WO2020080520A1 - キャパシタ及びキャパシタ用電極 - Google Patents

キャパシタ及びキャパシタ用電極 Download PDF

Info

Publication number
WO2020080520A1
WO2020080520A1 PCT/JP2019/041086 JP2019041086W WO2020080520A1 WO 2020080520 A1 WO2020080520 A1 WO 2020080520A1 JP 2019041086 W JP2019041086 W JP 2019041086W WO 2020080520 A1 WO2020080520 A1 WO 2020080520A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
graphene
carbon
active material
graphene porous
Prior art date
Application number
PCT/JP2019/041086
Other languages
English (en)
French (fr)
Inventor
直哉 小林
綾乃 磯田
清行 川合
利彰 志水
佑介 川口
京谷 隆
洋知 西原
啓太 野村
Original Assignee
Tpr株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tpr株式会社, 国立大学法人東北大学 filed Critical Tpr株式会社
Priority to CN201980058478.0A priority Critical patent/CN112655061B/zh
Priority to JP2020518744A priority patent/JP6782950B2/ja
Publication of WO2020080520A1 publication Critical patent/WO2020080520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material

Definitions

  • a lithium ion capacitor is known as a capacitor having an improved applied voltage.
  • a material that uses graphite or carbon that can intercalate or deintercalate lithium ions in the negative electrode and active carbon that is equivalent to the electrode material of an electric double layer capacitor that can adsorb and desorb electrolyte ions in the positive electrode is called a lithium ion capacitor.
  • the lithium ion capacitor is characterized in that the applied voltage is larger than that of a general electric double layer capacitor, that is, a capacitor in which both electrodes are composed of activated carbon.
  • the temperature is kept at 700 ° C. to 1200 ° C. for 1 to 5 hours, preferably 800 ° C. to 1000 ° C. for 1 to 3 hours while flowing methane gas, and then cooled to room temperature.
  • the alumina particles covered with graphene are immersed in hydrofluoric acid to remove the alumina.
  • the temperature is raised to 1800 ° C., the temperature is maintained for 2 hours, the temperature is cooled to room temperature, and then the graphene porous carbon sheet according to the present embodiment is taken out.
  • a meso-sponge (GMS) is obtained.
  • the graphene porous carbon sheet is uniformly dispersed using a graphene porous carbon material, carbon nanotubes, an aqueous solvent, a homogenizer, etc. to prepare a graphene porous carbon sheet slurry.
  • the graphene porous carbon sheet slurry can be used to apply and dry on a substrate to produce a graphene porous carbon sheet.
  • a sheet electrode can be prepared by pressing a uniformly dispersed slurry for a graphene porous carbon sheet into a sheet by a papermaking method and pressing it on a current collector.
  • an aluminum material that is generally used for current collectors can be used.
  • the shape of the aluminum material may be a foil, a sheet, a film, a mesh, or the like.
  • An aluminum foil can be preferably used as the current collector.
  • etched aluminum described later may be used.
  • Etched aluminum may be used as the aluminum material coated with the amorphous carbon coating.
  • the etched aluminum has been roughened by etching.
  • etching generally, a method of immersing in an acid solution such as hydrochloric acid (chemical etching), a method of electrolyzing in a solution of acid such as hydrochloric acid with aluminum as an anode (electrochemical etching), and the like are used.
  • electrochemical etching the etching shape differs depending on the current waveform during electrolysis, the composition of the solution, the temperature, etc., and therefore can be selected from the viewpoint of capacitor performance.
  • a binder is added together with a solvent to form a paint, which is then applied onto the DLC-coated aluminum foil.
  • a coating method a known method can be used. For example, screen printing, gravure printing, comma coater (registered trademark), spin coater or the like can be used.
  • the binder for example, cellulose, acrylic, polyvinyl alcohol, thermoplastic resin, rubber, organic resin or the like can be used.
  • polyethylene or polypropylene can be used as the thermoplastic resin
  • SBR styrene-butadiene rubber
  • EPDM phenol resin or polyimide resin
  • an organic electrolytic solution using an organic solvent can be used as the electrolyte used in the capacitor of the present embodiment. It is not limited to the organic electrolytic solution as long as it contains electrolyte ions. For example, a gel may be used.
  • the electrolytic solution contains electrolyte ions that can be adsorbed and desorbed on the electrodes. It is preferable that the ion diameter of the electrolyte ion is as small as possible.
  • an ammonium salt, a phosphonium salt, an ionic liquid, a lithium salt, or the like can be used.
  • Examples of the pyridinium ion include 1-ethylpyridinium (1-ethylpyridinium) ion, 1-butylpyridinium (1-butyrpyridinium) ion and the like.
  • anion constituting the ionic liquid BF 4 ion, PF 6 ion, [(CF 3 SO 2 ) 2 N] ion, FSI (bis (fluorosulfonyl) imide, bis (fluorosulfonyl) imide) ion, and TFSI (bis (bis (ion Examples thereof include trifluoromethylsulfonyl) imide and bis (trifluoromethylsulfonyl) imide) ion.
  • the capacitor 100 is an example of the capacitor according to the present embodiment, and is not limited to this example.
  • the capacitor according to the present embodiment may be a capacitor such as a coin type or a square type other than the cylindrical type.
  • the capacitor according to the present embodiment uses the graphene porous carbon sheet including the graphene porous carbon material and the carbon nanotube as the positive electrode active material and the negative electrode active material, and the aluminum material coated with the amorphous carbon film. Is used as a current collector on the positive electrode side and a current collector on the negative electrode side to achieve high capacity and high voltage, thereby achieving high energy density and improving withstand voltage and high temperature durability. It is a thing.
  • the capacitor electrode of the present embodiment uses a graphene porous carbon sheet containing a graphene porous carbon material and a carbon nanotube as a positive electrode active material and a negative electrode active material, and uses an aluminum material coated with an amorphous carbon film.
  • the capacitor using the capacitor electrode of the present embodiment achieves high capacity and high voltage, and thus high energy density, and It is intended to improve withstand voltage and high temperature durability.
  • the capacitor electrode according to the present embodiment uses a graphene porous carbon sheet containing a graphene porous carbon material and a carbon nanotube as an electrode active material, and is further covered with an amorphous carbon film and is amorphous.
  • a DLC-coated aluminum foil (sometimes referred to as “DLC-coated aluminum foil”) is a current collector on the positive electrode side and a current collector on the negative electrode side. It corresponds to an aluminum material coated with a crystalline carbon coating.
  • a natural oxide film on the surface of the aluminum foil is removed by argon sputtering from an aluminum foil having a purity of 99.99% (thickness: 20 ⁇ m), and then methane or acetylene is added to the vicinity of the aluminum surface.
  • the positive electrode and the negative electrode were punched into discs having a diameter of 16 mm and a diameter of 14 mm, respectively, which were vacuum dried at 150 ° C. for 24 hours and then moved to an argon glove box. These were laminated via a paper separator (trade name: TF40-30) manufactured by Nippon Kogyo Kogyo Co., Ltd., 1M TEMA-BF 4 (triethylmethylammonium tetrafluoroborate tetrafluoride) was used as the electrolyte, and propylene carbonate (PC was used as the solvent.
  • 20 mL type coin cell which is the capacitor of the present example was manufactured in an argon glove box by adding 0.1 mL of an electrolytic solution using
  • Capacitor Electrode (3) Preparation of Capacitor Electrode
  • the prepared capacitor electrode paste was applied onto the DLC-coated aluminum foil (thickness 20 ⁇ m) prepared in (1) above using a table coater, and then dried at 100 ° C. for 1 hour.
  • a positive electrode and a negative electrode of this comparative example were produced.
  • the thickness of the active material layer of the produced electrode was 71 ⁇ m, and the density of the active material layer was 0.46 g / cm 3 .
  • Comparative example 2 A 2032 type coin cell was produced in the same manner as in Comparative Example 1 except that graphene meso-sponge (GMS) powder was used as the positive electrode active material and the negative electrode active material.
  • the graphene meso-sponge (GMS) powder is a graphene porous carbon material obtained by the same manufacturing method as in Example 1.
  • the thickness of the active material layer of the produced electrode was 89 ⁇ m, and the density of the active material layer was 0.15 g / cm 3 .
  • Example 3 A graphene porous carbon sheet (GMS sheet C) was produced in the same manner as in Example 1 except that the length of the carbon nanotubes used for the graphene porous carbon sheet was 0.1 mm. Since the electrode sheet was not formed, a 2032 type coin cell could not be produced and could not be evaluated.
  • Example 4 A graphene porous carbon sheet (GMS sheet D) was produced in the same manner as in Example 1 except that the length of the carbon nanotubes used for the graphene porous carbon sheet was 0.3 mm. Since the electrode sheet was not formed, a 2032 type coin cell could not be produced and could not be evaluated.
  • the number of graphene layers was calculated using the following method.
  • the weight of carbon was calculated using a thermogravimetric analysis (TG) method, and then the surface area of the alumina particles was calculated, and these were used to calculate the weight of the carbon layer per area. As a result, it was 8.60 ⁇ 10 ⁇ 4 g / m 2 .
  • TG thermogravimetric analysis
  • the number of graphene layers was calculated by the following formula.
  • Example 1 in which the graphene porous carbon sheet (GMS sheet A) of the present embodiment was used as the electrode active material, the weight energy density was higher than that in Comparative Example 1 in which activated carbon was used as the electrode active material. Was increased by 2.4 times and the discharge rate was improved by 6.5 times, while the durability at 60 ° C. was improved by 25 times.
  • Example 2 in which the graphene porous carbon sheet (GMS sheet B) of the present embodiment having different lengths of carbon nanotubes was used as the electrode active material, the weight was higher than that in Comparative Example 1 in which activated carbon was used as the electrode active material.
  • the graphene porous carbon sheet electrode of Example 1 does not use a conductive material or a binder in the graphene porous carbon sheet of this embodiment used as an electrode active material, and the characteristics of the graphene porous carbon material that is the main material Since it is a porous and electrically conductive sheet, it is considered that the discharge rate characteristics were significantly improved as compared with Comparative Example 2.
  • Comparative Examples 3 and 4 used carbon nanotubes having a length of less than 0.5 mm as a starting material. Therefore, the graphene porous carbon sheet (GMS) required as an electrode active material was used. Sheet) could not be formed.

Abstract

高容量化および高電圧化を図ることで、高エネルギー密度化され、かつ耐電圧性に優れた本発明のキャパシタは、少なくとも正極、負極、及び電解質から構成される。正極は正極活物質を含み、かつ、負極は負極活物質を含む。正極活物質及び負極活物質は、グラフェン多孔質炭素材料とカーボンナノチューブとを含むグラフェン多孔質炭素シートを含む。グラフェン多孔質炭素材料は、グラフェンからなる多孔質炭素材料であり、正極側の集電体及び負極側の集電体はアルミニウム材であり、アルミニウム材は非晶質炭素被膜で被覆され、非晶質炭素被膜の厚みが60nm以上、300nm以下である。

Description

キャパシタ及びキャパシタ用電極
 本発明は、キャパシタ及びキャパシタ用電極に関する。
 この出願は、2018年10月19日に日本国へ出願された特願2018-197975に基づき優先権を主張し、その内容をここに援用する。
 従来、電気エネルギーを貯蔵する技術として、電気二重層キャパシタ(例えば、特許文献1参照)や二次電池が知られている。電気二重層キャパシタ(EDLC:Electric double-layer capacitor)は、寿命、安全性、出力密度が二次電池よりも格段に優れている。しかしながら、電気二重層キャパシタは、二次電池に比べてエネルギー密度(体積エネルギー密度)が低いという課題がある。
 ここで、電気二重層キャパシタに蓄積されるエネルギー(E)は、キャパシタの静電容量(C)と印加電圧(V)を用いてE=1/2×C×Vと表され、エネルギーは静電容量と印加電圧の二乗とに比例する。従って、電気二重層キャパシタのエネルギー密度を改善するために、電気二重層キャパシタの静電容量や印加電圧を向上する技術が提案されている。
 電気二重層キャパシタの静電容量を向上する技術としては、電気二重層キャパシタの電極を構成する活性炭の比表面積を増大させる技術が知られている。現在、知られている活性炭は、比表面積が1000m/g~2500m/gである。このような活性炭を電極に用いた電気二重層キャパシタでは、電解液として第四級アンモニウム塩を有機溶媒に溶解させた有機電解液や、硫酸等の水溶液電解液等が用いられている。
 有機電解液は使用できる電圧範囲が広いため、印加電圧を高めることができ、エネルギー密度を向上することができる。
 印加電圧を向上させたキャパシタとして、リチウムイオンキャパシタが知られている。
負極にリチウムイオンをインターカーレート、ディインターカーレートできる黒鉛あるいは炭素を用い、正極に電解質イオンを吸脱着できる電気二重層キャパシタの電極材と同等の活性炭を用いるものは、リチウムイオンキャパシタと呼ばれている。リチウムイオンキャパシタは、一般的な電気二重層キャパシタ、すなわち、両極が活性炭で構成されるものよりも印加電圧が大きくなるという特徴がある。
 また、印加電圧を向上させたキャパシタとして、非晶質炭素被膜で被覆されたアルミニウム材を集電体に用い、活性炭の代わりに黒鉛を正極活物質に用いたキャパシタが開発された(特許文献2参照)。
特開2011-046584号公報 特許第6167243号公報
 従来の活性炭を用いた電気二重層キャパシタでは、充電電圧は2.5V~2.7Vである。それ以上の電圧で充電すると電解液が分解し易くなるため、充電電圧が2.7V以下に制限されるという課題がある。一方、負極あるいは正極に黒鉛を用いるキャパシタでは、黒鉛の層間に電解質イオンを挿入脱離する反応を利用しているので、電解液の溶媒及び電解質イオンの種類に制限がある。そのため、印加電圧を向上することに限界がある。
 また、従来のキャパシタでは粉末状の活物質を用いて、集電体上に活物質層を作製し、電極を作製するため、バインダーは電極構成上必須材料である。しかし、バインダーは印加電圧を高めた場合、分解し易くなる等、安定性が低下してしまうことから、印加電圧を向上させることに課題がある。
 本発明は上記事情に鑑みてなされたものであり、高容量化および高電圧化を図ることで、高エネルギー密度化され、かつ耐電圧性に優れたキャパシタ及びキャパシタ用電極を提供することを目的とする。
 上記課題を解決するため、以下の手段を提供する。
[1] 本発明の第一の態様に係るキャパシタは、少なくとも正極、負極、及び電解質から構成されるキャパシタであって、
 正極は正極活物質を含み、かつ、負極は負極活物質を含み、
 正極活物質及び負極活物質は、グラフェン多孔質炭素シートを含み、
 グラフェン多孔質炭素シートは、グラフェン多孔質炭素材料とカーボンナノチューブとを含み、
 グラフェン多孔質炭素材料は、グラフェンからなる多孔質炭素材料であり、
 正極側の集電体及び負極側の集電体はアルミニウム材であり、
 アルミニウム材は非晶質炭素被膜で被覆され、
 非晶質炭素被膜の厚みが60nm以上、300nm以下である。
[2] 上記態様に係るキャパシタにおいて、グラフェン多孔質炭素材料の細孔は、メソ孔であってもよい。
[3] 上記態様に係るキャパシタにおいて、グラフェン多孔質炭素材料のエッジサイト量が昇温脱離法による分析で0.01mmol/g~0.15mmol/gであってもよい。
[4] 上記態様に係るキャパシタにおいて、正極側の集電体は、非晶質炭素被膜と正極活物質との間に導電性炭素層が形成されていてもよい。
[5] 上記態様に係るキャパシタにおいて、負極側の集電体は、非晶質炭素被膜と負極活物質との間に導電性炭素層が形成されていてもよい。
[6] 上記態様に係るキャパシタにおいて、グラフェン多孔質炭素材料は、層数が1~3であってもよい。
[7] 上記態様に係るキャパシタにおいて、グラフェン多孔質炭素材料に含まれている単層グラフェンの重量含有量は、20wt%~100wt%であってもよい。
[8] 上記態様に係るキャパシタにおいて、前記導電性炭素層の材料の粒径は、前記グラフェン多孔質炭素シートを構成している前記グラフェン多孔質炭素材料の大きさに比べて1/10以下であってもよい。
[9] 本発明の第二の態様に係るキャパシタ用電極は、電極活物質と集電体とを含み、
 電極活物質は、グラフェン多孔質炭素シートを含み、
 グラフェン多孔質炭素シートは、グラフェン多孔質炭素材料とカーボンナノチューブとを含み、
 グラフェン多孔質炭素材料は、グラフェンからなる多孔質炭素材料であり、
 集電体はアルミニウム材であり、
 アルミニウム材は非晶質炭素被膜で被覆され、
 非晶質炭素被膜の厚みが60nm以上、300nm以下である。
[10] 上記態様に係るキャパシタ用電極において、集電体は、非晶質炭素被膜と電極活物質との間に導電性炭素層が形成されていてもよい。
 本発明によれば、高電圧で電解液と反応しやすい官能基がほとんど存在しない、グラフェン多孔質炭素材料とカーボンナノチューブとを含むグラフェン多孔質炭素シートを正極活物質及び負極活物質として用いることにより、高容量化および高電圧化を図ることで、高エネルギー密度化され、高い耐久性かつ耐電圧性に優れたキャパシタを提供することができる。また、グラフェン多孔質炭素シートからなる電極は、導電材やバインダーを含まないので、それらに伴う副反応が生じない。よって、グラフェン多孔質材料本来の特性をダイレクトに示すことができ、4V以上の高電圧化、高エネルギー密度化、高い耐久性、かつ、急速充放電特性に優れたキャパシタを提供できる。
本実施形態のグラフェン多孔質炭素シート(グラフェンメソスポンジ(GMS)シート)を構成しているグラフェン多孔質炭素(グラフェンメソスポンジ(GMS))の模式図。 本実施形態のキャパシタの縦断面模式図である。 本実施形態のキャパシタの模式図である。 本実施形態のキャパシタの模式図である。 本実施形態の正極活物質層の断面模式図である。
 以下、本発明の好ましい実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法、数、数値、量、比率等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。例えば、本発明の主旨を逸脱しない範囲で、材料、寸法、数、数値、量、比率等は省略や追加や変更をすることが可能である。本明細書における本実施形態とは、本発明の一実施形態のことをいう場合がある。
 本発明に係るキャパシタは、少なくとも正極、負極、及び電解質から構成される。正極は正極活物質を含み、かつ、負極は負極活物質を含む。正極活物質及び負極活物質は、グラフェン多孔質炭素シートを含む。グラフェン多孔質炭素シートはグラフェン多孔質炭素材料とカーボンナノチューブとを含む。グラフェン多孔質炭素材料はグラフェンからなる多孔質炭素材料である。正極側の集電体及び負極側の集電体はアルミニウム材であり、アルミニウム材は非晶質炭素被膜で被覆され、非晶質炭素被膜の厚みが60nm以上、300nm以下であることを特徴とする。本実施形態に係るキャパシタは、後述の本実施形態のグラフェン多孔質炭素材料の作製方法で得られたグラフェン多孔質炭材料(グラフェンメソスポンジ(GMS))とカーボンナノチューブとを含むグラフェン多孔質炭素シートであることが好ましい。
(グラフェン多孔質炭素シートからなるキャパシタ用電極)
 本実施形態のキャパシタ用電極は、集電体とその上に形成されている電極活物質を含む。電極活物質は、グラフェン多孔質炭素シートを含む。グラフェン多孔質炭素シートはグラフェン多孔質炭素材料とカーボンナノチューブとを含む。グラフェン多孔質炭素材料はグラフェンからなる多孔質炭素材料である。集電体はアルミニウム材であり、アルミニウム材は非晶質炭素被膜で被覆され、非晶質炭素被膜の厚みが60nm以上、300nm以下であることを特徴とする。なお、電極とは正極又は/及び負極を指す。本実施形態のキャパシタ用電極は、後述の本実施形態のグラフェン多孔質炭素シートの製造方法で得られたグラフェン多孔質炭素シート(グラフェンメソスポンジ(GMS)シート)を含むことが好ましい。
(電極活物質)
 本実施形態のキャパシタで用いる電極活物質は、耐電圧が高いキャパシタを得るため、電解質イオンであるカチオンを吸脱着できる炭素質材料である、本実施形態に係るグラフェン多孔質炭素シートを含むものである。
(グラフェン多孔質炭素シート)
 本実施形態に係るグラフェン多孔質炭素シートに含まれているグラフェン多孔質炭素材料とは、グラフェンからなる多孔質炭素材料である。
 本実施形態に係るグラフェン多孔質炭素材料を構成しているグラフェンは、炭素原子が基本的な反復単位としてハニカム状骨格で共有結合されている単原子層の構造を有する。グラフェンを単層グラフェンと呼ぶことがある。また、2層以上のグラフェンを積層してからなる「積層グラフェン」を単にグラフェンと呼ぶこともある。
 本実施形態のグラフェン多孔質炭素シートは、グラフェン多孔質炭素材料とカーボンナノチューブとを含むシート状の炭素材料である。バインダーと導電材を含まず、後述の作製方法で作製したものであることが好ましい。
 本実施形態のグラフェン多孔質炭素シートを構成しているグラフェン多孔質炭素材料は、細孔を形成するグラフェンで構成されている炭素材料である(細孔の壁がグラフェンである)。隣接する細孔が連通してもよい。また、複数の細孔が連通していても良い。その細孔がメソ孔であることが好ましい。なお、メソ孔は細孔径が2nm~50nmの細孔をいう。2nm~10nmであることが好ましく、3nm~7nmであることがより好ましい。電解質イオン径(1.6nm~2.0nm)よりも小さいと、細孔に電解質イオンが入りにくいからである。なお、平均細孔径は、例えばBJH(Barrett-Joyner-Halenda)法を用いて算出することができる。
 本実施形態のグラフェン多孔質炭素シートを構成しているグラフェン多孔質炭素材料は、比表面積が1000m/g~2200m/gであることが好ましく、1400m/g~2200m/gであることがより好ましく、1800m/g~2200m/gであることがさらに好ましい。静電容量を高め、静電容量の大きいキャパシタを得るためには、比表面積は大きい方がよいからである。なお、比表面積は、例えばBET(Brunauer-Emmett-Teller)法を用いて算出することができる。
 本実施形態のグラフェン多孔質炭素シートを構成しているグラフェン多孔質炭素材料は、エッジサイト(後述)量が0.01mmol/g~0.15mmol/gであることが好ましく、0.01mmol/g~0.1mmol/gであることがより好ましく、0.01mmol/g~0.05mmol/gであることがさらに好ましい。エッジサイト量が少ない、すなわち官能基が少ないと電解液の分解反応を抑制できるからである。なお、エッジサイトとは、水素もしくは酸素官能基で終端されたグラフェンの端の部位を意味する。エッジサイト量は、例えば昇温脱離法(TPD;Temperature Programmed Desorption)(1500℃以上)を用いて算出することができる。
 本実施形態のグラフェン多孔質炭素シートを構成しているグラフェン多孔質炭素材料は、そのグラフェンの層数が1~3であることが好ましく、1~2であることがより好ましく、1であること、すなわち単層グラフェンであることがさらに好ましい。また、このグラフェン多孔質炭素材料に含まれている単層グラフェンの重量含有量は、60wt%~100wt%であることが好ましく、80wt%~100wt%であることがより好ましい。なお、グラフェンの層数は例えば後述の方法を用いて算出することができる。
 また、本実施形態のキャパシタで用いるグラフェン多孔質炭素シートを構成しているグラフェン多孔質炭素材料は、後述の本実施形態のグラフェン多孔質炭素シートの作製方法で得られたグラフェンメソスポンジ(GMS:graphene mesosponge)シート(「GMSシート」ともいう)を構成しているGMSが特に好ましい。
 炭素材料の表面には、炭素六員環のベーサル(基底)サイト(六員環炭素網面)およびエッジ(端)サイト(ジグザグ端、アームチェア端)がある。本実施形態のグラフェン多孔質炭素シートを構成しているグラフェン多孔質炭素材料はグラフェンを含むので、エッジサイトよりベーサルサイトが多い。
 一般的なグラフェンは積層し易く、積層されることでグラフェンが持つ大きな比表面積が低下する。本実施形態のグラフェン多孔質炭素シートであるグラフェンメソスポンジ(GMS)シートを用いることで、この課題を解決した。
 グラフェンメソスポンジ(GMS)とは、その細孔壁が単層グラフェン主体の炭素材料であり、大きな比表面積を有する材料である。図1にグラフェンメソスポンジ(GMS)炭素材料Gの一部の模式図を示した。空洞の空いた球状で、その表面はグラフェンにより構成されている。図1の泡状構造のGMS炭素材料Gには、細孔の一部に符号Sが付されている。細孔Sには、球状のシェル内部にある細孔と、球状のシェル外部にある細孔と、がある。
 グラフェンメソスポンジの比表面積は活性炭と同等の約2000m/gであり、かつその表面には活性炭で見られるような官能基がほとんど存在しない。そのため、キャパシタ電極へ応用した場合、耐電圧を高めても電解液と反応しにくいことから、高電圧化が可能である。
 例えば、昇温脱離法(1800℃)を用いてエッジサイト量を算出すると、代表的なアルカリ賦活炭として知られる関西熱化学株式会社製活性炭MSP-20の場合は6.3mmol/g、また代表的な水蒸気賦活炭として知られる株式会社クラレ製活性炭YP-50Fの場合は3.3mmol/gであるが、GMSの場合は0.1mmol/gであり、GMSのエッジサイト量は一桁以上少ない。また、官能基が少ないことで知られる高配向性熱分解グラファイト(HOPG;Highly oriented pyrolytic graphite)の場合は0.07mmol/gであり、GMSはHOPGと同程度のエッジサイト量である。以上のことから、GMSは官能基量が非常に少ない炭素材料であると考えられる。
 また、GMSに関してグラフェンの層数を以下の方法で算出した。7nmのアルミナ粒子の上に炭素層を積層した後、熱重量分析(TG;Thermogravimetric analysis)法を用いて炭素の重量を算出し、7nmのアルミナ粒子の表面積より面積当たりの炭素層の重量を算出した。その結果、8.60×10-4g/mであった。なお、単層のグラフェンの場合は7.61×10-4g/mであることがわかっている。(GMSの面積当たりの炭素層の重量)÷(単層のグラフェンの面積当たりの炭素層の重量))=1.1であり、本実施形態のGMSはほぼ単層のグラフェンから構成されることがわかった。
 以上の事から、GMSは細孔壁が単層のグラフェンからなる多孔質炭層材料(グラフェン多孔質炭素材料)であると定義する。
 本実施形態のグラフェン多孔質炭素シートを構成しているカーボンナノチューブ(CNT)は、繊維径が1nm~30nmであり、好ましく3nm~20nmであり、より好ましく3nm~15nmである。カーボンナノチューブは、グラファイト層が円筒状の形状をなした炭素物質であり、導電性が高い。本実施形態のグラフェン多孔質炭素シートはバインダーを使用せず、グラフェン多孔質炭素材料とカーボンナノチューブとを結合してシート状材料を形成する観点から、出発材料としてのカーボンナノチューブの長さが0.5mm以上であり、1.0mm以上であることが好ましく、1.5mm以上であることがより好ましい。また、このカーボンナノチューブの長さは、本実施形態のグラフェン多孔質炭素シートを作製する際の出発材料の場合の長さで、GMSと共にグラフェン多孔質炭素シートを作製する工程、より具体的にはホモジナイザー等で材料を湿式分散する際にカーボンナノチューブは切れて短くなり、最終的なグラフェン多孔質炭素シート内でのカーボンナノチューブの長さは10μm~200μmが好ましく、10μm~100μmがより好ましい。なお、この長さも湿式分散の方法や処理条件によって変わるので、この長さに限定されるものではない。また、本発明ではホモジナイザー等で湿式分散する際にカーボンナノチューブが切れながらGMSと共に分散し、その際カーボンナノチューブとGMSがよく絡み合うことで均一に分散されるのが特徴である。
 通常、水素加熱処理等で活性炭のエッジサイトに存在する官能基を除去すると、バインダー溶液、特に水溶性バインダー溶液(水溶媒)と活性炭との濡れ性が低下し、電極を作製することができにくいという課題があった。しかし、GMSシートは、バインダーと導電材を使用せず、例えばシート状に作製するので、正極や負極の電極活物質として集電体と積層して電極を作製できる点も特徴の一つである。さらにGMSは内部に細孔を有しているため、電解液を内包し易く、電解液の保持性も高い。そのため、高温耐久性試験や長期サイクル寿命試験で電解液の枯渇による劣化を抑制でき、耐久性や寿命特性を高くできる。また電解液が潤沢にあるため、充放電での電解質イオンの移動が速くなり、入出力特性を高くできる点も特徴である。
 また、GMSシートをキャパシタの負極活物質に用いた場合、活物質自身の耐電圧は高いが、従来EDLCなどで用いられているプレーンアルミニウムやエッチドアルミニウムを集電体に用いると、集電体が腐食してしまうという課題があり、実用セルとしては高電圧化が難しかった。本実施形態では、詳細を後述する非晶質炭素被膜が被覆されているアルミニウム材、または、非晶質炭素被膜が被覆され、かつ、非晶質炭素被膜と正極活物質との間、又は/及び非晶質炭素被膜と負極活物質との間に導電性炭素層が形成されているアルミニウム材を集電体として用いることで、高温下での高電圧充電時における集電体の腐食抑制を実現した。より具体的には、非晶質炭素被膜が被覆されているアルミニウム材は、DLC(ダイヤモンドライクカーボン)コートアルミニウム箔上に導電性炭素層を被覆したもの、あるいはDLCコートアルミニウム箔等である。なお、DLCコートアルミニウム箔とは、DLCコーティングしたアルミニウム箔のことである。これにより、高容量を維持したまま、高電圧でも耐久性が高いキャパシタを実現することができた。
 また、集電体にプレーンアルミニウムやエッチドアルミニウムを用いた場合、それらの表面には自然酸化膜である不動態膜、すなわち酸化アルミニウムが存在する。GMSはエッジサイトに官能基が非常に少なく、単層グラフェンからなるので活性炭等の他の炭素材料に比べて導電性が非常に高い。しかし、プレーンアルミニウムやエッチドアルミニウムを用いた場合、それら表面に存在する酸化アルミニウムによってGMSとの界面抵抗が高くなる課題があり、GMSの特徴である高導電性を活かすことができない。これに対して本発明の一実施例のDLCコートアルミニウム箔はDLCをコーティングする前にアルミニウム表面の酸化アルミニウムをアルゴンスパッタ等で除去した後、DLCをコーティングしてあり、DLC自身は導電性があるのでGMSとの界面(接触)抵抗を下げることができる。さらに、DLCコートアルミニウム箔上に導電性炭素層を被覆すると、導電性炭素層はさらに導電性が高くなるのでGMSの界面(接触)抵抗をより低くすることができる。これらの集電体を用いることで、高温時の耐食性向上に加えて抵抗低減の効果もあり、高速充放電特性、言い換えると高入出力特性を向上できる効果がある。特に集電体表面の炭素と電極活物質として用いる本実施形態のグラフェン多孔質炭素シートはいずれも炭素材料なので、各々の界面でのなじみが良く、抵抗低減や密着性向上に寄与している。これらの観点では、非晶質炭素被膜を被覆する際、アルミニウム表面の自然酸化膜はない方が好ましい。
(グラフェン多孔質炭素材料の合成方法)
 本実施形態に係るグラフェン多孔質炭素シートを構成しているグラフェン多孔質炭素材料を合成する方法は、金属酸化物からなるナノ粒子の表面にグラフェン層を形成する工程と、金属酸化物からなるナノ粒子を除去する工程と、細孔を覆うグラフェン層を加熱する工程とを有する。例えば、平均粒径2nm~20nm、好ましくは3nm~10nmのアルミナ粒子を覆うように、単層~3層グラフェン、好ましくは単層~2層グラフェン、さらに好ましくは単層グラフェンを形成する。
 具体的には、例えば、(1)メタンガスを流しながら700℃~1200℃で1~5時間、好ましくは800℃~1000℃で1~3時間保持した後、室温まで冷却する。(2)次に、グラフェンで覆うアルミナ粒子をフッ酸中に浸漬することでアルミナを除去する。(3)その後、1800℃まで昇温した後、2時間保持し、室温まで冷却した後に取り出すことで、本実施形態に係るグラフェン多孔質炭素シートを構成しているグラフェン多孔質炭素材料であるグラフェンメソスポンジ(GMS)が得られる。
(グラフェン多孔質炭素シートの作製方法)
 グラフェン多孔質炭素シートは、グラフェン多孔質炭素材料とカーボンナノチューブと水系溶媒とホモジナイザー等を用いて均一分散し、グラフェン多孔質炭素シート用スラリーを調整する。次いで、グラフェン多孔質炭素シート用スラリーを用いて、基板上に塗布・乾燥し、グラフェン多孔質炭素シートを作製することができる。また、均一分散したグラフェン多孔質炭素シート用スラリーを抄紙法によってシート化したものを集電体に圧着することでシート電極を作製することもできる。グラフェン多孔質炭素シートにおけるグラフェン多孔質炭素材料の重量含有量は85wt%~99wt%であることが好ましく、88wt%~97wt%であることがより好ましく、90wt%~95wt%であることがさらに好ましい。カーボンナノチューブの重量含有量は1wt%~15wt%であることが好ましく、3wt%~12wt%であることがより好ましく、5wt%~10wt%であることがさらに好ましい。また、ホモジナイザーで分散した後のカーボンナノチューブの長さは、10μm~200μmが好ましく、10μm~150μmがより好ましく、10μm~100μmであることがさらに好ましい。グラフェン多孔質炭素材料とカーボンナノチューブとの合計重量は、グラフェン多孔質炭素シートに対して、95wt%以上であることが好ましく、99wt%以上であることがより好ましい。グラフェン多孔質炭素シートは、実質的に、グラフェン多孔質炭素材料とカーボンナノチューブとのみからなることが更に好ましい。ここで、「実質的」というのは、不可避な不純物を除く意味である。
(集電体)
 本実施形態のキャパシタ用電極で用いる集電体は、耐食性を向上させたアルミニウム材、例えば非晶質炭素被膜で被覆されたアルミニウム材を用いることができる。耐食性を向上させたアルミニウム材であれば、非晶質炭素被膜で被覆されたアルミニウム材に限らない。例えば非晶質炭素被膜と正極活物質との間、又は/及び非晶質炭素被膜と負極活物質との間に導電性炭素層が形成されていてもよい。
 基材であるアルミニウム材としては、一般的に集電体用途で使用されるアルミニウム材を用いることができる。
 アルミニウム材の形状としては、箔、シート、フィルム、メッシュなどの形態をとることができる。集電体としては、アルミニウム箔を好適に用いることができる。
 また、アルミニウム材としてプレーンなものの他、後述するエッチドアルミニウムを用いてもよい。
 アルミニウム材が箔、シートまたはフィルムである場合の厚みについては、特に限定されないが、セル自体のサイズが同じ場合、薄いほどセルケースに入れる活物質を多く封入できるというメリットはあるが、強度が低下するため、適正な厚みを選択する。実際の厚みとしては、10μm~40μmが好ましく、15μm~30μmがより好ましく、15μm~25μmであることがさらに好ましい。厚みが10μm未満の場合、アルミニウム材の表面を粗面化する工程、または、他の製造工程中において、アルミニウム材の破断または亀裂を生じるおそれがある。
 非晶質炭素被膜で被覆されたアルミニウム材として、エッチドアルミニウムを用いてもよい。
 エッチドアルミニウムは、エッチングによって粗面化処理されたものである。エッチングは一般的に塩酸等の酸溶液に浸漬(化学エッチング)する方法や、塩酸等の酸溶液中でアルミニウムを陽極として電解(電気化学エッチング)する方法等が用いられる。電気化学エッチングでは、電解の際の電流波形、溶液の組成、温度等によりエッチング形状が異なるので、キャパシタ性能の観点で選択できる。
 アルミニウム材は、表面に不動態層を備えているもの、備えていないもののいずれも用いることができる。アルミニウム材は、その表面に自然酸化膜である不動態膜が形成されている場合、非晶質炭素被膜層をこの自然酸化膜の上に設けてもよいし、自然酸化膜を除去した後に設けてもよい。自然酸化膜を除去する方法としては、任意の方法で除去することができるが、例えば、アルゴンスパッタリングにより除去してもよい。
 アルミニウム材上の自然酸化膜は不動態膜であり、それ自体、電解液に浸食されにくいという利点がある一方、集電体の抵抗の増大につながるため、集電体の抵抗の低減の観点では、自然酸化膜がない方がよい。
 本明細書において、非晶質炭素被膜とは、非晶質の炭素膜または水素化炭素膜である。非晶質炭素被膜は、例えば、ダイヤモンドライクカーボン(DLC)膜、カーボン硬質膜、アモルファスカーボン(a-C)膜、水素化アモルファスカーボン(a-C:H)膜等を含む。非晶質炭素被膜の成膜方法としては、炭化水素系ガスを用いたプラズマCVD法、スパッタ蒸着法、イオンプレーティング法、真空アーク蒸着法等の公知の方法を用いることができる。なお、非晶質炭素被膜は、集電体として機能する程度の導電性を有することが好ましい。
 例示した非晶質炭素被膜の材料のうち、ダイヤモンドライクカーボンは、ダイヤモンド結合(sp)とグラファイト結合(sp)の両方が混在したアモルファス構造を有する材料であり、高い耐薬品性を有する。ただし、集電体の被膜に用いるには導電性が低いため、導電性を高めるためにホウ素や窒素をドーピングするのが好ましい。
 非晶質炭素被膜の厚みは60nm以上、300nm以下である。非晶質炭素被膜の膜厚は、60nm未満であると薄すぎて非晶質炭素被膜の被覆効果が小さくなり、定電流定電圧連続充電試験での集電体の腐食を十分抑制できない。また、非晶質炭素被膜の膜厚が300nmを超えて厚すぎると非晶質炭素被膜が抵抗体になって活物質層(すなわち、活物質そのもの)との間の抵抗が高くなるので、適正な厚みを適宜選択する。非晶質炭素被膜の厚みは80nm以上、300nm以下であればより好ましく、120nm以上、300nm以下であればより好ましい。
炭化水素系ガスを用いたプラズマCVD法によって非晶質炭素被膜を成膜した場合、非晶質炭素被膜の厚みはアルミニウム材へ注入するエネルギー、具体的には印加電圧、印加時間、温度で制御することができる。
 本実施形態のキャパシタの集電体はアルミニウム材の表面に非晶質炭素被膜を有するので、アルミニウム材が電解液に接することを阻止して、電解液による集電体の腐食を防止することができる。
 非晶質炭素被膜と正極活物質との間、又は/及び非晶質炭素被膜と負極活物質との間に導電性炭素層が形成されている集電体においては、非晶質炭素被膜層の上に、さらに導電性炭素層が形成されている。導電性炭素層の厚みは5000nm以下であれば好ましく、3000nm以下であればより好ましく、2000nm以下であればさらに好ましい。厚みが5000nmを超えると、セルや電極になったとき、エネルギー密度が小さくなるからである。導電性炭素層の材料としては、導電性が高い炭素ならば種類を問わないが、導電性が高い炭素として黒鉛が含まれていることが好ましく、黒鉛のみであればより好ましい。
 導電性炭素層の材料の粒径は、活物質であるグラフェン多孔質炭素シートを構成しているグラフェン多孔質炭素材料の大きさに比べて1/10以下であることが好ましく、1/15以下であることがより好ましい。これは、粒径がこの範囲にあれば、導電性炭素層と活物質層が接する界面での接触性が高くなり、界面(接触)抵抗を低減できるからである。具体的には導電性炭素層の炭素材料の粒径が、1μm以下であれば好ましく、0.5μm以下であればより好ましい。
 また、導電性炭素層を形成する際、溶媒と共にバインダーを加えて塗料化し、DLCコーティングしたアルミニウム箔上に塗布する。塗布方法としては、公知の方法で塗布することができるが、例えば、スクリーン印刷、グラビア印刷、コンマコーター(登録商標)、スピンコーター等を用いることができる。バインダーとしては例えば、セルロース、アクリル、ポリビニルアルコール、熱可塑性樹脂、ゴム、有機樹脂等を用いることができる。熱可塑性樹脂としては例えばポリエチレンやポリプロピレン、ゴムとしてはSBR(スチレンーブタジエンラバー)やEPDM、有機樹脂としてはフェノール樹脂やポリイミド樹脂等を用いることができる。
 導電性炭素層は、粒子間の隙間が少なく、接触抵抗が低い方が好ましい。また、上記の導電性炭素層を形成するためのバインダーを溶かすための溶剤としては、水溶液と有機溶剤の2種類がある。
(キャパシタ用電極の製造方法)
 グラフェン多孔質炭素シートを前述の本実施形態の集電体に圧着し、本実施形態のキャパシタ用電極を製造する。グラフェン多孔質炭素シートを集電体と固定する方法としては、少量のバインダーを用いてもよいし、バインダーを用いず直接固定してもよい。シート状グラフェン多孔質炭素シートを集電体と固定する方法は、バインダーを用いず、グラフェン多孔質炭素シートを前述の集電体上に直接載せ、適切な圧力で加圧して固着することが好ましい。
 例えば、本実施形態の集電体が前述の非晶質炭素被膜で被覆されるアルミニウム材、一例としてDLCコーティングしたアルミニウム箔である場合、バインダーを用いなくても、圧着することでその上にグラフェン多孔質炭素シートを固着することができる。グラフェン多孔質炭素シートの表面及びDLC膜などの非晶質炭素被膜の表面のいずれも炭素で構成されていることから、異質の物質同士に比べ、強い結着性を示すためと考えられる。
(キャパシタ)
 本実施形態に係るキャパシタは、正極と負極とセパレータと電解質とを有する。
(正極及び負極)
 本実施形態のキャパシタで用いる正極及び負極は、前述の本実施形態のキャパシタ用電極を用いる。また、正極に用いる本実施形態のキャパシタ用電極と、負極に用いる本実施形態のキャパシタ用電極とは、同じでも、異なってもよいが、同じであることが好ましい。
(電解質)
 本実施形態のキャパシタで用いる電解質としては、例えば有機溶媒を用いた有機電解液を用いることができる。電解質イオンを含んでいれば、有機電解液に限らない。例えばゲルでもよい。電解液は、電極に吸脱着可能な電解質イオンを含む。電解質イオンは、そのイオン径ができるだけ小さいものの方が好ましい。具体的には、アンモニウム塩やホスホニウム塩、あるいはイオン液体、リチウム塩等を用いることができる。
 アンモニウム塩としては、テトラエチルアンモニウム(TEA)塩、トリエチルアンモニウム(TEMA)塩等を用いることができる。また、ホスホニウム塩としては、二つの五員環を持つスピロ化合物等を用いることができる。
 イオン液体としては、その種類は特に問わないが、電解質イオンを移動し易くする観点から、粘度ができる限り低く、また、導電性(導電率)が高い材料が好ましい。イオン液体を構成するカチオンとしては、例えばイミダゾリウムイオン、ピリジニウムイオン等が挙げられる。イミダゾリウムイオンとしては、例えば、1-エチル-3-メチルイミダゾリウム(1-ethyl-3-methylimidazolium)(EMIm)イオン、1-メチル-1-プロピルピロリジニウム(1-methyl-1-propylpyrrolidinium)(MPPy)イオン、1-メチル-1-プロピルピペリジニウム(1-methyl-1-propylpiperidinium)(MPPi)イオン等が挙げられる。また、リチウム塩としては四フッ化ホウ酸リチウムLiBF、六フッ化リン酸リチウムLiPF等を用いることができる。
 ピリジニウムイオンとしては、例えば、1-エチルピリジニウム(1-ethylpyridinium)イオン、1-ブチルピリジニウム(1-buthylpyridinium)イオン等が挙げられる。
 イオン液体を構成するアニオンとしては、BFイオン、PFイオン、[(CFSON]イオン、FSI(ビス(フルオロスルホニル)イミド、bis(fluorosulfonyl)imide)イオン、TFSI(ビス(トリフルオロメチルスルホニル)イミド、bis(trifluoromethylsulfonyl)imide)イオン等が挙げられる。
 溶媒としてはアセトニトリルやプロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルスルホン、エチルイソプロピルスルホン、エチルカーボネート、フルオロエチレンカーボネート、γブチロラクトン、スルホラン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の群からなる単独の溶媒もしくは混合溶媒を用いることができる。
(セパレータ)
 本実施形態のキャパシタで用いるセパレータとしては、正極と負極の短絡防止や電解液保液性の確保等の理由から、セルロース系の紙状セパレータや、ガラス繊維セパレータ、ポリエチレンやポリプロピレンの微多孔膜等が好適である。
 図2は、キャパシタ100を概略的に示す縦断面図である。図3は、キャパシタ100の動作原理を説明するための模式図であり、キャパシタ100の充電中の模式図である。キャパシタ100は、円筒型のケース40内で正極10と負極20とがセパレータ30を介して積層され、さらに捲回された構造を有する、捲回型のキャパシタ100である。図2では、正極10、負極20、セパレータ30の捲回型構造のうち一部(破線で囲まれた部分)が解かれた状態を示している。
 ケース40は、一部に開口部を有しており、この開口部は、周縁部にガスケット50を備えた封口板60で封止されている。正極10、負極20のそれぞれには、外部端子との接続用の正極リード10a、負極リード20aが接続されている。
 正極10は、正極活物質層13を含む。正極活物質層13は、正極活物質を有する。正極活物質は、グラフェン多孔質炭素シートを含む。負極20は、負極活物質層23を含む層である。負極活物質層23は、負極活物質を有する。負極活物質は、グラフェン多孔質炭素シートを含む。負極活物質23としてグラフェン多孔質炭素シートを含む。グラフェン多孔質炭素シートは、グラフェン多孔質炭素材料とカーボンナノチューブとを含む。正極10側の集電体11はアルミニウム材であり、アルミニウム材は非晶質炭素被膜12によって被覆されている。負極20側の集電体21はアルミニウム材であり、アルミニウム材は非晶質炭素被膜22によって被覆されている。非晶質炭素被膜12及び12の厚みはそれぞれ60nm以上、300nm以下である。なお、この例に限定されず、集電体11および集電体21は、それぞれ非晶質炭素被膜12および非晶質炭素被膜22で被覆されていないものであってもよい。
 外部の電源により電圧が加えられると、正極10には正孔71が蓄えられ、負極20には電子72が蓄えられる。すると、電解液80中のプラスイオン81とマイナスイオン82とは左右に分かれ、正極10側にはマイナスイオン82が配列し、負極20側にはプラスイオン81が配列して、電気二重層が形成される。
 なお、キャパシタ100は、本実施形態に係るキャパシタの一例であり、この例に限定されない。例えば、本実施形態のキャパシタは、コイン型や、角型など、円筒型以外のキャパシタであってもよい。
 また、図4は、正極10Aが正極活物質層13と非晶質炭素被膜12との間に導電性炭素層14を有し、負極20Aが負極活物質層23と非晶質炭素被膜22との間に導電性炭素層24を有するキャパシタ101の模式図である。キャパシタ100と同様の構成については同様の符号を付し、説明を省略する。図5は、正極活物質層13の一例の断面模式図である。正極活物質層13は、正極活物質としてグラフェン多孔質炭素シート130を有する。グラフェン多孔質炭素シート130は、グラフェン多孔質炭素材料131とカーボンナノチューブ132とを含む。尚、図5においてグラフェン多孔質炭素材料131とカーボンナノチューブ132との関係は一例であり、配置や寸法、任意は、本実施形態に記載の範囲で任意に選択することができる。負極活物質層23は、負極活物質としてグラフェン多孔質炭素シートを有し、グラフェン多孔質炭素材料131とカーボンナノチューブ132とを含む。負極活物質層23の断面は、正極活物質層13の断面模式図と同様である。
 以上のように、本実施形態のキャパシタは、グラフェン多孔質炭素材料とカーボンナノチューブとを含むグラフェン多孔質炭素シートを正極活物質及び負極活物質に用い、非晶質炭素被膜で被覆されたアルミニウム材を正極側の集電体及び負極側の集電体として用いることにより、高容量化および高電圧化を図り、以って高エネルギー密度化され、かつ耐電圧性および高温耐久性の向上を図るものである。
 また、本実施形態に係るキャパシタは、グラフェン多孔質炭素材料とカーボンナノチューブとを含むグラフェン多孔質炭素シートを正極活物質及び負極活物質に用い、さらに非晶質炭素被膜で被覆され、かつ、非晶質炭素被膜と正極活物質との間、又は/及び非晶質炭素被膜と負極活物質との間に導電性炭素層が形成されているアルミニウム材を集電体として用いることにより、高容量化および高電圧化を図り、以って高エネルギー密度化され、かつ耐電圧性および高温耐久性の向上を図るものである。
 さらに、本実施形態のキャパシタ用電極は、グラフェン多孔質炭素材料とカーボンナノチューブとを含むグラフェン多孔質炭素シートを正極活物質及び負極活物質に用い、非晶質炭素被膜で被覆されたアルミニウム材を正極側の集電体及び負極側の集電体として用いることにより、本実施形態のキャパシタ用電極を用いるキャパシタは、高容量化および高電圧化を図り、以って高エネルギー密度化され、かつ耐電圧性および高温耐久性の向上を図るものである。
 また、本実施形態に係るキャパシタ用電極は、グラフェン多孔質炭素材料とカーボンナノチューブとを含むグラフェン多孔質炭素シートを電極活物質に用い、さらに非晶質炭素被膜で被覆され、かつ、非晶質炭素被膜と電極活物質との間に導電性炭素層が形成されているアルミニウム材を集電体として用いることにより、本実施形態のキャパシタ用電極を用いるキャパシタは、高容量化および高電圧化を図り、以って高エネルギー密度化され、かつ耐電圧性および高温耐久性の向上を図るものである。
 (実施例1)
(粉末状グラフェン多孔質炭素材料の合成)
 平均粒径7nmの大明化学工業株式会社製アルミナ粒子(商品名:TM300)を石英製のレトルト(高圧釜)に入れた後、ロータリーキルン装置にセットした。
(1)アルゴンガスを500ml/分の流速で流しながら10℃/分の昇温スピードで900℃まで加熱した。
(2)その後、メタンガスを500ml/分の流速で流しながら900℃で2時間保持した。
(3)その後、アルゴンガスを500ml/分の流速で流しながら、室温まで冷却した。
(4)セットしていたアルミナ粒子を取り出し、フッ酸中に浸漬することでアルミナを除去した。
(5)その後、アルゴンガスを500ml/分の流速で流しながら10℃/分の昇温スピードで1800℃まで加熱した後、2時間保持し、室温まで冷却した後、取り出し、本実施例の粉末状グラフェン多孔質炭素材料を得た。
 得られた粉末状グラフェン多孔質炭素材料をグラフェンメソスポンジ(GMS)粉末とも呼ぶ。
(グラフェン多孔質炭素シートの作製)
 得られたGMS粉末と長さ1.9mmのカーボンナノチューブ(直径10nm)とが92.8wt%:7.2wt%の比率になるように秤量した後、水性溶媒で混合し、ホモジナイザーを用いて均一分散し、本実施例のグラフェン多孔質炭素シート用スラリーを調整した。このスラリーを用いて、基板に塗布・乾燥し、本実施例のグラフェン多孔質炭素シートであるGMSシートAを作製した。このGMSシートAの断面を日本電子株式会社製走査型電子顕微鏡JSM-IT100を用いて観察した結果、カーボンナノチューブの長さは20μm~110μmであった。
(グラフェン多孔質炭素シートからなる正極及び負極の作製)
(1)DLCコーティングしたアルミニウム箔からなる集電体の作製
 DLCコーティングしたアルミニウム箔(「DLCコートアルミニウム箔」ということがある)は正極側の集電体および負極側の集電体であり、非晶質炭素被膜で被覆されたアルミニウム材に相当する。DLCコートアルミニウム箔の製造法としては、純度99.99%のアルミニウム箔(厚さ20μm)に対して、アルゴンスパッタリングでアルミニウム箔表面の自然酸化膜を除去した後、そのアルミニウム表面近傍にメタン、アセチレンおよび窒素の混合ガス中で放電プラズマを発生させ、アルミニウム材に負のバイアス電圧を印加することによりDLC膜を生成させた。ここで、DLCをコーティング(被覆)したアルミニウム箔上のDLC膜の厚みを、ブルカー(BRUKER)社製触針式表面形状測定器DektakXTを用いて計測したところ、150nmであった。
(2)キャパシタ電極の作製
 作製したグラフェン多孔質炭素シート(GMSシートA)を、上記(1)で作製したDLCコーティングしたアルミニウム箔(厚さ20μm)と共に株式会社サンクメタル製3トン加熱エアハイドロ式小型精密圧延装置TH3000B(ロール径:250mm、送り速度:1m/分)に通すことで圧着し、本実施例の正極と負極を作製した。作製した電極の活物質層の厚みは420μmで、活物質層の密度は0.12g/cmであった。
<コインセル型キャパシタの作製>
 上記正極と負極をそれぞれ直径16mm、直径14mmの円板状に打ち抜いたものを150℃で24時間真空乾燥した後、アルゴングローブボックスへ移動した。これらを、ニッポン高度紙工業株式会社製紙セパレータ(商品名:TF40-30)を介して積層し、電解質に1MのTEMA-BF(四フッ化ホウ酸トリエチルメチルアンモニウム)、溶媒にプロピレンカーボネート(PC)を用いた電解液0.1mLを加えて、アルゴングローブボックス中で本実施例のキャパシタである2032型コインセルを作製した。
(実施例2)
 グラフェン多孔質炭素シートに用いるカーボンナノチューブの長さが0.5mmである以外は、実施例1と同様の方法でグラフェン多孔質炭素シート(GMSシートB)を作製した。作製したグラフェン多孔質炭素シート(GMSシートB)を用いた以外は、実施例1と同様の方法で2032型コインセルを作製した。このGMSシートAの断面を日本電子株式会社製走査型電子顕微鏡JSM-IT100を用いて観察した結果、カーボンナノチューブの長さは10μm~70μmであった。作製した電極の活物質層の厚みは450μmで、活物質層の密度は0.11g/cmであった。
(比較例1)
(1)DLCコーティングしたアルミニウム箔からなる集電体の作製
 実施例1と同様の方法で集電体を作製した。
(2)キャパシタ電極用ペーストの調製
 正極活物質および負極活物質として粉末状の株式会社クラレ製活性炭YP-50Fと、カーボンブラック(導電材)と、ポリフッ化ビニリデン(PVDF、バインダー)と、が87wt%:8wt%:5wt%の比率になるように秤量した後、N-メチルピロリドン(溶媒)で溶解混合し、本比較例のキャパシタ電極用ペーストを調整した。
(3)キャパシタ電極の作製
 調製したキャパシタ電極用ペーストを、上記(1)で作製したDLCコーティングしたアルミニウム箔(厚さ20μm)上に卓上コーターを用いて塗布した後、100℃で1時間乾燥し、本比較例の正極と負極を作製した。作製した電極の活物質層の厚みは71μmで、活物質層の密度は0.46g/cmであった。
<コインセル型キャパシタの作製>
 実施例1と同様の方法で2032型コインセルを作製した。
(比較例2)
 正極活物質および負極活物質としてグラフェンメソスポンジ(GMS)粉末を用いたこと以外は、比較例1と同様の方法で2032型コインセルを作製した。グラフェンメソスポンジ(GMS)粉末は、実施例1と同様の作製方法で得られたグラフェン多孔質炭素材料である。作製した電極の活物質層の厚みは89μmで、活物質層の密度は0.15g/cmであった。
(比較例3)
 グラフェン多孔質炭素シートに用いるカーボンナノチューブの長さが0.1mmである以外は、実施例1と同様の方法でグラフェン多孔質炭素シート(GMSシートC)を作製した。電極シート状にならなかったため、2032型コインセルを作製できず、評価できなかった。
(比較例4)
 グラフェン多孔質炭素シートに用いるカーボンナノチューブの長さが0.3mmである以外は、実施例1と同様の方法でグラフェン多孔質炭素シート(GMSシートD)を作製した。電極シート状にならなかったため、2032型コインセルを作製できず、評価できなかった。
(試験1)グラフェン多孔質炭素シート(GMSシート)、グラフェン多孔質炭素材料粉末(GMS粉末)、および活性炭の評価
<グラフェン層数の評価>
 得られたグラフェン多孔質炭素シートを構成しているグラフェン多孔質炭素材料について、以下の方法を用いてグラフェンの層数を算出した。
 熱重量分析(TG;Thermogravimetric analysis)法を用いて炭素の重量を算出し、次に、アルミナ粒子の表面積を算出し、これらを用いて面積当たりの炭素層の重量を算出した。その結果、8.60×10-4g/mであった。なお、単層のグラフェンの場合は7.61×10-4g/mであることがわかっている。
 これらの結果を用いて、以下の計算式でグラフェンの層数を算出した。
(グラフェン多孔質炭素材料の面積当たりの炭素層の重量)÷(単層のグラフェンの面積当たりの炭素層の重量)
 その結果1.1となり、得られたグラフェン多孔質炭素材料は、ほぼ単層のグラフェンから構成されることがわかった。
<エッジサイト量の測定方法>
 得られた実施例1のGMS粉末、および比較例1で用いた活性炭について、昇温脱離法(TPD;Temperature-Programmed Desorption)(1800℃)を用いてエッジサイト量を測定した。その結果を表1に示す。
<比表面積の評価>
 得られた実施例1のGMS粉末、および比較例1で用いた活性炭について、マイクロトラック・ベル株式会社製ガス吸着量測定装置BELSORP-maxを用いて、77K(-196℃)における窒素吸脱着測定を行った。得られた窒素吸着量からBET(Brunauer-Emmett-Teller)法を用いて比表面積を算出した。その結果を表1に示す。
<平均細孔径の評価>
 得られた実施例1のGMS粉末、および比較例1で用いた活性炭について、マイクロトラック・ベル株式会社製ガス吸着量測定装置BELSORP-maxを用いて、77K(-196℃)における窒素吸脱着測定を行った。得られた窒素吸着等温線からBJH(Barrett-Joyner-Halenda)法を用いて平均細孔径を算出した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(試験2)キャパシタの評価<重量エネルギー密度>
 得られたセルについて、株式会社ナガノ製充放電試験装置BTS2004を用いて、25℃の恒温槽中で、0.4mA/cmの電流密度、4.0Vの電圧で定電流定電圧充電を行ない、その後、定電流(電流密度0.4mA/cm)の放電電流値で0Vまで放電を行なう充放電試験を行なった。0Vまで放電した時間と放電電流の積により、放電容量を算出した。また、エネルギー量は放電時の平均電圧と放電容量の積により算出した。
 重量エネルギー密度はコインセルで得られたエネルギー量を正極の活物質重量(実施例ではグラフェン多孔質炭素シートを構成しているグラフェン多孔質炭素材料の重量、比較例では活性炭又はグラフェン多孔質炭素(GMS)粉末の重量)で除して算出している。
(試験3)キャパシタの評価<放電率>
 得られたセルについて、株式会社ナガノ製充放電試験装置BTS2004を用いて、25℃の恒温槽中で、0.4mA/cmあるいは50mA/cmの電流密度、4.0Vの電圧で定電流定電圧充電を行ない、その後、電流密度0.4mA/cmの放電電流値で0Vまで放電を行なう充放電試験を行なった。その結果として得られた0.4mA/cmの電流密度で充放電試験を行なった場合の放電容量に対する50mA/cmでの放電容量の比率を算出し、放電率を得た。その結果を表2に示す。表2においては、比較例1の結果を100として規格化した相対値を示した。
(試験4)キャパシタの評価<60℃耐久性(放電容量維持率)>
 得られたセルについて、株式会社ナガノ製充放電試験装置BTS2004を用いて、25℃の恒温槽中で、0.4mA/cmの電流密度、4.0Vの電圧で定電流定電圧充電を行ない、その後、電流密度0.4mA/cmの放電電流値で0Vまで放電を行なう充放電試験を行い、定電流定電圧連続充電試験前の放電容量を計測した。
 次に充放電試験装置BTS2004を用いて、60℃の恒温槽中で、電流密度0.4mA/cm、電圧4.0Vで連続充電試験(定電流定電圧連続充電試験)を行った。具体的には、充電の途中、所定の時間で充電を止め、恒温槽の温度を25℃に変更し、5時間経過後、上記と同様に0.4mA/cmの電流密度、4.0Vの電圧で定電流定電圧充電を行ない、その後、電流密度0.4mA/cmの放電電流値で0Vまで放電を行なう充放電試験を5回行うことで放電容量を得た。その後、恒温槽の温度を60℃に戻し、5時間経過後、連続充電試験を再開し、連続充電試験時間の総計が2000時間になるまで試験を実施した。2000時間での放電容量維持率は、試験開始前の放電容量を100とし、試験開始後、2000時間経過後の放電容量を、その100の放電容量に対する割合で示したものである。60℃耐久性は、この60℃、2000時間での放電容量維持率を用いて評価した。表2においては、比較例1の結果を100として規格化した相対値を示した。
Figure JPOXMLDOC01-appb-T000002
 表2に示した通り、本実施形態のグラフェン多孔質炭素シート(GMSシートA)を電極活物質として用いた実施例1では、活性炭を電極活物質として用いた比較例1に比べて重量エネルギー密度が2.4倍増加し、放電率も6.5倍向上できながら、60℃耐久性では25倍も向上することができた。また、カーボンナノチューブの長さが異なる本実施形態のグラフェン多孔質炭素シート(GMSシートB)を電極活物質として用いた実施例2では、活性炭を電極活物質として用いた比較例1に比べて重量エネルギー密度が1.8倍増加し、放電率も5.5倍向上できながら、60℃耐久性では22倍も向上することができた。
 実施例1の正極活物質および負極活物質であるグラフェン多孔質炭素シートは、平均細孔径が7nmであり、電解質イオン径(1.6nm~2.0nm)以上の、メソ孔主体の細孔を有している。一方、比較例1の正極活物質および負極活物質である活性炭YP-50Fの細孔は、電解質イオン径より小さいミクロ孔が88%を占めており、多くの細孔に電解質イオンが入らない。これらのことから、実施例1のグラフェン多孔質炭素シートの電解質イオンの吸着効率が比較例1の活性炭YP-50Fに比べて高く、このことにより、重量エネルギー密度が増加したと考えられる。
 また、放電率の向上に関しては、実施例1のグラフェン多孔質炭素シートの細孔径が大きいために、電解質イオンの移動が速くなったことによる効果であると考えられる。実施例1では、グラフェン多孔質炭素シートを電極活物質として用いた電極を使用した。このグラフェン多孔質炭素シート電極は、導電材やバインダーを含まないので、導電材やバインダーに起因する副反応が生じないため、導電材やバインダーを含む比較例1に比べて60℃耐久性が大幅に向上できたと考えられる。
 比較例2の正極活物質および負極活物質として、グラフェンメソスポンジ粉末(GMS粉末)を用いた。また、比較例1と同様に、導電材やバインダーを用いて、GMS粉末を含む電極活物質層を形成し、電極を作製した。実施例1のグラフェン多孔質炭素シートを構成しているグラフェン多孔質炭素材料は、比較例2のGMS粉末と同じ細孔構造を有しているが、実施例1の電極では、導電材やバインダーを含まないため、比較例2に比べて重量エネルギー密度、60℃耐久性を向上することができた。実施例1のグラフェン多孔質炭素シート電極は、電極活物質として用いた本実施形態のグラフェン多孔質炭素シートに導電材やバインダーを用いておらず、また主要材料であるグラフェン多孔質炭素材料の特徴である多孔質で導電性をもったシートになっているので、比較例2に比べて、放電率特性が大幅に向上できたと考えられる。
 比較例3と比較例4は、実施例1と2に比べて、出発原料として長さが0.5mm未満の短いカーボンナノチューブを用いたため、電極用活物質として必要なグラフェン多孔質炭素シート(GMSシート)を形成することができなかった。
10:正極、10a:正極リード、11:集電体、12:非晶質炭素被膜、
13:正極活物質、20:負極、20a:負極リード、21:集電体、
22:非晶質炭素被膜、23:負極活物質、30:セパレータ、40電解質、
41:プラスイオン、42:マイナスイオン、51:正孔、52:電子、
100:キャパシタ、101:ケース、105:ガスケット、106:封口板

Claims (10)

  1.  少なくとも正極、負極、及び電解質から構成されるキャパシタであって、
     前記正極は正極活物質を含み、かつ、前記負極は負極活物質を含み、
     前記正極活物質及び前記負極活物質は、グラフェン多孔質炭素シートを含み、
     前記グラフェン多孔質炭素シートは、グラフェン多孔質炭素材料とカーボンナノチューブとを含み、
     前記グラフェン多孔質炭素材料は、グラフェンからなる多孔質炭素材料であり、
     正極側の集電体及び負極側の集電体はアルミニウム材であり、
     前記アルミニウム材は非晶質炭素被膜で被覆され、
     前記非晶質炭素被膜の厚みが60nm以上、300nm以下である、
    ことを特徴とするキャパシタ。
  2.  前記グラフェン多孔質炭素材料の細孔は、メソ孔である請求項1に記載のキャパシタ。
  3.  前記グラフェン多孔質炭素材料のエッジサイト量が昇温脱離法による分析で0.01mmol/g~0.15mmol/gである
     請求項1又は2のいずれか1項に記載のキャパシタ。
  4.  前記正極側の集電体は、前記非晶質炭素被膜と前記正極活物質との間に導電性炭素層が形成されている
     請求項1~3のいずれか1項に記載のキャパシタ。
  5.  前記負極側の集電体は、前記非晶質炭素被膜と前記負極活物質との間に導電性炭素層が形成されている
     請求項1~3のいずれか1項に記載のキャパシタ。
  6.  前記グラフェン多孔質炭素材料は、層数が1~3である、請求項1に記載のキャパシタ。
  7.  前記グラフェン多孔質炭素材料に含まれている単層グラフェンの重量含有量は、20wt%~100wt%である、請求項1に記載のキャパシタ。
  8.  前記導電性炭素層の材料の粒径は、前記グラフェン多孔質炭素シートを構成している前記グラフェン多孔質炭素材料の大きさに比べて1/10以下である、
     請求項4または5に記載のキャパシタ。
  9.  電極活物質と集電体とを含み、
     前記電極活物質は、グラフェン多孔質炭素シートを含み、
     前記グラフェン多孔質炭素シートは、グラフェン多孔質炭素材料とカーボンナノチューブとを含み、
     前記グラフェン多孔質炭素材料は、グラフェンからなる多孔質炭素材料であり、
     集電体はアルミニウム材であり、
     前記アルミニウム材は非晶質炭素被膜で被覆され、
     前記非晶質炭素被膜の厚みが60nm以上、300nm以下である、
    ことを特徴とするキャパシタ用電極。
  10.  前記集電体は、前記非晶質炭素被膜と前記電極活物質との間に導電性炭素層が形成されている請求項8に記載のキャパシタ用電極。
PCT/JP2019/041086 2018-10-19 2019-10-18 キャパシタ及びキャパシタ用電極 WO2020080520A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980058478.0A CN112655061B (zh) 2018-10-19 2019-10-18 电容器及电容器用电极
JP2020518744A JP6782950B2 (ja) 2018-10-19 2019-10-18 キャパシタ及びキャパシタ用電極

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-197975 2018-10-19
JP2018197975 2018-10-19

Publications (1)

Publication Number Publication Date
WO2020080520A1 true WO2020080520A1 (ja) 2020-04-23

Family

ID=70283884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041086 WO2020080520A1 (ja) 2018-10-19 2019-10-18 キャパシタ及びキャパシタ用電極

Country Status (3)

Country Link
JP (1) JP6782950B2 (ja)
CN (1) CN112655061B (ja)
WO (1) WO2020080520A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397320A (zh) * 2020-11-06 2021-02-23 大连理工大学 一种应用于超级电容器的氮掺杂分级孔整体性碳材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597360B (zh) * 2022-03-02 2023-12-08 江西省纳米技术研究院 具有阵列取向孔结构的复合正极材料、其制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050846A1 (ja) * 2012-09-27 2014-04-03 東洋アルミニウム株式会社 導電部材、電極、二次電池、キャパシタ、ならびに、導電部材および電極の製造方法
JP2015164889A (ja) * 2014-02-07 2015-09-17 日産自動車株式会社 多孔質炭素材料およびその製造方法
WO2016080372A1 (ja) * 2014-11-20 2016-05-26 株式会社プラズマイオンアシスト 燃料電池用セパレータ又は燃料電池用集電部材、及びその製造方法
JP2018002503A (ja) * 2016-06-28 2018-01-11 株式会社デンソー 多孔質炭素薄膜およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2660198A4 (en) * 2010-12-29 2018-03-28 Ocean's King Lighting Science&Technology Co., Ltd. Porous graphene material and preparation method and uses as electrode material thereof
JP2012169567A (ja) * 2011-02-16 2012-09-06 Oki Kogei:Kk 電気二重層キャパシタ
CN103811198A (zh) * 2012-11-09 2014-05-21 海洋王照明科技股份有限公司 石墨烯电极及超级电容器的制备方法
JP6934149B2 (ja) * 2016-04-28 2021-09-15 国立大学法人 筑波大学 多孔質体およびその製造方法並びに電極
KR101891063B1 (ko) * 2016-06-17 2018-08-22 티피알 가부시키가이샤 전기 이중층 커패시터

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014050846A1 (ja) * 2012-09-27 2014-04-03 東洋アルミニウム株式会社 導電部材、電極、二次電池、キャパシタ、ならびに、導電部材および電極の製造方法
JP2015164889A (ja) * 2014-02-07 2015-09-17 日産自動車株式会社 多孔質炭素材料およびその製造方法
WO2016080372A1 (ja) * 2014-11-20 2016-05-26 株式会社プラズマイオンアシスト 燃料電池用セパレータ又は燃料電池用集電部材、及びその製造方法
JP2018002503A (ja) * 2016-06-28 2018-01-11 株式会社デンソー 多孔質炭素薄膜およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397320A (zh) * 2020-11-06 2021-02-23 大连理工大学 一种应用于超级电容器的氮掺杂分级孔整体性碳材料及其制备方法
CN112397320B (zh) * 2020-11-06 2022-02-15 大连理工大学 一种应用于超级电容器的氮掺杂分级孔整体性碳材料及其制备方法

Also Published As

Publication number Publication date
JPWO2020080520A1 (ja) 2021-02-15
CN112655061B (zh) 2022-02-25
CN112655061A (zh) 2021-04-13
JP6782950B2 (ja) 2020-11-11

Similar Documents

Publication Publication Date Title
EP2387805B1 (en) A process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
CN102282706B (zh) 使用碳纳米结构材料的高效能量转换和存储系统
JP6014021B2 (ja) リチウム含有電解質を有する電気化学キャパシタ
JP5363818B2 (ja) 塗布電極及び有機電解質キャパシタ
US9997301B2 (en) Electrode, electric double-layer capacitor using the same, and manufacturing method of the electrode
JP4924966B2 (ja) リチウムイオンキャパシタ
US10636581B2 (en) Electric double layer capacitor
JPWO2005096333A1 (ja) メソポア炭素材を負極に用いた有機電解質キャパシタ
JP2013157603A (ja) リチウムイオンキャパシタ用活性炭、これを活物質として含む電極、及び前記電極を用いるリチウムイオンキャパシタ
JP2012004491A (ja) 蓄電デバイス
JP2005129924A (ja) 電気二重層コンデンサ用金属製集電体およびそれを用いた分極性電極並びに電気二重層コンデンサ
WO2020080520A1 (ja) キャパシタ及びキャパシタ用電極
KR20220013544A (ko) 슈퍼커패시터
JP6504378B1 (ja) ハイブリッドキャパシタ
WO2020080521A1 (ja) キャパシタ及びキャパシタ用電極
KR101057410B1 (ko) 수퍼커패시터 및 이의 제조방법
JP2007294539A (ja) リチウムイオンハイブリッドキャパシタ
JP2013098575A (ja) 電極活物質組成物、その製造方法、及びこれを用いた電気化学キャパシタ
JPWO2019017375A1 (ja) ハイブリッドキャパシタ
JP2019102712A (ja) キャパシタ
US20180082797A1 (en) Electrode material for electronic device and electronic device comprising the same
WO2020262464A1 (ja) ハイブリッドキャパシタ
KR102016520B1 (ko) 고전압 슈퍼커패시터 및 그 제조방법
JP2023154302A (ja) 炭素材料、ハイブリッドキャパシタ用電極材料、ハイブリッドキャパシタ用電極、及びハイブリッドキャパシタ
JP2019102711A (ja) キャパシタ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020518744

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872641

Country of ref document: EP

Kind code of ref document: A1