CN101724779A - 高韧性且适应大线能量焊接的钢、钢板及其制造方法 - Google Patents

高韧性且适应大线能量焊接的钢、钢板及其制造方法 Download PDF

Info

Publication number
CN101724779A
CN101724779A CN200810201498A CN200810201498A CN101724779A CN 101724779 A CN101724779 A CN 101724779A CN 200810201498 A CN200810201498 A CN 200810201498A CN 200810201498 A CN200810201498 A CN 200810201498A CN 101724779 A CN101724779 A CN 101724779A
Authority
CN
China
Prior art keywords
steel plate
rolling
steel
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810201498A
Other languages
English (en)
Other versions
CN101724779B (zh
Inventor
贺达伦
胡聆
朱岩
吴扣根
张向葵
胡执虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN2008102014982A priority Critical patent/CN101724779B/zh
Publication of CN101724779A publication Critical patent/CN101724779A/zh
Application granted granted Critical
Publication of CN101724779B publication Critical patent/CN101724779B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明提供一种高韧性且适应大线能量焊接的钢、钢板及其制造方法,以重量百分比计,所述钢和钢板包含以下成分:C:0.045~0.075%、Si:0.20~0.40%、Mn:1.20~1.60%、Nb:0.015~0.025%、Al:0.02~0.06%、Ti:0.006~0.020%、N:0.020~0.060%、P≤0.015%,S≤0.003%,余量为Fe和不可避免的杂质。本发明还提供该钢板的制造方法,包括冶炼、连铸、加热、轧制和冷却工序。本发明采用低C-中Mn-低Si-微量Nb、Ti-无B系钢种,通过强化控制热机械轧制和轧后加速冷却工艺,提高钢板的强度、低温韧性和焊接性。

