WO2020110445A1 - 音響整合層用樹脂組成物 - Google Patents
音響整合層用樹脂組成物 Download PDFInfo
- Publication number
- WO2020110445A1 WO2020110445A1 PCT/JP2019/038207 JP2019038207W WO2020110445A1 WO 2020110445 A1 WO2020110445 A1 WO 2020110445A1 JP 2019038207 W JP2019038207 W JP 2019038207W WO 2020110445 A1 WO2020110445 A1 WO 2020110445A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- resin
- viscosity
- matching layer
- acoustic matching
- Prior art date
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 109
- 239000000945 filler Substances 0.000 claims abstract description 54
- 229920005989 resin Polymers 0.000 claims abstract description 47
- 239000011347 resin Substances 0.000 claims abstract description 47
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 25
- 239000003822 epoxy resin Substances 0.000 claims description 15
- 229920000647 polyepoxide Polymers 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 11
- 229920001187 thermosetting polymer Polymers 0.000 claims description 11
- 239000013008 thixotropic agent Substances 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- 238000005187 foaming Methods 0.000 abstract 1
- 230000009974 thixotropic effect Effects 0.000 abstract 1
- 238000004898 kneading Methods 0.000 description 17
- 238000000465 moulding Methods 0.000 description 17
- 239000000203 mixture Substances 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 11
- 239000011521 glass Substances 0.000 description 11
- 238000013329 compounding Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 238000007667 floating Methods 0.000 description 7
- -1 styryl silane compounds Chemical class 0.000 description 6
- 239000006087 Silane Coupling Agent Substances 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 239000004615 ingredient Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 229910021485 fumed silica Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910002012 Aerosil® Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910002011 hydrophilic fumed silica Inorganic materials 0.000 description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical class SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- TXDNPSYEJHXKMK-UHFFFAOYSA-N sulfanylsilane Chemical class S[SiH3] TXDNPSYEJHXKMK-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- UKRDPEFKFJNXQM-UHFFFAOYSA-N vinylsilane Chemical class [SiH3]C=C UKRDPEFKFJNXQM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/24—Di-epoxy compounds carbocyclic
- C08G59/245—Di-epoxy compounds carbocyclic aromatic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/182—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
- C08G59/184—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/68—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
- C08G59/686—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
- C08K7/28—Glass
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/12—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/02—Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B06—GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
- B06B—METHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
- B06B1/00—Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/005—Additives being defined by their particle size in general
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/006—Additives being defined by their surface area
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R17/00—Piezoelectric transducers; Electrostrictive transducers
Definitions
- the present invention relates to a resin composition for an acoustic matching layer, which is a molding material for an acoustic matching layer in an ultrasonic sensor.
- the ultrasonic sensor receives ultrasonic waves propagating through the subject with a piezoelectric vibrator and measures changes in the propagation time and frequency of the ultrasonic waves to detect foreign matter and gas, and to detect distance, flow rate, and concentration. Etc. can be measured. Therefore, it is used in various industrial fields.
- the ultrasonic sensor includes an acoustic matching layer having an acoustic impedance intermediate between the piezoelectric vibrator and the subject to improve the transmission efficiency of the ultrasonic waves and the detection sensitivity. Is configured.
- the acoustic matching layer is required to have a low density in order to improve the efficiency of transmitting and receiving ultrasonic waves.
- the acoustic matching layer is molded using a material in which a hollow filler is mixed with a resin.
- Patent Document 1 describes a method of manufacturing an acoustic matching layer by injecting a resin in which a hollow glass balloon is mixed into a mold and thermally curing the resin while applying pressure.
- the hollow glass balloon (hollow filler) in the acoustic matching layer needs to be uniformly dispersed in the acoustic matching layer from the viewpoint of improving the acoustic characteristics of ultrasonic waves.
- the hollow filler has a smaller specific gravity than the resin, and the hollow filler floats in the resin composition before curing, and the composition of the resin composition tends to become nonuniform over time.
- the acoustic matching layer in which hollow glass balloons are evenly distributed and which has less bubble biting is obtained by thermosetting while pressurizing and molding.
- air bubbles that are compressed and confined by pressure molding may remain, and such compressed air bubbles adversely affect the acoustic characteristics.
- the pressure molding may break the hollow glass balloon.
- the acoustic matching layer composed of a resin containing a hollow filler, as a material thereof, a resin composition excellent in uniform dispersibility of the hollow filler, and having little bubble biting and excellent moldability and handleability is required. ing.
- the present invention has been made in order to solve the above problems, and maintains the uniform dispersibility of the hollow filler, and can suppress bubble biting, excellent moldability and handleability,
- An object is to provide a resin composition for an acoustic matching layer.
- the present invention provides a resin composition for an acoustic matching layer containing a resin and a hollow filler, by imparting thixotropy (thixotropy), at a predetermined viscosity and a predetermined thixotropy index (hereinafter, also referred to as TI value), This is based on the finding that the floating of the hollow filler is suppressed, the biting of bubbles is suppressed, and the moldability is improved.
- thixotropy thixotropy
- the present invention provides the following [1] to [6].
- [1] A rotor No. 1 containing a resin, a hollow filler and a thixotropy-imparting agent and using a B-type viscometer at 25° C. 4, the viscosity measured at a rotation speed of 0.3 rpm is 1130 to 4000 Pa ⁇ s, and using a B type viscometer, the rotor No. 4, the viscosity (V1) measured at a rotation speed of 0.3 rpm, and the rotor No. 4.
- a resin composition for an acoustic matching layer having a thixotropy index of 3.0 to 5.0, which is represented by a ratio (V1/V2) to a viscosity (V2) measured at a rotation speed of 1.5 rpm.
- the resin is a thermosetting resin, and the thermosetting resin is a rotor No. 5 at 25° C. using a B-type viscometer. 4.
- the resin composition for an acoustic matching layer according to the above [1] which has a viscosity of 2 to 50 Pa ⁇ s measured at a rotation speed of 0.3 rpm.
- the present invention it is possible to obtain a resin composition for an acoustic matching layer, which can maintain the uniform dispersibility of the hollow filler, can suppress the bubble biting, and has excellent moldability and handleability.
- the resin composition for the acoustic matching layer it becomes possible to easily form an acoustic matching layer having excellent composition uniformity and little biting of bubbles.
- the resin composition for an acoustic matching layer (hereinafter, also simply referred to as a resin composition) of the present invention contains a resin, a hollow filler and a thixotropy imparting agent. Then, using a B-type viscometer, the rotor No. 4, the viscosity (hereinafter, also referred to as “V0”) measured at a rotation speed of 0.3 rpm is 1130 to 4000 Pa ⁇ s, and the rotor No. 4 was used at 50° C. using a B type viscometer. 4, the viscosity (V1) measured at a rotation speed of 0.3 rpm, and the rotor No. 4.
- V0 the viscosity measured at a rotation speed of 0.3 rpm
- the TI value represented by the ratio (V1/V2) to the viscosity (V2) measured at a rotation speed of 1.5 rpm is 3.0 to 5.0. According to the resin composition having such a viscosity and thixotropy, the uniform dispersibility of the hollow filler is maintained, bubble entrapment is suppressed, and the moldability and handleability are good.
- viscosity The viscosity of each of the resin composition and the resin in the present invention was measured by using a B-type viscometer. It is the value of viscosity [unit: Pa ⁇ s] measured in 4.
- the viscosity (V0) of the resin composition at 25° C. at a rotation speed of 0.3 rpm is 1130 to 4000 Pa ⁇ s, preferably 1140 to 3500 Pa ⁇ s, and more preferably 1150 to 3000 Pa ⁇ s.
- the viscosity (V0) is the viscosity at a low shear rate at 25° C. after kneading the compounding components of the resin composition, and should be regarded as the viscosity of the resin composition in a stationary storage state at room temperature before molding.
- the TI value of the resin composition is the ratio (V1/V1) of the viscosity (V1) at a rotation speed of 0.3 rpm at 50° C. to the viscosity (V2) at a rotation speed of 1.5 rpm at 50° C. It is represented by V2).
- the viscosity (V1) is the viscosity at a low shear rate when the resin composition is heated from room temperature to 50° C., and can be regarded as the viscosity of the heated resin composition in a stationary state immediately before molding. it can.
- the viscosity (V2) is a viscosity at a shear rate higher than that at the time of measuring the viscosity (V1) when the resin composition is heated from room temperature to 50° C., and at the time of molding the heated resin composition. It can be regarded as the viscosity in the flow state when casting.
- the TI value is a ratio of such a viscosity (V1) and a viscosity (V2), and represents thixotropy at 50° C., and is an index relating to moldability of the resin composition and handleability at the time of molding. Become.
- the TI value of the resin composition is 3.0 to 5.0, preferably 3.1 to 4.9, and more preferably 3.2 to 4.8. If the TI value is less than 3.0, the fluidity of the resin composition at the time of molding becomes high, and it becomes difficult to handle such as dripping, and the composition of the resin composition tends to be non-uniform. .. On the other hand, if the TI value is more than 5.0, bubble entrapment is likely to occur at the time of casting during molding, resulting in defective molding. It is considered that this is because the fluidity of the resin composition is likely to locally vary.
- the viscosity (V1) is lower than the viscosity (V0) at 25° C., and is preferably 300 to 1500 Pa ⁇ s, from the viewpoint of maintaining uniform dispersibility when molding the resin composition and easiness of handling. It is more preferably 350 to 1400 Pa ⁇ s, and even more preferably 400 to 1300 Pa ⁇ s.
- the viscosity (V2) is lower than the viscosity (V1), preferably 90 to 270 Pa ⁇ s, from the viewpoints of suppressing bubble entrapment during molding of the resin composition, filling into a mold, and the like. It is more preferably 100 to 260 Pa ⁇ s, and even more preferably 110 to 250 Pa ⁇ s.
