CN102719745A - 优良抗hic、ssc的高强低温用钢及其制造方法 - Google Patents

优良抗hic、ssc的高强低温用钢及其制造方法 Download PDF

Info

Publication number
CN102719745A
CN102719745A CN2012102109635A CN201210210963A CN102719745A CN 102719745 A CN102719745 A CN 102719745A CN 2012102109635 A CN2012102109635 A CN 2012102109635A CN 201210210963 A CN201210210963 A CN 201210210963A CN 102719745 A CN102719745 A CN 102719745A
Authority
CN
China
Prior art keywords
low
percent
steel
steel plate
hic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012102109635A
Other languages
English (en)
Other versions
CN102719745B (zh
Inventor
冯太国
刘自成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN201210210963.5A priority Critical patent/CN102719745B/zh
Publication of CN102719745A publication Critical patent/CN102719745A/zh
Application granted granted Critical
Publication of CN102719745B publication Critical patent/CN102719745B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

优良抗HIC、SSC的高强低温用钢及其制造方法,采用超低C-低Si-中Mn-低Als-低N-少量(Ni+Mo)合金化-微(Ti+Nb)处理的低合金钢成分体系,Mn/C≥22、偏析指数1.32(%C)×[(1.53(%Mn)+1.37(%Si)+1.15(%Mo)+1.06(%Cr)+(%Cu)+0.86(%Ni)]×[(30(%P)+10(%S)]≤0.060、[(%Si)+(%Als)]×(%C)≤0.0035、Pcm≤0.18%、Nb/Ti在1.5~3.5之间、Ca处理,且Ca/S比0.80~3.00,优化TMCP工艺,使成品钢板的显微组织为均匀细小的针状铁素体+少量上贝氏体,平均晶粒尺寸在10μm以下;获得高强度、高韧性、抗HIC与SSC特性,且可大热输入焊接,特别适宜于用做制造低温储罐、低温压力钢管、冰海区域海洋平台等。