Description

高韧性且适应大线能量焊接的钢、钢板及其制造方法
技术领域
本发明涉及钢铁材料领域,具体地说,本发明涉及一种高韧性且适应大线能量焊接的钢。
背景技术
低合金高强度钢板广泛应用于造船、桥梁等建筑行业,而大线能量焊接工艺可以提高用户的生产效率,降低劳动力成本。为使钢板适应大线能量焊接的要求,同时满足钢板的强度及低温韧性,钢厂在生产上述产品时,通常降低钢中的碳含量,添加Nb、V、Ti等微合金元素。为了提高钢板的低温韧性,需在钢中加入Ni、Mo、Cu等贵重元素,使得成本增加。因此,有必要降低钢中合金添加量,采用合理的冶炼、厚板轧制工艺,充分发挥控制轧制、控制冷却细晶强化效果,以提高钢板强度,并改善钢板韧性。
中国专利文献CN1840725A公开了一种低温高韧性结构用钢及其制造方法,所涉及钢的化学成分为:C:0.04~0.08%、Si:0.60~0.80%、Mn:1.65~2.15%、Nb:0.055~0.075%、Ti:0.010~0.020%、Al:0.025~0.045%、P≤0.012%、S≤0.003%、O≤0.0015%、N:0.008~0.012%。钢种的合金元素设计为:低C-高Mn-高Si-高Nb体系。此发明钢中不含Ni、Mo等贵重元素,降低了成本,同时通过采用TMCP+RPC工艺生产,提高钢板的强度及韧性。但是,其成分中采用高Nb-高Si,对钢板的焊接性能不利。
中国专利文献CN1804093A公开了一种可大线能量焊接的厚钢板及制造方法,所涉及钢的化学成分为:C:0.01~0.02%、Si:0.10~0.30%、Mn:1.80~2.30%、P≤0.010%、S≤0.003%、Nb:0.015~0.030%、Als:0.025%~0.05%、Ti:0.010~0.020%、N:0.003~0.006%I、REM:0.001~0.005ppm、Mg:0.002~0.006%、B:10~35ppm%、余铁。钢种的合金元素设计为:极低C-极高Mn-Si-Nb-B-Mg-REM体系。此发明钢中不含Ni、Cr、Mo、Cu等贵重元素,降低了成本;通过优化TMCP工艺,提高钢板的强度及韧性,实现钢板大线能量焊接;采用极低C、极高Mn成份组合以提高钢板强度。但过高Mn对钢板芯部焊接性能不利。另外,该钢通过添加REM及Mg来改善氧、硫化合物形态,同时采用电磁搅拌改善钢板芯部韧性及适应大线能量焊接,这在一定程度上增加了冶炼难度。同时钢中含B(≥5ppm),会诱发焊接后冷裂纹产生。
因此,为了解决以上问题,本发明的一个目的在于提供一种高韧性且适应大线能量焊接的钢。
本发明的另一个目的在于提供一种高韧性且适应大线能量焊接的钢板及其制造方法。
发明内容
本发明的第一个方面提供一种高韧性且适应大线能量焊接的钢,以重量百分比计,所述钢包含以下成分:C:0.045~0.075%、Si:0.20~0.40%、Mn:1.20~1.60%、Nb:0.015~0.025%、Al:0.02~0.06%、Ti:0.006~0.020%、N:0.020~0.060%、P≤0.015%,S≤0.003%,余量为Fe和不可避免的杂质。
下面,对本发明钢的化学成分作用作详细叙述。
C:在钢中的作用是固溶强化,若C含量过低,钢板强度达不到要求,需添加其它合金,但若C含量过高,对钢板的韧性及焊接性能会有负面影响,在大线能量焊接中,过高的C会促使焊接热影响区上贝氏体及硬质岛状马氏体(MA)相生成,大大降低热影响区韧性。因此,C含量范围以0.045~0.075%为宜。
Si:在冶炼工序中具有脱氧作用,在钢中起固溶强化作用,有利于提高钢板的强度,但过高的Si会影响钢的韧性及焊接性能。从大线能量焊接的角度,为保证热影响区的韧性,Si含量范围以0.20~0.40%为宜。
Mn:在冶炼工序中起脱氧作用,同时有利于提高钢的强度和韧性、有利于改善大线能量焊接热影响区韧性,且其成本低廉,因此,在本发明中将Mn作为主要的提高钢板强度的合金元素,但过高的Mn会诱发板坯中心偏析,对钢板芯部焊接性能不利。因此,Mn含量范围以1.20~1.60%为宜。
Nb:钢中添加微量微合金元素Nb,在高温轧制阶段可推迟变形奥氏体再结晶,阻止奥氏体晶粒长大,细化晶粒;在轧后加速冷却相变过程中,可促使铁素体形核,细化相变铁素体组织,使Nb的碳化物弥散析出,总体上Nb可提高钢板强度、改善韧性。考虑到大线能量焊接中Nb碳化物析出对韧性有不利影响,因此,Nb含量范围以0.015~0.025%为宜。