- thermosetting resin As the resin that is a compounding component of the resin composition, a resin that allows the resin composition to have the above-mentioned viscosity and thixotropy is used, and from the viewpoint of heat resistance and the like, thermosetting It is preferably a resin.
- the thermosetting resin include epoxy resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, polyurethane resin, silicone resin, and acrylic resin. Of these, the thermosetting resins may be used alone or in combination of two or more. Of these, epoxy resins are preferably used because they have excellent heat resistance, chemical resistance, electrical insulation, adhesiveness, and the like.
- the rotor No. 4 For the thermosetting resin, using a B-type viscometer, the rotor No. 4.
- the viscosity measured at a rotation speed of 0.3 rpm is preferably 2 to 50 Pa ⁇ s, more preferably 5 to 40 Pa ⁇ s, further preferably 10 to 30 Pa ⁇ s.
- the resin having such a viscosity since the viscosity at room temperature is relatively low, it is excellent in miscibility with the hollow filler and the thixotropy-imparting agent, and also when the components of the resin composition are kneaded, bubbles are chewed. Defoaming becomes easy even when the above occurs.
- the high-viscosity resin can suppress the floating of the hollow filler in the resin composition and maintain the homogeneity of the composition, but the shear load applied to the hollow filler at the time of kneading the compounding ingredients of the resin composition. Is larger, the hollow filler is likely to be cracked or crushed.
- the viscosity is 2 Pa ⁇ s or more, the floating of the hollow filler is easily suppressed.
- the viscosity is 50 Pa ⁇ s or less, the load when kneading the compounding components of the resin composition as described above does not become too large, and the moldability and handleability of the resin composition are likely to be good. ..
- the resin is an essential compounding component of the resin composition, from the viewpoint of sufficient mechanical strength of a molded article obtained from the resin composition and uniformity of the composition of the resin composition.
- the total amount of the hollow filler and the thixotropic agent is 100 parts by mass, preferably 40 to 85 parts by mass, more preferably 45 to 80 parts by mass, and further preferably 50 to 75 parts by mass.
- the hollow filler is added to the resin composition from the viewpoint of uniformly reducing the density of the resin composition.
- the hollow filler may be an inorganic hollow filler or an organic hollow filler as long as it can maintain the shape of hollow particles in the resin composition. Examples thereof include glass balloons, fly ash balloons, silica balloons, alumina balloons, zirconia balloons, resin balloons and the like. Among these, the hollow filler may be used alone or in combination of two or more. Of these, glass balloons are preferably used from the viewpoint of heat resistance and durability. It is also preferable to use a resin balloon from the viewpoint of further reducing the density of the resin composition and impact resistance.
- the hollow filler preferably has a particle size in the range of 1 to 100 ⁇ m, more preferably 2 to 95 ⁇ m, and further preferably 5 to 90 ⁇ m.
- the particle size is 1 ⁇ m or more, the hollow filler has an appropriate surface area and good miscibility with the resin, and a molded product obtained by using the resin composition has sufficient mechanical strength. Can be included.
- the particle diameter is 100 ⁇ m or less, cracking or crushing of the hollow filler due to stress during kneading of the blended components of the resin composition is less likely to occur, which is preferable.
- the particle size can be measured by a laser diffraction method.
- the hollow filler in view of holding such hollow particle shape of the low density and the hollow filler of the resin composition, it apparent density is less than 0.02 g / cm 3 or more 1.00 g / cm 3 It is more preferably 0.05 to 0.80 g/cm 3 , and even more preferably 0.10 to 0.50 g/cm 3 .
- the apparent density in this specification refers to the particle density including voids (hollow parts) in the particles, and can be measured by the constant volume expansion method.
- the blending amount of the hollow filler in the resin composition is appropriately set according to the type and desired density of the resin, but from the viewpoint of good moldability and handleability of the resin composition, the resin It is preferably 10 to 50 parts by mass, more preferably 15 to 45 parts by mass, and still more preferably 20 parts by mass based on 100 parts by mass in total of the compounding components other than the hollow filler and the thixotropic agent in the composition. To 40 parts by mass.
- the thixotropy imparting agent the resin composition is added for the purpose of adjusting the thixotropy as described above, to suppress the floating of the hollow filler in the resin composition to maintain uniform dispersibility,
- the resin composition has an effect of suppressing bubble biting. Even when a low-viscosity resin is used, the thixotropy-imparting agent exhibits appropriate viscosity during molding, and the compositional uniformity of the resin composition is maintained. Further, the compounding ingredients of the resin composition can be kneaded in a relatively low viscosity state, the shear load applied to the hollow filler during kneading does not increase, and the resin composition has good handleability.
- the thixotropy imparting agent is preferably a powder having a BET specific surface area of 50 to 400 m 2 /g, and the BET specific surface area is more preferably 70 to 380 m 2 /g, further preferably 100 to 350 m 2 /g. Is.
- the BET specific surface area is 50 m 2 /g or more, thixotropy suitable for uniformly dispersing the thixotropy-imparting agent by suppressing the floating of the hollow filler is obtained.
- the thixotropy imparting agent is preferable in that good miscibility with the resin can be obtained and the composition uniformity of the resin composition can be maintained. ..
- the BET specific surface area can be measured according to JIS Z 8830:2013 by the static capacity method (three-point method) using nitrogen gas as an adsorbate.
- the powder preferably has an apparent density higher than that of the hollow filler.
- the apparent density of the powder of the thixotropic agent is preferably 1.00 ⁇ 4.30g / cm 3, more preferably 1.10 ⁇ 3.00g / cm 3, more preferably from 1.20 to 2 It is 0.50 g/cm 3 .
- thixotropic agent examples include powders of fumed silica, fumed titanium oxide, carbon, cellulose nanofibers and the like.
- the thixotropy imparting agent may be used alone or in combination of two or more.
- selected and used according to the type of the resin for example, when the resin is an epoxy resin, hydrophilic silica, particularly hydrophilic fumed silica is preferably used.
- the content of the thixotropy imparting agent in the resin composition is appropriately set depending on the type and viscosity of the resin, but from the viewpoint of imparting good thixotropy, usually the hollow in the resin composition.
- the amount is preferably 0.1 to 5.0 parts by mass, more preferably 0.2 to 4.0 parts by mass, and still more preferably 100 parts by mass of the total amount of the components other than the filler and the thixotropic agent. Is 0.3 to 3.0 parts by mass.
- the resin composition may contain, as an optional component, a component other than the resin, the hollow filler, and the thixotropy-imparting agent as long as the effects of the present invention are not impaired.
- a component other than the resin, the hollow filler, and the thixotropy-imparting agent as long as the effects of the present invention are not impaired.
- the total content of the resin, the hollow filler and the thixotropy imparting agent is preferably 50 to 99% by mass, more preferably 60 to 98% by mass. %, and more preferably 70 to 97% by mass.
- Examples of the other component include a curing agent, a silane coupling agent, and a coloring agent. These may be used alone or in combination of two or more.
- Examples of the curing agent include aliphatic polyamines, aromatic amines, polyamide resins, imidazole compounds, and mercaptan compounds when the resin is an epoxy resin.
- Examples of the silane coupling agent include vinyl silane compounds, epoxy silane compounds, styryl silane compounds, methacrylic silane compounds, acrylic silane compounds, amino silane compounds, and mercapto silane compounds.
- an epoxy silane compound such as 3-glycidoxypropyltriethoxysilane or an amino silane compound is preferably used.
- the resin composition of the present invention is for an acoustic matching layer of an ultrasonic sensor, and in particular, for measuring the flow velocity of gas, the flow rate, the concentration, the distance of space, etc., of the ultrasonic sensor that emits ultrasonic waves in the air. It can be suitably used for forming an acoustic matching layer.
- the method for producing the resin composition for an acoustic matching layer of the present invention is not particularly limited, and it can be obtained by blending and kneading the above-mentioned blending components of the resin composition.
- the order of adding the above-mentioned components is not particularly limited, and the respective components may be simultaneously mixed and kneaded. It is also preferable that the hollow filler, which may be cracked or crushed during kneading, be added later in consideration of the load applied by kneading.
- the kneading of the blended components can be performed using a known kneader, stirrer, mixer or the like such as kneading with a roll mill or a kneader, stirring with a rotary blade, stirring with a planetary stirring mixer, or the like. Further, from the viewpoint of suppressing bubble biting, it is preferable to perform degassing under reduced pressure during kneading.
- the resin composition has good defoaming by vacuum defoaming.
- the resin composition for the acoustic matching layer for the gas sensor as described above is manufactured, for example, it is preferable to use an epoxy resin as the resin, and it is preferable to manufacture it by the following method. First, an epoxy resin, a curing agent, and hydrophilic fumed silica as a silane coupling agent are mixed and kneaded. Next, hydrophilic silica as the thixotropy-imparting agent and a glass balloon are added thereto and kneaded, and further, the kneading is continued under reduced pressure to defoam to obtain a resin composition.
- a resin composition for an acoustic matching layer which is capable of suppressing bubble biting, keeping the glass balloon floating, and maintaining a uniform distribution of the composition.
- the depressurization at the time of defoaming may be a degree of vacuum that can be achieved by a general depressurizing and defoaming machine, and a normal allowable degree of vacuum is 1 Torr (about 133 Pa).
- the method for producing an acoustic matching layer molded article produced using the resin composition is not particularly limited, but for example, the resin composition has a proper thixotropy, that is, the TI value is It is preferable to manufacture the composition by casting it in a predetermined mold at about 50° C. and then heating and curing. The heating temperature is appropriately set according to the curing temperature of the resin used.
- the hollow filler is likely to cause cracking or crushing, so that the desired shape and size of the acoustic matching layer molded product is obtained in advance. It is preferable to perform molding by casting in a mold manufactured according to the above.
- the ultrasonic sensor including the same has a density (25° C.) of 0.20 to 0. is preferably .80g / cm 3, more preferably 0.25 ⁇ 0.75g / cm 3, more preferably from 0.30 ⁇ 0.70g / cm 3.
- the acoustic characteristics of the acoustic matching layer molded product can be evaluated, for example, by the speed of sound, the transmitted voltage, or the like.
- the sound velocity (25° C.) of the molded product is preferably 2200 to 3100 m/s, more preferably 2300 to 3000 m/s, It is preferably 2400 to 2900 m/s.
- Epoxy resin (1) “jER (registered trademark) 828”, manufactured by Mitsubishi Chemical Corporation, bisphenol A type, viscosity (25° C., rotation speed 0.3 rpm) 12 Pa ⁇ s
- Epoxy resin (2) “EPICRON (registered trademark) EXA-835LV", manufactured by DIC Corporation, bisphenol F type, viscosity (25°C, rotation speed 0.3 rpm) 2.3 Pa ⁇ s
- Epoxy resin (3) a mixture of 80% by mass of the epoxy resin (1) and 20% by mass of the epoxy resin (2), viscosity (25° C., rotation speed 0.3 rpm) 8.9 Pa ⁇ s
- ⁇ Hollow filler> -Glass balloon Hollow glass beads, "Sphericel (registered trademark) 25P45”, manufactured by Potters Ballotini Co., Ltd., particle size 15 to 75 ⁇ m, apparent density 0.25
- -Curing agent epoxy adduct type imidazole compound, "Novacure (registered trademark) HX-3742", manufactured by Asahi Kasei Co., Ltd.
- -Silane coupling agent 3-glycidoxypropyltriethoxysilane, "KBM-403", Shin-Etsu Made by Chemical Industry Co., Ltd.
- Example 1 75 parts by mass of the epoxy resin (1), 22 parts by mass of the curing agent, and 3 parts by mass of the silane coupling agent were kneaded with a planetary stirring mixer for 5 minutes to obtain a kneaded product. After adding 0.5 parts by mass of hydrophilic silica (1) as a thixotropy-imparting agent to this kneaded product, 29 parts by mass of glass balloons as a hollow filler were further added and kneaded, and then 1 Torr of a vacuum pump was used. Kneading under reduced pressure was continued for 20 minutes for defoaming to obtain a resin composition.
- Examples 2 to 6 and Comparative Examples 1 to 3 Each resin composition was produced in the same manner as in Example 1 except that the compounding ingredients of the resin compositions shown in Examples 2 to 6 and Comparative Examples 1 to 3 in Table 1 below were used.
- the resin composition in the upper part and the central part (between the upper part and the lower part) in the plastic container with a spoon was scooped with a spoon and the lower density was obtained in the same manner as the upper density.
- Table 1 shows the upper density and the lower density. It can be said that the smaller the difference between the upper density and the lower density, the better the uniform dispersibility of the resin composition. In the dispersibility evaluation of Table 1, the case where the difference between the upper density and the lower density is 5% or less of the upper density is shown as “ ⁇ ”, and the case where it exceeds 5% is shown as “x”.
- the acoustic matching layer molded product manufactured in the bubble bite evaluation is transmitted using a pulsar receiver (“5073PR”, manufactured by Olympus Corporation) and a direct contact type probe (“V127-RM”, manufactured by Olympus Corporation). The voltage was measured.
- the transmission voltage is an index of the acoustic characteristics of the acoustic matching layer, and the larger the value is, the smaller the transmission attenuation is, which is preferable. In the evaluation in this example, if the transmission voltage is 10.0 V or more, it is determined that the acoustic characteristics are good.
- the resin composition of Comparative Example 2 has a large TI value, and when molded using this, bubble entrapment is observed, moldability is poor, and the acoustic characteristics of the obtained acoustic matching layer molded product are also poor. It was
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Signal Processing (AREA)
Abstract
中空フィラーの均一分散性を保持し、かつ、泡噛みを抑制することができ、成形性及び取り扱い性に優れた、音響整合層用樹脂組成物を提供する。樹脂、中空フィラー及びチクソ性付与剤を含み、B型粘度計を用いて、25℃で、ロータNo.4、回転数0.3rpmにて測定した粘度が1130~4000Pa・sであり、B型粘度計を用いて、50℃で、ロータNo.4、回転数0.3rpmにて測定した粘度(V1)と、ロータNo.4、回転数1.5rpmにて測定した粘度(V2)との比(V1/V2)で表されるチクソトロピーインデックスが3.0~5.0である、音響整合層用樹脂組成物。
Description
本発明は、超音波センサにおける音響整合層の成形材料である音響整合層用樹脂組成物に関する。
超音波センサは、被検体中を伝播する超音波を圧電振動子で受信して、前記超音波の伝搬時間や周波数の変化等を計測することにより、異物やガスの検知、距離や流量や濃度等の計測を行うことができる。このため、様々な産業分野で活用されている。
超音波センサは、前記圧電振動子と前記被検体との間に、両者の中間の音響インピーダンスを有する音響整合層を介在させて、前記超音波の透過効率を向上させ、検出感度を向上させるように構成されている。
超音波センサは、前記圧電振動子と前記被検体との間に、両者の中間の音響インピーダンスを有する音響整合層を介在させて、前記超音波の透過効率を向上させ、検出感度を向上させるように構成されている。
ガスセンサとして用いられる超音波センサにおいては、超音波の送受信の効率向上のため、前記音響整合層は、低密度であることが求められ、例えば、中空フィラーを樹脂に混入させた材料を用いて成形される。
例えば、特許文献1には、中空ガラスバルーンを混入させた樹脂を型に注入し、加圧しながら熱硬化させて成型することにより、音響整合層を製造する方法が記載されている。
例えば、特許文献1には、中空ガラスバルーンを混入させた樹脂を型に注入し、加圧しながら熱硬化させて成型することにより、音響整合層を製造する方法が記載されている。
前記音響整合層中の中空ガラスバルーン(中空フィラー)は、超音波の音響特性の向上の観点から、該音響整合層中に均一に分散している必要がある。
しかしながら、中空フィラーは、樹脂よりも比重が小さく、硬化前の樹脂組成物中で中空フィラーが浮揚して、該樹脂組成物は経時により組成が不均一になりやすい。
しかしながら、中空フィラーは、樹脂よりも比重が小さく、硬化前の樹脂組成物中で中空フィラーが浮揚して、該樹脂組成物は経時により組成が不均一になりやすい。
これに対しては、前記樹脂組成物を高粘度化させて、組成の不均一化を抑制することが考えられるが、流動性の低下を伴うことにより、該樹脂組成物の混練の負荷が大きくなり、樹脂組成物中に混入した空気が硬化後も残存する、いわゆる泡噛みが生じやすくなる。また、混練によって中空フィラーにかかる圧縮負荷やせん断負荷が大きくなることにより、該中空フィラーの割れや潰れも生じやすくなる。
また、上記特許文献1に記載されている製造方法によれば、加圧しながら熱硬化させて成型することによって、泡噛みが少ない、中空ガラスバルーンが均一に分布した音響整合層が得られるとされているが、加圧成型で圧縮されて閉じ込められた気泡が残存する場合があり、このような圧縮気泡は音響特性に悪影響を及ぼす。また、加圧成型により、中空ガラスバルーンが割れるおそれがある。
したがって、中空フィラーを含む樹脂により構成される音響整合層において、その材料として、中空フィラーの均一分散性に優れ、かつ、泡噛みが少なく、成形性及び取り扱い性に優れた樹脂組成物が求められている。
本発明は、上記のような課題を解決するためになされたものであり、中空フィラーの均一分散性を保持し、かつ、泡噛みを抑制することができ、成形性及び取り扱い性に優れた、音響整合層用樹脂組成物を提供することを目的とする。
本発明は、樹脂及び中空フィラーを含む音響整合層用樹脂組成物において、チクソ性(チクソトロピー性)を付与することにより、所定の粘度及び所定のチクソトロピーインデックス(以下、TI値とも言う。)において、中空フィラーの浮揚が抑制されるとともに、泡噛みが抑制され、成形性が良好となることを見出したことに基づくものである。
すなわち、本発明は、以下の[1]~[6]を提供する。
[1]樹脂、中空フィラー及びチクソ性付与剤を含み、B型粘度計を用いて、25℃で、ロータNo.4、回転数0.3rpmにて測定した粘度が1130~4000Pa・sであり、B型粘度計を用いて、50℃で、ロータNo.4、回転数0.3rpmにて測定した粘度(V1)と、ロータNo.4、回転数1.5rpmにて測定した粘度(V2)との比(V1/V2)で表されるチクソトロピーインデックスが3.0~5.0である、音響整合層用樹脂組成物。
[2]前記樹脂が熱硬化性樹脂であり、前記熱硬化性樹脂は、B型粘度計を用いて、25℃にて、ロータNo.4、回転数0.3rpmで測定した粘度が2~50Pa・sである、上記[1]に記載の音響整合層用樹脂組成物。
[3]前記熱硬化性樹脂がエポキシ樹脂である、上記[2]に記載の音響整合層用樹脂組成物。
[4]前記チクソ性付与剤が、BET比表面積が50~400m2/gの粉末である、上記[1]~[3]のいずれか1項に記載の音響整合層用樹脂組成物。
[5]前記チクソ性付与剤が親水性シリカ粉末である、上記[1]~[4]のいずれか1項に記載の音響整合層用樹脂組成物。
[6]前記中空フィラーは粒径1~100μmである、上記[1]~[5]のいずれか1項に記載の音響整合層用樹脂組成物。
[1]樹脂、中空フィラー及びチクソ性付与剤を含み、B型粘度計を用いて、25℃で、ロータNo.4、回転数0.3rpmにて測定した粘度が1130~4000Pa・sであり、B型粘度計を用いて、50℃で、ロータNo.4、回転数0.3rpmにて測定した粘度(V1)と、ロータNo.4、回転数1.5rpmにて測定した粘度(V2)との比(V1/V2)で表されるチクソトロピーインデックスが3.0~5.0である、音響整合層用樹脂組成物。
[2]前記樹脂が熱硬化性樹脂であり、前記熱硬化性樹脂は、B型粘度計を用いて、25℃にて、ロータNo.4、回転数0.3rpmで測定した粘度が2~50Pa・sである、上記[1]に記載の音響整合層用樹脂組成物。
[3]前記熱硬化性樹脂がエポキシ樹脂である、上記[2]に記載の音響整合層用樹脂組成物。
[4]前記チクソ性付与剤が、BET比表面積が50~400m2/gの粉末である、上記[1]~[3]のいずれか1項に記載の音響整合層用樹脂組成物。
[5]前記チクソ性付与剤が親水性シリカ粉末である、上記[1]~[4]のいずれか1項に記載の音響整合層用樹脂組成物。
[6]前記中空フィラーは粒径1~100μmである、上記[1]~[5]のいずれか1項に記載の音響整合層用樹脂組成物。
本発明によれば、中空フィラーの均一分散性を保持し、かつ、泡噛みを抑制することができ、成形性及び取り扱い性に優れた、音響整合層用樹脂組成物が得られる。前記音響整合層用樹脂組成物を用いることにより、組成の均一性に優れ、泡噛みの少ない音響整合層を容易に成形することが可能となる。
本発明の音響整合層用樹脂組成物(以下、単に、樹脂組成物とも言う。)は、樹脂、中空フィラー及びチクソ性付与剤を含むものである。そして、B型粘度計を用いて、25℃で、ロータNo.4、回転数0.3rpmにて測定した粘度(以下、「V0」とも言う。)が1130~4000Pa・sであり、B型粘度計を用いて、50℃で、ロータNo.4、回転数0.3rpmにて測定した粘度(V1)と、ロータNo.4、回転数1.5rpmにて測定した粘度(V2)との比(V1/V2)で表されるTI値が3.0~5.0であることを特徴とする。
このような粘度及びチクソ性を有している樹脂組成物によれば、中空フィラーの均一分散性が保持され、かつ、泡噛みが抑制され、成形性及び取り扱い性が良好である。
このような粘度及びチクソ性を有している樹脂組成物によれば、中空フィラーの均一分散性が保持され、かつ、泡噛みが抑制され、成形性及び取り扱い性が良好である。
[粘度]
本発明における樹脂組成物及び樹脂の粘度は、いずれも、B型粘度計を用いて、ロータNo.4にて測定した粘度の値[単位:Pa・s]である。
本発明における樹脂組成物及び樹脂の粘度は、いずれも、B型粘度計を用いて、ロータNo.4にて測定した粘度の値[単位:Pa・s]である。
(粘度(V0))
前記樹脂組成物は、25℃での回転数0.3rpmにおける粘度(V0)が、1130~4000Pa・sであり、好ましくは1140~3500Pa・s、より好ましくは1150~3000Pa・sである。
粘度(V0)は、該樹脂組成物の配合成分を混練した後の25℃における低せん断速度での粘度であり、該樹脂組成物の成形前の常温での静置保管状態における粘度とみなすことができる。
粘度(V0)が1130Pa・s未満の場合、混練して得られた該樹脂組成物中で前記中空フィラーの浮揚を抑制することが難しく、該樹脂組成物の組成が不均一になりやすい。一方、粘度(V0)が4000Pa・s超であると、該樹脂組成物の配合成分の混練時にかかるせん断負荷が大きくなり、前記中空フィラーに割れや潰れを生じやすくなる。
前記樹脂組成物は、25℃での回転数0.3rpmにおける粘度(V0)が、1130~4000Pa・sであり、好ましくは1140~3500Pa・s、より好ましくは1150~3000Pa・sである。
粘度(V0)は、該樹脂組成物の配合成分を混練した後の25℃における低せん断速度での粘度であり、該樹脂組成物の成形前の常温での静置保管状態における粘度とみなすことができる。
粘度(V0)が1130Pa・s未満の場合、混練して得られた該樹脂組成物中で前記中空フィラーの浮揚を抑制することが難しく、該樹脂組成物の組成が不均一になりやすい。一方、粘度(V0)が4000Pa・s超であると、該樹脂組成物の配合成分の混練時にかかるせん断負荷が大きくなり、前記中空フィラーに割れや潰れを生じやすくなる。
(TI値(V1/V2))
本発明においては、前記樹脂組成物のTI値は、50℃での回転数0.3rpmにおける粘度(V1)と、50℃での回転数1.5rpmにおける粘度(V2)との比(V1/V2)で表される。
粘度(V1)は、該樹脂組成物が常温から50℃に加熱された状態の低せん断速度での粘度であり、成形直前の加熱された該樹脂組成物の静置状態における粘度とみなすことができる。
粘度(V2)は、該樹脂組成物が常温から50℃に加熱された状態で、粘度(V1)の測定時よりも高いせん断速度での粘度であり、加熱された該樹脂組成物の成形時に注型する際の流動状態における粘度とみなすことができる。
前記TI値は、このような粘度(V1)及び粘度(V2)の比であり、50℃でのチクソ性を表すものであり、該樹脂組成物の成形性や成形時の取り扱い性に関する指標となる。
本発明においては、前記樹脂組成物のTI値は、50℃での回転数0.3rpmにおける粘度(V1)と、50℃での回転数1.5rpmにおける粘度(V2)との比(V1/V2)で表される。
粘度(V1)は、該樹脂組成物が常温から50℃に加熱された状態の低せん断速度での粘度であり、成形直前の加熱された該樹脂組成物の静置状態における粘度とみなすことができる。
粘度(V2)は、該樹脂組成物が常温から50℃に加熱された状態で、粘度(V1)の測定時よりも高いせん断速度での粘度であり、加熱された該樹脂組成物の成形時に注型する際の流動状態における粘度とみなすことができる。
前記TI値は、このような粘度(V1)及び粘度(V2)の比であり、50℃でのチクソ性を表すものであり、該樹脂組成物の成形性や成形時の取り扱い性に関する指標となる。
前記樹脂組成物のTI値は、3.0~5.0であり、好ましくは3.1~4.9、より好ましくは3.2~4.8である。
前記TI値が3.0未満であると、成形時の該樹脂組成物の流動性が高く、液垂れしたりする等、取り扱いにくくなり、また、該樹脂組成物の組成が不均一になりやすい。
一方、前記TI値が5.0超である場合、成形時の注型の際、泡噛みを生じやすく、成形不良となりやすい。これは、該樹脂組成物の流動性に局所的なばらつきが生じやすくなるためであると考えられる。
前記TI値が3.0未満であると、成形時の該樹脂組成物の流動性が高く、液垂れしたりする等、取り扱いにくくなり、また、該樹脂組成物の組成が不均一になりやすい。
一方、前記TI値が5.0超である場合、成形時の注型の際、泡噛みを生じやすく、成形不良となりやすい。これは、該樹脂組成物の流動性に局所的なばらつきが生じやすくなるためであると考えられる。
粘度(V1)は、該樹脂組成物を成形する際の均一分散性の保持及び取り扱い容易性の観点から、25℃における粘度(V0)よりも低く、300~1500Pa・sであることが好ましく、より好ましくは350~1400Pa・s、さらに好ましくは400~1300Pa・sである。
粘度(V2)は、該樹脂組成物を成形する際の泡噛みの抑制及び金型への充填性等の観点から、粘度(V1)よりも低く、90~270Pa・sであることが好ましく、より好ましくは100~260Pa・s、さらに好ましくは110~250Pa・sである。
[樹脂]
前記樹脂組成物の配合成分である樹脂としては、該樹脂組成物が上記のような粘度及びチクソ性を有するものとなるような樹脂が用いられ、また、耐熱性等の観点から、熱硬化性樹脂であることが好ましい。
前記熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、シリコン樹脂、アクリル樹脂等が挙げられる。前記熱硬化性樹脂は、これらのうち、1種単独で用いてもよく、2種以上を併用してもよい。これらのうち、耐熱性や耐薬品性、電気絶縁性、接着性等に優れていることから、エポキシ樹脂が好適に用いられる。
前記樹脂組成物の配合成分である樹脂としては、該樹脂組成物が上記のような粘度及びチクソ性を有するものとなるような樹脂が用いられ、また、耐熱性等の観点から、熱硬化性樹脂であることが好ましい。
前記熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、シリコン樹脂、アクリル樹脂等が挙げられる。前記熱硬化性樹脂は、これらのうち、1種単独で用いてもよく、2種以上を併用してもよい。これらのうち、耐熱性や耐薬品性、電気絶縁性、接着性等に優れていることから、エポキシ樹脂が好適に用いられる。
前記熱硬化性樹脂は、B型粘度計を用いて、25℃にて、ロータNo.4、回転数0.3rpmで測定される粘度が、2~50Pa・sであることが好ましく、より好ましくは5~40Pa・s、さらに好ましくは10~30Pa・sである。
このような粘度の樹脂によれば、常温での粘度が比較的低いため、前記中空フィラー及び前記チクソ性付与剤との混和性に優れ、また、該樹脂組成物の配合成分の混練時に泡噛みを生じた場合でも脱泡が容易となる。
高粘度の樹脂は、樹脂組成物中での中空フィラーの浮揚を抑制し、組成物の均一性を保持することができるものの、該樹脂組成物の配合成分の混練時に該中空フィラーにかかるせん断負荷が大きくなることによって、該中空フィラーが割れや潰れを生じやすくなる。また、成形時の注型の際に流動性が低すぎたり、泡噛みを十分に抑制できない場合もあることから、上記のような低粘度の樹脂を用いることが好ましい。
前記粘度が2Pa・s以上であれば、前記中空フィラーの浮揚が抑制されやすい。また、前記粘度が50Pa・s以下であることにより、上述したような樹脂組成物の配合成分の混練時の負荷が大きくなりすぎず、該樹脂組成物の成形性や取り扱い性が良好になりやすい。
このような粘度の樹脂によれば、常温での粘度が比較的低いため、前記中空フィラー及び前記チクソ性付与剤との混和性に優れ、また、該樹脂組成物の配合成分の混練時に泡噛みを生じた場合でも脱泡が容易となる。
高粘度の樹脂は、樹脂組成物中での中空フィラーの浮揚を抑制し、組成物の均一性を保持することができるものの、該樹脂組成物の配合成分の混練時に該中空フィラーにかかるせん断負荷が大きくなることによって、該中空フィラーが割れや潰れを生じやすくなる。また、成形時の注型の際に流動性が低すぎたり、泡噛みを十分に抑制できない場合もあることから、上記のような低粘度の樹脂を用いることが好ましい。
前記粘度が2Pa・s以上であれば、前記中空フィラーの浮揚が抑制されやすい。また、前記粘度が50Pa・s以下であることにより、上述したような樹脂組成物の配合成分の混練時の負荷が大きくなりすぎず、該樹脂組成物の成形性や取り扱い性が良好になりやすい。
前記樹脂は、該樹脂組成物から得られた成形品の十分な機械的強度及び該樹脂組成物の組成の均一性等の観点から、該樹脂組成物の必須配合成分である、該樹脂、前記中空フィラー及び前記チクソ性付与剤の合計量100質量部中、40~85質量部であることが好ましく、より好ましくは45~80質量部、さらに好ましくは50~75質量部である。
[中空フィラー]
前記中空フィラーは、前記樹脂組成物を均一に低密度化させる観点から、該樹脂組成物中に添加される。前記中空フィラーとしては、該樹脂組成物中において、中空の粒子形状を保持することができるものであれば、無機中空フィラーであっても、有機中空フィラーであってもよい。例えば、ガラスバルーン、フライアッシュバルーン、シリカバルーン、アルミナバルーン、ジルコニアバルーン、樹脂バルーン等が挙げられる。前記中空フィラーは、これらのうち、1種単独で用いてもよく、2種以上を併用してもよい。これらのうち、耐熱性や耐久性等の観点から、ガラスバルーンが好適に用いられる。また、該樹脂組成物のさらなる低密化や耐衝撃性等の観点から、樹脂バルーンを用いることも好ましい。
前記中空フィラーは、前記樹脂組成物を均一に低密度化させる観点から、該樹脂組成物中に添加される。前記中空フィラーとしては、該樹脂組成物中において、中空の粒子形状を保持することができるものであれば、無機中空フィラーであっても、有機中空フィラーであってもよい。例えば、ガラスバルーン、フライアッシュバルーン、シリカバルーン、アルミナバルーン、ジルコニアバルーン、樹脂バルーン等が挙げられる。前記中空フィラーは、これらのうち、1種単独で用いてもよく、2種以上を併用してもよい。これらのうち、耐熱性や耐久性等の観点から、ガラスバルーンが好適に用いられる。また、該樹脂組成物のさらなる低密化や耐衝撃性等の観点から、樹脂バルーンを用いることも好ましい。
前記中空フィラーは、粒径が1~100μmの範囲内にあることが好ましく、より好ましくは2~95μm、さらに好ましくは5~90μmである。
前記粒径が1μm以上であることにより、該中空フィラーは適度な表面積で、前記樹脂との良好な混和性が得られ、該樹脂組成物を用いて得られた成形品を十分な機械的強度を有するものとすることができる。また、前記粒径が100μm以下であることにより、該樹脂組成物の配合成分の混練時等における応力による該中空フィラーの割れや潰れが生じにくくなるため好ましい。
なお、前記粒径は、レーザー回折法により測定することができる。
前記粒径が1μm以上であることにより、該中空フィラーは適度な表面積で、前記樹脂との良好な混和性が得られ、該樹脂組成物を用いて得られた成形品を十分な機械的強度を有するものとすることができる。また、前記粒径が100μm以下であることにより、該樹脂組成物の配合成分の混練時等における応力による該中空フィラーの割れや潰れが生じにくくなるため好ましい。
なお、前記粒径は、レーザー回折法により測定することができる。
前記中空フィラーは、該樹脂組成物の低密度化及び該中空フィラーの中空の粒子形状の保持等の観点から、見掛け密度が0.02g/cm3以上1.00g/cm3未満であることが好ましく、より好ましくは0.05~0.80g/cm3で、さらに好ましくは0.10~0.50g/cm3である。
なお、本明細書における見掛け密度とは、粒子中の空隙(中空部)も含めた粒子密度を指し、定容積膨張法により測定することができる。
なお、本明細書における見掛け密度とは、粒子中の空隙(中空部)も含めた粒子密度を指し、定容積膨張法により測定することができる。
前記樹脂組成物中の前記中空フィラーの配合量は、前記樹脂の種類や所望の密度等に応じて適宜設定されるが、該樹脂組成物の良好な成形性や取り扱い性の観点から、前記樹脂組成物中の該中空フィラー及び前記チクソ性付与剤以外の配合成分の合計100質量部に対して、10~50質量部であることが好ましく、より好ましくは15~45質量部、さらに好ましくは20~40質量部である。
[チクソ性付与剤]
前記チクソ性付与剤は、該樹脂組成物が上記のようなチクソ性の調整のために添加され、該樹脂組成物中の前記中空フィラーの浮揚を抑制して均一分散性を保持し、また、該樹脂組成物の泡噛みを抑制する作用を奏する。低粘度の樹脂を用いた場合であっても、前記チクソ性付与剤によって、成形時に適度な粘性が発現し、該樹脂組成物の組成の均一性が保持される。また、該樹脂組成物の配合成分の混練は、比較的粘度の低い状態で行うことができ、混練時に前記中空フィラーにかかるせん断負荷が大きくなることがなく、該樹脂組成物の取り扱い性が良好となる。
前記チクソ性付与剤は、BET比表面積が50~400m2/gの粉末であることが好ましく、前記BET比表面積は、より好ましくは70~380m2/g、さらに好ましくは100~350m2/gである。
前記BET比表面積が50m2/g以上であれば、該チクソ性付与剤を、前記中空フィラーの浮揚を抑制して、均一に分散させるのに適したチクソ性が得られやすい。また、前記BET比表面積が400m2/g以下であれば、該チクソ性付与剤は、前記樹脂との良好な混和性が得られ、該樹脂組成物の組成の均一性を保持する上で好ましい。
なお、前記BET比表面積は、JIS Z 8830:2013に準じて、吸着質として窒素ガスを用いた静的容量法(3点法)により測定することができる。
前記チクソ性付与剤は、該樹脂組成物が上記のようなチクソ性の調整のために添加され、該樹脂組成物中の前記中空フィラーの浮揚を抑制して均一分散性を保持し、また、該樹脂組成物の泡噛みを抑制する作用を奏する。低粘度の樹脂を用いた場合であっても、前記チクソ性付与剤によって、成形時に適度な粘性が発現し、該樹脂組成物の組成の均一性が保持される。また、該樹脂組成物の配合成分の混練は、比較的粘度の低い状態で行うことができ、混練時に前記中空フィラーにかかるせん断負荷が大きくなることがなく、該樹脂組成物の取り扱い性が良好となる。
前記チクソ性付与剤は、BET比表面積が50~400m2/gの粉末であることが好ましく、前記BET比表面積は、より好ましくは70~380m2/g、さらに好ましくは100~350m2/gである。
前記BET比表面積が50m2/g以上であれば、該チクソ性付与剤を、前記中空フィラーの浮揚を抑制して、均一に分散させるのに適したチクソ性が得られやすい。また、前記BET比表面積が400m2/g以下であれば、該チクソ性付与剤は、前記樹脂との良好な混和性が得られ、該樹脂組成物の組成の均一性を保持する上で好ましい。
なお、前記BET比表面積は、JIS Z 8830:2013に準じて、吸着質として窒素ガスを用いた静的容量法(3点法)により測定することができる。
前記粉末は、前記中空フィラーを含む樹脂組成物にチクソ性を付与する観点から、該中空フィラーよりも見掛け密度が大きいことが好ましい。前記チクソ性付与剤の粉末の見掛け密度は、1.00~4.30g/cm3であることが好ましく、より好ましくは1.10~3.00g/cm3、さらに好ましくは1.20~2.50g/cm3である。
前記チクソ性付与剤としては、例えば、ヒュームドシリカ、ヒュームド酸化チタン、カーボン、セルロースナノファイバー等の粉末が挙げられる。前記チクソ性付与剤は、これらのうち、1種単独で用いてもよく、2種以上を併用してもよい。これらのうち、前記樹脂の種類に応じて選択して用いられるが、例えば、前記樹脂がエポキシ樹脂である場合、親水性シリカ、特に、親水性ヒュームドシリカが好適に用いられる。
前記樹脂組成物中の前記チクソ性付与剤の含有量は、前記樹脂の種類や粘度等によって適宜設定されるが、良好なチクソ性を付与する観点から、通常、前記樹脂組成物中の該中空フィラー及び前記チクソ性付与剤以外の配合成分の合計100質量部に対して、0.1~5.0質量部であることが好ましく、より好ましくは0.2~4.0質量部、さらに好ましくは0.3~3.0質量部である。
[その他の成分]
前記樹脂組成物は、本発明の効果を阻害しない範囲内において、前記樹脂、前記中空フィラー及び前記チクソ性付与剤以外の他の成分を任意成分として含んでいてもよい。
前記樹脂組成物中の前記他の成分以外、すなわち、前記樹脂、前記中空フィラー及び前記チクソ性付与剤の合計含有量は、50~99質量%であることが好ましく、より好ましくは60~98質量%、さらに好ましくは70~97質量%である。
前記樹脂組成物は、本発明の効果を阻害しない範囲内において、前記樹脂、前記中空フィラー及び前記チクソ性付与剤以外の他の成分を任意成分として含んでいてもよい。
前記樹脂組成物中の前記他の成分以外、すなわち、前記樹脂、前記中空フィラー及び前記チクソ性付与剤の合計含有量は、50~99質量%であることが好ましく、より好ましくは60~98質量%、さらに好ましくは70~97質量%である。
前記他の成分としては、例えば、硬化剤、シランカップリング剤、着色剤等が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
前記硬化剤としては、例えば、前記樹脂がエポキシ樹脂である場合、脂肪族ポリアミン、芳香族アミン、ポリアミド樹脂、イミダゾール系化合物、メルカプタン系化合物等が挙げられる。
前記シランカップリング剤としては、例えば、ビニル系シラン化合物、エポキシ系シラン化合物、スチリル系シラン化合物、メタクリル系シラン化合物、アクリル系シラン化合物、アミノ系シラン化合物、メルカプト系シラン化合物等が挙げられる。前記樹脂がエポキシ樹脂である場合は、3-グリシドキシプロピルトリエトキシシラン等のエポキシ系シラン化合物や、アミノ系シラン化合物が好適に用いられる。
前記硬化剤としては、例えば、前記樹脂がエポキシ樹脂である場合、脂肪族ポリアミン、芳香族アミン、ポリアミド樹脂、イミダゾール系化合物、メルカプタン系化合物等が挙げられる。
前記シランカップリング剤としては、例えば、ビニル系シラン化合物、エポキシ系シラン化合物、スチリル系シラン化合物、メタクリル系シラン化合物、アクリル系シラン化合物、アミノ系シラン化合物、メルカプト系シラン化合物等が挙げられる。前記樹脂がエポキシ樹脂である場合は、3-グリシドキシプロピルトリエトキシシラン等のエポキシ系シラン化合物や、アミノ系シラン化合物が好適に用いられる。
本発明の樹脂組成物は、超音波センサの音響整合層用であり、特に、ガスの流速、流量、濃度や空間の距離等を測定するために、空中に超音波を発信する超音波センサの音響整合層を成形するために好適に用いることができる。
[音響整合層用樹脂組成物の製造方法]
本発明の音響整合層用樹脂組成物は、その製造方法は特に限定されるものではなく、該樹脂組成物の上述した配合成分を配合して混練することにより得ることができる。
前記配合成分を配合する際の添加順序も、特に限定されるものではなく、各配合成分を同時に配合して混練してもよい。また、混練時に割れや潰れを生じるおそれがある前記中空フィラーは、混練によって受ける負荷を考慮して、後から添加するようにすることも好ましい。
前記配合成分の混練は、例えば、ロールミルやニーダー等による混練、回転翼による撹拌、遊星式撹拌混合機等による撹拌等、公知の混練機や撹拌機、混合機等を用いて行うことができる。
また、泡噛みの抑制の観点から、混練時には減圧脱泡を行うことが好ましい。前記樹脂組成物は、減圧脱泡による泡抜けが良好である。
本発明の音響整合層用樹脂組成物は、その製造方法は特に限定されるものではなく、該樹脂組成物の上述した配合成分を配合して混練することにより得ることができる。
前記配合成分を配合する際の添加順序も、特に限定されるものではなく、各配合成分を同時に配合して混練してもよい。また、混練時に割れや潰れを生じるおそれがある前記中空フィラーは、混練によって受ける負荷を考慮して、後から添加するようにすることも好ましい。
前記配合成分の混練は、例えば、ロールミルやニーダー等による混練、回転翼による撹拌、遊星式撹拌混合機等による撹拌等、公知の混練機や撹拌機、混合機等を用いて行うことができる。
また、泡噛みの抑制の観点から、混練時には減圧脱泡を行うことが好ましい。前記樹脂組成物は、減圧脱泡による泡抜けが良好である。
上述したようなガスセンサ用の音響整合層用樹脂組成物を製造する場合、例えば、前記樹脂としてエポキシ樹脂を用いることが好ましく、以下のような方法で製造することが好ましい。
まず、エポキシ樹脂、硬化剤、及びシランカップリング剤として親水性ヒュームドシリカを配合して混練する。次いで、これに、前記チクソ性付与剤として親水性シリカ、及びガラスバルーンを添加して混練し、さらに、減圧下で混練を続けて、脱泡し、樹脂組成物を得る。
このような製造方法によれば、泡噛みが抑制され、ガラスバルーンが浮揚することなく、組成の均一分布性を保持し得る音響整合層用樹脂組成物を好適に得ることができる。
なお、前記脱泡の際の減圧とは、一般的な減圧脱泡機で到達可能な真空度でよく、通常の許容真空度は1Torr(約133Pa)である。
まず、エポキシ樹脂、硬化剤、及びシランカップリング剤として親水性ヒュームドシリカを配合して混練する。次いで、これに、前記チクソ性付与剤として親水性シリカ、及びガラスバルーンを添加して混練し、さらに、減圧下で混練を続けて、脱泡し、樹脂組成物を得る。
このような製造方法によれば、泡噛みが抑制され、ガラスバルーンが浮揚することなく、組成の均一分布性を保持し得る音響整合層用樹脂組成物を好適に得ることができる。
なお、前記脱泡の際の減圧とは、一般的な減圧脱泡機で到達可能な真空度でよく、通常の許容真空度は1Torr(約133Pa)である。
[音響整合層成形品]
前記樹脂組成物を用いて製造される音響整合層成形品の製造方法は、特に限定されるものではないが、例えば、該樹脂組成物が適度なチクソ性を有する状態、すなわち、前記TI値を有する50℃前後で、所定の金型に注型した後、加熱して、硬化させることにより製造することが好ましい。加熱温度は、使用する樹脂の硬化温度に応じて、適宜設定される。
前記音響整合層成形品は、前記樹脂組成物の硬化体から切り出して成形加工する場合は、前記中空フィラーが割れや潰れを生じやすくなることから、予め所望の音響整合層成形品の形状及びサイズに合わせて作製した金型に注型することにより成形することが好ましい。
前記樹脂組成物を用いて製造される音響整合層成形品の製造方法は、特に限定されるものではないが、例えば、該樹脂組成物が適度なチクソ性を有する状態、すなわち、前記TI値を有する50℃前後で、所定の金型に注型した後、加熱して、硬化させることにより製造することが好ましい。加熱温度は、使用する樹脂の硬化温度に応じて、適宜設定される。
前記音響整合層成形品は、前記樹脂組成物の硬化体から切り出して成形加工する場合は、前記中空フィラーが割れや潰れを生じやすくなることから、予め所望の音響整合層成形品の形状及びサイズに合わせて作製した金型に注型することにより成形することが好ましい。
なお、前記音響整合層成形品は、例えば、これを備える超音波センサが水素ガスやヘリウムガス等のいわゆる軽ガスを検知するためのガスセンサである場合、密度(25℃)が0.20~0.80g/cm3であることが好ましく、より好ましくは0.25~0.75g/cm3、さらに好ましくは0.30~0.70g/cm3である。
前記音響整合層成形品の音響特性は、例えば、音速、透過電圧等により評価することができる。
前記音響整合層成形品が、上記のようなガスセンサ用である場合、該成形品の音速(25℃)は、2200~3100m/sであることが好ましく、より好ましくは2300~3000m/s、さらに好ましくは2400~2900m/sである。また、前記成形品の透過電圧は、高いほど、透過減衰が小さいため好ましく、好ましくは10.0V以上、より好ましくは12.0V以上、さらに好ましくは15.0V以上である。
前記音響整合層成形品が、上記のようなガスセンサ用である場合、該成形品の音速(25℃)は、2200~3100m/sであることが好ましく、より好ましくは2300~3000m/s、さらに好ましくは2400~2900m/sである。また、前記成形品の透過電圧は、高いほど、透過減衰が小さいため好ましく、好ましくは10.0V以上、より好ましくは12.0V以上、さらに好ましくは15.0V以上である。
以下、本発明を実施例により詳細に説明するが、本発明はこれにより限定されるものではない。
[樹脂組成物の製造]
下記の実施例及び比較例で製造した各樹脂組成物の配合成分の詳細は、以下のとおりである。
<樹脂>
・エポキシ樹脂(1):「jER(登録商標)828」、三菱ケミカル株式会社製、ビスフェノールA型、粘度(25℃、回転数0.3rpm)12Pa・s
・エポキシ樹脂(2):「EPICRON(登録商標)EXA-835LV」、DIC株式会社製、ビスフェノールF型、粘度(25℃、回転数0.3rpm)2.3Pa・s
・エポキシ樹脂(3):エポキシ樹脂(1)80質量%と、エポキシ樹脂(2)20質量%との混合物、粘度(25℃、回転数0.3rpm)8.9Pa・s
<中空フィラー>
・ガラスバルーン:中空ガラスビーズ、「スフェリセル(登録商標)25P45」、ポッターズ・バロティーニ株式会社製、粒径15~75μm、見掛け密度0.25g/cm3
<チクソ性付与剤>
・親水性シリカ(1):ヒュームドシリカ、「アエロジル(登録商標)200」、BET比表面積 約200m2/g、見掛け密度 2.10g/cm3
・親水性シリカ(2):ヒュームドシリカ、「アエロジル(登録商標)300」、BET比表面積 約300m2/g、見掛け密度 2.10g/cm3
<その他の配合成分>
・硬化剤:エポキシアダクトタイプのイミダゾール系化合物、「ノバキュア(登録商標)HX-3742」、旭化成株式会社製
・シランカップリング剤:3-グリシドキシプロピルトリエトキシシラン、「KBM-403」、信越化学工業株式会社製
下記の実施例及び比較例で製造した各樹脂組成物の配合成分の詳細は、以下のとおりである。
<樹脂>
・エポキシ樹脂(1):「jER(登録商標)828」、三菱ケミカル株式会社製、ビスフェノールA型、粘度(25℃、回転数0.3rpm)12Pa・s
・エポキシ樹脂(2):「EPICRON(登録商標)EXA-835LV」、DIC株式会社製、ビスフェノールF型、粘度(25℃、回転数0.3rpm)2.3Pa・s
・エポキシ樹脂(3):エポキシ樹脂(1)80質量%と、エポキシ樹脂(2)20質量%との混合物、粘度(25℃、回転数0.3rpm)8.9Pa・s
<中空フィラー>
・ガラスバルーン:中空ガラスビーズ、「スフェリセル(登録商標)25P45」、ポッターズ・バロティーニ株式会社製、粒径15~75μm、見掛け密度0.25g/cm3
<チクソ性付与剤>
・親水性シリカ(1):ヒュームドシリカ、「アエロジル(登録商標)200」、BET比表面積 約200m2/g、見掛け密度 2.10g/cm3
・親水性シリカ(2):ヒュームドシリカ、「アエロジル(登録商標)300」、BET比表面積 約300m2/g、見掛け密度 2.10g/cm3
<その他の配合成分>
・硬化剤:エポキシアダクトタイプのイミダゾール系化合物、「ノバキュア(登録商標)HX-3742」、旭化成株式会社製
・シランカップリング剤:3-グリシドキシプロピルトリエトキシシラン、「KBM-403」、信越化学工業株式会社製
(実施例1)
エポキシ樹脂(1)75質量部、硬化剤22質量部、及びシランカップリング剤3質量部を、遊星式撹拌混合機で5分間混練して、混練物を得た。
この混練物に、チクソ性付与剤として親水性シリカ(1)0.5質量部を添加した後、さらに、中空フィラーとしてガラスバルーン29質量部を添加して混練し、次いで、真空ポンプによる1Torrの減圧下での混練を20分間続けて脱泡し、樹脂組成物を得た。
エポキシ樹脂(1)75質量部、硬化剤22質量部、及びシランカップリング剤3質量部を、遊星式撹拌混合機で5分間混練して、混練物を得た。
この混練物に、チクソ性付与剤として親水性シリカ(1)0.5質量部を添加した後、さらに、中空フィラーとしてガラスバルーン29質量部を添加して混練し、次いで、真空ポンプによる1Torrの減圧下での混練を20分間続けて脱泡し、樹脂組成物を得た。
(実施例2~6及び比較例1~3)
下記表1の実施例2~6及び比較例1~3のそれぞれに示す樹脂組成物の配合成分とし、それ以外は実施例1と同様にして、各樹脂組成物を製造した。
下記表1の実施例2~6及び比較例1~3のそれぞれに示す樹脂組成物の配合成分とし、それ以外は実施例1と同様にして、各樹脂組成物を製造した。
[測定評価]
上記実施例及び比較例で得られた各樹脂組成物について、以下の各種測定評価を行った。これらの評価結果を下記表1にまとめて示す。
上記実施例及び比較例で得られた各樹脂組成物について、以下の各種測定評価を行った。これらの評価結果を下記表1にまとめて示す。
(粘度)
500mLビーカーに樹脂組成物400mLを入れ、B型粘度計(「TVB-25L」、東機産業株式会社製)を用いて、ロータNo.4にて、下記に示す測定温度及び回転数で、該樹脂組成物の粘度(V0、V1及びV2)を測定した。
・V0:25℃、0.3rpm
・V1:50℃、0.3rpm
・V2:50℃、1.5rpm
表1には、TI値(=V1/V2)も示す。
500mLビーカーに樹脂組成物400mLを入れ、B型粘度計(「TVB-25L」、東機産業株式会社製)を用いて、ロータNo.4にて、下記に示す測定温度及び回転数で、該樹脂組成物の粘度(V0、V1及びV2)を測定した。
・V0:25℃、0.3rpm
・V1:50℃、0.3rpm
・V2:50℃、1.5rpm
表1には、TI値(=V1/V2)も示す。
(分散性評価)
直径65mm、高さ90mmのプラスチック容器に樹脂組成物200mLを入れ、25℃で1週間放置した。そして、前記プラスチック容器内の樹脂組成物について、上面から深さ10mmまでの範囲内(上部)の約5gを薬さじですくい取り、取り出した樹脂組成物を150℃のオーブン中で30分間硬化させ、室温(25℃)まで冷却後の体積と質量を測定して、上部密度を算出した。また、前記プラスチック容器内の上部及び中央部(上部と下部との間)の樹脂組成物を薬さじで取り除いた後、容器底部から高さ10mmまでの範囲内(下部)にある樹脂組成物約5gを薬さじですくい取り、前記上部密度と同様にして、下部密度を求めた。
表1に、前記上部密度及び前記下部密度を示す。
前記上部密度と前記下部密度との差が小さいほど、該樹脂組成物の均一分散性が良好であると言える。
表1の分散性評価においては、前記上部密度と前記下部密度との差が上部密度の5%以下である場合を「○」、5%を超える場合を「×」として示す。
直径65mm、高さ90mmのプラスチック容器に樹脂組成物200mLを入れ、25℃で1週間放置した。そして、前記プラスチック容器内の樹脂組成物について、上面から深さ10mmまでの範囲内(上部)の約5gを薬さじですくい取り、取り出した樹脂組成物を150℃のオーブン中で30分間硬化させ、室温(25℃)まで冷却後の体積と質量を測定して、上部密度を算出した。また、前記プラスチック容器内の上部及び中央部(上部と下部との間)の樹脂組成物を薬さじで取り除いた後、容器底部から高さ10mmまでの範囲内(下部)にある樹脂組成物約5gを薬さじですくい取り、前記上部密度と同様にして、下部密度を求めた。
表1に、前記上部密度及び前記下部密度を示す。
前記上部密度と前記下部密度との差が小さいほど、該樹脂組成物の均一分散性が良好であると言える。
表1の分散性評価においては、前記上部密度と前記下部密度との差が上部密度の5%以下である場合を「○」、5%を超える場合を「×」として示す。
(泡噛み評価)
樹脂組成物を、内径15mm、厚み1mmの円形状の凹部を有する金型に注型し、150℃のオーブン中で30分間硬化させ、音響整合層成形品を製造した。
得られた音響整合層成形品の外観を目視観察して、泡噛みの有無を評価した。表1の泡噛み評価においては、泡噛みが確認されなかった場合を「○」、確認された場合を「×」として示す。
樹脂組成物を、内径15mm、厚み1mmの円形状の凹部を有する金型に注型し、150℃のオーブン中で30分間硬化させ、音響整合層成形品を製造した。
得られた音響整合層成形品の外観を目視観察して、泡噛みの有無を評価した。表1の泡噛み評価においては、泡噛みが確認されなかった場合を「○」、確認された場合を「×」として示す。
(透過電圧)
前記泡噛み評価において製造した音響整合層成形品について、パルサーレシーバ(「5073PR」、オリンパス株式会社製)と直接接触型探触子(「V127-RM」、オリンパス株式会社製)を用いて、透過電圧を測定した。
前記透過電圧は、音響整合層の音響特性の一指標であり、数値が大きいほど透過減衰が小さいことを示しており、好ましいと言える。本実施例における評価では、前記透過電圧が10.0V以上であれば、良好な音響特性を有しているものとして判定する。
前記泡噛み評価において製造した音響整合層成形品について、パルサーレシーバ(「5073PR」、オリンパス株式会社製)と直接接触型探触子(「V127-RM」、オリンパス株式会社製)を用いて、透過電圧を測定した。
前記透過電圧は、音響整合層の音響特性の一指標であり、数値が大きいほど透過減衰が小さいことを示しており、好ましいと言える。本実施例における評価では、前記透過電圧が10.0V以上であれば、良好な音響特性を有しているものとして判定する。
表1に示した結果から分かるように、常温で所定の粘度を有し、かつ、成形の際に所定のチクソ性を有する樹脂組成物(実施例1~6)を用いることにより、組成の均一性を保持することができ、また、泡噛みが抑制され、良好な成形性で、音響特性が良好な音響整合層成形品を製造できることが認められた。
比較例1及び3は、分散性評価において、中空フィラーが浮遊し、評価結果が不良であり、比較例3については、粘度(V1)及び粘度(V2)の測定、及びこれらの樹脂組成物を用いた成形は行わなかった。
また、比較例2の樹脂組成物は、TI値が大きく、これを用いて成形した場合、泡噛みが見られ、成形性に劣り、得られた音響整合層成形品の音響特性も不良であった。
比較例1及び3は、分散性評価において、中空フィラーが浮遊し、評価結果が不良であり、比較例3については、粘度(V1)及び粘度(V2)の測定、及びこれらの樹脂組成物を用いた成形は行わなかった。
また、比較例2の樹脂組成物は、TI値が大きく、これを用いて成形した場合、泡噛みが見られ、成形性に劣り、得られた音響整合層成形品の音響特性も不良であった。
Claims (6)
- 樹脂、中空フィラー及びチクソ性付与剤を含み、
B型粘度計を用いて、25℃で、ロータNo.4、回転数0.3rpmにて測定した粘度が1130~4000Pa・sであり、
B型粘度計を用いて、50℃で、ロータNo.4、回転数0.3rpmにて測定した粘度(V1)と、ロータNo.4、回転数1.5rpmにて測定した粘度(V2)との比(V1/V2)で表されるチクソトロピーインデックスが3.0~5.0である、音響整合層用樹脂組成物。 - 前記樹脂が熱硬化性樹脂であり、前記熱硬化性樹脂は、B型粘度計を用いて、25℃にて、ロータNo.4、回転数0.3rpmで測定した粘度が2~50Pa・sである、請求項1に記載の音響整合層用樹脂組成物。
- 前記熱硬化性樹脂がエポキシ樹脂である、請求項2に記載の音響整合層用樹脂組成物。
- 前記チクソ性付与剤が、BET比表面積が50~400m2/gの粉末である、請求項1~3のいずれか1項に記載の音響整合層用樹脂組成物。
- 前記チクソ性付与剤が親水性シリカ粉末である、請求項1~4のいずれか1項に記載の音響整合層用樹脂組成物。
- 前記中空フィラーは粒径1~100μmである、請求項1~5のいずれか1項に記載の音響整合層用樹脂組成物。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3119811A CA3119811A1 (en) | 2018-11-27 | 2019-09-27 | Resin composition for acoustic matching layer |
KR1020217015314A KR20210096091A (ko) | 2018-11-27 | 2019-09-27 | 음향 정합층용 수지 조성물 |
CN201980076123.4A CN113228707B (zh) | 2018-11-27 | 2019-09-27 | 声匹配层用树脂组合物 |
US17/288,286 US12012501B2 (en) | 2018-11-27 | 2019-09-27 | Resin composition for acoustic matching layer |
EP19891422.8A EP3890350B1 (en) | 2018-11-27 | 2019-09-27 | Resin composition for acoustic matching layer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018221481A JP6701506B1 (ja) | 2018-11-27 | 2018-11-27 | 音響整合層用樹脂組成物 |
JP2018-221481 | 2018-11-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020110445A1 true WO2020110445A1 (ja) | 2020-06-04 |
Family
ID=70776084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/038207 WO2020110445A1 (ja) | 2018-11-27 | 2019-09-27 | 音響整合層用樹脂組成物 |
Country Status (7)
Country | Link |
---|---|
US (1) | US12012501B2 (ja) |
EP (1) | EP3890350B1 (ja) |
JP (1) | JP6701506B1 (ja) |
KR (1) | KR20210096091A (ja) |
CN (1) | CN113228707B (ja) |
CA (1) | CA3119811A1 (ja) |
WO (1) | WO2020110445A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115232438A (zh) * | 2022-06-22 | 2022-10-25 | 枣阳市米朗科技有限公司 | 超声换能器匹配层用板材及其制备方法、以及超声换能器 |
CN116574353B (zh) * | 2023-07-14 | 2023-09-29 | 汕头市超声仪器研究所股份有限公司 | 一种超声换能器匹配层材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11215594A (ja) * | 1998-01-28 | 1999-08-06 | Aichi Tokei Denki Co Ltd | 音響インピーダンス整合用樹脂材及びこの樹脂材の製造方法並びにこの樹脂材を適用した超音波トランスジューサ |
JP2003143685A (ja) * | 2001-11-07 | 2003-05-16 | Murata Mfg Co Ltd | 音響整合層の製造方法およびそれを用いて製造された音響整合層 |
JP2005130389A (ja) * | 2003-10-27 | 2005-05-19 | Murata Mfg Co Ltd | 音響整合層 |
JP2006174992A (ja) * | 2004-12-22 | 2006-07-06 | Matsushita Electric Ind Co Ltd | 超音波探触子 |
US20130133408A1 (en) * | 2010-05-25 | 2013-05-30 | Tobias Lang | Ultrasonic transducer for use in a fluid medium |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6020387A (en) * | 1997-09-22 | 2000-02-01 | Caschem, Inc. | Low density polymers and methods of making and using same |
US5981610A (en) * | 1997-11-17 | 1999-11-09 | Shin-Etsu Chemical Co. Ltd. | Injection molding silicone rubber compositions |
JP4265174B2 (ja) * | 2002-08-27 | 2009-05-20 | パナソニック電工株式会社 | 液状封止材料及び半導体装置 |
JP2008184584A (ja) * | 2007-01-31 | 2008-08-14 | Nitto Denko Corp | 半導体封止用樹脂組成物およびそれを用いた半導体装置 |
WO2010074135A1 (ja) * | 2008-12-26 | 2010-07-01 | 東洋紡績株式会社 | 接着剤用樹脂組成物、これを含有する接着剤、接着シート及びこれを接着層として含むプリント配線板 |
JP5637133B2 (ja) * | 2009-05-25 | 2014-12-10 | コニカミノルタ株式会社 | 有機圧電材料、超音波振動子、超音波探触子及び超音波医用画像診断装置 |
KR101766735B1 (ko) * | 2009-12-10 | 2017-08-09 | 디아이씨 가부시끼가이샤 | 우레탄 수지 조성물, 코팅제 및 접착제, 및 그것을 사용하여 얻어지는 경화물 및 경화물의 제조 방법 |
US20110305787A1 (en) * | 2010-06-11 | 2011-12-15 | Satoshi Ishii | Stamper for transfer of microscopic structure and transfer apparatus of microscopic structure |
JP6149425B2 (ja) * | 2013-03-01 | 2017-06-21 | コニカミノルタ株式会社 | 超音波探触子の製造方法 |
JP6327549B2 (ja) * | 2013-12-06 | 2018-05-23 | ナガセケムテックス株式会社 | 熱硬化性樹脂組成物および熱伝導性シート |
JP5915718B1 (ja) * | 2014-11-07 | 2016-05-11 | 旭硝子株式会社 | 磁気ディスク用ガラス基板及び磁気ディスク |
WO2017109620A1 (en) * | 2015-12-22 | 2017-06-29 | Aditya Birla Chemicals Thailand Epoxy Division | An epoxy resin component for an adhesive composition |
-
2018
- 2018-11-27 JP JP2018221481A patent/JP6701506B1/ja active Active
-
2019
- 2019-09-27 EP EP19891422.8A patent/EP3890350B1/en active Active
- 2019-09-27 CA CA3119811A patent/CA3119811A1/en active Pending
- 2019-09-27 WO PCT/JP2019/038207 patent/WO2020110445A1/ja unknown
- 2019-09-27 CN CN201980076123.4A patent/CN113228707B/zh active Active
- 2019-09-27 KR KR1020217015314A patent/KR20210096091A/ko unknown
- 2019-09-27 US US17/288,286 patent/US12012501B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11215594A (ja) * | 1998-01-28 | 1999-08-06 | Aichi Tokei Denki Co Ltd | 音響インピーダンス整合用樹脂材及びこの樹脂材の製造方法並びにこの樹脂材を適用した超音波トランスジューサ |
JP2003143685A (ja) * | 2001-11-07 | 2003-05-16 | Murata Mfg Co Ltd | 音響整合層の製造方法およびそれを用いて製造された音響整合層 |
JP2005130389A (ja) * | 2003-10-27 | 2005-05-19 | Murata Mfg Co Ltd | 音響整合層 |
JP2006174992A (ja) * | 2004-12-22 | 2006-07-06 | Matsushita Electric Ind Co Ltd | 超音波探触子 |
US20130133408A1 (en) * | 2010-05-25 | 2013-05-30 | Tobias Lang | Ultrasonic transducer for use in a fluid medium |
Non-Patent Citations (1)
Title |
---|
See also references of EP3890350A4 * |
Also Published As
Publication number | Publication date |
---|---|
JP6701506B1 (ja) | 2020-05-27 |
CA3119811A1 (en) | 2020-06-04 |
EP3890350A4 (en) | 2022-08-03 |
US12012501B2 (en) | 2024-06-18 |
US20210388179A1 (en) | 2021-12-16 |
EP3890350A1 (en) | 2021-10-06 |
CN113228707A (zh) | 2021-08-06 |
JP2020084056A (ja) | 2020-06-04 |
EP3890350B1 (en) | 2023-07-12 |
KR20210096091A (ko) | 2021-08-04 |
CN113228707B (zh) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6701506B1 (ja) | 音響整合層用樹脂組成物 | |
JP7395946B2 (ja) | 超音波プローブ、超音波診断装置およびバッキング材の製造方法 | |
BRPI0718527A2 (pt) | Composição em pó, método, e, artigo tridimensional | |
KR20090103796A (ko) | 산화 비스무트를 포함하는 실리콘 고무 조성물 및 이로부터제조된 물품 | |
EP3141581A1 (en) | Resin composite material and method for manufacturing resin composite material | |
JP6732145B1 (ja) | 熱伝導性樹脂組成物、熱伝導性シートおよび製造方法 | |
Wilson et al. | Interphase effects in dental nanocomposites investigated by small‐angle neutron scattering | |
JP2017088696A (ja) | 複合充填材およびこれを含む樹脂組成物 | |
JP7462062B2 (ja) | 水酸化マグネシウム含有熱界面材料 | |
JP2019001849A (ja) | フィラー、成形体、及び放熱材料 | |
JP2010013580A (ja) | 高熱伝導性複合体およびその製造方法 | |
JP2020045456A (ja) | 熱伝導性複合材料、熱伝導性複合材料フィルム及びそれらの製造方法 | |
JPS59101409A (ja) | 複合充填材 | |
Barzegar et al. | Nanoclay-reinforced polymethylmethacrylate and its mechanical properties | |
US10997961B2 (en) | Acoustic lens and production method thereof, and acoustic wave probe | |
EP3756551A1 (en) | Backing material, production method therefor, and acoustic wave probe | |
JP2007231509A (ja) | 塗り目地工法 | |
JPH0841293A (ja) | 封止用エポキシ樹脂組成物及び半導体装置 | |
JP2019189897A (ja) | 三次元造形用流動性組成物、三次元造形物の製造方法及び三次元造形物 | |
JPH0157082B2 (ja) | ||
JP2000178414A (ja) | 半導体封止材用球状シリカ | |
JP2012017421A (ja) | 熱伝導性樹脂組成物及びそれによる成形体 | |
EP4134393A1 (en) | Method of manufacturing resin composition | |
TW202225333A (zh) | 樹脂組成物 | |
JP2552325B2 (ja) | 振動減衰材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19891422 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3119811 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019891422 Country of ref document: EP Effective date: 20210628 |