Description

优良抗HIC、SSC的高强低温用钢及其制造方法
技术领域
本发明涉及低碳高强度低合金钢,特别涉及一种优良抗HIC、SSC的高强低温用钢及其制造方法,其为一种超低C-低Si-中Mn-低Als-低N-少量(Ni+Mo)合金化-微(Ti+Nb)处理的低合金钢,屈服强度≥460MPa,抗拉强度≥550MPa,-50℃的Charpy横向冲击功(单个值)≥47J,可大线能量焊接、耐HIC与SSC低温TMCP钢板,主要用于低温储罐、低温压力钢管、冰海区域海洋平台及UOE的制造用材。
背景技术
众所周知,低碳(高强度)低合金钢是最重要工程结构材料之一,广泛应用于石油天然气管线、海洋平台、船舶制造、桥梁结构、锅炉压力容器、建筑结构、汽车工业、铁路运输及机械制造之中。低碳(高强度)低合金钢性能取决于其化学成分、制造过程的工艺制度,其中强度、韧性及焊接性是低碳(高强度)低合金钢最重要的性能,它最终决定于成品钢材的化学成分与显微组织状态。随着科技不断地向前发展,人们对钢的强韧性、焊接性提出更高的要求,即在维持较低制造成本的同时大幅度地提高钢板的综合机械性能和使用性能,以减少钢材的用量而节约成本,减轻钢构件自身重量、稳定性和安全性。
目前世界范围内掀起了发展新一代高性能钢铁材料的研究高潮,通过合金组合设计、革新控轧/TMCP(包括DQ)技术及热处理工艺获得更好的显微组织匹配,从而使钢板得到更高的强度韧性匹配、更优良的焊接性;本发明钢板正是采用上述技术,低成本地开发出综合力学性能优异的低温用钢板。
现有技术在制造屈服强度≥415MPa、-60℃的低温冲击韧性≥34J的厚钢板时,一般要在钢中添加一定量的Ni或Cu+Ni元素,以确保母材钢板具有优异的低温韧性,采用≤100KJ/cm的线能量焊接时,热影响区HAZ的韧性也能够达到-60℃Akv≥34J,但是没有涉及在H2S腐蚀环境中钢板如何耐氢致裂纹HIC、硫化物应力腐蚀裂纹SSC的特性。
大量现有专利文献只是说明如何实现母材钢板的低温韧性,对于如何在焊接条件下,获得优良的热影响区(HAZ)低温韧性说明的较少,尤其采用大线能量焊接时如何保证热影响区(HAZ)的低温韧性少之又少,且为了保证钢板的低温韧性,钢中一般均加入一定量的Ni或Cu+Ni元素,钢板大线能量焊接热影响区(HAZ)低温韧性也很少能够达到-60℃。
发明内容
本发明的目的在于设计一种优良抗HIC、SSC的高强低温用钢及其制造方法,在关键技术路线和成分工艺设计上,综合了影响TMCP钢板显微组织与强度、超低温韧性、抗抗HIC与SSC性能及大线能量焊接性之间的相互关系,成功地解决了TMCP高强钢的强度、低温韧性、抗抗HIC、SSC性能与大限能量焊接性之间的矛盾,稳定批量低成本的生产出可大限能量焊接的调质低温用钢板,特别适宜于用做制造低温储罐、低温压力钢管、冰海区域海洋平台等。
耐HIC、SSC低温钢板是厚板产品中难度最大的品种之一,其原因是该类钢板不仅要求具有高强度、极高的低温韧性、优良的焊接工艺性且可大限能量焊接,而且还要在高浓度的H2S环境下,具有优良的抗HIC、SSC特性。
本发明的技术方案是:
采用超低C-低Si-中Mn-低Als-低N-少量(Ni+Mo)合金化-微(Ti+Nb)处理的低合金钢成分体系,控制Mn/C≥22、偏析指数1.32(%C)×[(1.53(%Mn)+1.37(%Si)+1.15(%Mo)+1.06(%Cr)+(%Cu)+0.86(%Ni)]×[(30(%P)+10(%S)]≤0.060、[(%Si)+(%Als)]×(%C)≤0.0035、Pcm≤0.18%、Nb/Ti在1.5~3.5之间、Ca处理且Ca/S比在0.80~3.00之间等冶金技术控制手段,优化TMCP工艺,使成品钢板的显微组织为均匀细小的针状铁素体+少量上贝氏体,平均晶粒尺寸在10μm以下;在超低碳当量、Pcm条件下,获得高强度、高韧性、抗HIC与SSC特性且可大热输入焊接,特别适宜于用做制造低温储罐、低温压力钢管、冰海区域海洋平台等。
具体地,本发明的优良抗HIC、SSC的高强低温用钢,其成分重量百分比为:
C:0.030%~0.060%
Si:≤0.10%
Mn:1.10%~1.40%
P:≤0.012%
S:≤0.002%
Als:≤0.010%
Cu:0.15%~0.35%
Ni:0.15~0.40%
Mo:0.10%~0.30%
Nb:0.015%~0.045%
Ti:0.007%~0.016%
N:0.0025%~0.0055%
Ca:0.001%~0.003%
其余为Fe和不可避免杂质;
且上述元素含量必须同时满足如下关系:
Mn/C≥22,改善钢板的低温韧性,保证-50℃条件下,钢板断裂形式为塑韧性断裂;
1.32(%C)×[(1.53(%Mn)+1.37(%Si)+1.15(%Mo)+1.06(%Cr)+(%Cu)+0.86(%Ni)]×[(30(%P)+10(%S)]≤0.060,抑制浇注过程中合金元素发生共轭偏析,尤其C、P、S、Mn元素的共轭偏析,降低板坯偏析,保证钢板抗HIC、SSC特性;其为本发明成分设计的关键之一;
[(%Si)+(%Als)]×(%C)≤0.0035,促进Fe3C析出,抑制M-A岛析出,减少M-A岛数量、尺寸,改善钢板低温韧性及大热输入焊接HAZ韧性;其为本发明成分设计的关键之一;
Pcm≤0.18%,保证钢板可大热输入焊接,缩小焊接HAZ中的局部脆性区,提高焊接HAZ低温韧性,保证焊接接头安全可靠;
Nb/Ti在1.5~3.5,保证Ti(C,N)粒子、Nb(C,N)粒子细小均匀的状态分布,抑制奥氏体晶粒长大,改善钢板母材、焊接HAZ低温韧性;
Ca处理,且Ca/S比在0.80~3.00,5×10-4≤(Ca)(S)0.18≤2.5×10-3,以改善钢板低温韧性、焊接性、抗SR脆性、抗层状撕裂性能、抗HIC与SSC性能。
在本发明的成分设计中:
C对TMCP钢板的强度、低温韧性、延伸率及焊接性影响很大,从改善调质钢板低温韧性、抗HIC与SSC、焊接性角度(尤其大限能量焊接性),希望钢中C含量控制得尽可能低;但是从TMCP钢板的强韧性匹配、生产制造过程中显微组织控制及制造成本角度,C含量不宜控制得过低,考虑到TMCP型低温用钢显微组织控制,提高钢板晶界强度及抗沿晶断裂特性,C的含量控制在0.03%~0.06%之间。
Mn作为最重要的合金元素在钢中除提高钢板的强度外,还具有扩大奥氏体相区、降低Ar3点温度、细化TMCP钢板晶粒、细化碳化物析出而改善钢板低温韧性的作用、促进低温相变组织形成而提高钢板强度的作用;但是Mn在钢水凝固过程中容易发生偏析,尤其Mn含量较高时,不仅会造成浇铸操作困难,而且容易与C、P、S、Mo、Cr等元素发生共轭偏析现象,尤其钢中C含量较高时,加重铸坯中心部位的偏析与疏松,严重的铸坯中心区域偏析在后续的轧制、热处理及焊接过程中易形成异常组织,不仅导致TMCP钢板低温韧性低下和焊接接头出现裂纹,更重要的是抗HIC、SSC特性严重劣化;因此根据C含量范围,选择适宜的Mn含量范围对于低温用抗HIC、SSC的TMCP钢板极其必要,根据本发明钢成分体系及C含量为0.03%~0.06%,适合Mn含量为1.10%~1.40%,且C含量高时,Mn含量适当降低,反之亦然;且C含量低时,Mn含量适当提高;因此本发明还要求Mn/C≥22,以此满足钢板的低温韧性,保证-50℃条件下,钢板断裂形式为塑韧性断裂。
Si促进钢水脱氧并能够提高TMCP钢板强度,但是采用Al脱氧的钢水,Si的脱氧作用不大,Si虽然能够提高TMCP钢板的强度,但是Si促进钢板内部偏析,恶化钢板及焊接接头抗HIC、SSC特性,严重损害钢板的低温韧性、延伸率及焊接性,尤其在大线能量焊接条件下,Si不仅促进M-A岛形成,而且形成的M-A岛尺寸较为粗大、分布不均匀,严重损害焊接热影响区(HAZ)韧性,因此钢中的Si含量应尽可能控制得低,考虑到炼钢过程的经济性和可操作性,Si含量控制在≤0.10%。
P作为钢中有害夹杂对钢板的机械性能,尤其抗HIC与SSC特性、低温冲击韧性、延伸率及焊接性具有巨大的损害作用,理论上要求越低越好;但考虑到炼钢可操作性和炼钢成本,对于要求优良焊接性、-50℃韧性、优良强韧性及抗HIC与SSC特性、可大限能量焊接的低温TMCP钢板,P含量需要控制在≤0.012%。
S作为钢中有害夹杂对钢板的低温韧性具有很大的损害作用,更重要的是S在钢中与Mn结合,形成MnS夹杂物,在热轧过程中,MnS的可塑性使MnS沿轧向延伸,形成沿轧向MnS夹杂物带,严重损害钢板的抗HIC与SSC特性、低温冲击韧性、延伸率、Z向性能及焊接性,同时S还是热轧过程中产生热脆性的主要元素,理论上要求越低越好;但考虑到炼钢可操作性、炼钢成本和物流顺畅原则,对于要求优良焊接性、-50℃韧性、优良强韧性及抗HIC与SSC特性、可大限能量焊接的低温TMCP钢板,S含量需要控制在≤0.0020%。
作为奥氏体稳定化元素,加入少量的Cu可以同时提高TMCP钢板强度和改善低温韧性、抗HIC与SSC特性而不损害其焊接性;但加入过多的Cu时,在热轧及回火处理过程中,将发生细小弥散的ε-Cu沉淀,损害钢板的低温韧性,更重要的是大限能量焊接时易产生热裂纹而导致铜脆,因此Cu含量上限控制在≤0.35%;但如果加入Cu含量过少(<0.10%),对提高强度、韧性及抗HIC与SSC特性作用不大,因此Cu含量控制在0.10%~0.35%之间。
添加Mo提高钢板的淬透性,促进TMCP过程中贝氏体形成,但是Mo作为强碳化物形成元素,在促进贝氏体形成的同时,增大贝氏体本征脆性;因此Mo在大幅度提高TMCP钢板强度的同时,降低了调质钢板的低温韧性、延伸率;并且当Mo添加过多时,不仅严重损害钢板的延伸率、大限能量焊接性,而且增加生产成本;但是对于低碳60公斤级TMCP钢板,必须有一定的Mo含量,以保证钢板具有足够的强度。因此综合考虑Mo的相变强化作用及对母材钢板低温韧性、延伸率和大限能量焊接性的影响,Mo含量控制在0.10%~0.30%之间。
Ni是钢板获得优良超低温韧性不可缺少的合金元素;同时钢中加Ni还可以降低铜脆发生,减轻热轧过程的开裂;因此从理论上讲,钢中Ni含量在一定范围内越高越好,但是Ni是一种很贵的合金元素,从低成本批量生产角度,适宜的加入量为0.15%~0.40%,远低于传统的低温TMCP钢板的Ni含量,这也是本发明采用低Ni含量生产低温用钢的技术特色。
N的控制范围与Ti的控制范围相对应,对于大线能量焊接钢板,Ti/N在2.5~3.5之间最佳。N含量过低,生成TiN粒子数量少,不能起到改善钢的焊接性的作用,反而对焊接性有害;但是N含量过高时,钢中自由[N]增加,尤其大线能量焊接条件下热影响区(HAZ)自由[N]含量急剧增加,严重损害HAZ低温韧性,恶化钢的焊接性;因此N含量控制在0.0025%~0.0055%。
钢中加入微量的Ti目的是与钢中N结合,生成稳定性很高的TiN粒子,抑制焊接HAZ区奥氏体晶粒长大和促进铁素体相变,改善大线能量焊接HAZ的低温韧性。钢中添加的Ti含量要与钢中的N含量匹配,匹配的原则是TiN不能在液态钢水中析出而必须在固相中细小描述地析出;因此TiN的析出温度必须确保低于1400℃,根据log[Ti][N]=-16192/T+4.72可以确定Ti的加入量。当加入Ti含量过少(<0.008%),形成TiN粒子数量不足,不足以抑制HAZ的奥氏体晶粒长大和促进铁素体相变而改善大线能量焊接HAZ的低温韧性;加入Ti含量过多(>0.016%)时,部分TiN颗粒在钢液凝固过程中析出大尺寸的TiN粒子,这种大尺寸TiN粒子不但不能抑制HAZ的奥氏体晶粒长大,反而成为裂纹萌生的起始点,其中Ti含量过多导致板坯加热及焊接热循环过程中容易TiN发生奥氏瓦尔德熟化,造成细小TiN粒子减少、粗大的TiN粒子增加,使TiN失去作用;因此Ti含量的最佳控制范围为0.008%~0.016%。
钢中添加微量的Nb元素目的是进行未再结晶控制轧制,细化钢板显微组织及增加位错强化,提升TMCP钢板淬硬性,提高TMCP钢板强度、韧性及塑性之间的匹配,当Nb添加量低于0.015%时,除不能有效发挥的强力控轧作用;当Nb添加量超过0.045%时,大热输入焊接条件下诱发上贝氏体(Bu)形成和Nb(C,N)二次析出脆化作用,严重损害大热输入焊接热影响区(HAZ)的低温韧性,因此Nb含量控制在0.015%~0.045%之间,获得最佳的控轧效果、实现高强度TMCP钢板强韧性/强塑性匹配的同时,又不损害大热输入焊接及焊接HAZ的韧性。
为降低焊接热影响区HAZ中M-A岛数量,促进M-A到分解成无害的Fe3C,减少上贝氏体Bu板条界面上M-A岛,改善上贝氏体韧性,钢中酸溶铝Als控制在≤0.010%。
对钢进行Ca处理,一方面可以纯净钢液,另一方面对钢中硫化物进行变性处理,使之变成不可变形的、稳定细小的球状硫化物,抑制S的热脆性、提高TMCP钢板抗HIC与SSC特性、低温冲击韧性、Z向性能、改善钢板冲击韧性的各向异性。Ca加入量的多少,取决于钢中S含量的高低,Ca加入量过低,处理效果不大;Ca加入量过高,形成Ca(O,S)尺寸过大,脆性也增大,可成为断裂裂纹起始点,降低钢的低温韧性,同时还降低钢质纯净度、污染钢液,恶化钢板抗HIC与SSC特性;一般控制Ca含量按ACR=(wt%Ca)[1-1.24(wt%O)]/1.25(wt%S),其中ACR为硫化物夹杂形状控制指数,取值范围1.0~2.5之间为宜,因此Ca含量的控制范围为0.001%~0.003%。
本发明的优良抗HIC、SSC的高强低温用钢的制造方法,其包括如下步骤:
1)冶炼,铸造
按上述成分冶炼,铸造采用连铸工艺,并采用轻压下技术,连铸轻压下率控制在3%~6%之间,中间包浇注温度在1540℃~1560℃之间;
2)板坯加热
加热温度1050℃~1150℃,板坯出炉后采用高压水除鳞;
3)轧制,两阶段轧制
第一阶段为普通轧制,轧制道次压下率≥8%,累计压下率≥50%,确保形变金属发生动态/静态再结晶,细化奥氏体晶粒;
第二阶段采用未再结晶控制轧制,控轧开轧温度850~800℃,轧制道次压下率≥7%,累计压下率≥60%,终轧温度780℃~830℃;
4)冷却
未再结晶控轧结束后,对钢板进行加速冷却,钢板开冷温度770℃~820℃,冷却速度≥15℃/s,停冷温度控制为450℃~550℃;随后钢板从停冷结束自然空冷到室温,至此获得具有-50℃及以下的极其优良超低温冲击韧性、抗HIC与SSC特性,钢板组织为均匀细小的针状铁素体+少量上贝氏体。
进一步,上述未再结晶控轧结束后,钢板立即运送到ACC加速冷却设备处,间隔时间≤20秒,随即对钢板进行加速冷却。
本发明的有益效果
本发明在关键技术路线和成分工艺设计上,综合了影响TMCP钢板成分、显微组织、强度、低温韧性、抗HIC与SSC特性及大线能量焊接性之间的相互关系,成功地解决了TMCP钢板高强度化与抗HIC与SSC特性、低温韧性与大限能量焊接性之间的矛盾,稳定批量低成本地生产出可大限能量焊接、抗HIC与SSC特性的低温用TMCP钢板,特别适宜于用做制造低温储罐、低温压力钢管、冰海区域海洋平台等。
本发明采用超低Ni含量通过在线TMCP生产高强度、抗HIC与SSC特性的低温用钢,这不仅降低贵重资源消耗,降低制造成本,缩短了制造周期,也降低了生产组织难度,尤其省略了离线热处理工序,实现制造过程的绿色环保。
附图说明
图1为本发明实施例3的钢板显微组织照片。
具体实施方式
下面结合实施例和附图对本发明作进一步说明。
表1为本发明实施例钢的成分。表2、表3为本发明实施例钢的制造工艺。表4为本发明实施例钢的性能。
如图1可知,通过成分与TMCP工艺结合,得到钢板的显微组织为均匀细小的针状铁素体+少量上贝氏体,平均晶粒尺寸在10μm以下。
表1                                单位:重量百分比
Figure BDA00001803139000091
表2
Figure BDA00001803139000092
表3
Figure BDA00001803139000101
表4
Figure BDA00001803139000102
本发明钢板通过合理的合金元素的组合设计与未再结晶控轧及在线TMCP工艺相结合,钢板即可获得优异的低温韧性、抗HIC与SSC特性,而且钢板可以承受大热输入焊接,因而节约了用户构件制造的成本,缩短了用户构件制造的时间,保证了钢板在H2S等酸性介质中长期服役安全,减少维护、停运修复工作,为用户创造了很大的价值,因而此类钢板是高附加值、绿色环保性的产品;由于本发明钢板生产过程中不需要添加任何设备,制造工艺简洁、生产过程控制容易,因此制造成本相对低廉,具有较高性价比和市场竞争力;且技术适应性强,可以向所有具有热处理设备的中厚板生产厂家推广,具有很强的商业推广性,具有较高的技术贸易价值。
随着我国经济持续发展,对石油、天然气需求越来越大,且随着石油天然气开采,含有高浓度H2S的“甜气”越来越多;西气东输二线、出川管线、中俄管线、中哈管线建设就是最好的例证,对于缺少油气资源的我国东部沿海地区将出现兴建长距离UOE管线、低温储气、储油罐的高潮,作为低温储气、储油罐的关键罐体材料――高强度、抗HIC与SSC特性的低温TMCP钢板,将具有广阔的市场前景。