Ti:钢中加入微量Ti,用于固定钢中的N元素。TI与N形成的TiN在板坯轧制前的加热过程中可阻碍原始奥氏体晶粒长大,在钢板轧制后的加速冷却过程中,TiN弥散析出,可提高钢板强度。若Ti含量过低,固N效果差,若Ti含量过高,固N效果饱和,过剩的Ti会降低钢板韧性。在大线能量焊接时,热影响区冷却速度慢,组织易呈现粗大化倾向,易出现韧性差的上贝氏体组织,焊接后热影响区中TiN弥散分布,可细化组织。为了改善在大线能量焊接热影响区韧性,同时需要平衡控制Ti、N含量,理论上原子比控制在1∶1左右最佳。考虑到冶炼工序及钢板适应大线能量焊接,Ti含量范围以0.006~0.020%为宜,同时N含量范围以0.020~0.060%为宜。
P、S:从提高钢板的韧性、改善大线能量焊接热影响区韧性方面考虑,应尽可能降低钢中P、S含量,同时考虑到冶炼工序的可生产性及生产效率,P含量范围≤0.015%为宜,S含量范围≤0.003%为宜。
本发明的第二个方面提供一种高韧性且适应大线能量焊接的钢板,以重量百分比计,所述钢板包含以下成分:C:0.045~0.075%、Si:0.20~0.40%、Mn:1.20~1.60%、Nb:0.015~0.025%、Al:0.02~0.06%、Ti:0.006~0.020%、N:0.020~0.060%、P≤0.015%,S≤0.003%,余量为Fe和不可避免的杂质。
本发明的第三个方面提供所述高韧性且适应大线能量焊接的钢板的制造方法,该方法包括冶炼、连铸、加热、轧制和冷却工序,在所述轧制工序中,包括第一阶段高温轧制和第二阶段低温轧制,所述第二阶段低温轧制中,道次变形率为10~30%,终轧温度为780~840℃;在所述冷却过程中,冷却速度为12~25℃/S,冷却至480~580℃,然后空冷。
在一个优选的实施方式中,在所述连铸工序中,浇铸后的连铸坯的厚度不小于成品钢板厚度的4.5倍。
在另一个优选的实施方式中,在所述加热工序中,加热温度为1070~1150℃。
在另一个优选的实施方式中,在所述第一阶段高温轧制中,开轧温度为1000~1120℃,当轧件厚度到达成品钢板厚度的2~3倍时,在辊道上待温至800~860℃。
在另一个优选的实施方式中,所述空冷采用堆垛冷却或冷床冷却。
本发明制造方法中主要步骤的工艺控制原理分析如下:
1、第二阶段低温轧制工艺
在第一阶段高温轧制后的中间坯厚度到达成品钢板厚度的2~3倍时,在辊道上待温冷却至800~860℃。对于含Nb钢来说,其未再结晶区域温度开始约为950~1050℃,将轧制钢坯温度降至800~860℃,目的是为了保证中间坯在未再结晶区有足够的变形量,在变形的奥氏体内有更高密度的位错累结,为铁素体相变提供有力形核条件。较大的累积变形量也有利于在后续加速冷却过程中Nb的碳氮化合物的析出,由于变形诱导析出的作用,较大的道次变形率将有利于析出物的形成并且使其更加细小和弥散,同时,细小和弥散的析出物及其钉扎作用为铁素体提供高密度的形核地点并且阻止其长大和粗化,这对提高钢的强度与韧性都起到很好的作用。
将终轧温度控制在未再结晶区的低温段,同时该温度区接近相变点Ar3,即终轧温度为780~840℃,在这个温度范围内终轧,既为相变提供更高的能量累积,也不至于给轧机带来过高的负荷,比较适合于厚板生产。
2、加速冷却工艺
轧制结束后,钢板进入加速冷却装置,按12~25℃/秒的速度冷却至480~580℃。由于钢板在轧制过程中积累了密度很高的位错和极高的应变能,高密度的位错将与Nb的析出物Nb(C,N)粒子相互作用,在轧制完成至加速冷却的空冷(驰豫)过程中,这种相互作用促使在奥氏体晶粒内部形成大量细小的多边形位错胞结构,Nb原子在位错墙上的偏聚以及大量微细Nb(C,N)在位错胞壁上的析出,稳定了这种具有一定取向差的多边形胞状结构。同时,一个道次的较大变形具有诱导铁素体相变的作用,在这种诱导作用下,Ar3点有所提高,即出现所谓“应变诱导相变”现象,在未再结晶温度区较大的变形量,将有利于针状铁素体的晶内形核,同时会使贝氏体基体上的马氏体岛分布更加均匀弥散。
采用较高的冷却速率是为了为贝氏体转变提供更高的过冷度,增加相变驱动力,获得更高密度铁素体的形核率,从而得到细小铁素体和贝氏体的基体组织,使本发明钢板具有较高的强度和良好的韧性。
本发明的有益效果为:
1、通过合理设计化学成分,采用低C含量,中Mn及添加极少量的Nb,不添加Ni、Mo、Cu等贵重元素,不含B,且合金元素含量少,原料成本较,低碳当量及低裂纹敏感性,适应大线能量焊接。
2、本发明钢板由于采用中Mn成份,冶炼工序不需采用REM、添加Mg对硫化物进行形态控制,从而简化了制造工序,降低了钢的制造成本。
3、由于成分和工艺设计合理,从实施效果来看,工艺制度比较宽松,可以在中、厚钢板产线上稳定生产。
4、本发明钢板的焊接碳当量Ceq≤0.34%、低裂纹敏感系数Pcm≤0.17%、屈服强度大于390MPa、抗拉强度大于510MPa、夏氏冲击功Akv(-40℃)≥200J、板厚可达55mm。
附图说明
图1表示本发明实施例2的显微组织(1/4厚度区域,放大倍数500)。
具体实施方式
以下用实施例结合附图对本发明作更详细的描述。这些实施例仅仅是对本发明最佳实施方式的描述,并不对本发明的范围有任何限制。
实施例1~6所涉及钢的化学成分(wt%)、Ceq及Pcm见表1。
实施例1
按表1所示的化学成分电炉或转炉冶炼,并浇铸成连铸坯,将连铸坯加热至1150℃,在中、厚轧机上进行第一阶段轧制,开轧温度为1070℃,当轧件厚度为50mm时,在辊道上待温至850℃,随后进行第二阶段轧制,第二阶段轧制道次变形率为15~25%,终轧温度为820℃,成品钢板厚度为20mm。轧制结束后,钢板进入加速冷却(ACC)装置,以25℃/S的速度冷却至520℃,水冷后进行堆垛或冷床冷却。
实施例2
实施方式同实施例1,其中加热温度为1100℃;第一阶段轧制的开轧温度为1050℃,轧件厚度为68mm;第二阶段轧制的开轧温度为840℃,道次变形率为12~22%,终轧温度为810℃,成品钢板厚度为26mm;钢板冷却速度为20℃/S,终止温度为540℃。
实施例3
实施方式同实施例1,其中加热温度为1130℃;第一阶段轧制的开轧温度为1090℃,轧件厚度为85mm;第二阶段轧制的开轧温度为840℃,道次变形率为10~15%,终轧温度为790℃,成品钢板厚度为31mm;钢板冷却速度为18℃/S,终止温度为570℃。
实施例4
实施方式同实施例1,其中加热温度为1150℃,加热时间240分钟;第一阶段轧制的开轧温度为1100℃,轧件厚度为120mm;第二阶段轧制的开轧温度为820℃,道次变形率为10~20%,终轧温度为800℃,成品钢板厚度为40mm;钢板冷却速度为16℃/S,终止温度为515℃。
实施例5
实施方式同实施例1,其中加热温度为1120℃,保温180分钟;第一阶段轧制的开轧温度为1080℃,轧件厚度为135mm;第二阶段轧制的开轧温度为860℃,道次变形率为10~20%,终轧温度为830℃,成品钢板厚度为45mm;钢板冷却速度为14℃/S,终止温度为540℃。
实施例6
实施方式同实施例1,其中加热温度为1150℃;第一阶段轧制的开轧温度为1100℃,轧件厚度为165mm;第二阶段轧制的开轧温度为860℃,道次变形率为10~17%,终轧温度为820℃,成品钢板厚度为55mm;钢板冷却速度为12℃/S,终止温度为540℃。
表1实施例1~6所涉及钢的化学成分(wt%)、Ceq及Pcm
  实施例   C   Si   Mn   Ti   Nb   Al   Fe   Ceq   Pcm
  1   0.075   0.35   1.21   0.013   0.025   0.02   余量   0.28   0.147
  2   0.075   0.33   1.42   0.010   0.023   0.03   余量   0.31   0.157
  3   0.046   0.35   1.60   0.011   0.018   0.04   余量   0.31   0.138
  4   0.075   0.25   1.46   0.008   0.015   0.03   余量   0.32   0.156
  5   0.068   0.35   1.60   0.012   0.02   0.03   余量   0.33   0.160
  6   0.063   0.32   1.55   0.015   0.022   0.02   余量   0.32   0.151
对实施例1~6所得钢板进行力学性能测试,测试结果见表2。
表2实施例1~6所得钢板的力学性能
实施例   屈服强度MPa   抗拉强度MPa   延伸率%   -40℃纵向冲击功J/%
  1   495   606   27.0   355
  2   483   576   24.5   343
  3   470   566   26.0   321
  4   467   566   25.5   319
  5   445   545   26.0   337
  6   430   539   26.0   333
从表1和表2可以看出,本发明钢的碳当量Ceq≤0.35%、低裂纹敏感系数Pcm≤0.17%、屈服强度均大于390MPa,抗拉强度大于510MPa,夏氏冲击功Akv(-40℃)≥200J,板厚可达55mm,具有良好的低温韧性和焊接性。

Claims (7)

1.一种钢,其特征在于,以重量百分比计包含以下成分:C:0.045~0.075%、Si:0.20~0.40%、Mn:1.20~1.60%、Nb:0.015~0.025%、Al:0.02~0.06%、Ti:0.006~0.020%、N:0.020~0.060%、P≤0.015%,S≤0.003%,余量为Fe和不可避免的杂质。
2.权利要求1所述钢制成的钢板,其特征在于,以重量百分比计包含以下成分:C:0.045~0.075%、Si:0.20~0.40%、Mn:1.20~1.60%、Nb:0.015~0.025%、Al:0.02~0.06%、Ti:0.006~0.020%、N:0.020~0.060%、P≤0.015%,S≤0.003%,余量为Fe和不可避免的杂质。
3.权利要求2所述钢板的制造方法,包括冶炼、连铸、加热、轧制和冷却工序,其特征在于,在所述轧制工序中,包括第一阶段高温轧制和第二阶段低温轧制,所述第二阶段低温轧制中,道次变形率为10~30%,终轧温度为780~840℃;在所述冷却工序中,冷却速度为12~25℃/S,冷却至480~580℃,然后空冷。
4.如权利要求3所述的制造方法,其特征在于,在所述连铸工序中,浇铸后的连铸坯的厚度不小于成品钢板厚度的4.5倍。
5.如权利要求3所述的制造方法,其特征在于,在所述加热工序中,加热温度为1070~1150℃。
6.如权利要求3所述的制造方法,其特征在于,所述第一阶段高温轧制中,开轧温度为1000~1120℃,当轧件厚度到达成品钢板厚度的2~3倍时,在辊道上待温至800~860℃。
7.如权利要求3所述的制造方法,其特征在于,所述空冷采用堆垛冷却或冷床冷却。
CN2008102014982A 2008-10-21 2008-10-21 高韧性且适应大线能量焊接的钢、钢板及其制造方法 Active CN101724779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008102014982A CN101724779B (zh) 2008-10-21 2008-10-21 高韧性且适应大线能量焊接的钢、钢板及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008102014982A CN101724779B (zh) 2008-10-21 2008-10-21 高韧性且适应大线能量焊接的钢、钢板及其制造方法

Publications (2)

Publication Number Publication Date
CN101724779A true CN101724779A (zh) 2010-06-09
CN101724779B CN101724779B (zh) 2012-03-28

Family

ID=42446320

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008102014982A Active CN101724779B (zh) 2008-10-21 2008-10-21 高韧性且适应大线能量焊接的钢、钢板及其制造方法

Country Status (1)

Country Link
CN (1) CN101724779B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296147A (zh) * 2010-06-22 2011-12-28 宝山钢铁股份有限公司 大线能量焊接用厚钢板中纳米析出物的控制方法
CN102719745A (zh) * 2012-06-25 2012-10-10 宝山钢铁股份有限公司 优良抗hic、ssc的高强低温用钢及其制造方法
CN102978362A (zh) * 2012-11-27 2013-03-20 南京钢铁股份有限公司 一种超低碳纤维钢的控热控冷工艺
CN107164696A (zh) * 2017-04-19 2017-09-15 唐山钢铁集团有限责任公司 一种可大线能量焊接高强船板eh40及其生产方法
CN108517463A (zh) * 2018-04-11 2018-09-11 东北大学 一种高延展性的fh500级船板钢及其制备方法
CN110004358A (zh) * 2019-03-29 2019-07-12 山东钢铁集团日照有限公司 一种低Pcm值大厚度易焊接海工钢板及其生产方法
WO2023284128A1 (zh) * 2021-07-12 2023-01-19 南京钢铁股份有限公司 低成本抗大线能量焊接420MPa级桥梁钢及生产方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1302144C (zh) * 2004-03-29 2007-02-28 宝山钢铁股份有限公司 可大线能量焊接的超高强度厚钢板及其制造方法
CN101165202A (zh) * 2006-10-19 2008-04-23 鞍钢股份有限公司 具有高焊接热影响区韧性的高强钢及其制造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296147A (zh) * 2010-06-22 2011-12-28 宝山钢铁股份有限公司 大线能量焊接用厚钢板中纳米析出物的控制方法
CN102719745A (zh) * 2012-06-25 2012-10-10 宝山钢铁股份有限公司 优良抗hic、ssc的高强低温用钢及其制造方法
CN102978362A (zh) * 2012-11-27 2013-03-20 南京钢铁股份有限公司 一种超低碳纤维钢的控热控冷工艺
CN102978362B (zh) * 2012-11-27 2014-07-30 南京钢铁股份有限公司 一种超低碳纤维钢的控热控冷工艺
CN107164696A (zh) * 2017-04-19 2017-09-15 唐山钢铁集团有限责任公司 一种可大线能量焊接高强船板eh40及其生产方法
CN108517463A (zh) * 2018-04-11 2018-09-11 东北大学 一种高延展性的fh500级船板钢及其制备方法
CN110004358A (zh) * 2019-03-29 2019-07-12 山东钢铁集团日照有限公司 一种低Pcm值大厚度易焊接海工钢板及其生产方法
CN110004358B (zh) * 2019-03-29 2021-05-25 山东钢铁集团日照有限公司 一种低Pcm值大厚度易焊接海工钢板及其生产方法
WO2023284128A1 (zh) * 2021-07-12 2023-01-19 南京钢铁股份有限公司 低成本抗大线能量焊接420MPa级桥梁钢及生产方法

Also Published As

Publication number Publication date
CN101724779B (zh) 2012-03-28

Similar Documents

Publication Publication Date Title
CN112553530B (zh) 一种低屈强比700MPa高强度桥梁钢及其制造方法
CN100494451C (zh) 屈服强度960MPa以上超高强度钢板及其制造方法
CN109023036B (zh) 一种超高强热轧复相钢板及生产方法
CN101649420B (zh) 一种高强度高韧性低屈强比钢、钢板及其制造方法
CN109957712B (zh) 一种低硬度x70m管线钢热轧板卷及其制造方法
CN112575257B (zh) 一种低成本含硼非调质700MPa高强度钢及其制造方法
CN101724779B (zh) 高韧性且适应大线能量焊接的钢、钢板及其制造方法
CN102206787B (zh) 一种单位轧制力低于18kN/mm的低轧制力输气管线钢材及其生产方法
CN102888565A (zh) 一种屈服强度690MPa级高强度钢板及其制造方法
CN100443615C (zh) 一种可焊接高强度非调质油井管及其制造方法
CN105441790A (zh) 一种低焊接裂纹敏感性钢板及其制造方法
CN103045964A (zh) 钢板及其制造方法
CN104805374A (zh) 一种厚度超过120mm的Q460E钢板及其制造方法
CN105463329A (zh) 一种980MPa级全铁素体基热轧超高强钢及其制造方法
CN106244926A (zh) 一种含钒汽车传动轴用钢及其生产方法
CN101497961B (zh) 一种低温韧性1.5Ni钢及其制造方法
CN104328350A (zh) 一种屈服强度960MPa级调质钢及其制造方法
CN109957716A (zh) 一种高强度高扩孔性单一铁素体析出钢板及其制备方法
CN101418418B (zh) 屈服强度690MPa级低裂纹敏感性钢板及其制造方法
CN103014501A (zh) 一种稀土处理的高强度耐冲击风电用钢板
CN103014520A (zh) F+p+b型低屈强比高强度中厚钢板及其生产方法
CN101812642A (zh) 一种超细晶贝氏体高强钢及其制造方法
CN101353759A (zh) 屈服强度550MPa级低裂纹敏感性钢板及其制造方法
CN102191430A (zh) 屈服强度550MPa易焊接高强韧钢板及其制造方法
CN101591756A (zh) 屈服强度620MPa级低裂纹敏感性钢板及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant