WO2020095997A1 - 液晶ポリエステル樹脂組成物及び成形品 - Google Patents

液晶ポリエステル樹脂組成物及び成形品 Download PDF

Info

Publication number
WO2020095997A1
WO2020095997A1 PCT/JP2019/043690 JP2019043690W WO2020095997A1 WO 2020095997 A1 WO2020095997 A1 WO 2020095997A1 JP 2019043690 W JP2019043690 W JP 2019043690W WO 2020095997 A1 WO2020095997 A1 WO 2020095997A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
liquid crystal
crystal polyester
resin composition
less
Prior art date
Application number
PCT/JP2019/043690
Other languages
English (en)
French (fr)
Inventor
翼 田村
節幸 原
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2020555586A priority Critical patent/JP7343520B2/ja
Priority to US17/291,855 priority patent/US20220010058A1/en
Priority to KR1020217012548A priority patent/KR20210088555A/ko
Priority to CN201980071723.1A priority patent/CN112969750B/zh
Publication of WO2020095997A1 publication Critical patent/WO2020095997A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2250/00Compositions for preparing crystalline polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the present invention relates to a liquid crystal polyester resin composition and a molded article.
  • Liquid crystal polyester is known to be a material with high fluidity, heat resistance and dimensional accuracy, and is used as a material for forming various molded products.
  • liquid crystal polyester is usually used as a liquid crystal polyester resin composition containing various fillers.
  • the filler is selected according to the required characteristics (for example, mechanical strength) of each molded product.
  • Molded products using liquid crystal polyester as a forming material are becoming smaller and thinner with the miniaturization of electronic devices used as parts of electronic devices.
  • a component having a thickness of about 1.0 mm in the past may be thinned to a thickness of about 0.3 mm in response to a demand for downsizing.
  • a component (molded product) in which breakage is suppressed in other words, a molded product having improved mechanical strength is required.
  • a liquid crystal polyester resin composition using a fibrous filler as a filler is known as a material for forming a molded article having improved mechanical strength (Patent Document 1).
  • Patent Document 2 describes a thermoplastic resin composition containing a thermoplastic resin and aggregated particles formed by aggregating fibrous crystals.
  • Patent Document 2 describes a liquid crystal polymer as the thermoplastic resin.
  • the weld strength of the thin portion is likely to be reduced.
  • the thin molded product obtained by using the conventional resin composition described in Patent Document 1 had a low weld strength and had room for improvement. It is described that the thermoplastic resin composition described in Patent Document 2 is capable of producing a molded product in which no weld line is observed for the purpose of preventing the occurrence of welds when the molded product is molded. On the other hand, when manufacturing a molded product having a complicated shape or a molded product having a thin wall, it may be difficult to completely prevent the occurrence of welds. The technique described in Patent Document 2 has sufficient room for improvement from the viewpoint of improving weld strength.
  • An object of the present invention is to provide a liquid crystal polyester resin composition capable of producing a molded product having a thinner weld strength than conventional ones.
  • the liquid crystal polyester resin composition according to the present embodiment includes (A) component: liquid crystal polyester, (B) component: glass fiber, (C) component: a fibrous inorganic filler different from the (B) component, as essential components.
  • the blending amount of the component (B) with respect to 100 parts by mass of the component (A) is 50 parts by mass or more and 90 parts by mass or less, and the blending amount of the component (C) with respect to 100 parts by mass of the component (A) is
  • the liquid crystal polyester resin composition is 1 part by mass or more and 40 parts by mass or less and satisfies the following conditions (1) and (2).
  • Condition (1) Melt viscosity measured at a shear rate of 1000 sec -1 according to ISO 11443 at an arbitrary measurement temperature within a temperature range of + 20 ° C. to 30 ° C. from the flow start temperature is 40 Pa. It is s or more and 70 Pa ⁇ s or less.
  • Condition (2) Melt viscosity measured under the conditions of a shear rate of 12000 sec ⁇ 1 according to ISO 11443 at the measurement temperature is 0.1 Pa ⁇ s or more and 10 Pa ⁇ s or less.
  • the liquid crystal polyester resin composition according to the present embodiment preferably has a ratio ((1) / (2)) of the melt viscosity measured under the condition (1) and the melt viscosity measured under the condition (2). Is a liquid crystal polyester resin composition exceeding 5.0.
  • the liquid crystal polyester resin composition according to the present embodiment is preferably a liquid crystal polyester resin in which the number average fiber length of all fibrous fillers including the component (B) and the component (C) is 40 ⁇ m or more and 80 ⁇ m or less. It is a composition.
  • the flow starting temperature under the condition (1) is 320 ° C. or higher and 330 ° C. or lower, and the measurement temperature is 350 ° C.
  • the liquid crystal polyester resin composition according to the present embodiment is preferably a liquid crystal polyester resin composition in which the component (C) is wollastonite.
  • the molded product according to this embodiment is a molded product using the above-mentioned liquid crystal polyester resin composition as a forming material. Furthermore, the present invention includes the following aspects.
  • the liquid crystal polyester resin composition according to the present embodiment includes (A) component: liquid crystal polyester, (B) component: glass fiber, (C) component: a fibrous inorganic filler different from the (B) component, as essential components.
  • the blending amount of the component (B) with respect to 100 parts by mass of the component (A) is 50 parts by mass or more and 90 parts by mass or less
  • the blending amount of the component (C) with respect to 100 parts by mass of the component (A) is
  • the liquid crystal polyester resin composition is 1 part by mass or more and 40 parts by mass or less and satisfies the following conditions (1) and (2).
  • Condition (1) Melt viscosity of 40 Pa ⁇ s measured at a shear rate of 1000 s ⁇ 1 in accordance with ISO 11443 at an arbitrary measurement temperature within a temperature range of + 20 ° C. to 30 ° C. from the flow start temperature. It is s or more and 70 Pa ⁇ s or less.
  • Condition (2) The melt viscosity measured at the measurement temperature according to ISO 11443 under a shear rate of 12000 s ⁇ 1 is 0.1 Pa ⁇ s or more and 10 Pa ⁇ s or less.
  • liquid crystal polyester resin composition capable of producing a molded product which is thinner than conventional and has high weld strength, and a molded product which is thinner than conventional and has high weld strength. ..
  • the liquid crystal polyester resin composition of the present embodiment contains the following component (A), component (B) and component (C).
  • component (A) Liquid crystal polyester.
  • component (B) glass fiber.
  • component (C) A fibrous inorganic filler different from the component (B).
  • the “liquid crystal polyester resin composition” is usually a resin produced by melt-kneading the component (A), the component (B) raw material, the component (C) raw material, and other components used as necessary.
  • composition is meant.
  • the liquid crystal polyester resin composition of the present embodiment include pelletized liquid crystal polyester resin compositions. Hereinafter, each component constituting the liquid crystal polyester resin composition of this embodiment will be described.
  • the liquid crystal polyester contained in the liquid crystal polyester resin composition is a polyester that exhibits liquid crystallinity in a molten state, and preferably has a property of melting at a temperature of 450 ° C. or lower.
  • the liquid crystal polyester may be liquid crystal polyester amide, liquid crystal polyester ether, liquid crystal polyester carbonate, or liquid crystal polyester imide.
  • the liquid crystal polyester is preferably a wholly aromatic liquid crystal polyester using only an aromatic compound as a raw material monomer.
  • liquid crystal polyester (i) an aromatic hydroxycarboxylic acid, (ii) an aromatic dicarboxylic acid, and (iii) at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine and an aromatic diamine.
  • the aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine and the aromatic diamine which are raw material monomers for the liquid crystal polyester, are each independently polymerized in place of a part or all thereof. Possible derivatives may be used.
  • Examples of polymerizable derivatives of compounds having a carboxy group such as aromatic hydroxycarboxylic acid and aromatic dicarboxylic acid include (A) an ester obtained by converting a carboxy group into an alkoxycarbonyl group or an aryloxycarbonyl group, Examples thereof include (b) an acid halide obtained by converting a carboxy group into a haloformyl group, and (c) an acid anhydride obtained by converting a carboxy group into an acyloxycarbonyl group.
  • an acylated product obtained by acylating a hydroxy group to convert it to an acyloxyl group is available. Can be mentioned.
  • An example of a polymerizable derivative of a compound having an amino group such as aromatic hydroxyamine and aromatic diamine is an acyl compound obtained by acylating an amino group to convert it into an acylamino group.
  • the liquid crystal polyester preferably has a repeating unit represented by the following formula (1), and is represented by a repeating unit (1), a repeating unit represented by the following formula (2), and a following formula (3). It is more preferable to have a repeating unit.
  • the repeating unit represented by the following formula (1) may be referred to as “repeating unit (1)”.
  • the repeating unit represented by the following formula (2) may be referred to as “repeating unit (2)”.
  • the repeating unit represented by the following formula (3) may be referred to as “repeating unit (3)”.
  • Ar 1 represents a phenylene group, a naphthylene group or a biphenylylene group.
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following formula (4).
  • X and Y each independently represent an oxygen atom or an imino group (—NH—).
  • the hydrogen atom in the group represented by Ar 1 , Ar 2 or Ar 3 may be independently substituted with a halogen atom, an alkyl group or an aryl group.
  • Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group.
  • Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group or an alkylidene group.
  • halogen atom capable of substituting the hydrogen atom contained in the group represented by Ar 1 , Ar 2 or Ar 3 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Examples of the alkyl group capable of substituting the hydrogen atom contained in the group represented by Ar 1 , Ar 2 or Ar 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and an isobutyl group. , S-butyl group, t-butyl group, n-hexyl group, 2-ethylhexyl group, n-octyl group and n-decyl group.
  • the alkyl group usually has 1 to 10 carbon atoms.
  • Examples of the aryl group capable of substituting the hydrogen atom contained in the group represented by Ar 1 , Ar 2 or Ar 3 include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group and 1-naphthyl. Groups and 2-naphthyl groups.
  • the carbon number of the aryl group is usually 6 to 20.
  • the hydrogen atom contained in the group represented by Ar 1 , Ar 2 or Ar 3 is substituted with a halogen atom, an alkyl group or an aryl group
  • the number of the halogen atom, the alkyl group or the aryl group is Ar 1 , Ar or Ar.
  • the number of each group represented by 2 or Ar 3 is, independently of each other, usually 2 or less, preferably 1 or less.
  • Examples of the alkylidene group represented by Z include methylene group, ethylidene group, isopropylidene group, n-butylidene group and 2-ethylhexylidene group.
  • the alkylidene group usually has 1 to 10 carbon atoms.
  • the repeating unit (1) is a repeating unit derived from an aromatic hydroxycarboxylic acid.
  • the repeating unit (1) is preferably a repeating unit in which Ar 1 is a p-phenylene group.
  • the repeating unit in which Ar 1 is a p-phenylene group is a repeating unit derived from p-hydroxybenzoic acid.
  • repeating unit (1) examples include a repeating unit in which Ar 1 is a 2,6-naphthylene group.
  • the repeating unit in which Ar 1 is a 2,6-naphthylene group is a repeating unit derived from 6-hydroxy-2-naphthoic acid.
  • oil means that the chemical structure of the functional group contributing to the polymerization is changed and other structural changes are not caused because the raw material monomers are polymerized.
  • the repeating unit (2) is a repeating unit derived from an aromatic dicarboxylic acid.
  • the repeating unit (2) includes a repeating unit in which Ar 2 is a p-phenylene group, a repeating unit in which Ar 2 is a m-phenylene group, a repeating unit in which Ar 2 is a 2,6-naphthylene group, and Ar 2 A repeating unit which is a diphenylether-4,4'-diyl group is preferred.
  • the repeating unit in which Ar 2 is a p-phenylene group is a repeating unit derived from terephthalic acid.
  • the repeating unit in which Ar 2 is an m-phenylene group is a repeating unit derived from isophthalic acid.
  • the repeating unit in which Ar 2 is a 2,6-naphthylene group is a repeating unit derived from 2,6-naphthalenedicarboxylic acid.
  • the repeating unit in which Ar 2 is a diphenylether-4,4′-diyl group is a repeating unit derived from diphenylether-4,4′-dicarboxylic acid.
  • the repeating unit (3) is a repeating unit derived from aromatic diol, aromatic hydroxylamine or aromatic diamine.
  • a repeating unit in which Ar 3 is a p-phenylene group and a repeating unit in which Ar 3 is a 4,4′-biphenylylene group are preferable.
  • the repeating unit in which Ar 3 is a p-phenylene group is a repeating unit derived from hydroquinone, p-aminophenol or p-phenylenediamine.
  • the repeating unit in which Ar 3 is a 4,4′-biphenylylene group is a repeating unit derived from 4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or 4,4′-diaminobiphenyl.
  • the content of the repeating unit (1) is usually 30 mol% or more, preferably 30 to 80 mol%, more preferably 40 to 70 mol%, further preferably 45 to 65 mol, based on the total amount of all repeating units. %.
  • total amount of all repeating units means that the mass of each repeating unit constituting the liquid crystal polyester is divided by the formula weight of each repeating unit to obtain the substance equivalent amount (mol) of each repeating unit. ) Is obtained and the total amount of the obtained substance amounts is summed up.
  • the content of the repeating unit (2) is usually 35 mol% or less, preferably 10 mol% or more and 35 mol%, more preferably 15 mol% or more and 30 mol% or less, and further preferably, based on the total amount of all repeating units. Is 17.5 mol% or more and 27.5 mol% or less.
  • the content of the repeating unit (3) is usually 35 mol% or less, preferably 10 mol% or more and 35 mol% or less, more preferably 15 mol% or more and 30 mol% or less, with respect to the total amount of all repeating units. It is preferably 17.5 mol% or more and 27.5 mol% or less.
  • the melt fluidity, heat resistance, strength and rigidity are easily improved, but when it is too large, the melting temperature and the melt viscosity are likely to be high, and the temperature required for molding is high. easy.
  • the ratio of the content of the repeating unit (2) to the content of the repeating unit (3) is represented by [content of repeating unit (2)] / [content of repeating unit (3)] (mol / mol) It is usually 0.9 / 1 to 1 / 0.9, preferably 0.95 / 1 to 1 / 0.95, and more preferably 0.98 / 1 to 1 / 0.98.
  • the liquid crystal polyester may have two or more kinds of repeating units (1) to (3) each independently. Further, the liquid crystal polyester may have repeating units other than the repeating units (1) to (3), but the content thereof is usually 10 mol% or less with respect to the total amount of all repeating units, preferably It is 5 mol% or less.
  • the liquid crystal polyester preferably has, as the repeating unit (3), a repeating unit in which X and Y are each an oxygen atom, that is, has a repeating unit derived from an aromatic diol, and X and Y are each an oxygen atom. It is more preferable to have only certain repeating units. It is preferable that the liquid crystal polyester has a repeating unit derived from an aromatic diol because the melt viscosity of the liquid crystal polyester tends to be low.
  • the liquid crystal polyester has a flow initiation temperature of usually 270 ° C. or higher, preferably 270 ° C. or higher and 400 ° C. or lower, more preferably 280 ° C. or higher and 380 ° C. or lower, particularly preferably 290 ° C. or higher and 350 ° C. or lower, and 320 ° C. or higher.
  • a temperature of 330 ° C. or lower is particularly preferable. The higher the flow starting temperature, the easier the strength is to improve.
  • the flow start temperature is also called the flow temperature or flow temperature.
  • the liquid crystal polyester When the liquid crystal polyester is melted and extruded from a nozzle having an inner diameter of 1 mm and a length of 10 mm by using a rheometer under a load of 9.8 MPa and increasing the temperature at a rate of 4 ° C./min, the liquid crystal polyester starts to flow. Is a temperature showing a viscosity of 4800 Pa ⁇ s (48,000 poise).
  • the flow initiation temperature of liquid crystalline polyester is a measure of the molecular weight of liquid crystalline polyester (see Naoyuki Koide, "Liquid Crystal Polymer-Synthesis / Molding / Application-", CMC, June 5, 1987, p.95). ).
  • the liquid crystal polyester used in this embodiment can be produced by a known polycondensation method, ring-opening polymerization method, or the like.
  • the liquid crystal polyester used in the present embodiment can be produced by melt-polymerizing raw material monomers corresponding to the repeating units constituting the polymer and solid-phase polymerizing the obtained polymer. As a result, a high molecular weight liquid crystal polyester having high strength can be produced with good operability.
  • Melt polymerization may be carried out in the presence of a catalyst.
  • a catalyst include metal compounds such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, antimony trioxide, 4- (dimethylamino) pyridine, 1-methylimidazole, etc.
  • a nitrogen-containing heterocyclic compound of Of these, nitrogen-containing heterocyclic compounds are preferably used.
  • the resin composition of the present embodiment contains the component (B).
  • the component (B) is glass fiber.
  • the component (B) can be present in the resin composition by melt-kneading the raw material of the component (B) and other components. It is known that the component (B) raw material breaks during such melt-kneading.
  • the component (B) raw material is a component used for melt kneading.
  • the fiber diameter of the component (B) raw material does not substantially change before and after melt-kneading.
  • the component (B) raw material will be described.
  • the component (B) raw material examples include long fiber type chopped glass fibers and short fiber type milled glass fibers.
  • the method for producing the component (B) raw material is not particularly limited, and a known method can be used.
  • the component (B) raw material is preferably chopped glass fiber.
  • the component (B) raw material one type may be used alone, or two or more types may be used in combination.
  • Examples of the raw material for the component (B) include E-glass, A-glass, C-glass, D-glass, AR-glass, R-glass, S glass, and mixtures thereof.
  • E-glass is preferably used because it has excellent strength and is easily available.
  • glass fiber having a silicon oxide content of 50% by mass or more and 80% by mass or less, or 52% by mass or more and 60% by mass or less of the total mass of the component (B) starting material.
  • the raw material for the component (B) may be glass fiber treated with a coupling agent such as a silane coupling agent or a titanium coupling agent, if necessary.
  • the component (B) raw material may be glass fiber treated with a sizing agent.
  • a sizing agent include thermoplastic resins such as urethane resin, acrylic resin and ethylene / vinyl acetate copolymer, and thermosetting resins such as epoxy resin.
  • the number average fiber length of the component (B) raw material is preferably 20 ⁇ m or more and 6000 ⁇ m or less.
  • the number average fiber length of the component (B) raw material is more preferably 1000 ⁇ m or more, further preferably 2000 ⁇ m or more.
  • the number average fiber length of the component (B) raw material is more preferably 5000 ⁇ m or less, and further preferably 4500 ⁇ m or less.
  • the upper limit value and the lower limit value can be arbitrarily combined. Examples of the combination include 1000 ⁇ m or more and 5000 ⁇ m or less, and 2000 ⁇ m or more and 4500 ⁇ m or less.
  • the single fiber diameter of the component (B) raw material is preferably 5 ⁇ m or more and 17 ⁇ m or less.
  • the single fiber diameter of the component (B) raw material is 5 ⁇ m or more, the obtained molded product can be sufficiently reinforced.
  • the fiber diameter of the component (B) raw material is 17 ⁇ m or less, the melt fluidity of the liquid crystal polyester resin composition can be enhanced.
  • the "single fiber diameter" means the fiber diameter of the single fiber of the component (B) raw material.
  • the “number average fiber length of the component (B) raw material” means a value measured by the method described in JIS R3420 “7.8 Chopped strand length” unless otherwise specified.
  • the “single fiber diameter of the component (B) raw material” is measured by the “A method” of the methods described in JIS R3420 “7.6 Single fiber diameter” unless otherwise specified. Means the value.
  • the blending amount of the component (B) with respect to 100 parts by mass of the component (A) is 50 parts by mass or more and 90 parts by mass or less, preferably 70 parts by mass or more and 90 parts by mass or less.
  • the blending amount of the component (B) is within the above range, so that even when an ultrathin molded product is manufactured, the reduction in the strength of the welded portion compared to the non-welded portion is suppressed. be able to.
  • the strength of the non-weld portion can be improved by increasing the blending amount of the component (B).
  • the ultra-thin wall means a wall thickness of 0.5 mm or less, preferably 0.3 mm or less.
  • the component (C) is a fibrous filler different from the component (B).
  • the component (C) can be present in the resin composition by melt-kneading the raw material of the component (C) and other components. It is known that the raw material (C) is deformed during the melt-kneading. An example of the deformation is breakage.
  • the component (C) raw material is a component used for melt kneading.
  • the fiber diameter of the component (C) raw material does not substantially change before and after melt-kneading.
  • the component (C) raw material will be described below.
  • the (C) component raw material is preferably a fibrous inorganic filler having a different number average fiber length from the (B) component raw material.
  • the difference in the number average fiber length between the component (B) raw material and the component (C) raw material is preferably 5 ⁇ m or more.
  • the component (B) raw material may have a longer number average fiber length than the component (C) raw material, and the component (C) component raw material may have a number average fiber length longer than the component (B) component raw material. May be long.
  • the component (C) raw material used in this embodiment is preferably a fibrous inorganic filler having a number average fiber length shorter than that of the component (B) raw material.
  • examples of the raw material (C) include carbon fibers, silica fibers, alumina fibers, ceramic fibers such as silica-alumina fibers, metal fibers such as stainless fibers, and whiskers. Of these, carbon fibers or whiskers are preferable.
  • Commercially available products of carbon fiber include “Torayca (registered trademark)” manufactured by Toray Industries, Inc., “Pyrofil (registered trademark)”, “Dilead (registered trademark)” manufactured by Mitsubishi Chemical Co., Ltd., “Tenax (registered trademark)” manufactured by Teijin Limited.
  • whiskers examples include potassium titanate whiskers, barium titanate whiskers, aluminum borate whiskers, silicon nitride whiskers, calcium silicate whiskers, and the like.
  • examples of calcium silicate whiskers include wollastonite, xonotlite, tobermorite, and gyrolite.
  • the component (C) raw material is preferably wollastonite, potassium titanate whiskers or aluminum borate whiskers, and among them, wollastonite is more preferable from the viewpoint of easy availability and economy.
  • Commercially available potassium titanate whiskers include “Tismo D” and “Tismo N" manufactured by Otsuka Chemical Co., Ltd.
  • Examples of commercially available aluminum borate whiskers include "Arbolex G" and "Arbolex Y” manufactured by Shikoku Chemicals.
  • the wollastonite used in this embodiment may be fibrous wollastonite or granular wollastonite.
  • Fibrous wollastonite is wollastonite having an aspect ratio of 3 or more.
  • Granular wollastonite is wollastonite having an aspect ratio of less than 3.
  • the aspect ratio is "number average fiber length of component (C) raw material / number average fiber diameter of component (C) raw material".
  • the aspect ratio is more preferably 3 or more and 20 or less, further preferably 5 or more and 15 or less, and particularly preferably 10 or more and 13 or less.
  • fibrous wollastonite having an aspect ratio in this range is used, the weld strength of a thin molded product is improved.
  • the wollastonite is not particularly limited, and known wollastonite can be used, for example.
  • the wollastonite may be used alone or in combination of two or more having different aspect ratios, the number average fiber length of the (C) component raw material, the number average fiber diameter of the (C) component raw material and the like. May be.
  • the number average fiber length of the component (C) raw material is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, particularly preferably 5 ⁇ m or more, and particularly preferably 10 ⁇ m or more. Further, it is preferably 10,000 ⁇ m or less, more preferably 500 ⁇ m or less, further preferably 300 ⁇ m or less, further preferably 150 ⁇ m or less, and particularly preferably 60 ⁇ m or less.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • Examples of the combination include 1 ⁇ m or more and 10000 ⁇ m or less, 3 ⁇ m or more and 500 ⁇ m or less, 5 ⁇ m or more and 300 ⁇ m or less, 10 ⁇ m or more and 150 ⁇ m or less, and 10 ⁇ m or more and 60 ⁇ m or less.
  • the number average fiber diameter of the component (C) raw material is preferably 0.4 ⁇ m or more, more preferably 0.7 ⁇ m or more, still more preferably 1 ⁇ m or more, even more preferably 3 ⁇ m or more, and particularly preferably 4 ⁇ m or more. Further, it is preferably 50 ⁇ m or less, more preferably 10 ⁇ m or less, further preferably 8 ⁇ m or less, particularly preferably 5 ⁇ m or less. ..
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • Examples of combinations include 0.4 ⁇ m or more and 50 ⁇ m or less, 0.4 ⁇ m or more and 10 ⁇ m or less, 0.4 ⁇ m or more and 8 ⁇ m or less, and 0.7 ⁇ m or more and 8 ⁇ m or less.
  • the number average fiber length and number average fiber diameter of component raw material are the length and diameter of the (C) component raw material using a microscope. It is calculated by observing 100 samples and calculating an average value.
  • the blending amount of the component (C) with respect to 100 parts by mass of the component (A) is 1 part by mass or more and 40 parts by mass or less.
  • the blending amount of the component (C) is within the above range, the weld strength can be improved even when an ultrathin molded product is manufactured.
  • the blending amount of the component (C) is preferably 5 parts by mass or more and 40 parts by mass or less.
  • the number average fiber length of all the fibrous fillers including the component (B) and the component (C) is preferably 40 ⁇ m or more and 80 ⁇ m or less, and 45 ⁇ m or more and 79 ⁇ m or less. The following is more preferable, and 48 ⁇ m or more and 78 ⁇ m or less is particularly preferable.