Claims (3)

1.优良抗HIC、SSC的高强低温用钢,其成分重量百分比为:
C:0.030%~0.060%
Si:≤0.10%
Mn:1.10%~1.40%
P:≤0.012%
S:≤0.002%
Als:≤0.010%
Cu:0.15%~0.35%
Ni:0.15~0.40%
Mo:0.10%~0.30%
Nb:0.015%~0.045%
Ti:0.007%~0.016%
N:0.0025%~0.0055%
Ca:0.001%~0.003%
其余为Fe和不可避免杂质;
且上述元素含量必须同时满足如下关系:
Mn/C≥22;
1.32(%C)×[(1.53(%Mn)+1.37(%Si)+1.15(%Mo)+1.06(%Cr)+(%Cu)+0.86(%Ni)]×[(30(%P)+10(%S)]≤0.060;
[(%Si)+(%Als)]×(%C)≤0.0035;
Pcm≤0.18%;
Nb/Ti在1.5~3.5;
Ca处理,且Ca/S比在0.80~3.00,5×10-4≤(Ca)(S)0.18≤2.5×10-3
2.如权利要求1所述的优良抗HIC、SSC的高强低温用钢的制造方法,其包括如下步骤:
1)冶炼,铸造
按上述成分冶炼,铸造采用连铸工艺,并采用轻压下技术,连铸轻压下率控制在3%~6%之间,中间包浇注温度在1540℃~1560℃之间;
2)板坯加热
加热温度1050℃~1150℃,板坯出炉后采用高压水除鳞;
3)轧制,两阶段轧制
第一阶段为普通轧制,轧制道次压下率≥8%,累计压下率≥50%,确保形变金属发生动态/静态再结晶,细化奥氏体晶粒;
第二阶段采用未再结晶控制轧制,控轧开轧温度850~800℃,轧制道次压下率≥7%,累计压下率≥60%,终轧温度780℃~830℃;
4)冷却
未再结晶控轧结束后,对钢板进行加速冷却,钢板开冷温度770℃~820℃,冷却速度≥15℃/s,停冷温度控制为450℃~550℃;随后钢板从停冷结束自然空冷到室温;
至此获得具有-50℃及以下的极其优良超低温冲击韧性、抗HIC与SSC特性,钢板组织为均匀细小的针状铁素体+少量上贝氏体。
3.如权利要求2所述的优良抗HIC、SSC的高强低温用钢的制造方法,其特征是,未再结晶控轧结束后,钢板立即运送到ACC加速冷却设备处,间隔时间≤20秒。
CN201210210963.5A 2012-06-25 2012-06-25 优良抗hic、ssc的高强低温用钢及其制造方法 Active CN102719745B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210210963.5A CN102719745B (zh) 2012-06-25 2012-06-25 优良抗hic、ssc的高强低温用钢及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210210963.5A CN102719745B (zh) 2012-06-25 2012-06-25 优良抗hic、ssc的高强低温用钢及其制造方法

Publications (2)

Publication Number Publication Date
CN102719745A true CN102719745A (zh) 2012-10-10
CN102719745B CN102719745B (zh) 2014-07-23

Family

ID=46945608

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210210963.5A Active CN102719745B (zh) 2012-06-25 2012-06-25 优良抗hic、ssc的高强低温用钢及其制造方法

Country Status (1)

Country Link
CN (1) CN102719745B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320693A (zh) * 2013-06-19 2013-09-25 宝山钢铁股份有限公司 抗锌致裂纹钢板及其制造方法
CN103695801A (zh) * 2013-12-20 2014-04-02 宝山钢铁股份有限公司 一种高韧性、高耐候钢及其制造方法
WO2014201887A1 (zh) * 2013-06-19 2014-12-24 宝山钢铁股份有限公司 超高韧性、优良焊接性ht550钢板及其制造方法
CN104789887A (zh) * 2015-04-02 2015-07-22 江阴兴澄特种钢铁有限公司 一种超厚规格抗hic及抗ssccx65管线钢板及其制造方法
CN104831182A (zh) * 2015-04-02 2015-08-12 江阴兴澄特种钢铁有限公司 一种低屈强比抗hic及抗ssccx70管线钢板及其制造方法
CN106574316A (zh) * 2014-07-15 2017-04-19 杰富意钢铁株式会社 大线能量焊接用钢板的制造方法
CN107354397A (zh) * 2017-07-13 2017-11-17 北京科技大学 一种抗应力腐蚀高强度钢及其控轧控冷工艺
JP6319539B1 (ja) * 2017-09-19 2018-05-09 新日鐵住金株式会社 鋼管及び鋼板
JP6369658B1 (ja) * 2017-09-19 2018-08-08 新日鐵住金株式会社 鋼管及び鋼板
CN108624819A (zh) * 2017-03-24 2018-10-09 宝山钢铁股份有限公司 低成本、大热输入焊接460MPa级止裂钢板及其制造方法
CN109423572A (zh) * 2017-08-31 2019-03-05 宝山钢铁股份有限公司 高止裂、抗应变时效脆化特性的耐海水腐蚀钢板及其制造方法
WO2020111858A1 (ko) * 2018-11-30 2020-06-04 주식회사 포스코 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2020111547A1 (ko) * 2018-11-30 2020-06-04 주식회사 포스코 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2020135437A1 (zh) * 2018-12-24 2020-07-02 宝山钢铁股份有限公司 一种耐海水腐蚀钢及其制造方法
CN111621694A (zh) * 2019-02-28 2020-09-04 宝山钢铁股份有限公司 低成本、高止裂特厚钢板及其制造方法
CN112585699A (zh) * 2018-08-21 2021-03-30 住友电气工业株式会社 包覆电线、带端子电线、铜合金线、铜合金绞合线以及铜合金线的制造方法
CN113025885A (zh) * 2021-02-08 2021-06-25 江阴兴澄特种钢铁有限公司 一种具有良好抗hic性能的低屈强比高强管线钢板及其制造方法
CN114480809A (zh) * 2022-04-18 2022-05-13 江苏省沙钢钢铁研究院有限公司 500MPa级止裂钢板及其生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322019A (ja) * 2005-05-17 2006-11-30 Sumitomo Metal Ind Ltd 熱加工制御型590MPa級H形鋼及びその製造方法
CN101289728A (zh) * 2007-04-20 2008-10-22 宝山钢铁股份有限公司 低屈强比可大线能量焊接高强高韧性钢板及其制造方法
CN101724779A (zh) * 2008-10-21 2010-06-09 宝山钢铁股份有限公司 高韧性且适应大线能量焊接的钢、钢板及其制造方法
CN102277530A (zh) * 2011-08-15 2011-12-14 武汉钢铁(集团)公司 深海用≥25mm厚的管线钢及其生产方法
CN102286692A (zh) * 2010-06-21 2011-12-21 宝山钢铁股份有限公司 一种调质低温用钢及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322019A (ja) * 2005-05-17 2006-11-30 Sumitomo Metal Ind Ltd 熱加工制御型590MPa級H形鋼及びその製造方法
CN101289728A (zh) * 2007-04-20 2008-10-22 宝山钢铁股份有限公司 低屈强比可大线能量焊接高强高韧性钢板及其制造方法
CN101724779A (zh) * 2008-10-21 2010-06-09 宝山钢铁股份有限公司 高韧性且适应大线能量焊接的钢、钢板及其制造方法
CN102286692A (zh) * 2010-06-21 2011-12-21 宝山钢铁股份有限公司 一种调质低温用钢及其制造方法
CN102277530A (zh) * 2011-08-15 2011-12-14 武汉钢铁(集团)公司 深海用≥25mm厚的管线钢及其生产方法

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014201887A1 (zh) * 2013-06-19 2014-12-24 宝山钢铁股份有限公司 超高韧性、优良焊接性ht550钢板及其制造方法
US10093999B2 (en) 2013-06-19 2018-10-09 Baoshan Iron & Steel Co., Ltd. Steel plate resistant to zinc-induced crack and manufacturing method therefor
US10208362B2 (en) 2013-06-19 2019-02-19 Baoshan Iron & Steel Co., Ltd. HT550 steel plate with ultrahigh toughness and excellent weldability and manufacturing method of the same
CN103320693B (zh) * 2013-06-19 2015-11-18 宝山钢铁股份有限公司 抗锌致裂纹钢板及其制造方法
JP2016524653A (ja) * 2013-06-19 2016-08-18 宝山鋼鉄股▲分▼有限公司 超高度の靭性および優れた溶接性を伴うht550鋼板ならびにその製造方法
CN103320693A (zh) * 2013-06-19 2013-09-25 宝山钢铁股份有限公司 抗锌致裂纹钢板及其制造方法
KR101732565B1 (ko) * 2013-06-19 2017-05-24 바오샨 아이론 앤 스틸 유한공사 아연-유도 균열에 저항성인 강판 및 이의 제조 방법
CN103695801A (zh) * 2013-12-20 2014-04-02 宝山钢铁股份有限公司 一种高韧性、高耐候钢及其制造方法
CN103695801B (zh) * 2013-12-20 2016-07-06 宝山钢铁股份有限公司 一种高韧性、高耐候钢及其制造方法
CN106574316A (zh) * 2014-07-15 2017-04-19 杰富意钢铁株式会社 大线能量焊接用钢板的制造方法
CN104789887A (zh) * 2015-04-02 2015-07-22 江阴兴澄特种钢铁有限公司 一种超厚规格抗hic及抗ssccx65管线钢板及其制造方法
CN104789887B (zh) * 2015-04-02 2017-03-01 江阴兴澄特种钢铁有限公司 一种超厚规格抗hic及抗ssccx65管线钢板及其制造方法
CN104831182B (zh) * 2015-04-02 2017-03-01 江阴兴澄特种钢铁有限公司 一种低屈强比抗hic及抗ssccx70管线钢板及其制造方法
CN104831182A (zh) * 2015-04-02 2015-08-12 江阴兴澄特种钢铁有限公司 一种低屈强比抗hic及抗ssccx70管线钢板及其制造方法
CN108624819B (zh) * 2017-03-24 2020-08-25 宝山钢铁股份有限公司 低成本、大热输入焊接460MPa级止裂钢板及其制造方法
CN108624819A (zh) * 2017-03-24 2018-10-09 宝山钢铁股份有限公司 低成本、大热输入焊接460MPa级止裂钢板及其制造方法
CN107354397A (zh) * 2017-07-13 2017-11-17 北京科技大学 一种抗应力腐蚀高强度钢及其控轧控冷工艺
CN107354397B (zh) * 2017-07-13 2019-03-26 北京科技大学 一种抗应力腐蚀高强度钢及其控轧控冷工艺
CN109423572B (zh) * 2017-08-31 2020-08-25 宝山钢铁股份有限公司 高止裂、抗应变时效脆化特性的耐海水腐蚀钢板及其制造方法
CN109423572A (zh) * 2017-08-31 2019-03-05 宝山钢铁股份有限公司 高止裂、抗应变时效脆化特性的耐海水腐蚀钢板及其制造方法
WO2019058422A1 (ja) * 2017-09-19 2019-03-28 新日鐵住金株式会社 鋼管及び鋼板
CN111094608B (zh) * 2017-09-19 2021-10-26 日本制铁株式会社 钢管和钢板
CN111094608A (zh) * 2017-09-19 2020-05-01 日本制铁株式会社 钢管和钢板
WO2019058420A1 (ja) * 2017-09-19 2019-03-28 新日鐵住金株式会社 鋼管及び鋼板
JP6319539B1 (ja) * 2017-09-19 2018-05-09 新日鐵住金株式会社 鋼管及び鋼板
JP6369658B1 (ja) * 2017-09-19 2018-08-08 新日鐵住金株式会社 鋼管及び鋼板
CN112585699B (zh) * 2018-08-21 2022-05-13 住友电气工业株式会社 包覆电线、带端子电线、铜合金线、铜合金绞合线以及铜合金线的制造方法
CN112585699A (zh) * 2018-08-21 2021-03-30 住友电气工业株式会社 包覆电线、带端子电线、铜合金线、铜合金绞合线以及铜合金线的制造方法
WO2020111858A1 (ko) * 2018-11-30 2020-06-04 주식회사 포스코 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2020111547A1 (ko) * 2018-11-30 2020-06-04 주식회사 포스코 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2020135437A1 (zh) * 2018-12-24 2020-07-02 宝山钢铁股份有限公司 一种耐海水腐蚀钢及其制造方法
CN111621694B (zh) * 2019-02-28 2021-05-14 宝山钢铁股份有限公司 低成本、高止裂特厚钢板及其制造方法
CN111621694A (zh) * 2019-02-28 2020-09-04 宝山钢铁股份有限公司 低成本、高止裂特厚钢板及其制造方法
CN113025885A (zh) * 2021-02-08 2021-06-25 江阴兴澄特种钢铁有限公司 一种具有良好抗hic性能的低屈强比高强管线钢板及其制造方法
CN114480809A (zh) * 2022-04-18 2022-05-13 江苏省沙钢钢铁研究院有限公司 500MPa级止裂钢板及其生产方法
CN114480809B (zh) * 2022-04-18 2022-08-19 江苏省沙钢钢铁研究院有限公司 500MPa级止裂钢板及其生产方法

Also Published As

Publication number Publication date
CN102719745B (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
CN102719745B (zh) 优良抗hic、ssc的高强低温用钢及其制造方法
CN103320693B (zh) 抗锌致裂纹钢板及其制造方法
CN102041459B (zh) 可大线能量焊接ht690钢板及其制造方法
CN102021494B (zh) 一种耐候厚钢板及其制造方法
CN103667953B (zh) 一种低环境裂纹敏感性超高强韧性海洋系泊链钢及其制造方法
CN102691007B (zh) 抗高回火参数pwht脆化的低温用特厚钢板及制造方法
CN102719744B (zh) 低温结构用钢及其制造方法
CN101328564B (zh) 具有优良焊接性的低屈强比ht780钢板及其制造方法
CN104046898B (zh) 一种高性能耐海洋气候钢板及其制造方法
CN102618799B (zh) 低碳当量80公斤级高性能调质钢板及其制造方法
CN103320692A (zh) 超高韧性、优良焊接性ht550钢板及其制造方法
CN103205644B (zh) 可大热输入焊接超低温用钢及其制造方法
CN102851589B (zh) 低屈强比可超大热输入焊接低温结构用钢及其制造方法
CN102851616B (zh) 焊接性优良的60公斤级低温调质钢板及其制造方法
CN102691010B (zh) 一种优良塑韧性ht960钢板及其制造方法
CN102719757B (zh) 无镍高韧性80公斤级高强钢及其制造方法
CN102618784B (zh) 60公斤级低成本、高韧性钢板及其制造方法
CN104561796A (zh) 抗疲劳裂纹扩展优良钢板及其制造方法
CN101845597B (zh) 低成本80公斤级特厚调质钢板及其制造方法
CN102400062B (zh) 低屈强比超高强度x130管线钢
CN104046899A (zh) 一种可大热输入焊接550MPa级钢板及其制造方法
CN103602913B (zh) 用于天然气管道的x80钢热轧板卷及其制备方法
CN102286692B (zh) 一种调质低温用钢及其制造方法
CN103695801A (zh) 一种高韧性、高耐候钢及其制造方法
CN102851611A (zh) 耐深水压力壳体用超高强韧性钢板及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant