상의 강도를 확보하기 어려운 단점이 있다.
전술한 바와 같이 제공되는 본 발명의 강재는 인장강도가 485~620MPa의 범위를 가질 수 있다.
이하, 본 발명의 일 실시형태에 따른 수소유기균열 저항성이 우수한 압력용기용 강재의 제조방법에 대하여 상세히 설명한다.
우선, 전술한 합금조성을 갖는 강 슬라브를 1000~1100℃에서 재가열한다. 상기 강 슬라브 재가열은 이후 압연과정에서 지나친 온도 저하를 방지하기 위하여 1000℃ 이상에서 행하는 것이 바람직하다. 다만, 상기 강 슬라브 재가열 온도가 1100℃를 초과하는 경우에는 미재결정역 온도에서 총 압하량이 부족해지며, 제어압연 시작 온도가 낮다고 하더라도 지나친 공랭대기로 인하여 로 운영에 원가 경쟁력이 떨어지는 단점이 있다. 따라서, 상기 강 슬라브 재가열 온도는 1000~1100℃의 범위를 갖는 것이 바람직하다.
이후, 상기 재가열된 슬라브를 미재결정 영역 온도인 800~950℃에서 패스당 평균 압하율 15% 이상으로 열간압연하여 열연강재를 얻는다. 상기 열간압연 온도가 800℃ 미만인 경우에는 오스테나이트-페라이트 이상 영역에서 압연이 될 수 있으므로 정상적인 목표두께로 압연이 될 수 없으며, 950℃를 초과할 경우에는 오스테나이트의 결정립이 지나치게 조대화되어 결정립 미세화에 의한 강도 및 내 HIC특성 향상을 기대할 수 없다. 또한, 패스당 평균 압하율이 15% 미만일 경우 미재결정역에서 페라이트의 핵생성 사이트를 충분히 생성시키지 못해 노말라이징 열처리후 페라이트 평균 결정립도를 20㎛ 이하로 제어하기가 용이하지 않다. 따라서 열간압연시 패스당 평균 압하율은 15% 이상으로 제어하는 것이 바람직하다. 다만, 밀(Mill) 별 압연기 한계 압하량 및 롤 수명 등을 고려하였을 때, 패스당 평균 압하율은 30% 이하인 것이 바람직하다.
상기 열간압연 후, 열연강재의 오스테나이트 평균 결정립도는 30㎛ 이하인 것이 바람직하다. 이와 같이 상기 열간압연 후, 열연강재의 오스테나이트 평균 결정립도를 30㎛ 이하로 제어함으로써 최종적으로 얻어지는 페라이트의 평균 결정립도를 미세하게 할 수 있다. 상기 열간압연 후, 열연강재의 오스테나이트 평균 결정립도는 25㎛ 이하인 것이 보다 바람직하고, 20㎛ 이하인 것이 보다 더 바람직하다.
이후, 상기 열연강재를 상온까지 공냉한 뒤, 800~900℃까지 가열 후 15~60분간 유지하여 노말라이징 열처리한다. 상기 노말라이징 열처리는 오스테나이트 조직의 충분한 균질화 및 고용원소(solute)의 충분한 확산을 위한 것이며, 상기 노말라이징 열처리 온도가 800℃ 미만이거나 노말라이징 열처리 시간이 15분 미만인 경우에는 상기 효과를 충분히 얻기 어려울 수 있다. 다만, 상기 노말라이징 열처리 온도가 900℃를 초과하거나 노말라이징 열처리 시간이 60분을 초과하는 경우에는 NbC, VC 등의 미세석출물이 조대화될 수 있다.
한편, 상기 공냉 과정은 본 발명에서 대상으로 하는 6~100mm 두께의 열연강재에 대하여 모두 적용할 수 있다. 다만, 상기 열연강재의 두께가 50mm초과~100mm이하인 경우에는, 상기 공냉 과정 대신 상기 열연강재를 400℃ 이하까지 1/4t(t: 강재 두께) 기준으로 5℃/s 이상으로 가속냉각 공정으로 대체할 수도 있다. 열연강재의 두께가 50mm를 초과하는 경우에는 압연 이후 공냉 과정에서 Nb(C,N) 탄질화물이 조대하게 성장할 수 있다. 조대한 Nb(C,N) 탄질화물이 존재할 경우, 노말라이징 열처리 과정에서는 미세한 NbC 석출물로 신규 생성되는 것이 아니라, 기존 Nb(C,N)석출물의 조대화가 지속적으로 진행됨에 따라 적절한 석출강화 효과가 저감될 수 있다. 따라서, 두께가 50mm를 초과하는 열연강재에 대해서는 압연 종료후 400℃ 이하까지 1/4t(t: 강재 두께) 기준으로 5℃/s 이상의 냉각속도로 가속냉각을 실시함으로써 공냉 과정에서의 탄질화물 성장을 효과적으로 억제할 수 있다. 한편, 가속냉각 설비한계 등을 고려하였을 때, 상기 가속냉각시 냉각속도는 100mm 두께 강재의 두께방향 1/4t 기준으로 20℃/s이하일 수 있다.
이하, 실시예를 통해 본 발명을 보다 상세히 설명한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실시예)
하기 표 1에 기재된 합금조성을 갖는 강 슬라브를 1070℃에서 재가열한 후, 하기 표 2에 기재된 조건으로 열간압연하여 100mm 두께의 열연강재를 얻고, 이후, 상온까지 공냉한 뒤, 890℃에서 30분간 유지하여 노말라이징 열처리를 실시하였다.
이와 같이 제조된 각각의 열연강재에 대해 중심부 Mn 최대 농도를 EBSD (Electron Back Scattered Diffraction)를 활용하여 측정하였으며, 광학현미경으로 강판의 1/4t(t: 두께) 및 중심부(1/2t) 미세조직을 분석하였고, 노멀라이징 열처리 후 페라이트 평균 결정립도를 측정하여 하기 표 2에 나타내었다.
최종적으로 제품의 품질을 평가하기 위하여 인장 시험 및 HIC test를 실시한 뒤, 그 결과를 하기 표 2에 나타내었다. 이때 강재의 수소유기균열(HIC) 저항성의 지표로 사용된 판 길이 방향으로의 수소유기균열 크랙 길이비(CLR, %)은 관련 국제규격인 NACE TM0284에 따라 1기압의 H 2S 가스로 포화된 5%NACl+0.5%CH 3COOH 용액에 시편을 96시간 동안 침지한 후, 초음파 탐상법에 의해 균열의 길이를 측정하고, 시편의 길이방향으로 각각의 균열 길이의 총합을 시편 전체 길이로 나눈 값으로 계산하여 평가하였다. 인장시험은 상온에서 평가하였으며, 2회 평가 결과의 평균값으로 나타내었다.
강종No. 합금조성(중량%)
C Si Mn Al P S Nb V Ti Cr Mo Cu Ni Ca
발명강1 0.23 0.35 0.48 0.035 80 8 0.007 0.006 0.001 0.03 0.05 0.05 0.1 35
발명강2 0.25 0.31 0.47 0.031 70 6 0.010 0.008 0.011 0.02 0.07 0.08 0.2 31
발명강3 0.27 0.33 0.49 0.030 81 7 0.008 0.015 0.008 0.05 0.04 0.08 0.15 27
발명강4 0.28 0.35 0.43 0.036 70 8 0.013 0.013 0.012 0.05 0.08 0.15 0.25 29
발명강5 0.26 0.33 0.49 0.035 65 6 0.015 0.015 0.008 0.07 0.05 0.25 0.13 25
비교강1 0.25 0.36 1.45 0.030 70 7 0.020 0.012 0.006 0.08 0.07 0.08 0.30 25
비교강2 0.27 0.37 1.11 0.031 80 8 0.020 0.011 0.007 0.08 0.07 0.15 0.35 28
비교강3 0.13 0.30 0.01 0.030 80 8 0.015 0.010 0.011 0.08 0.12 0.13 0.27 23
단, P, S 및 Ca은 중량 기준 ppm 단위임
구분 강종No. 마무리 압연온도(℃) 패스당 평균 압하율(%) 중심부 Mn 최대농도(중량%) 미세조직 페라이트평균결정립도(㎛) 인장강도(MPa) HIC, CLR(%)
1/4t 1/2t
발명예1 발명강1 851 15 0.02 77%F+23%P 9.8 510 0
발명예2 발명강2 881 17 0.01 75%F+25%P 8.5 530 0
발명예3 발명강3 881 20 0.03 73%F+27%P 7.3 550 0
발명예4 발명강4 840 19 0.01 76%F+24%P 9.1 500 0
발명예5 발명강5 831 20 0.02 77%F+23%P 8.8 512 0
비교예1 발명강1 1003 23 0.02 73%F+27%P 22 471 3
비교예2 발명강2 1001 6 0.01 72%F+28%P 35 462 2
비교예3 발명강3 805 9 0.01 74%F+26%P 31 481 1
비교예4 발명강4 771 4 0.01 75%F+25%P 26 476 3
비교예5 발명강5 779 5 0.01 74%F+26%P 29 477 5
비교예6 비교강1 883 19 4.15 72%F+28%BP 100%M 8.8 535 39
비교예7 비교강2 861 17 3.31 71%F+29%BP 100%B 7.6 498 27
비교예8 비교강3 872 19 0.01 86%F+14%P 8.1 403 0
F: 페라이트, P: 펄라이트, BP: banded 펄라이트, M: 마르텐사이트, MA: 도상 마르텐사이트, B: 베이나이트
상기 표 1 및 2를 통해 알 수 있듯이, 본 발명이 제안하는 합금조성 및 제조조건을 만족하는 발명예 1 내지 5의 경우에는 강재의 1/4t와 중심부(1/2t) 모두 페라이트와 Band 형태가 아닌 펄라이트의 복합조직을 가지면서 페라이트의 평균 결정립도가 5~20㎛로 매우 미세하여 485MPa 이상의 인장강도를 가지면서 내 HIC성이 매우 우수함을 확인할 수 있다.
그러나, 비교예 1 내지 5의 경우에는 본 발명이 제안하는 합금조성은 만족하나, 제조조건 중 마무리 압연온도 또는 압연시 패스당 압하율을 조건을 만족하지 않음에 따라 페라이트 평균 결정립도가 매우 커졌으며, 이로 인해 인장강도 및 내 HIC 품질이 열위함을 확인할 수 있다.
비교예 6 및 7의 경우에는 본 발명이 제안하는 제조조건은 만족하나, 합금조성 중 Mn 함량을 만족하지 않아 중심부 Mn 최대농도가 상당히 높았으며, 이로 인해 내 HIC성이 열위함을 확인할 수 있다.
비교예 8의 경우에는 본 발명이 제안하는 제조조건은 만족하나, 합금조성 중 C 함량을 만족하지 않아 인장강도가 낮은 수준임을 확인할 수 있다.

Claims (8)

  1. 중량%로, 탄소(C): 0.2~0.3%, 실리콘(Si): 0.05~0.50%, 망간(Mn): 0.1%이상~0.5%미만, 알루미늄(Al): 0.005~0.1%, 인(P): 0.010% 이하, 황(S): 0.0015% 이하, 니오븀(Nb): 0.001~0.03%, 바나듐(V): 0.001~0.03%, 티타늄(Ti): 0.001~0.03%, 크롬(Cr): 0.01~0.20%, 몰리브덴(Mo): 0.01~0.15%, 구리(Cu): 0.01~0.50%, 니켈(Ni): 0.05~0.50%, 칼슘(Ca): 0.0005~0.0040%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
    페라이트의 평균 결정립도가 5~20㎛인 수소유기균열 저항성이 우수한 압력용기용 강재.
  2. 청구항 1에 있어서,
    상기 강재는 면적분율로 페라이트: 70% 이상, 잔부 펄라이트인 미세조직을 갖는 수소유기균열 저항성이 우수한 압력용기용 강재.
  3. 청구항 1에 있어서,
    상기 강재는 중심부 Mn 최대 농도가 0.6중량% 이하인 수소유기균열 저항성이 우수한 압력용기용 강재.
  4. 청구항 1에 있어서,
    상기 강재는 두께가 6~100mm인 수소유기균열 저항성이 우수한 압력용기용 강재.
  5. 청구항 1에 있어서,
    상기 강재는 PWHT후 평균 직경 5~20nm의 Nb(C,N) 또는 V(C,N) 탄질화물을 0.01~0.02중량% 포함하는 수소유기균열 저항성이 우수한 압력용기용 강재.
  6. 중량%로, 탄소(C): 0.2~0.3%, 실리콘(Si): 0.05~0.50%, 망간(Mn): 0.1%이상~0.5%미만, 알루미늄(Al): 0.005~0.1%, 인(P): 0.010% 이하, 황(S): 0.0015% 이하, 니오븀(Nb): 0.001~0.03%, 바나듐(V): 0.001~0.03%, 티타늄(Ti): 0.001~0.03%, 크롬(Cr): 0.01~0.20%, 몰리브덴(Mo): 0.01~0.15%, 구리(Cu): 0.01~0.50%, 니켈(Ni): 0.05~0.50%, 칼슘(Ca): 0.0005~0.0040%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강 슬라브를 1000~1100℃에서 재가열하는 단계;
    상기 재가열된 슬라브를 미재결정 영역 온도인 800~950℃에서 패스당 평균 압하율 15% 이상으로 열간압연하여 열연강재를 얻는 단계; 및
    상기 열연강재를 상온까지 공냉한 뒤, 800~900℃까지 가열 후 15~60분간 유지하여 노말라이징 열처리하는 단계를 포함하는 수소유기균열 저항성이 우수한 압력용기용 강재의 제조방법.
  7. 청구항 6에 있어서,
    상기 열간압연 후, 열연강재의 오스테나이트 평균 결정립도는 30㎛ 이하인 수소유기균열 저항성이 우수한 압력용기용 강재의 제조방법.
  8. 청구항 7에 있어서,
    상기 열연강재의 두께가 50m초과~100m이하인 경우, 상기 열간압연 후, 열연강재를 400℃ 이하까지 1/4t(t: 강재 두께) 기준으로 5℃/s 이상으로 가속냉각하는 단계를 추가로 포함하는 수소유기균열 저항성이 우수한 압력용기용 강재의 제조방법.
PCT/KR2019/016697 2018-11-30 2019-11-29 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법 WO2020111858A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19888554.3A EP3889299A4 (en) 2018-11-30 2019-11-29 STEEL PLATE FOR PRESSURE VESSELS WITH EXCELLENT HYDROGEN INDUCED CRACK RESISTANCE AND METHOD OF MANUFACTURE THEREOF
US17/296,456 US20210395867A1 (en) 2018-11-30 2019-11-29 Steel plate for pressure vessel having excellent hydrogen induced cracking resistance and method of manufacturing same
JP2021530864A JP7197699B2 (ja) 2018-11-30 2019-11-29 水素誘起割れ抵抗性に優れた圧力容器用鋼材及びその製造方法
CN201980078921.0A CN113166898A (zh) 2018-11-30 2019-11-29 具有优异的氢致开裂抗力的压力容器用钢板和制造其的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0153076 2018-11-30
KR1020180153076A KR102131536B1 (ko) 2018-11-30 2018-11-30 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2020111858A1 true WO2020111858A1 (ko) 2020-06-04

Family

ID=70853059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016697 WO2020111858A1 (ko) 2018-11-30 2019-11-29 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법

Country Status (6)

Country Link
US (1) US20210395867A1 (ko)
EP (1) EP3889299A4 (ko)
JP (1) JP7197699B2 (ko)
KR (1) KR102131536B1 (ko)
CN (1) CN113166898A (ko)
WO (1) WO2020111858A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022205939A1 (zh) * 2021-04-01 2022-10-06 江阴兴澄特种钢铁有限公司 一种厚度>200~250mm抗氢致开裂压力容器钢板及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013175A (ja) 2001-06-27 2003-01-15 Sumitomo Metal Ind Ltd 耐水素誘起割れ性に優れた鋼材
JP2005290554A (ja) * 2004-03-11 2005-10-20 Nippon Steel Corp 被削性と靭性および溶接性に優れた鋼板およびその製造方法
KR100833071B1 (ko) 2006-12-13 2008-05-27 주식회사 포스코 내hic특성이 우수한 인장강도 600㎫급 압력용기용 강판및 그 제조 방법
KR20100076727A (ko) 2008-12-26 2010-07-06 주식회사 포스코 내hic 특성 및 피로 특성이 우수한 고강도 압력용기용 강판 및 그 제조방법
CN102719745A (zh) * 2012-06-25 2012-10-10 宝山钢铁股份有限公司 优良抗hic、ssc的高强低温用钢及其制造方法
JP2014005534A (ja) 2012-05-28 2014-01-16 Jfe Steel Corp 耐hic特性に優れた鋼材およびその製造方法
US20160230258A1 (en) * 2014-02-05 2016-08-11 Amar Kumar De Production of hic-resistant pressure vessel grade plates using a low-carbon composition
US9809869B2 (en) * 2009-01-30 2017-11-07 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet having excellent hydrogen induced cracking resistance and manufacturing method thereof
KR20180074281A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179911A (ja) * 1992-12-14 1994-06-28 Sumitomo Metal Ind Ltd 耐水素誘起割れ性にすぐれた鋼板の製造方法
JPH06220577A (ja) * 1993-01-26 1994-08-09 Kawasaki Steel Corp 耐hic特性に優れた高張力鋼及びその製造方法
JP2785643B2 (ja) * 1993-05-11 1998-08-13 住友金属工業株式会社 湿潤硫化水素環境で耐疲労亀裂進展特性に優れるタンカー用鋼板
JP3260057B2 (ja) * 1995-04-12 2002-02-25 新日本製鐵株式会社 耐サワー性、熱間加工性に優れた鋼材の製造方法
JP2000144310A (ja) 1998-11-02 2000-05-26 Nippon Steel Corp 耐腐食疲労に優れた構造用鋼及びその製造方法
JP4695537B2 (ja) 2006-03-31 2011-06-08 新日本製鐵株式会社 加工性に優れた圧力容器用部材の製造方法
KR100994606B1 (ko) * 2006-04-04 2010-11-15 가부시키가이샤 고베 세이코쇼 내식성이 우수한 선박용 강재
KR100833069B1 (ko) * 2006-12-13 2008-05-27 주식회사 포스코 내hic특성 및 haz 인성이 우수한 인장강도 500㎫급압력용기용 강판 및 그 제조 방법
KR101271954B1 (ko) 2009-11-30 2013-06-07 주식회사 포스코 저온인성 및 수소유기균열 저항성이 우수한 압력용기용 강판 및 그 제조방법
KR101253890B1 (ko) * 2010-12-28 2013-04-16 주식회사 포스코 중심부 물성 및 수소유기균열 저항성이 우수한 압력용기용 극후물 강판 및 그 제조방법
KR101412295B1 (ko) * 2012-03-29 2014-06-25 현대제철 주식회사 고강도 강재 및 그 제조 방법
KR20140056760A (ko) * 2012-10-31 2014-05-12 현대제철 주식회사 압력용기 강재 및 그 제조 방법
KR101736638B1 (ko) * 2015-12-23 2017-05-30 주식회사 포스코 수소유기 균열 (hic) 저항성이 우수한 압력용기용 강재 및 그 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013175A (ja) 2001-06-27 2003-01-15 Sumitomo Metal Ind Ltd 耐水素誘起割れ性に優れた鋼材
JP2005290554A (ja) * 2004-03-11 2005-10-20 Nippon Steel Corp 被削性と靭性および溶接性に優れた鋼板およびその製造方法
KR100833071B1 (ko) 2006-12-13 2008-05-27 주식회사 포스코 내hic특성이 우수한 인장강도 600㎫급 압력용기용 강판및 그 제조 방법
KR20100076727A (ko) 2008-12-26 2010-07-06 주식회사 포스코 내hic 특성 및 피로 특성이 우수한 고강도 압력용기용 강판 및 그 제조방법
US9809869B2 (en) * 2009-01-30 2017-11-07 Jfe Steel Corporation Thick-walled high-strength hot rolled steel sheet having excellent hydrogen induced cracking resistance and manufacturing method thereof
JP2014005534A (ja) 2012-05-28 2014-01-16 Jfe Steel Corp 耐hic特性に優れた鋼材およびその製造方法
CN102719745A (zh) * 2012-06-25 2012-10-10 宝山钢铁股份有限公司 优良抗hic、ssc的高强低温用钢及其制造方法
US20160230258A1 (en) * 2014-02-05 2016-08-11 Amar Kumar De Production of hic-resistant pressure vessel grade plates using a low-carbon composition
KR20180074281A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3889299A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022205939A1 (zh) * 2021-04-01 2022-10-06 江阴兴澄特种钢铁有限公司 一种厚度>200~250mm抗氢致开裂压力容器钢板及其制造方法

Also Published As

Publication number Publication date
JP7197699B2 (ja) 2022-12-27
KR20200066507A (ko) 2020-06-10
JP2022510934A (ja) 2022-01-28
CN113166898A (zh) 2021-07-23
EP3889299A4 (en) 2022-03-23
EP3889299A1 (en) 2021-10-06
US20210395867A1 (en) 2021-12-23
KR102131536B1 (ko) 2020-07-08

Similar Documents

Publication Publication Date Title
WO2016104975A1 (ko) Pwht 후 인성이 우수한 고강도 압력용기용 강재 및 그 제조방법
WO2017105107A1 (ko) 저온 변형시효 충격특성 및 용접 열영향부 충격특성이 우수한 고강도 강재 및 이의 제조방법
WO2019107700A1 (ko) 수소 유기 균열 저항성 및 저온 충격인성이 우수한 고강도 강재 및 그 제조방법
WO2019132478A1 (ko) 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2019117536A1 (ko) 인장강도 및 저온충격인성이 우수한 압력용기용 강판 및 그 제조방법
WO2019132465A1 (ko) 수소유기균열 저항성이 우수한 강재 및 그 제조방법
KR20180074281A (ko) 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2020111863A1 (ko) 냉간가공성 및 ssc 저항성이 우수한 초고강도 강재 및 그 제조방법
WO2020067752A1 (ko) 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
KR102508129B1 (ko) 저온 충격인성이 우수한 극후물 강재 및 그 제조방법
WO2018088761A1 (ko) 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2017105109A1 (ko) 저온 변형시효 충격특성이 우수한 고강도 강재 및 이의 제조방법
WO2020111628A1 (ko) 수소유기균열 저항성이 우수한 강재 및 그 제조방법
KR100711371B1 (ko) 극저온 인성이 우수한 라인파이프용 후강판 및 그 제조방법
KR20210079847A (ko) 표면품질 및 내 라멜라티어링 품질이 우수한 극후물 압력용기용 강재 및 그 제조방법
KR100722394B1 (ko) 우수한 구상화 소둔 특성을 가지는 고탄소강판 및 그제조방법
WO2020111547A1 (ko) 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2020111858A1 (ko) 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2023121179A1 (ko) 강도 및 저온 충격인성이 우수한 플랜지용 극후물 강재 및 그 제조방법
KR20210080698A (ko) 수소유기균열 저항성이 우수한 피팅부품 및 그 제조방법
KR20080057845A (ko) 연속로 열처리 특성이 우수한 열연강판 및 고강도 강관과그 제조방법
KR20080060621A (ko) 충격인성이 우수한 고탄소 강판의 제조 방법
WO2024136088A1 (ko) 강판 및 그 제조방법
WO2024136222A1 (ko) 냉연강판 및 이의 제조방법
KR102509355B1 (ko) 표면품질 및 내 라멜라티어링 품질이 우수한 스팀드럼용 극후물 강재 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530864

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019888554

Country of ref document: EP

Effective date: 20210630