  • the number average fiber length of all the fibrous fillers including the component (B) and the component (C) means the liquid crystal polyester resin composition after melt kneading or the liquid crystal polyester resin composition. Means the number average fiber length of all fibrous fillers contained in the molded product.
  • the mechanical strength can be maintained even when an ultrathin molded product is manufactured.
  • the method for measuring the total fibrous filler will be described. First, 5 g of the liquid crystal polyester resin composition of the present embodiment was heated in a muffle furnace ("FP410" manufactured by Yamato Scientific Co., Ltd.) at 600 ° C. for 4 hours in an air atmosphere to remove the resin and form a fibrous filler. An ash residue containing is obtained. 0.3 g of the ashing residue is put into 50 mL of pure water, and a surfactant (for example, 0.5% by volume of micro-90 (manufactured by Sigma-Aldrich Japan LLC) aqueous solution) is added to improve dispersibility, A mixed solution is obtained.
  • a surfactant for example, 0.5% by volume of micro-90 (manufactured by Sigma-Aldrich Japan LLC) aqueous solution
  • the obtained mixed liquid is ultrasonically dispersed for 5 minutes to obtain a sample liquid in which the fibrous filler contained in the ash residue is uniformly dispersed in the solution.
  • a device name: ULTRA SONIC CLEANER NS200-60 (manufactured by Nippon Seiki Co., Ltd.) or the like can be used for ultrasonic dispersion.
  • the ultrasonic intensity may be set to, for example, 30 kHz.
  • the obtained sample liquid is passed through the flow cell, and the fibrous fillers that move in the liquid are moved one by one. Take an image.
  • the time when the total number of the fibrous fillers accumulated from the start of measurement reaches 30,000 is set as the end of measurement.
  • the obtained image is binarized, the circumscribed rectangular major axis of the fibrous filler in the processed image is measured, and the average value of the values of 30,000 circumscribed rectangular major axes is calculated as the number average fiber length of all the fibrous fillers.
  • the liquid crystal polyester resin composition of the present embodiment is added with an optional component such as a measurement stabilizer, a release agent, an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic agent, a surfactant, a flame retardant and a colorant.
  • an optional component such as a measurement stabilizer, a release agent, an antioxidant, a heat stabilizer, an ultraviolet absorber, an antistatic agent, a surfactant, a flame retardant and a colorant.
  • the agent may be included.
  • the liquid crystal polyester resin composition of the present embodiment is obtained by melt-kneading the component (A), the component (B) raw material, the component (C) raw material, and other components used as necessary using an extruder, It can be pelletized.
  • the liquid crystal polyester resin composition of this embodiment satisfies the following conditions (1) and (2).
  • Condition (1) Melt viscosity of 40 Pa ⁇ s measured at a shear rate of 1000 s ⁇ 1 in accordance with ISO 11443 at any measurement temperature within a temperature range of + 20 ° C. to 30 ° C. from the flow start temperature. Or more and 70 Pa ⁇ s or less, preferably 45 Pa ⁇ s or more and 70 Pa ⁇ s or less, more preferably 50 Pa ⁇ s or more and 70 Pa ⁇ s or less, particularly preferably 60 Pa ⁇ s or more and 70 Pa ⁇ s or less.
  • Melt viscosity measured at a shear rate of 12000 s ⁇ 1 according to ISO 11443 at the measurement temperature is 0.1 Pa ⁇ s or more and 10 Pa ⁇ s or less, and 1 Pa ⁇ s or more and 10 Pa ⁇ s or more. s or less is preferable, 5 Pa ⁇ s or more and 10 Pa ⁇ s or less is more preferable, and 7 Pa ⁇ s or more and 10 Pa ⁇ s or less is particularly preferable.
  • liquid crystal polyester resin composition of the present embodiment the type and amount of the liquid crystal polyester (A), the glass fiber (B), and the fibrous inorganic filler (C) different from the component (B) are appropriately selected. By using it, it is possible to obtain a composition in which the shear rate dependence of the melt viscosity is enhanced.
  • the flow starting temperature is 320 ° C. or higher and 330 ° C. or lower, and the measurement temperature is 350 ° C.
  • the melt viscosity it is preferable to measure the melt viscosity after drying the resin composition of the present embodiment at 120 ° C. for 3 hours or more.
  • FIG. 1 (A) shows a schematic view of the tip of a molten resin 1 obtained by melting a conventional resin composition.
  • Arrows 21 to 26 indicate molten resin.
  • the length of each arrow indicates the flow rate of the molten resin.
  • the molten resin 21 and the molten resin 22 on the die inner wall side are slower than the molten resin 23 and the molten resin 24 flowing inside the die, and the molten resin 25 and the molten resin 26 flowing at the position corresponding to the tip 20 are the fastest. Due to such a difference in the flow rate of the molten resin, the tip 20 of the molten resin has a convex shape.
  • FIG. 1B shows a schematic view of the tip of the molten resin 30A obtained by melting the resin composition of this embodiment.
  • the arrows indicated by reference numerals 31 to 36 indicate molten resin. Since the resin composition of the present embodiment has a high shear rate dependence of the melt viscosity, the difference in the flow velocity of the molten resin between the inner wall of the mold and the inner side of the mold is higher than that of the conventional resin composition of FIG. 1 (A). And the convex shape of the tip of the molten resin is sharper.
  • the ratio ((1) / (2)) of the melt viscosity measured under the condition (1) and the melt viscosity measured under the condition (2) is preferably more than 5.0, 5.1 or more is more preferable, and 5.2 or more is further preferable.
  • the upper limit value it is usually 50, preferably 20, more preferably 18, and particularly preferably 17.
  • the upper limit value and the lower limit value of the ratio ((1) / (2)) can be arbitrarily combined. Examples of the combination include more than 5.0 and 50 or less, 5.1 or more and 20 or less, and 5.2 or more and 18 or less.
  • the molded product of the present embodiment is an injection molded product that is usually used as a housing interior part in an electric / electronic device.
  • electric / electronic devices include cameras, personal computers, mobile phones, smartphones, tablets, printers, projectors, and the like.
  • interior components of such electric and electronic devices include fixing parts for connectors, camera modules, blower fans or printers.
  • the molded product of this embodiment is preferably a molded product having an ultrathin portion with a thickness of 0.3 mm or less.
  • the thickness of the molded product means the thickness from one surface to the other surface of the molded product.
  • liquid crystal polyester was analyzed and characterized by the methods described below.
  • the temperature was raised from room temperature to 150 ° C. over 30 minutes while stirring under a nitrogen gas stream, and the temperature was maintained and refluxed for 30 minutes.
  • 2.4 g of 1-methylimidazole was added, and while the by-product acetic acid and unreacted acetic anhydride were distilled off, the temperature was raised from 150 ° C. to 320 ° C. over 2 hours and 50 minutes and kept at 320 ° C. for 30 minutes. Then, the contents were taken out and cooled to room temperature.
  • the obtained solid is pulverized with a pulverizer to have a particle size of 0.1 mm or more and 1 mm or less, and then heated in a nitrogen atmosphere from room temperature to 250 ° C. over 1 hour and heated from 250 ° C. to 295 ° C. over 5 hours.
  • Solid phase polymerization was performed by warming and holding at 295 ° C. for 3 hours. After solid phase polymerization, the mixture was cooled to obtain powdery liquid crystal polyester (LCP).
  • the flow initiation temperature of the obtained liquid crystal polyester was 312 ° C.
  • ⁇ (B) component glass fiber>
  • chopped glass fibers CS 3J-260S (single fiber diameter 11 ⁇ m, number average fiber length 3 mm) manufactured by Nitto Boseki Co., Ltd. were used.
  • ⁇ (C) component fibrous inorganic filler>
  • component (C) raw material wollastonite (NYGLOS 4W (number average fiber length 50 ⁇ m, number average fiber diameter 4.5 ⁇ m)) manufactured by NYCO Minerals was used.
  • Tables 1 to 3 when “Component (C)” is described, wollastonite (NYGLOS 4W (number average fiber length 50 ⁇ m, number average fiber diameter 4.5 ⁇ m)) manufactured by NYCO Minerals was used. Means that.
  • (C) -1 means potassium titanate whiskers (product name: Tismo D, manufactured by Otsuka Chemical Co., Ltd., number average fiber length 15 ⁇ m, number average fiber diameter 0.45 ⁇ m) as the component (C). ) Is used.
  • “(C) -2” in Table 4 means that carbon fiber (product name: TR06NL, manufactured by Mitsubishi Chemical Co., number average fiber length 6 mm, number average fiber diameter 7.0 ⁇ m) was used as the component (C).
  • Means in Table 4 means aluminum borate whiskers (product name: Alpolex Y, manufactured by Shikoku Chemicals Co., Ltd., number average fiber length 20 ⁇ m, number average fiber diameter 0 as component (C). 0.75 ⁇ m) was used.
  • the above components (A), (B) and (C) are mixed at the respective ratios shown in Tables 1 to 4 in advance using a Henschel mixer, and then the same-direction twin-screw extruder manufactured by Ikegai Co., Ltd. ( PCM-30) was melt-kneaded at 330 ° C. to obtain a pellet-shaped liquid crystal polyester resin composition.
  • the mixture mixed in the ratio of Comparative Example 18 could not be pelletized.
  • melt viscosity of the liquid crystal polyester resin composition was measured using a capillary rheometer (“Capirograph 1D” manufactured by Toyo Seiki Co., Ltd.). As the capillary, 1.0 mm ⁇ ⁇ 10 mm was used. 3 hours dried pellets liquid crystal polyester resin composition 20g of were at 120 ° C. Put the cylinder set at 350 ° C., conforming to ISO 11443, the melt viscosity was measured at a shear rate of 1000 s -1, and 12000s -1.
  • Fig. 2 shows a top view of the test piece S used in the weld bending strength test.
  • the test piece S is a molded product obtained by molding a liquid crystal polyester resin composition in pellet form using an injection molding machine (“ROBOSHOTS-2000i 30B” manufactured by FANUC CORPORATION).
  • test piece S The dimensions of the test piece S were L 1 : 35 mm, L 3 , L 4 : 5 mm, L 2 : 25 mm, L 5 : 20 mm, L 6 , L 7 : 5 mm, L 8 : 10 mm. No resin composition is present in the L 2 ⁇ L 6 portion.
  • the thickness of the test piece S is 0.3 mm in the range indicated by L 7 .
  • the thickness in the range indicated by L 8 is 0.5 mm.
  • the range indicated by L 6 is inclined.
  • the test piece S was formed by injecting the resin composition from the position indicated by reference sign G. In the test piece S, a weld line was formed at the position indicated by the symbol W.
  • test piece S1 used for the bending strength test of the weld part and the test piece S2 used for the bending strength test of the non-weld part were cut out.
  • the cut-out parts are the parts enclosed by the dotted lines in FIG.
  • test piece S1 In the production of the test piece S1, the cutting position was adjusted so that the weld line was located at the center of the test piece S1 in the long axis direction.
  • the shape of the test piece S1 was rectangular.
  • the cut-out range was A 10 ⁇ A 9 .
  • the length of the minor axis of the test piece S1 was 5 mm, which was substantially equal to L 7 , and the length of the major axis was 15 mm.
  • test pieces S2 In the preparation of the test pieces S2, when placing the specimen S2 to the place of the test piece S1 shown in FIG. 3 to the support base 42, to adjust the cut out position free of weld lines between the L 40.
  • the shape of the test piece S2 was rectangular.
  • the cut-out range was A 12 ⁇ A 11 .
  • the length of the minor axis of the test piece S2 was substantially equal to L 7 and was 5 mm, and the length of the major axis was 15 mm.
  • test piece S1 was placed on the support base 42 having a fulcrum distance L 40 of 5 mm, and the indenter was moved in the direction indicated by reference numeral 40 at a test speed of 2 mm / min. Force was applied by a three-point bending test.
  • the retention ratio of the bending strength of the non-weld part to the bending strength of the weld part was calculated.
  • FP410 manufactured by Yamato Scientific Co., Ltd.
  • the obtained mixed liquid was ultrasonically dispersed for 5 minutes to prepare a sample liquid in which the fibrous filler contained in the ash residue was uniformly dispersed in the solution.
  • a device name: ULTRA SONIC CLEANER NS200-60 (manufactured by Nippon Seiki Co., Ltd.) was used for ultrasonic dispersion.
  • the ultrasonic intensity was 30 kHz.
  • the obtained sample solution was put into a 5 mL sample cup with a pipette and diluted 5 times with pure water to obtain a sample solution.
  • the particle shape image analyzer (“PITA-3” manufactured by Seishin Enterprise Co., Ltd.) under the following conditions, the obtained sample liquid is passed through the flow cell, and the fibrous fillers that move in the liquid are moved one by one. Imaged. The time when the total number of fibrous fillers accumulated from the start of measurement reached 30,000 was set as the end of measurement.
  • the obtained image is binarized, the circumscribed rectangular major axis of the fibrous filler component in the processed image is measured, and the average value of the values of 30,000 circumscribed rectangular major axes is calculated as the number average of all fibrous filler components.
  • the fiber length was used.
  • the retention rate of the non-weld bending strength with respect to the welding bending strength was 30% or more, and ultra-thin molded products were manufactured. In this case, it was confirmed that the weld strength was high. On the other hand, in Comparative Examples 1 to 18 to which the present invention was not applied, the retention rate was 25% or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Liquid Crystal Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

(A)成分:液晶ポリエステル、(B)成分:ガラス繊維、(C)成分:前記(B)成分とは異なる繊維状無機充填材、を必須成分とし、前記(A)成分100質量部に対する前記(B)成分の配合量が、50質量部以上90質量部以下であり、前記(A)成分100質量部に対する前記(C)成分の配合量が、1質量部以上40質量部以下であって、条件(1)及び条件(2)を満たす、液晶ポリエステル樹脂組成物。

Description

液晶ポリエステル樹脂組成物及び成形品
 本発明は、液晶ポリエステル樹脂組成物及び成形品に関する。
 液晶ポリエステルは、流動性、耐熱性および寸法精度が高い材料であることが知られ、各種の成形品の形成材料として用いられている。成形品を成形する際、通常、液晶ポリエステルは、各種の充填材を含有させた液晶ポリエステル樹脂組成物として用いられている。充填材は、各成形品の要求特性(例えば、機械強度)に応じて選択される。
 液晶ポリエステルを形成材料とする成形品は、電子機器の部品として用いられている電子機器の小型化に伴い、各部品も小型化・薄肉化が進んでいる。例えば、従来1.0mm程度の肉厚を有していた部品が、小型化要求に応じて、0.3mm厚程度にまで薄肉化されることがある。
 このような薄肉の部品は破損しやすい。そのため、部品の薄肉化に際しては、破損が抑制された部品(成形品)、換言すれば機械強度を向上させた成形品が求められる。従来、機械強度を向上させた成形品の形成材料としては、充填材として繊維状充填材を用いた液晶ポリエステル樹脂組成物が知られている(特許文献1)。
 また、例えば特許文献2には、熱可塑性樹脂と、繊維状結晶が凝集してなる凝集粒子とを含む熱可塑性樹脂組成物が記載されている。特許文献2では、熱可塑性樹脂として、液晶高分子が記載されている。
特開平8-231832号公報 特開2010-215905号公報
 部品を薄肉化すると、特に、薄肉部分のウエルド強度が低下しやすくなる。特許文献1に記載の従来の樹脂組成物を用いて得られた薄肉の成形品は、ウエルド強度が低く、改善の余地があった。
 特許文献2に記載の熱可塑性樹脂組成物は、成形体を成形したときのウエルドの発生防止を目的とし、ウエルドラインが観察されない成形体を製造できたことが記載されている。  
 一方で、複雑な形状の成形品や、薄肉の成形品を製造しようとする場合には、ウエルドの発生を完全に防止することが困難な場合がある。特許文献2に記載の技術においては、ウエルド強度向上の観点から十分に改良の余地があった。
 本発明は従来よりも薄肉におけるウエルド強度が高い成形品を製造可能な液晶ポリエステル樹脂組成物を提供することを目的とする。
 本実施形態に係る液晶ポリエステル樹脂組成物は、(A)成分:液晶ポリエステル、(B)成分:ガラス繊維、(C)成分:前記(B)成分とは異なる繊維状無機充填材、を必須成分とし、前記(A)成分100質量部に対する前記(B)成分の配合量が、50質量部以上90質量部以下であり、前記(A)成分100質量部に対する前記(C)成分の配合量が、1質量部以上40質量部以下であって、下記条件(1)及び条件(2)を満たす液晶ポリエステル樹脂組成物である。
 条件(1):流動開始温度から+20℃以上30℃以下の温度範囲に含まれる任意の測定温度において、ISO 11443に準拠し、せん断速度1000sec-1の条件下で測定した溶融粘度が、40Pa・s以上70Pa・s以下である。
 条件(2):前記測定温度において、ISO 11443に準拠し、せん断速度12000sec-1の条件下で測定した溶融粘度が、0.1Pa・s以上10Pa・s以下である。
 本実施形態に係る液晶ポリエステル樹脂組成物は、好ましくは、前記条件(1)により測定される溶融粘度と、前記条件(2)により測定される溶融粘度の比((1)/(2))が、5.0を超える液晶ポリエステル樹脂組成物である。
 本実施形態に係る液晶ポリエステル樹脂組成物は、好ましくは、前記(B)成分及び前記(C)成分を合わせた全繊維状充填材の数平均繊維長が40μm以上80μm以下である、液晶ポリエステル樹脂組成物である。
 本実施形態において好ましくは、条件(1)における流動開始温度は320℃以上330℃以下であって、測定温度は350℃である。
 本実施形態に係る液晶ポリエステル樹脂組成物は、好ましくは、(C)成分がワラストナイトである、液晶ポリエステル樹脂組成物である。
 本実施形態に係る成形品は、上述の液晶ポリエステル樹脂組成物を形成材料とする成形品である。
 さらに、本発明は以下の態様を含む。
 本実施形態に係る液晶ポリエステル樹脂組成物は、(A)成分:液晶ポリエステル、(B)成分:ガラス繊維、(C)成分:前記(B)成分とは異なる繊維状無機充填材、を必須成分とし、前記(A)成分100質量部に対する前記(B)成分の配合量が、50質量部以上90質量部以下であり、前記(A)成分100質量部に対する前記(C)成分の配合量が、1質量部以上40質量部以下であって、下記条件(1)及び条件(2)を満たす液晶ポリエステル樹脂組成物である。
 条件(1):流動開始温度から+20℃以上30℃以下の温度範囲に含まれる任意の測定温度において、ISO 11443に準拠し、せん断速度1000s-1の条件下で測定した溶融粘度が、40Pa・s以上70Pa・s以下である。
 条件(2):前記測定温度において、ISO 11443に準拠し、せん断速度12000s-1の条件下で測定した溶融粘度が、0.1Pa・s以上10Pa・s以下である。
 本発明によれば、従来よりも薄肉化され、ウエルド強度が高い成形品を製造可能な液晶ポリエステル樹脂組成物、および、従来よりも薄肉化され、ウエルド強度が高い成形品を提供することができる。
本発明を適用した場合の、樹脂の流動状態を説明するための模式図である。 実施例において製造した成形品の上面図である。 ウエルド強度試験の試験方法を説明するための模式図である。
<液晶ポリエステル樹脂組成物>
 本実施形態の液晶ポリエステル樹脂組成物は、下記(A)成分、(B)成分及び(C)成分を含有する。以降、「液晶ポリエステル樹脂組成物」を「樹脂組成物」と省略して記載する場合がある。
(A)成分:液晶ポリエステル。
(B)成分:ガラス繊維。
(C)成分:(B)成分とは異なる繊維状無機充填材。 
 本実施形態において、「液晶ポリエステル樹脂組成物」は通常、(A)成分、(B)成分原料、(C)成分原料、及び必要に応じて用いられる他の成分を溶融混練して製造した樹脂組成物を意味する。本実施形態の液晶ポリエステル樹脂組成物としては、例えばペレット状の液晶ポリエステル樹脂組成物が挙げられる。
 以下、本実施形態の液晶ポリエステル樹脂組成物を構成する各成分について説明する。
≪液晶ポリエステル:(A)成分≫
 液晶ポリエステル樹脂組成物に含まれる液晶ポリエステルは、溶融状態で液晶性を示すポリエステルであり、450℃以下の温度で溶融する性質を有することが好ましい。なお、液晶ポリエステルは、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。液晶ポリエステルは、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリエステルであることが好ましい。
 液晶ポリエステルの典型的な例としては、以下が挙げられる。
 1)(i)芳香族ヒドロキシカルボン酸と、(ii)芳香族ジカルボン酸と、(iii)芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合(重縮合)させて得られる重合体。
 2)複数種の芳香族ヒドロキシカルボン酸を重合させて得られる重合体。
 3)(i)芳香族ジカルボン酸と、(ii)芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合させて得られる重合体。
 4)(i)ポリエチレンテレフタレート等のポリエステルと、(ii)芳香族ヒドロキシカルボン酸と、を重合させて得られる重合体。
 ここで、液晶ポリエステルの原料モノマーである芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミンおよび芳香族ジアミンは、それぞれ独立に、その一部または全部に代えて、その重合可能な誘導体が用いられてもよい。
 芳香族ヒドロキシカルボン酸および芳香族ジカルボン酸のようなカルボキシ基を有する化合物の重合可能な誘導体の例としては、
(a)カルボキシ基をアルコキシカルボニル基またはアリールオキシカルボニル基に変換して得られるエステル、
(b)カルボキシ基をハロホルミル基に変換して得られる酸ハロゲン化物、および
(c)カルボキシ基をアシルオキシカルボニル基に変換して得られる酸無水物、が挙げられる。
 芳香族ヒドロキシカルボン酸、芳香族ジオールおよび芳香族ヒドロキシアミンのようなヒドロキシ基を有する化合物の重合可能な誘導体の例としては、ヒドロキシ基をアシル化してアシルオキシル基に変換して得られるアシル化物が挙げられる。
 芳香族ヒドロキシアミンおよび芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換して得られるアシル化物が挙げられる。
 液晶ポリエステルは、下記式(1)で表される繰返し単位を有することが好ましく、繰返し単位(1)と、下記式(2)で表される繰返し単位と、下記式(3)で表される繰返し単位とを有することがより好ましい。
 以下、下記式(1)で表される繰返し単位を「繰返し単位(1)」ということがある。
 また、下記式(2)で表される繰返し単位を「繰返し単位(2)」ということがある。
 また、下記式(3)で表される繰返し単位を「繰返し単位(3)」ということがある。
(1)-O-Ar-CO-
(2)-CO-Ar-CO-
(3)-X-Ar-Y-
(Arは、フェニレン基、ナフチレン基またはビフェニリレン基を表す。
 ArおよびArは、それぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基または下記式(4)で表される基を表す。
 XおよびYは、それぞれ独立に、酸素原子またはイミノ基(-NH-)を表す。
 Ar、ArまたはArで表される前記基にある水素原子は、それぞれ独立に、ハロゲン原子、アルキル基またはアリール基で置換されていてもよい。)
(4)-Ar-Z-Ar
(ArおよびArは、それぞれ独立に、フェニレン基またはナフチレン基を表す。
 Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基またはアルキリデン基を表す。)
 Ar、ArまたはArで表される基に含まれる水素原子を置換可能なハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられる。
 Ar、ArまたはArで表される基に含まれる水素原子を置換可能なアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基およびn-デシル基が挙げられる。アルキル基の炭素数は、通常1~10である。
 Ar、ArまたはArで表される基に含まれる水素原子を置換可能なアリール基の例としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基および2-ナフチル基が挙げられる。アリール基の炭素数は、通常6~20である。
 Ar、ArまたはArで表される基に含まれる水素原子がハロゲン原子、アルキル基またはアリール基で置換されている場合、ハロゲン原子、アルキル基またはアリール基の数は、Ar、ArまたはArで表される前記基毎に、それぞれ独立に、通常2個以下であり、好ましくは1個以下である。
 Zで表されるアルキリデン基の例としては、メチレン基、エチリデン基、イソプロピリデン基、n-ブチリデン基および2-エチルヘキシリデン基が挙げられる。アルキリデン基の炭素数は通常1~10である。
 繰返し単位(1)は、芳香族ヒドロキシカルボン酸に由来する繰返し単位である。
 繰返し単位(1)としては、Arがp-フェニレン基である繰返し単位が好ましい。
Arがp-フェニレン基である繰返し単位は、p-ヒドロキシ安息香酸に由来する繰返し単位である。
 繰り返し単位(1)のその他の例としては、Arが2,6-ナフチレン基である繰り返し単位が挙げられる。Arが2,6-ナフチレン基である繰り返し単位は、6-ヒドロキシ-2-ナフトエ酸に由来する繰り返し単位である。
 なお、本明細書において「由来」とは、原料モノマーが重合するために、重合に寄与する官能基の化学構造が変化し、その他の構造変化を生じないことを意味する。
 繰返し単位(2)は、芳香族ジカルボン酸に由来する繰返し単位である。繰返し単位(2)としては、Arがp-フェニレン基である繰返し単位、Arがm-フェニレン基である繰返し単位、Arが2,6-ナフチレン基である繰返し単位、およびArがジフェニルエ-テル-4,4’-ジイル基である繰返し単位が好ましい。
 Arがp-フェニレン基である繰返し単位は、テレフタル酸に由来する繰返し単位である。
 Arがm-フェニレン基である繰返し単位は、イソフタル酸に由来する繰返し単位である。
 Arが2,6-ナフチレン基である繰返し単位は、2,6-ナフタレンジカルボン酸に由来する繰返し単位である。
 Arがジフェニルエ-テル-4,4’-ジイル基である繰返し単位は、ジフェニルエ-テル-4,4’-ジカルボン酸に由来する繰返し単位である。
 繰返し単位(3)は、芳香族ジオール、芳香族ヒドロキシルアミンまたは芳香族ジアミンに由来する繰返し単位である。繰返し単位(3)としては、Arがp-フェニレン基である繰返し単位、およびArが4,4’-ビフェニリレン基である繰返し単位が好ましい。
 Arがp-フェニレン基である繰返し単位は、ヒドロキノン、p-アミノフェノールまたはp-フェニレンジアミンに由来する繰返し単位である。
 Arが4,4’-ビフェニリレン基である繰返し単位は、4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニルまたは4,4’-ジアミノビフェニルに由来する繰返し単位である。
 繰返し単位(1)の含有量は、全繰返し単位の合計量に対して、通常30モル%以上、好ましくは30~80モル%、より好ましくは40~70モル%、さらに好ましくは45~65モル%である。
 なお、本明細書において、「全繰返し単位の合計量」とは、液晶ポリエステルを構成する各繰返し単位の質量を各繰返し単位の式量で割ることにより、各繰返し単位の物質量相当量(モル)を求め、得られた物質量相当量を合計した値を指す。
 繰返し単位(2)の含有量は、全繰返し単位の合計量に対して、通常35モル%以下、好ましくは10モル%以上35モル%、より好ましくは15モル%以上30モル%以下、さらに好ましくは17.5モル%以上27.5モル%以下である。
 繰返し単位(3)の含有量は、全繰返し単位の合計量に対して、通常35モル%以下、好ましくは10モル%以上35モル%以下、より好ましくは15モル%以上30モル%以下、さらに好ましくは17.5モル%以上27.5モル%以下である。
 繰返し単位(1)の含有量が多いほど、溶融流動性や耐熱性や強度・剛性が向上し易いが、あまり多いと、溶融温度や溶融粘度が高くなり易く、成形に必要な温度が高くなり易い。
 繰返し単位(2)の含有量と繰返し単位(3)の含有量との割合は、[繰返し単位(2)の含有量]/[繰返し単位(3)の含有量](モル/モル)で表して、通常0.9/1~1/0.9、好ましくは0.95/1~1/0.95、より好ましくは0.98/1~1/0.98である。
 なお、液晶ポリエステルは、繰返し単位(1)~(3)を、それぞれ独立に、2種以上有してもよい。また、液晶ポリエステルは、繰返し単位(1)~(3)以外の繰返し単位を有してもよいが、その含有量は、全繰返し単位の合計量に対して、通常10モル%以下、好ましくは5モル%以下である。
 液晶ポリエステルは、繰返し単位(3)として、XおよびYがそれぞれ酸素原子である繰返し単位を有すること、すなわち、芳香族ジオールに由来する繰返し単位を有することが好ましく、XおよびYがそれぞれ酸素原子である繰返し単位のみを有するとより好ましい。
 液晶ポリエステルが芳香族ジオールに由来する繰返し単位を有すると、液晶ポリエステルの溶融粘度が低くなり易いため好ましい。
 液晶ポリエステルは、流動開始温度が、通常270℃以上、好ましくは270℃以上400℃以下であり、より好ましくは280℃以上380℃以下であり、290℃以上350℃以下が特に好ましく、320℃以上330℃以下が殊更好ましい。流動開始温度が高いほど強度が向上し易い。
 なお、流動開始温度は、フロー温度または流動温度とも呼ばれる。液晶ポリエステルの流動開始温度は、レオメーターを用いて、9.8MPaの荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、内径1mmおよび長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示す温度である。液晶ポリエステルの流動開始温度は、液晶ポリエステルの分子量の目安となる(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。
 本実施形態で用いられる液晶ポリエステルは、公知の重縮合法や開環重合法などにより製造することができる。本実施形態で用いられる液晶ポリエステルは、構成する繰り返し単位に対応する原料モノマーを溶融重合させ、得られた重合物を固相重合することにより製造することができる。これにより、強度が高い高分子量の液晶ポリエステルを操作性良く製造することができる。
 溶融重合は、触媒の存在下に行ってもよい。この触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモンなどの金属化合物や、4-(ジメチルアミノ)ピリジン、1-メチルイミダゾールなどの含窒素複素環式化合物が挙げられる。なかでも、含窒素複素環式化合物が好ましく用いられる。
≪ガラス繊維:(B)成分≫
 本実施形態の樹脂組成物は、(B)成分を含む。(B)成分は、ガラス繊維である。(B)成分は、(B)成分原料と他の成分とを溶融混練して、樹脂組成物中に存在させることができる。かかる溶融混練の際には、(B)成分原料が破断することが知られている。
換言すれば(B)成分原料は溶融混練に用いる成分である。(B)成分原料の繊維径は、溶融混練の前後で実質的に変化しない。以下、(B)成分原料について説明する。
 (B)成分原料としては、例えば、長繊維タイプのチョップドガラス繊維、短繊維タイプのミルドガラス繊維が挙げられる。(B)成分原料の製造方法は特に限定されず、公知の方法が使用できる。本実施形態においては、(B)成分原料はチョップドガラス繊維が好ましい。(B)成分原料は、1種を単独で使用してもよく、2種以上を併用して使用することもできる。
 (B)成分原料の種類としては、E-ガラス、A-ガラス、C-ガラス、D-ガラス、AR-ガラス、R-ガラス、Sガラスまたはこれらの混合物などが挙げられる。中でもE-ガラスは強度に優れ、かつ入手がしやすいため、好ましく用いられる。
 (B)成分原料としては、酸化ケイ素の含有量が(B)成分原料の総質量に対して50質量%以上80質量%以下のガラス繊維、または52質量%以上60質量%以下のガラス繊維であってよい。
 (B)成分原料は、必要に応じてシラン系カップリング剤またはチタン系カップリング剤などのカップリング剤で処理されたガラス繊維であってもよい。
 (B)成分原料は、集束剤で処理されたガラス繊維であってもよい。集束剤としてはウレタン樹脂、アクリル樹脂、エチレン/酢酸ビニル共重合体などの熱可塑性樹脂や、エポキシ樹脂などの熱硬化性樹脂などが挙げられる。
 (B)成分原料の数平均繊維長は、20μm以上6000μm以下であることが好ましい。(B)成分原料の数平均繊維長は、1000μm以上であることがより好ましく、2000μm以上であることがさらに好ましい。(B)成分原料の数平均繊維長は、5000μm以下であることがより好ましく、4500μm以下であることがさらに好ましい。
上記上限値及び下限値は任意に組み合わせることができる。組み合わせの例としては、1000μm以上5000μm以下、2000μm以上4500μm以下が挙げられる。
 (B)成分原料の数平均繊維長が上記下限値以上である場合、得られる成形品を十分に補強することができる。また、(B)成分の数平均繊維長が上記上限値以下である場合、製造時の(B)成分原料の取り扱いが容易となる。
 (B)成分原料の単繊維径は、5μm以上17μm以下であることが好ましい。(B)成分原料の単繊維径が5μm以上である場合、得られる成形品を十分に補強することができる。また、(B)成分原料の繊維径が17μm以下である場合、液晶ポリエステル樹脂組成物の溶融流動性を高めることができる。ここで、「単繊維径」とは、(B)成分原料の単繊維の繊維直径を意味する。
((B)成分原料の数平均繊維長および単繊維径の測定方法)
 本明細書において「(B)成分原料の数平均繊維長」とは、特に断りのない限り、JIS R3420「7.8 チョップドストランドの長さ」に記載の方法で測定された値を意味する。
 また、本明細書において「(B)成分原料の単繊維径」とは、特に断りのない限り、JIS R3420「7.6 単繊維直径」に記載の方法のうち、「A法」で測定された値を意味する。
 本実施形態においては、(A)成分100質量部に対する(B)成分の配合量が、50質量部以上90質量部以下であり、好ましくは70質量分以上90質量部以下である。本実施形態においては、(B)成分の配合量が上記範囲内であることにより、超薄肉の成形品を製造した場合にも、非ウエルド部に比したウエルド部の強度の低下を抑制することができる。本実施形態においては、(B)成分の配合量を多くすると、非ウエルド部の強度を向上させることができる。
 ここで、超薄肉とは、0.5mm以下、好ましくは0.3mm以下の肉厚を意味する。
≪(B)成分とは異なる繊維状無機充填材:(C)成分≫
 (C)成分は、前記(B)成分とは異なる繊維状充填剤である。(C)成分は、(C)成分原料と他の成分とを溶融混練して、樹脂組成物中に存在させることができる。かかる溶融混練の際には、(C)成分原料が変形することが知られている。変形の例としては破断が挙げられる。換言すれば(C)成分原料は溶融混練に用いる成分である。(C)成分原料の繊維径は、溶融混練の前後で実質的に変化しない。以下、(C)成分原料について説明する。
 (C)成分原料としては、前記(B)成分原料と、数平均繊維長が異なる繊維状無機充填材であることが好ましい。(B)成分原料と、(C)成分原料との数平均繊維長の差が5μm以上であることが好ましい。
 本実施形態においては、(B)成分原料の方が(C)成分原料よりも数平均繊維長が長くてもよく、(C)成分原料の方が(B)成分原料よりも数平均繊維長が長くてもよい。
本実施形態に用いる(C)成分原料は、(B)成分原料よりも数平均繊維長が短い繊維状無機充填材であることが好ましい。
 本実施形態において、(C)成分原料としては、炭素繊維、シリカ繊維、アルミナ繊維、シリカアルミナ繊維等のセラミック繊維、ステンレス繊維等の金属繊維、ウイスカー等が挙げられる。これらの中でも炭素繊維又はウイスカーが好ましい。
炭素繊維の市販品としては、東レ株式会社製「トレカ(登録商標)」、三菱ケミカル株式会社製「パイロフィル(登録商標)」、「ダイアリード(登録商標)」、帝人株式会社製「テナックス(登録商標)」、日本グラファイトファイバー株式会社製「GRANOC(登録商標)」、大阪ガスケミカル株式会社製「ドナカーボ(登録商標)」、クレハ株式会社製「クレカ(登録商標)」が挙げられる。
 ウイスカーとしては、チタン酸カリウムウイスカー、チタン酸バリウムウイスカー、ホウ酸アルミニウムウイスカー、窒化ケイ素ウイスカー、ケイ酸カルシウムウィスカー等が挙げられる。
 ケイ酸カルシウムウイスカーとしては、ワラストナイト、ゾノトライト、トバモライト,ジャイロライトが挙げられる。
 本実施形態においては、(C)成分原料はワラストナイト、チタン酸カリウムウイスカー又はホウ酸アルミニウムウイスカーであることが好ましく、中でも入手のしやすさや経済性の観点からワラストナイトがより好ましい。
チタン酸カリウムウイスカーの市販品としては、大塚化学社製の「ティスモD」、「ティスモN」が挙げられる。
ホウ酸アルミニウムウイスカーの市販品としては、四国化成工業社製の「アルボレックスG」「アルボレックスY」が挙げられる。
 本実施形態に用いるワラストナイトは、繊維状ワラストナイトであってもよく、粒状ワラストナイトであってもよい。繊維状ワラストナイトとは、アスペクト比が3以上であるワラストナイトである。粒状ワラストナイトとは、アスペクト比が3未満のワラストナイトである。ここでアスペクト比とは、「(C)成分原料の数平均繊維長/(C)成分原料の数平均繊維径」である。
 本実施形態においては、繊維状のワラストナイトが好ましく、アスペクト比は3以上20以下がより好ましく、5以上15以下がさらに好ましく、10以上13以下が特に好ましい。アスペクト比がこのような範囲である繊維状ワラストナイトを用いると、薄肉の成形品のウエルド強度が向上する。
 ワラストナイトとしては、特に限定されず、例えば、公知のワラストナイトを用いることができる。ワラストナイトは、1種単独で使用してもよく、アスペクト比、(C)成分原料の数平均繊維長、(C)成分原料の数平均繊維径等が異なる2種以上を組み合わせて使用してもよい。
(C)成分原料の数平均繊維長は1μm以上が好ましく、3μm以上がより好ましく、5μm以上が特に好ましく、10μm以上が殊更好ましい。また、10000μm以下が好ましく、500μm以下がより好ましく、300μm以下が更に好ましく、150μm以下がより更に好ましく、60μm以下が殊更好ましい。
 上記上限値及び下限値は任意に組み合わせることができる。
組み合わせの例としては、1μm以上10000μm以下、3μm以上500μm以下、5μm以上300μm以下、10μm以上150μm以下、10μm以上60μm以下が挙げられる。
 (C)成分原料の数平均繊維径は0.4μm以上が好ましく、0.7μm以上がより好ましく、1μm以上が更に好ましく、3μm以上がより更に好ましく、4μm以上が殊更好ましい。また、50μm以下が好ましく、10μm以下がより好ましく、8μm以下が更に好ましく、5μm以下が殊更好ましい。。
 上記上限値及び下限値は任意に組み合わせることができる。
組み合わせの例としては、0.4μm以上50μm以下、0.4μm以上10μm以下、0.4μm以上8μm以下、0.7μm以上8μm以下が挙げられる。
・(C)成分原料の数平均繊維長と数平均繊維径の測定方法
 (C)成分原料の数平均繊維長と数平均繊維径は、顕微鏡を用いて(C)成分原料の長さおよび径を100本観察し、平均値を算出することによって求められる。
 本実施形態においては、(A)成分100質量部に対する(C)成分の配合量が、1質量部以上40質量部以下である。(C)成分の配合量が上記範囲であることにより、超薄肉の成形品を製造した場合にも、ウエルド強度を向上させることができる。(C)成分の当該配合量は、好ましくは5質量部以上40質量部以下である。
 本実施形態においては、前記(B)成分及び前記(C)成分を合わせた全繊維状充填材の数平均繊維長は、数平均繊維長が40μm以上80μm以下であることが好ましく、45μm以上79μm以下がより好ましく、48μm以上78μm以下が特に好ましい。
 ここで、「前記(B)成分及び前記(C)成分を合わせた全繊維状充填材の数平均繊維長」とは、溶融混練後の液晶ポリエステル樹脂組成物、又は液晶ポリエステル樹脂組成物を成形した成形品に含まれる全繊維状充填材の数平均繊維長を意味する。
 前記(B)成分及び前記(C)成分を合わせた全繊維状充填材の数平均繊維長が上記の範囲であると、超薄肉の成形品を製造した場合にも機械強度を維持できる。
(全繊維状充填材の数平均繊維長の測定方法)
 全繊維状充填材の測定方法について説明する。
まず、本実施形態の液晶ポリエステル樹脂組成物5gをマッフル炉(ヤマト科学株式会社製、「FP410」)にて空気雰囲気下において600℃で4時間加熱して樹脂を除去し、繊維状充填材を含む灰化残渣を得る。
 灰化残渣0.3gを50mLの純水に投入し、分散性を良くするために界面活性剤(例えば、0.5体積%のmicro-90(シグマ アルドリッチ ジャパン合同会社製)水溶液)を加え、混合液を得る。
得られた混合液は5分間超音波分散させて、灰化残渣に含まれる繊維状充填材を溶液中に均一に分散させた試料液を得る。超音波分散には、機器名:ULTRA SONIC CLEANER NS200-60(株式会社日本精機製作所製)等が使用できる。超音波強度は、例えば30kHzで実施すればよい。 
 次に、得られた試料液を5mL採取し、サンプルカップに入れ、純水にて5倍に希釈し、サンプル液を得る。下記条件下で粒子形状画像解析装置(株式会社セイシン企業製の「PITA-3」)を用い、得られたサンプル液をフローセルに通過させて、液中を移動する繊維状充填材を1個ずつ撮像する。なお、この測定方法においては、測定開始時点から積算した全繊維状充填材の個数が30000個に達した時点を測定終了時点とする。
[条件]
 測定個数:30000個
 分散溶媒:水
 分散条件:キャリア液1およびキャリア液2としてmicro-90の0.5体積%水溶液を用いる。
 サンプル液速度:4.17μL/秒
 キャリア液1速度:500μL/秒
 キャリア液2速度:500.33μL/秒
 観察倍率:対物10倍
 調光フィルタ::拡散PL
 得られた画像を二値化処理し、処理後の画像における繊維状充填材の外接矩形長径を測定し30000個の外接矩形長径の値の平均値を、全繊維状充填材の数平均繊維長とする。
≪任意成分≫
 本実施形態の液晶ポリエステル樹脂組成物は、任意成分として計量安定剤、離型剤、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤、界面活性剤、難燃剤及び着色剤等の添加剤を含んでいてもよい。
 本実施形態の液晶ポリエステル樹脂組成物は、(A)成分、(B)成分原料、(C)成分原料、および必要に応じて用いられる他の成分を、押出機を用いて溶融混練して、ペレット化することができる。
 本実施形態の液晶ポリエステル樹脂組成物は、下記条件(1)及び(2)を満たす。
 条件(1):流動開始温度から+20℃以上30℃以下の温度範囲に含まれる任意の測定温度において、ISO 11443に準拠し、せん断速度1000s-1の条件下で測定した溶融粘度は40Pa・s以上70Pa・s以下であり、45Pa・s以上70Pa・s以下が好ましく、50Pa・s以上70Pa・s以下がより好ましく、60Pa・s以上70Pa・s以下が特に好ましい。
 条件(2):前記測定温度において、ISO 11443に準拠し、せん断速度12000s-1の条件下で測定した溶融粘度が、0.1Pa・s以上10Pa・s以下であり、1Pa・s以上10Pa・s以下が好ましく、5Pa・s以上10Pa・s以下がより好ましく、7Pa・s以上10Pa・s以下が特に好ましい。
 本実施形態の液晶ポリエステル樹脂組成物は、液晶ポリエステル(A)、ガラス繊維(B)、および、前記(B)成分とは異なる繊維状無機充填剤(C)の種類と量を適宜選定して用いることにより、溶融粘度のせん断速度依存性を高めた組成物として得ることができる。
 本実施形態において好ましくは、前記流動開始温度は320℃以上330℃以下であって、前記測定温度は350℃である。溶融粘度を測定する場合には、本実施形態の樹脂組成物を、120℃で3時間以上乾燥させたのちに測定することが好ましい。
 図1(A)に、従来の樹脂組成物を溶融させた溶融樹脂1の先端の模式図を示す。符号21~26に示す矢印は、溶融樹脂を示す。また、各矢印の長さは、溶融樹脂の流速を示す。金型内壁側の溶融樹脂21及び溶融樹脂22は、金型内側を流れる溶融樹脂23及び溶融樹脂24よりも遅く、先端20に対応する位置を流れる溶融樹脂25及び溶融樹脂26が最も速い。溶融樹脂の流速にこのような差が生じることにより、溶融樹脂の先端20は凸形状となる。
 図1(B)に、本実施形態の樹脂組成物を溶融させた溶融樹脂30Aの先端の模式図を示す。符号31~36に示す矢印は、溶融樹脂を示す。本実施形態の樹脂組成物は、溶融粘度のせん断速度依存性が高いため、図1(A)の従来の樹脂組成物よりも、金型内壁側と金型内側との溶融樹脂の流速の差が大きく、溶融樹脂の先端の凸形状がより鋭くなっていると考えられる。
 そして、より鋭い凸形状の先端同士が衝突すると、溶融樹脂はその先端同士が相互に入り込んで界面が乱れると推察される。界面が乱れることにより、溶融樹脂の先端同士の接触面積が増加する。これにより、ウエルド強度が向上すると考えられる。
 本実施形態においては、条件(1)により測定される溶融粘度と、条件(2)により測定される溶融粘度の比((1)/(2))は、5.0を超えることが好ましく、5.1以上がより好ましく、5.2以上がさらに好ましい。上限値に関しては、通常は50であり、20であることが好ましく、18であることがより好ましく、17が殊更好ましい。溶融粘度の比がこの範囲にあると、金型内壁側付近を流れる溶融樹脂と、金型内側付近を流れる溶融樹脂とで流速の差を拡大できると考えられる。
 比((1)/(2))の上限値及び下限値は、任意に組み合わせることができる。組み合わせの例としては、5.0を超え50以下、5.1以上20以下、5.2以上18以下が挙げられる。
<成形品>
 本実施形態の成形品は通常、電気・電子機器における筐体内装部品等として用いられる射出成形品である。電気・電子機器としては、カメラ、パソコン、携帯電話、スマートフォン、タブレット、プリンター、プロジェクターなどが挙げられる。このような電気・電子機器における筐体内装部品としては、コネクタ、カメラモジュール、送風ファンまたはプリンター向けの定着部品が挙げられる。
 本実施形態の成形品は、厚みが0.3mm以下の超薄肉部を有する成形品であることが好ましい。成形品の厚さとは、成形品の一面から他面までの厚さを意味する。
 以下、実施例により本発明の効果を更に詳細に説明する。液晶ポリエステルの分析および特性評価は以下に記載される方法により行った。
<(A)成分:液晶ポリエステル(LCP)の製造> 
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応機に、4-ヒドロキシ安息香酸994.5g(7.2モル)、テレフタル酸272.1g(1.64モル)、イソフタル酸126.6g(0.76モル)、4,4’-ジヒドロキシビフェニル446.9g(2.4モル)及び無水酢酸1347.6g(13.2モル)を仕込み、触媒として1-メチルイミダゾールを0.2g添加し、反応器内を十分に窒素ガスで置換した。
 その後、窒素ガス気流下で攪拌しながら、室温から150℃まで30分かけて昇温し、同温度を保持して30分間還流させた。
 次いで、1-メチルイミダゾール2.4gを加え、副生酢酸と未反応の無水酢酸を留去しながら、150℃から320℃まで2時間50分かけて昇温し、320℃で30分保持した後、内容物を取り出し、これを室温まで冷却した。
 得られた固形物を、粉砕機で粒径0.1mm以上1mm以下に粉砕後、窒素雰囲気下、室温から250℃まで1時間かけて昇温し、250℃から295℃まで5時間かけて昇温し、295℃で3時間保持することにより、固相重合を行った。固相重合後、冷却して、粉末状の液晶ポリエステル(LCP)を得た。得られた液晶ポリエステルの流動開始温度は312℃であった。
<(B)成分:ガラス繊維>
 (B)成分原料として、日東紡績株式会社製のチョップドガラス繊維(CS 3J-260S(単繊維径11μm、数平均繊維長3mm))を使用した。
<(C)成分:繊維状無機充填材>
 (C)成分原料として、NYCO Minerals社製のワラストナイト(NYGLOS 4W(数平均繊維長50μm、数平均繊維径4.5μm))を使用した。表1~表3中、「(C)成分」と記載した場合には、NYCO Minerals社製のワラストナイト(NYGLOS 4W(数平均繊維長50μm、数平均繊維径4.5μm))を使用したことを意味する。
表4中の、「(C)-1」は、(C)成分として、チタン酸カリウムウイスカー(製品名:ティスモD、大塚化学株式会社製、数平均繊維長15μm、数平均繊維径0.45μm)を使用したことを意味する。
表4中の、「(C)-2」は、(C)成分として、炭素繊維(製品名:TR06NL、三菱ケミカル社製、数平均繊維長6mm、数平均繊維径7.0μm)を使用したことを意味する。
表4中の、「(C)-3」は、(C)成分として、ホウ酸アルミニウムウイスカー(製品名:アルポレックスY、四国化成工業株式会社製、数平均繊維長20μm、数平均繊維径0.75μm)を使用したことを意味する。
 上記(A)成分、(B)成分原料、(C)成分原料を表1~4に示す各割合で、あらかじめヘンシェルミキサーを用いて混合した後、株式会社池貝製の同方向2軸押出機(PCM-30)を用いて、330℃で溶融混練し、ペレット状の液晶ポリエステル樹脂組成物を得た。なお、比較例18の割合で混合した混合物はペレット状に造粒することができなかった。
<液晶ポリエステル樹脂組成物の流動開始温度の測定方法>
 フローテスター(株式会社島津製作所「CFT-500型」)を用いて、120℃で3時間乾燥させた後の液晶ポリエステル樹脂組成物ペレット約2gを、内径1mm及び長さ10mmのノズルを有するダイを取り付けたシリンダーに充填し、9.8MPaの荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、ノズルから押し出し、4800Pa・s(48000ポイズ)の粘度を示す温度を測定した。
<溶融粘度の測定>
 液晶ポリエステル樹脂組成物の溶融粘度測定は、キャピラリーレオメーター(東洋精機株式会社製「キャピログラフ1D」)を用いた。キャピラリーは1.0mmΦ×10mmを用いた。120℃で3時間乾燥させたペレット状の液晶ポリエステル樹脂組成物20gを350℃に設定したシリンダーに入れ、ISO 11443に準拠し、せん断速度1000s-1、および12000s-1における溶融粘度を測定した。
<ウエルド曲げ強度の測定>
・試験片
 図2にウエルド曲げ強度試験に用いた試験片Sの上面図を示す。試験片Sはペレット状の液晶ポリエステル樹脂組成物を射出成形機(ファナック株式会社製「ROBOSHOTS-2000i 30B」)を用いて成形した成形品である。
・・試験片S
 試験片Sの寸法は、L:35mm、L、L:5mm、L:25mm、L:20mm、L、L:5mm、L:10mmとした。L×Lの部分には樹脂組成物は存在しない。試験片Sの厚みはLに示す範囲の厚みが0.3mmである。Lに示す範囲の厚みが0.5mmである。Lに示す範囲は傾斜状となっている。
 試験片Sは符号Gに示す位置から樹脂組成物を注入して形成した。試験片Sは、符号Wに示す位置にウエルドラインが形成されていた。
 試験片Sから、ウエルド部の曲げ強度試験に使用する試験片S1、非ウエルド部の曲げ強度試験に使用する試験片S2を、それぞれ切り出した。切り出し部位は、図2の点線でそれぞれ囲まれる部位である。
・・試験片S1
 試験片S1の作製においては、試験片S1の長軸方向の中央にウエルドラインが位置するように切り出し位置を調整した。試験片S1の形状は長方形とした。
 切り出し範囲は、A10×Aとした。試験片S1の短軸の長さは、実質的にLと等しく5mmであり、長軸の長さは15mmとした。
・・試験片S2
 試験片S2の作製においては、図3に示す試験片S1の代わりに試験片S2を支持台42に載置したとき、L40の間にウエルドラインを含まないように切り出し位置を調整した。試験片S2の形状は長方形とした。
 切り出し範囲は、A12×A11とした。試験片S2の短軸の長さは、実質的にLと等しく5mmであり、長軸の長さは15mmとした。
・曲げ強度試験
 図3を用い、曲げ強度試験の試験方法を説明する。ウエルド曲げ強度試験は、下記の使用機器を用い、支点間距離L40が5mmである支持台42に試験片S1を載置し、圧子を符号40に示す方向に試験速度2mm/minで移動させて力をかけ、3点曲げ試験により実施した。圧子は先端半径R=0.5mmであり、測定時にウエルド部へ荷重がかかるように圧子とウエルド部が重なるように試験片S1を配置した。非ウエルド部の曲げ強度試験は、試験片S2について上記と同一条件で3点曲げ試験を行った。
(使用機器)
 精密荷重測定器MODEL-1605 II VL、アイコーエンジニアリング株式会社製。
 ウエルド部の曲げ強度に対する、非ウエルド部の曲げ強度の保持率を算出した。例えば実施例1では、保持率は下記のように計算した。
 保持率(%)=50/155 ×100
       =32%
 以降の実施例及び比較例についても同様に計算した。
<全繊維状充填材の数平均繊維長の測定方法>
 液晶ポリエステル樹脂組成物ペレット5gをマッフル炉(ヤマト科学株式会社製、「FP410」)にて空気雰囲気下において600℃で4時間加熱して樹脂を除去し、繊維状充填材を含む灰化残渣を得た。灰化残渣0.3gを50mLの純水に投入し、界面活性剤として、0.5体積%のmicro-90(シグマ アルドリッチ ジャパン合同会社製)水溶液を加え、混合液を得た。得られた混合液は5分間、超音波分散させて、灰化残渣に含まれる繊維状充填剤が溶液中に均一に分散した試料液を調製した。超音波分散には、機器名:ULTRA SONIC CLEANER NS200-60(株式会社日本精機製作所製)を用いた。超音波強度は30kHzとした。
 次に、得られた試料液を、ピペットで5mLサンプルカップに入れ、純水にて5倍に希釈し、サンプル液を得た。下記条件下で粒子形状画像解析装置(株式会社セイシン企業製の「PITA-3」)を用い、得られたサンプル液をフローセルに通過させて、液中を移動する繊維状充填材を1個ずつ撮像した。なお、測定開始時点から積算した全繊維状充填材の個数が30000個に達した時点を測定終了時点とした。
[条件]
 測定個数:30000個
 分散溶媒:水
 分散条件:キャリア液1およびキャリア液2としてmicro-90の0.5体積%水溶液を用いる。
 サンプル液速度:4.17μL/秒
 キャリア液1速度:500μL/秒
 キャリア液2速度:500.33μL/秒
 観察倍率:対物10倍
 調光フィルタ::拡散PL
 得られた画像を二値化処理し、処理後の画像における繊維状充填材成分の外接矩形長径を測定し30000個の外接矩形長径の値の平均値を、全繊維状充填材成分の数平均繊維長とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記表1に示すように、本発明を適用した実施例1~4は、ウエルド曲げ強度に対する、非ウエルド曲げ強度の保持率がいずれも30%以上であり、超薄肉の成形品を製造した場合にもウエルド強度が高いことが確認できた。これに対し、本発明を適用しない比較例1~18は、保持率がいずれも25%以下であった。
Figure JPOXMLDOC01-appb-T000004
 上記表4に示すように、本発明を適用した実施例5~7は、ウエルド曲げ強度に対する、非ウエルド曲げ強度の保持率がいずれも比較例19~21よりも高く、超薄肉の成形品を製造した場合にもウエルド強度が高いことが確認できた。

Claims (6)

  1. (A)成分:液晶ポリエステル、
    (B)成分:ガラス繊維、
    (C)成分:前記(B)成分とは異なる繊維状無機充填材、を必須成分とし、
     前記(A)成分100質量部に対する前記(B)成分の配合量が、50質量部以上90質量部以下であり、
     前記(A)成分100質量部に対する前記(C)成分の配合量が、1質量部以上40質量部以下であって、下記条件(1)及び条件(2)を満たす、液晶ポリエステル樹脂組成物。
     条件(1):流動開始温度から+20℃以上30℃以下の温度範囲に含まれる任意の測定温度において、ISO 11443に準拠し、せん断速度1000s-1の条件下で測定した溶融粘度が、40Pa・s以上70Pa・s以下である。
     条件(2):前記測定温度において、ISO 11443に準拠し、せん断速度12000s-1の条件下で測定した溶融粘度が、0.1Pa・s以上10Pa・s以下である。
  2.  前記条件(1)により測定される溶融粘度と、前記条件(2)により測定される溶融粘度の比((1)/(2))が、5.0を超える、請求項1に記載の液晶ポリエステル樹脂組成物。
  3.  前記(B)成分及び前記(C)成分を合わせた全繊維状充填材の数平均繊維長が40μm以上80μm以下である、請求項1又は2に記載の液晶ポリエステル樹脂組成物。
  4.  前記流動開始温度は320℃以上330℃以下であって、前記測定温度は350℃である、請求項1~3のいずれか1項に記載の液晶ポリエステル樹脂組成物。
  5.  前記(C)成分がワラストナイトである、請求項1~4のいずれか1項に記載の液晶ポリエステル樹脂組成物。
  6.  請求項1~5のいずれか1項に記載の液晶ポリエステル樹脂組成物を形成材料とする成形品。
PCT/JP2019/043690 2018-11-09 2019-11-07 液晶ポリエステル樹脂組成物及び成形品 WO2020095997A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020555586A JP7343520B2 (ja) 2018-11-09 2019-11-07 液晶ポリエステル樹脂組成物及び成形品
US17/291,855 US20220010058A1 (en) 2018-11-09 2019-11-07 Liquid crystal polyester resin composition and molded article
KR1020217012548A KR20210088555A (ko) 2018-11-09 2019-11-07 액정 폴리에스테르 수지 조성물 및 성형품
CN201980071723.1A CN112969750B (zh) 2018-11-09 2019-11-07 液晶聚酯树脂组合物和成型品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018211192 2018-11-09
JP2018-211192 2018-11-09

Publications (1)

Publication Number Publication Date
WO2020095997A1 true WO2020095997A1 (ja) 2020-05-14

Family

ID=70611789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043690 WO2020095997A1 (ja) 2018-11-09 2019-11-07 液晶ポリエステル樹脂組成物及び成形品

Country Status (6)

Country Link
US (1) US20220010058A1 (ja)
JP (1) JP7343520B2 (ja)
KR (1) KR20210088555A (ja)
CN (1) CN112969750B (ja)
TW (1) TWI814939B (ja)
WO (1) WO2020095997A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359066A (ja) * 1989-07-27 1991-03-14 Toray Ind Inc 液晶ポリエステル樹脂組成物
JPH09176377A (ja) * 1995-12-27 1997-07-08 Polyplastics Co 液晶性ポリマー組成物および成形体
JPH1025402A (ja) * 1996-07-09 1998-01-27 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物
JPH1180517A (ja) * 1997-09-09 1999-03-26 Shikoku Chem Corp 樹脂組成物
JP2006117731A (ja) * 2004-10-19 2006-05-11 Matsushita Electric Works Ltd 液晶性ポリエステル樹脂組成物、成形体、成形回路基板
JP2009256416A (ja) * 2008-04-14 2009-11-05 Toray Ind Inc ナノウィスカーおよび樹脂組成物
JP2009256415A (ja) * 2008-04-14 2009-11-05 Toray Ind Inc ナノウィスカーおよび樹脂組成物
JP2013103968A (ja) * 2011-11-11 2013-05-30 Sumitomo Chemical Co Ltd 熱可塑性樹脂組成物の製造方法及び成形体
JP2015532353A (ja) * 2012-10-16 2015-11-09 ティコナ・エルエルシー 静電気防止液晶ポリマー組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3045065B2 (ja) 1996-03-11 2000-05-22 東レ株式会社 液晶性ポリエステル樹脂組成物、その製造方法およびその成形品
JP2001207054A (ja) 2000-01-24 2001-07-31 Polyplastics Co 液晶性ポリマー成形品
JP4783038B2 (ja) 2004-03-10 2011-09-28 パナソニック電工株式会社 金属被覆樹脂成形品およびその製造方法
JP4343223B2 (ja) * 2004-04-15 2009-10-14 ポリプラスチックス株式会社 繊維状充填剤の長さが制御された樹脂組成物ペレットの製造方法
JP5088160B2 (ja) 2008-02-12 2012-12-05 東レ株式会社 液晶性樹脂組成物および成形品
TWI444427B (zh) * 2008-03-28 2014-07-11 Nippon Oil Corp Camera module with liquid crystal polyester resin composition
JP2009249416A (ja) * 2008-04-02 2009-10-29 Sumitomo Chemical Co Ltd 液晶ポリエステル樹脂組成物
TW201041956A (en) 2009-02-19 2010-12-01 Sumitomo Chemical Co Thermoplastic resin composition, method for producing the same, and molded article obtained from the same
JP2018188528A (ja) * 2017-04-28 2018-11-29 住友化学株式会社 液晶ポリエステル組成物の製造方法および液晶ポリエステル組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359066A (ja) * 1989-07-27 1991-03-14 Toray Ind Inc 液晶ポリエステル樹脂組成物
JPH09176377A (ja) * 1995-12-27 1997-07-08 Polyplastics Co 液晶性ポリマー組成物および成形体
JPH1025402A (ja) * 1996-07-09 1998-01-27 Sumitomo Chem Co Ltd 液晶ポリエステル樹脂組成物
JPH1180517A (ja) * 1997-09-09 1999-03-26 Shikoku Chem Corp 樹脂組成物
JP2006117731A (ja) * 2004-10-19 2006-05-11 Matsushita Electric Works Ltd 液晶性ポリエステル樹脂組成物、成形体、成形回路基板
JP2009256416A (ja) * 2008-04-14 2009-11-05 Toray Ind Inc ナノウィスカーおよび樹脂組成物
JP2009256415A (ja) * 2008-04-14 2009-11-05 Toray Ind Inc ナノウィスカーおよび樹脂組成物
JP2013103968A (ja) * 2011-11-11 2013-05-30 Sumitomo Chemical Co Ltd 熱可塑性樹脂組成物の製造方法及び成形体
JP2015532353A (ja) * 2012-10-16 2015-11-09 ティコナ・エルエルシー 静電気防止液晶ポリマー組成物

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11258184B2 (en) 2019-08-21 2022-02-22 Ticona Llc Antenna system including a polymer composition having a low dissipation factor
US11637365B2 (en) 2019-08-21 2023-04-25 Ticona Llc Polymer composition for use in an antenna system
US11705641B2 (en) 2019-08-21 2023-07-18 Ticoan Llc Antenna system including a polymer composition having a low dissipation factor
US11555113B2 (en) 2019-09-10 2023-01-17 Ticona Llc Liquid crystalline polymer composition
US11912817B2 (en) 2019-09-10 2024-02-27 Ticona Llc Polymer composition for laser direct structuring
US11646760B2 (en) 2019-09-23 2023-05-09 Ticona Llc RF filter for use at 5G frequencies
US11917753B2 (en) 2019-09-23 2024-02-27 Ticona Llc Circuit board for use at 5G frequencies
US12107617B2 (en) 2019-09-23 2024-10-01 Ticona Llc RF filter for use at 5G frequencies
US11721888B2 (en) 2019-11-11 2023-08-08 Ticona Llc Antenna cover including a polymer composition having a low dielectric constant and dissipation factor

Also Published As

Publication number Publication date
US20220010058A1 (en) 2022-01-13
KR20210088555A (ko) 2021-07-14
JP7343520B2 (ja) 2023-09-12
TW202024227A (zh) 2020-07-01
CN112969750B (zh) 2022-07-29
JPWO2020095997A1 (ja) 2021-09-24
CN112969750A (zh) 2021-06-15
TWI814939B (zh) 2023-09-11

Similar Documents

Publication Publication Date Title
WO2020095997A1 (ja) 液晶ポリエステル樹脂組成物及び成形品
JP6500140B2 (ja) 液晶ポリエステル組成物
JP6439027B1 (ja) 液晶ポリエステル樹脂組成物および成形体
JP6473796B1 (ja) 液晶ポリエステル樹脂組成物および成形体
JP6797124B2 (ja) 液晶ポリエステル組成物、成形体及びコネクター
JP5308800B2 (ja) 液晶ポリエステル樹脂組成物
WO2009119863A1 (ja) カメラモジュール用液晶ポリエステル樹脂組成物
US20070173565A1 (en) Wholly aromatic liquid crystal polyester resin composition and optical pickup lens holder
TWI788593B (zh) 耐滾珠軸承滑動磨耗部件用液晶性樹脂組合物及使用該液晶性樹脂組合物的耐滾珠軸承滑動磨耗部件
TW201906924A (zh) 液晶聚酯樹脂組成物及成形體
KR102689156B1 (ko) 액정 폴리에스테르 조성물 및 성형체
JP5951168B2 (ja) カメラモジュール用液晶ポリエステル樹脂組成物
KR102695568B1 (ko) 수지 조성물
WO2015083760A1 (ja) 液晶ポリエステルアミド樹脂組成物、およびその射出成形体を構成部材として含むカメラモジュール部品
JP6175720B1 (ja) 液晶ポリエステル組成物、成形体及びコネクター
JP6861497B2 (ja) 液晶ポリエステル樹脂組成物
KR20130100068A (ko) 액정 폴리에스테르 조성물
WO2020070903A1 (ja) 液晶ポリエステル樹脂
JP7438711B2 (ja) 樹脂組成物
KR20230131203A (ko) 액정 폴리에스테르 조성물, 액정 폴리에스테르 조성물의제조 방법 및 사출 성형체의 제조 방법
JP2012193304A (ja) 液晶ポリエステル樹脂組成物、成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555586

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883067

Country of ref document: EP

Kind code of ref document: A1