WO2020079758A1 - スカム吸着部材、双ロール式連続鋳造装置、及び、鋳片の製造方法 - Google Patents

スカム吸着部材、双ロール式連続鋳造装置、及び、鋳片の製造方法 Download PDF

Info

Publication number
WO2020079758A1
WO2020079758A1 PCT/JP2018/038536 JP2018038536W WO2020079758A1 WO 2020079758 A1 WO2020079758 A1 WO 2020079758A1 JP 2018038536 W JP2018038536 W JP 2018038536W WO 2020079758 A1 WO2020079758 A1 WO 2020079758A1
Authority
WO
WIPO (PCT)
Prior art keywords
scum
molten metal
pores
pair
slab
Prior art date
Application number
PCT/JP2018/038536
Other languages
English (en)
French (fr)
Inventor
加藤 雄一
直嗣 吉田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN201880098340.9A priority Critical patent/CN112839753B/zh
Priority to PCT/JP2018/038536 priority patent/WO2020079758A1/ja
Priority to BR112021005433-2A priority patent/BR112021005433B1/pt
Priority to KR1020217009246A priority patent/KR102505042B1/ko
Priority to US17/282,123 priority patent/US20210370390A1/en
Publication of WO2020079758A1 publication Critical patent/WO2020079758A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D43/00Mechanical cleaning, e.g. skimming of molten metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a scum suction member, a twin roll type continuous casting apparatus using the scum suction member, and a method for manufacturing a cast piece.
  • Twin roll continuous casting with a pair of cooling rolls that have a water-cooled structure inside and that rotate in opposite directions in order to manufacture thin cast pieces of metal (hereinafter sometimes referred to as cast strips) A device is provided.
  • molten metal is supplied to a molten metal pool portion formed by a pair of rotating cooling rolls and a pair of side dams to form and grow on the peripheral surfaces of the pair of cooling rolls.
  • the solidified shells are pressure-bonded to each other at roll kiss points to produce a slab having a predetermined thickness.
  • Such a twin roll type continuous casting apparatus is applied to various metals.
  • oxides and the like float above the molten metal pool portion to form film-like foreign matter called scum, and this scum is intermittently formed on the peripheral surface of the cooling roll. There was a risk of being caught up.
  • the caught scum causes surface defects such as surface cracks and surface defects of the cast slab. Therefore, when casting a slab using the twin roll type continuous casting device described above, the following techniques have been proposed as a method for suppressing the occurrence of surface defects by removing scum or rendering it harmless. .
  • Patent Document 1 proposes that a solid oxide is placed at the interface between the molten metal and the vapor phase in the molten metal pool portion to capture the scum to prevent the inclusion of the scum in the solidified shell.
  • Patent Document 2 proposes a means for preventing scum from being captured between a cooling roll and a solidification shell by causing scum generated by blowing an inert gas to flow near the side dam.
  • Patent Document 3 proposes a means for preventing scum from being trapped between the cooling roll and the solidification shell by using the discharge flow from the immersion nozzle to push the scum into the vicinity of the side dam.
  • Patent Document 4 a pair of scum weirs are installed along the width direction of the cooling roll of the molten metal pool portion to reduce the flow of the molten metal discharged from the immersion nozzle, thereby preventing the ripple of the molten metal.
  • a method of preventing the scum from being taken into the solidified shell by controlling the flow of the molten metal has been proposed.
  • Patent Document 5 proposes a method of suppressing the adhesion of scum to the scum weir by making the scum weir with a material having poor wettability with the scum and maintaining the effect of flow control for a long time. Has been done.
  • Patent Document 6 proposes the use of a scum weir having a high thermal shock resistance, which is made of a cheaper material and can withstand use in a state of almost no preheating.
  • Patent Document 7 proposes a scum weir made of a material containing an element that increases the surface tension of molten metal.
  • the element that increases the surface tension is dissolved in the molten metal, so that the adhesion of scum to the scum weir can be suppressed.
  • Patent Document 8 proposes a scum weir made of Al 2 O 3 , and attempts to prevent the scum from being caught in a thin cast slab by adsorbing the scum by the scum weir.
  • Patent Document 1 has a problem that it is difficult to detect the level of the molten metal because the solid oxide covers the molten metal surface. Further, when the solid oxide and the cooling roll are arranged in proximity to each other, there is a concern that the scum attached to the solid oxide and growing may come into contact with the cooling roll, and the scum may be trapped in the thin cast piece. It was Further, in the methods disclosed in Patent Documents 2 and 3, when the total amount of scum increases as the casting time increases, it becomes difficult to keep the scum only in the vicinity of the side weirs, which prevents the occurrence of surface defects. There was a problem that the effect was small.
  • Patent Documents 4, 5, and 6 cannot prevent the solidified shell from being caught when the total amount of scum is large, and as a result, long-time casting is difficult. was there. Further, in the method disclosed in Patent Document 7, since the component of the scum weir dissolves in the molten metal to exert its function, there is a problem that the component of the molten metal changes with the dissolution of the scum weir component. there were. Furthermore, the method disclosed in Patent Document 8 has a problem that the amount of adsorbed scum is limited and that it cannot be used for a long time due to erosion depending on the composition of scum.
  • the present invention has been made in view of the above-mentioned circumstances, has thermal shock resistance that does not generate cracks even when it comes into contact with molten metal in a state of almost no preheating, and melts even in a casting time of more than 6 hours.
  • a scum suction member capable of suppressing trapping of scum in the solidified shell by absorbing and adsorbing scum into the pores of the scum suction member without damaging the twin roll type continuous casting device using the scum suction member, and
  • An object of the present invention is to provide a method for manufacturing a slab.
  • the gist of the present invention is as follows.
  • molten metal is supplied to a molten metal pool portion formed by a pair of rotating cooling rolls and a pair of side dams to form a solidified shell on the peripheral surface of the cooling roll.
  • a twin roll type continuous casting apparatus for producing a slab by growing a scum adsorption member arranged so as to be partly immersed in the molten metal pool portion, and a refractory material containing a refractory metal oxide.
  • the scum adsorption member is made of a material and has a volume ratio of pores of 15% by volume or more and 70% by volume or less.
  • the scum suction member described in (1) above may be attached to a reinforcing member.
  • the scum adsorbing member according to (2) above may be composed of a porous sheet made of ceramic fibers.
  • the refractory metal oxide is Al 2 O 3 , ZrO 2 , MgO, SiO 2 , CaO.6Al 2 O. It may be at least one type or two or more types selected from 3 .
  • the average diameter of the pores may be 10 ⁇ m or more and less than 50 ⁇ m.
  • the volume ratio of the pores may be 20% by volume or more and less than 50% by volume.
  • a second aspect of the present invention is to supply a molten metal to a molten metal pool portion formed by a pair of rotating cooling rolls and a pair of side dams to form a solidified shell on the peripheral surface of the cooling roll.
  • molten metal is supplied to a molten metal pool portion formed by a pair of rotating cooling rolls and a pair of side dams to form a solidified shell on the peripheral surface of the cooling roll.
  • the thermal shock resistance which does not generate
  • the scum adsorption member is made of a refractory material containing a refractory metal oxide and has a pore volume ratio of 15% by volume or more. Therefore, the absorption margin for thermal expansion is secured, the thermal shock resistance is improved, and the scum can be sufficiently adsorbed by the pores. On the other hand, since the volume ratio of the pores is 70% by volume or less, the strength is secured and breakage due to the flow of the molten metal can be suppressed. As described above, the thermal shock resistance is excellent, the entrainment of scum can be sufficiently suppressed for a long time, and the cast slab can be stably cast.
  • the scum suction member described in (2) above since the strength of the scum suction member is secured by the reinforcing member, breakage due to the flow of molten metal can be suppressed. Furthermore, the size of the scum suction member can be reduced, and maintenance such as replacement and repair becomes easy.
  • the scum adsorption member attached to the reinforcing member is made of a porous sheet made of ceramics fiber, so that the structure is very simple. Also, by selecting an appropriate porous sheet in consideration of thermal conductivity, heat resistance, etc. according to casting conditions, it is possible to accurately suppress the generation and growth of metal on the surface of the scum adsorption member. Becomes
  • scum suction member described in (4) above, by selecting a material having various characteristics such as scum suction, thermal shock resistance, and corrosion resistance against scum, scum suction according to various casting conditions can be achieved. A member can be applied, and stable casting can be performed for a long time.
  • the scum suction member described in (5) above since the average diameter of the pores is within the range of 10 ⁇ m or more and less than 50 ⁇ m, the scum can be sufficiently sucked.
  • the average pore diameter is measured by mercury porosimetry (JIS R 1655 (2003)), and the pore diameter with a cumulative volume ratio of 50% is defined as the "average pore diameter".
  • the volume ratio of the pores is 20% by volume or more, the absorption margin of thermal expansion is accurately secured, and the thermal shock resistance is sufficiently improved. At the same time, scum can be sufficiently adsorbed by the pores. On the other hand, since the volume ratio of pores is 50% by volume or less, sufficient strength is ensured and breakage due to the flow of molten metal can be suppressed.
  • the scum adsorbing member is disposed in the molten metal pool portion.
  • the scum can be adsorbed and the scum can be prevented from being caught in the cooling roll.
  • it has excellent thermal shock resistance and strength, and can be used for a long time. Therefore, a slab having excellent surface quality can be stably cast.
  • FIG. 1 It is an explanatory view showing an example of a twin roll type continuous casting device using a scum adsorption member concerning one embodiment of the present invention. It is a partially expanded explanatory view of the twin roll type continuous casting apparatus shown in FIG. It is sectional explanatory drawing of the molten steel pool part of the twin roll type continuous casting apparatus shown in FIG. It is a schematic top view of the molten steel pool part shown in FIG. 3, and shows the flow of the molten steel discharged from an immersion nozzle. It is explanatory drawing which shows the aspect with which the scum adsorption member was attached to the reinforcement member.
  • the inventors of the present invention have made earnest studies, and as a result, have obtained the following findings.
  • the focus has been on a method of suppressing the adhesion of scum to the scum weir.
  • a method of preventing contact with the scum has been taken by using a material system containing C that is hard to wet the scum.
  • this method has a problem that scum is trapped in the solidified shell and the quality of the slab is deteriorated.
  • the inventors of the present invention have conducted earnest research, and by appropriately controlling the pores of the scum weir, the pores serve as an absorption allowance for expansion and high thermal shock resistance can be realized, and the pores serve as an adsorption allowance for the scum. It has been found that while keeping the adsorption of No. 2 for a long time, when the volume ratio of pores (hereinafter also referred to as porosity) is high, the adhesion of metal can be suppressed by the high heat insulating property. Furthermore, by appropriately controlling the materials that make up the scum weir, we found that even with a scum weir with high porosity, the erosion rate due to scum can be reduced and high corrosion resistance can also be realized. It was
  • the target metal to be cast will be described as steel.
  • the present invention is not limited to the embodiments below.
  • molten steel is used as the molten metal, and the slab 1 made of steel is manufactured.
  • steel types include 0.001 to 0.01% C ultra low carbon steel, 0.02 to 0.05% C low carbon steel, 0.06 to 0.4% C medium carbon steel, 0.5 ⁇ 1.2% C high carbon steel, austenitic stainless steel typified by SUS304 steel, ferritic stainless steel typified by SUS430 steel, 3.0 ⁇ 3.5% Si grain oriented electrical steel, 0.1 ⁇ 6.5% Si non-oriented electrical steel and the like (where% is% by mass) can be mentioned. Further, in the present embodiment, the width of the cast slab 1 to be manufactured is within the range of 200 mm to 1800 mm, and the thickness is within the range of 0.8 mm to 5 mm.
  • the twin roll type continuous casting apparatus 10 is an apparatus for manufacturing the cast slab 1, and as shown in FIGS. 1 to 4, the pair of cooling rolls 11, 11, the upstream pinch rolls 12, 12 and the downstream pinch rolls.
  • the rolls 13 and 13, the pair of side dams 15 and 15, the tundish 18, and the immersion nozzle 19 are provided.
  • the upstream pinch rolls 12, 12 and the downstream pinch rolls 13, 13 are provided on the downstream side of the pair of cooling rolls 11, 11 to support the cast piece 1.
  • the pair of side dams 15 and 15 are arranged at both ends in the width direction of the pair of cooling rolls 11 and 11.
  • the molten steel pool portion 16 is defined by the pair of cooling rolls 11 and 11 and the pair of side dams 15 and 15.
  • the tundish 18 holds the molten steel 3 and supplies the molten steel 3 to the molten steel pool portion 16 via a dipping nozzle 19 extending downward from the bottom surface thereof.
  • the molten steel 3 comes into contact with the rotating cooling rolls 11 and is cooled, so that the solidified shells 5 and 5 grow on the peripheral surfaces of the cooling rolls 11 and 11. . Then, the solidified shells 5, 5 respectively formed on the pair of cooling rolls 11, 11 are pressed against each other at the roll kiss points to cast the slab 1 having a predetermined thickness.
  • molten steel 3 is stored in the molten steel pool portion 16, and a scum X made of an alumina film or the like is formed on the molten steel surface.
  • the molten steel pool portion 16 is provided with a scum suction member 20. More specifically, as shown in FIGS. 2 to 4, the scum adsorption member 20 is disposed between the immersion nozzle 19 and the cooling rolls 11, 11 and a part thereof is immersed in the molten steel 3.
  • the scum suction member 20 has a rectangular flat plate shape, and as shown in FIG. 3, the immersion depth (vertical depth) D in the molten steel 3 is set to 5 mm or more. There is. When the immersion depth D is less than 5 mm, the scum X may pass through the scum suction member 20 due to the surface waviness and surface flow of the molten steel pool portion 16.
  • FIG. 4 is a schematic top view showing the flow of the molten steel 3 discharged from the immersion nozzle 19. As shown in FIG. 4, when the immersion depth D is 5 mm or more, the molten steel 3 can be stably circulated, and thus the scum can be reliably adsorbed to the scum adsorption member 20. .
  • the scum adsorption member 20 is made of a refractory material (irregular refractory material or fixed brick) containing a refractory metal oxide, and the volume ratio of pores is 15 vol% or more and 70 vol% or more. It is the following. Preferably, the volume ratio of pores is 20% by volume or more and less than 50% by volume. In addition, in the scum adsorbing member 20 of the present embodiment, it is preferable that the average diameter of the pores is 10 ⁇ m or more and less than 50 ⁇ m. Further, as the refractory metal oxide, it is preferable to use at least one kind or two or more kinds selected from Al 2 O 3 , ZrO 2 , MgO, SiO 2 , and CaO.6Al 2 O 3 .
  • the scum adsorption member 20 has pores as described above, and these pores improve the thermal shock resistance by securing the absorption margin of thermal expansion, the adsorption margin of the scum, and the heat transfer path. It is possible to obtain the effect of suppressing the adhesion of the metal by reducing
  • the volume ratio of the pores is less than 15% by volume, the above-described effects due to the pores may not be achieved.
  • the volume ratio of the pores exceeds 70% by volume, the strength is insufficient and the molten steel flow may cause breakage.
  • the volume ratio of pores is set within the range of 15% by volume or more and 70% by volume or less.
  • the lower limit of the volume ratio of the pores is 20% by volume or more.
  • the upper limit of the volume ratio of pores is less than 50% by volume.
  • the control of the porosity in the scum adsorbing member 20 can be performed by using a lightweight aggregate or an organic fiber or adjusting the amount of water used during kneading. Since the lightweight aggregate itself has pores, it is possible to improve the porosity after molding. Moreover, since the organic fibers and the water disappear during heating to generate bubbles inside the molded body, the porosity can be improved.
  • the pores in the scum suction member 20 have a function of sucking the scum as described above.
  • the average diameter of the pores is set to 10 ⁇ m or more, the amount of permeation of scum can be secured and the scum can be sufficiently adsorbed.
  • the average diameter of the pores in the scum suction member 20 is set to be less than 50 ⁇ m, the pores of the scum suction member 20 and the scum are in sufficient contact, and the scum can be sufficiently suctioned. Therefore, in the scum adsorption member 20 of the present embodiment, the average diameter of the pores is set within the range of 10 ⁇ m or more and less than 50 ⁇ m.
  • the lower limit of the average diameter of the pores in the scum adsorbing member 20 is preferably 25 ⁇ m or more, and the upper limit of the average diameter of the pores is more preferably 40 ⁇ m or less. .
  • the average diameter of the pores in this embodiment was measured by the mercury penetration method (JIS R 1655 (2003)), and the pore diameter with a cumulative volume ratio of 50% was defined as the “average diameter of the pores”.
  • the average diameter of the pores can be adjusted by appropriately controlling the amount of organic fiber added and the amount of water during kneading.
  • the scum adsorption member 20 of the present embodiment unlike the so-called porous heat insulating material having a large number of pores, it is possible to control the amount and diameter of the pores that contribute to the adsorption of the scum. .
  • Refractory metal oxide As the refractory metal oxide forming the scum adsorption member 20 of the present embodiment, at least one selected from Al 2 O 3 , ZrO 2 , MgO, SiO 2 , CaO ⁇ 6Al 2 O 3 or two or more selected. Can be used.
  • the scum adsorption member 20 having a relatively high strength can be obtained even with a high porosity.
  • Al 2 O 3 is selected as the main component, by mixing the other component described below, the deterioration of the corrosion resistance due to the highly adsorbing Al 2 O 3 is suppressed by the other component to make it porous. Even in such a case, the scum erosion due to scum can be suppressed while maintaining the strength, and the scum suction member 20 having high durability can be obtained.
  • the low thermal conductivity improves the bare metal adhesion suppressing ability, and the high corrosion resistance against CaO provides the effect of improving the corrosion resistance against scum.
  • CaO.6Al 2 O 3 is selected as the main component, high porosity can be easily realized due to its plate-like structure, scum adsorption capacity can be improved, and high corrosion resistance against FeO can improve corrosion resistance against scum. The improvement effect can be obtained.
  • the corrosion resistance to CaO and FeO is high, so that higher corrosion resistance to scum can be obtained as compared with the above-mentioned CaO.6Al 2 O 3 and ZrO 2 .
  • SiO 2 is selected as the main component, the effect of improving the thermal shock resistance can be obtained due to its low coefficient of thermal expansion. Thereby, when it is desired to have a relatively low porosity with an emphasis on the corrosion resistance, it is possible to obtain the durability which can be stably used even in the case where the material is likely to have a reduced thermal shock resistance.
  • the scum adsorbing member 20 according to the present embodiment as described above is made of a refractory material containing a refractory metal oxide, and the volume ratio of pores in the scum adsorbing member 20 is 15% by volume or more.
  • the absorption allowance for expansion is secured, the thermal shock resistance is improved, and the scum can be sufficiently adsorbed by the pores.
  • the volume ratio of the pores is 70% by volume or less, the strength is secured and breakage due to the flow of the molten steel 3 can be suppressed. Therefore, the thermal shock resistance is excellent, the entrainment of scum can be sufficiently suppressed for a long time, and the cast piece 1 can be stably cast.
  • the scum suction member 20 since the average diameter of the pores is within the range of 10 ⁇ m or more and less than 50 ⁇ m, the scum sufficiently penetrates into the pores of the scum suction member 20, and the scum can be accurately absorbed. Can be adsorbed on. Therefore, it is possible to further suppress the inclusion of scum into the slab 1, and it is possible to manufacture the slab 1 having excellent surface quality.
  • the refractory metal oxide is at least one or two selected from Al 2 O 3 , ZrO 2 , MgO, SiO 2 , CaO.6Al 2 O 3.
  • the scum adsorption member 20 according to various casting conditions can be applied, and it can be used for a long time. It is possible to stably cast the slab 1.
  • a part of the scum suction member 20 is arranged so as to be immersed in the molten steel pool portion 16. Since the scum suction member 20 is provided, the scum can be sufficiently sucked. Therefore, it is possible to prevent the scum from being caught in the cooling roll 11. Further, since the scum adsorption member 20 has excellent thermal shock resistance and corrosion resistance, it can be used stably for a long time. Therefore, the slab 1 having excellent surface quality can be stably cast.
  • the twin roll type continuous casting apparatus in which the pinch rolls are arranged has been described as an example, but the arrangement of these rolls is not limited, and the design may be appropriately changed. May be.
  • the upper end of the scum suction member 20 is connected to the bottom of the tundish 18, but the scum suction member 20 is suspended from the bottom of the tundish 18 by a rod-shaped member. May be.
  • the scum suction member 20 is used alone has been described, but the present invention is not limited to this.
  • the scum adsorption member 20 may be attached to the reinforcing member 21 and used as a composite body.
  • the scum adsorption member 20 Since phenomena such as adsorption of scum and adhesion of metal are generated at the contact interface with the molten metal, if the scum adsorption member 20 is disposed at least at the portion in contact with the molten metal, the same effect as the above embodiment can be obtained. It becomes possible to play. Therefore, by using a composite of the scum suction member 20 and the reinforcing member 21, the size of the scum suction member 20 can be reduced, and maintenance such as replacement and repair becomes easy.
  • the reinforcing member 21 that does not come into contact with the molten metal can obtain its effect without particularly limiting the porosity, the properties other than the scum adsorptivity can be maintained in the same level as the conventional material. It is preferable that only the scum suction member 20 where the suction occurs is made porous, and the porosity of the reinforcing member 21 is set to the level of the conventional material. Similarly, the material of the reinforcing member 21 is not limited to the same material as the scum suction member 20.
  • the composite of the scum adsorbing member 20 and the reinforcing member 21 is, for example, an amorphous refractory material, and first, the reinforcing member 21 for ensuring the strength of the compact and the strength is cast, and then the porous material of the scum adsorbing member 20 is formed around it. It can be produced by casting by using a metal frame or a foam frame so that a quality material can be applied. Alternatively, the reinforcing member 21 and the scum attracting member 20 may be separately cast and bonded by mortar.
  • a porous sheet made of ceramic fiber may be used as the scum attracting member 20.
  • the ceramic fiber may be, for example, an alumina fiber or a zirconia fiber.
  • the composite can be easily formed by sticking it to one side or both sides of the reinforcing member 21 or winding it around the reinforcing member 21.
  • the thickness of the scum adsorption member 20 is preferably more than 0.5 mm, more preferably more than 3 mm. It should be noted that the suction of scum is caused by the open pores on the surface of the scum suction member 20, but since the majority of the open pores are within 10 mm from the surface, even if the thickness of the scum suction member 20 exceeds 10 mm. There is little contribution to the effect of scum adsorption. Therefore, in the composite body shown in FIG. 5, the upper limit of the thickness of the scum adsorption member 20 is preferably 10 mm or less.
  • cotton was added as a burn-out material to a composition obtained by adding 11% by mass of alumina cement to the outside, kneading with water, and pouring into a mold for 24 hours. After curing, the scum adsorbing member was produced by drying at 110 ° C. for 24 hours. The porosity was controlled by the amount of burned-out material and added water. In addition, the burn-out material and the added water in Tables 1 and 2 mean the mass% of the outer cover.
  • the volume ratio of pores, the average diameter of pores, thermal shock resistance, scum adsorption, corrosion resistance, and metal adhesion were evaluated as follows. The evaluation results are shown in Tables 3 and 4.
  • the volume ratio of pores was measured by a boiling method (JIS R 2205 (1992)). The volume ratio of pores in the surface layer region of the multilayer scum adsorption member was measured after cutting out only the surface layer region.
  • the average pore diameter was measured by the mercury porosimetry (JIS R 1655 (2003)). The average diameter of the pores in the surface layer area of the multilayer scum adsorption member was measured after cutting out only the surface layer area.
  • thermal shock resistance In the evaluation of thermal shock resistance, a 40 mm ⁇ 40 mm ⁇ 160 mm refractory material was dipped in hot metal at 1550 ° C., held for 5 minutes, and then air-cooled to perform a thermal shock resistance test. By repeating this series of heating and cooling operations, those that were broken within 5 times were “Bad”, those that were broken during 5 to 10 cycles were “Good”, and could be maintained 11 times or more without breakage. The thing was described as "Very Good.”
  • a large value means that a large amount of scum is adsorbed on the scum adsorbing member, which means that the scum adsorbing ability can be maintained for a long time. It should be noted that when molten steel is used, adhesion of the metal occurs, so a test was performed using hot metal in order to evaluate the adsorptivity of only scum. The case of 100 or more was taken as the acceptance criterion.
  • Adhesion of metal The adhesion of the metal was evaluated by increasing the weight of the refractory of 40 mm ⁇ 40 mm ⁇ 160 mm immersed in molten steel at 1580 ° C., holding it for 10 seconds, and then increasing the weight before and after pulling out from the molten steel and air cooling.
  • Tables 3 and 4 show values standardized by the weight increment in the scum adsorption member shown in Example 1. The larger the number, the more the metal is attached, indicating that the risk of the metal being caught in the slab is high. The case of 100 or less was set as the acceptance criterion.
  • the present invention has thermal shock resistance that does not cause cracks even when it contacts molten metal in a state of nearly no preheating, and does not melt even in a casting time of more than 6 hours, It was confirmed that it is possible to provide a scum adsorbing member that can suppress the trapping of scum on the solidified shell by absorbing and adsorbing scum to the pores of the scum adsorbing member.
  • the thermal shock resistance which does not generate
  • a scum suction member capable of suppressing trapping of scum on a solidified shell by absorption / adsorption removal, a twin roll type continuous casting apparatus using this scum suction member, and a method for manufacturing a cast piece. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

このスカム吸着部材は、回転する一対の冷却ロールと一対のサイド堰とによって形成された溶融金属プール部に溶融金属を供給し、前記冷却ロールの周面に凝固シェルを形成及び成長させて鋳片を製造する双ロール式連続鋳造装置において、前記溶融金属プール部に一部が浸漬するように配設されるスカム吸着部材であって、耐火性金属酸化物を含有する耐火物で構成されており、気孔の体積率が15体積%以上70体積%以下である。

Description

スカム吸着部材、双ロール式連続鋳造装置、及び、鋳片の製造方法
 本発明は、スカム吸着部材、このスカム吸着部材を用いた双ロール式連続鋳造装置、及び、鋳片の製造方法に関する。
 金属の薄肉鋳片(以下、鋳片(cast strip)と呼ぶ場合がある)を製造するために、内部に水冷構造を有し互いに逆方向に回転する一対の冷却ロールを備える双ロール式連続鋳造装置が提供されている。このような双ロール式連続鋳造装置では、回転する一対の冷却ロールと一対のサイド堰とによって形成された溶融金属プール部に溶融金属を供給し、上記一対の冷却ロールの周面に形成及び成長させた凝固シェル同士をロールキス点で圧着して所定の厚さの鋳片を製造する。このような双ロール式連続鋳造装置は、各種金属において適用されている。
 ここで、上述の溶融金属プール部においては、酸化物等が溶融金属プール部の湯面上に浮上して、スカムと称する膜状の異物が形成され、このスカムが冷却ロールの周面に断続的に巻き込まれるおそれがあった。巻き込まれたスカムは、鋳片の表面割れや表面疵等の表面欠陥の原因となる。
 そこで、上述の双ロール式連続鋳造装置を用いて鋳片を鋳造する際には、スカムの除去や無害化によって表面欠陥の発生を抑制する手法として、以下に示すような技術が提案されている。
 例えば、特許文献1には、溶融金属プール部の溶融金属と気相の界面に固体酸化物を配し、スカムを捕捉することで凝固シェルへのスカムの巻き込みを防止することが提案されている。
 また、特許文献2には、不活性ガス吹き込みにより発生したスカムをサイド堰近傍に押し流し、冷却ロールと凝固シェルとの間にスカムが取り込まれることを防ぐ手段が提案されている。
 さらに、特許文献3には、浸漬ノズルからの吐出流を利用しスカムをサイド堰近傍に押し流すことで、冷却ロールと凝固シェルとの間にスカムが取り込まれることを防ぐ手段が提案されている。
 特許文献4には、溶融金属プール部の冷却ロール幅方向に沿って一対のスカム堰を設置し、浸漬ノズルから吐出される溶融金属の流動を緩和することで、溶融金属の波立ちを防止するとともに、溶融金属の流動を制御することでスカムが凝固シェルに取り込まれることを防ぐ手法が提案されている。
 さらに、特許文献5には、スカム堰を、スカムとの濡れ性を悪い材質で作製することで、スカム堰へのスカムの付着を抑制し、長時間にわたり流動制御の効果を持続させる手法が提案されている。
 また、特許文献6には、より安価な材質で無予熱に近い状態での使用に耐える高耐熱衝撃性のスカム堰の使用が提案されている。
 特許文献7には、溶融金属の表面張力を上昇させる元素を含有する材料で作製したスカム堰が提案されている。表面張力を上昇させる元素が溶融金属中に溶け出すことにより、スカム堰へのスカムの付着を抑制することができる。
 また、特許文献8には、Alによって作製されたスカム堰が提案されており、スカム堰によってスカムを吸着することにより、薄肉鋳片へのスカムの巻込み防止を図っている。
日本国特開2002-273551号公報 日本国特開平04-197560号公報 日本国特開平06-339754号公報 日本国特開平08-155593号公報 日本国特開平07-214248号公報 日本国特開2003-039139号公報 日本国特開2003-266154号公報 日本国特開平03-066450号公報
 ここで、特許文献1に開示された方法では、溶融金属の湯面を固体酸化物が覆うことで湯面レベルの検出が困難になるといった問題があった。また、固体酸化物と冷却ロールとが近接して配置されると、固体酸化物に付着して成長したスカムが冷却ロールと接触する懸念が高まり、薄肉鋳片へスカムが捕捉されるおそれがあった。
 また、特許文献2,3に開示された方法では、鋳造時間が延びるにつれてスカムの総量が多くなってくると、サイド堰近傍のみにスカムを留めておくことが困難になり、表面欠陥発生防止の効果が小さくなるといった問題があった。
 さらに、特許文献4、5、6に開示された方法では、スカムの総量が多くなった場合の凝固シェルへの巻き込みを防ぐことはできず、結局のところ長時間の鋳造が困難であるといった問題があった。
 また、特許文献7に開示された方法では、スカム堰の成分が溶融金属に溶け出すことで機能を発揮させるため、スカム堰成分の溶解に伴って溶融金属の成分が変化してしまうといった問題があった。
 さらに、特許文献8に開示された方法では、スカムの吸着量には限りがあるとともに、スカムの組成によっては浸食により長時間使用できないといった問題があった。
 以上のように、従来の技術においては、スカムの巻き込みを長時間にわたって十分に抑制することができなかった。
 本発明は、前述した状況に鑑みてなされたものであって、無予熱に近い状態で溶融金属と接触しても亀裂を発生させない耐熱衝撃性を有し、6時間を超える鋳造時間においても溶損することなく、自身の有する気孔にスカムを吸収・吸着除去することでスカムの凝固シェルへの捕捉を抑制することができるスカム吸着部材、このスカム吸着部材を用いた双ロール式連続鋳造装置、及び、鋳片の製造方法を提供することを目的とする。
 本発明の要旨は下記の通りである。
(1)本発明の第一の態様は、回転する一対の冷却ロールと一対のサイド堰とによって形成された溶融金属プール部に溶融金属を供給し、前記冷却ロールの周面に凝固シェルを形成及び成長させて鋳片を製造する双ロール式連続鋳造装置において、前記溶融金属プール部に一部が浸漬するように配設されるスカム吸着部材であって、耐火性金属酸化物を含有する耐火物で構成されており、気孔の体積率が15体積%以上70体積%以下であるスカム吸着部材である。
(2)上記(1)に記載のスカム吸着部材は、補強部材に取り付けられていてもよい。
(3)上記(2)に記載のスカム吸着部材は、セラミックスファイバーからなる多孔質シートで構成されてもよい。
(4)上記(1)から(3)のいずれか一項に記載のスカム吸着部材では、前記耐火性金属酸化物が、Al、ZrO、MgO、SiO、CaO・6Alから選択される少なくとも1種または2種以上であってもよい。
(5)上記(1)から(4)のいずれか一項に記載のスカム吸着部材では、前記気孔の平均径が10μm以上50μm未満であってもよい。
(6)上記(1)から(5)のいずれか一項に記載のスカム吸着部材では、前記気孔の体積率が20体積%以上50体積%未満であってもよい。
(7)本発明の第二の態様は、回転する一対の冷却ロールと一対のサイド堰によって形成された溶融金属プール部に溶融金属を供給し、前記冷却ロールの周面に凝固シェルを形成及び成長させて鋳片を製造する双ロール式連続鋳造装置であって、上記(1)から(6)のいずれか一項に記載のスカム吸着部材の一部が、前記溶融金属プール部に浸漬するように配設されている双ロール式連続鋳造装置である。
(8)本発明の第三の態様は、回転する一対の冷却ロールと一対のサイド堰によって形成された溶融金属プール部に溶融金属を供給し、前記冷却ロールの周面に凝固シェルを形成及び成長させて鋳片を製造する鋳片の製造方法であって、上記(1)から(6)のいずれか一項に記載のスカム吸着部材の一部を、前記溶融金属プール部に浸漬するように配設する鋳片の製造方法である。
 本発明によれば、無予熱に近い状態で溶融金属と接触しても亀裂を発生させない耐熱衝撃性を有し、6時間を超える鋳造時間においても溶損することなく、自身の有する気孔にスカムを吸収・吸着除去することでスカムの凝固シェルへの捕捉を抑制することができるスカム吸着部材、このスカム吸着部材を用いる双ロール式連続鋳造装置、及び、鋳片の製造方法を提供することができる。
 より具体的には、上記(1)~(6)に記載のスカム吸着部材によれば、耐火性金属酸化物を含有する耐火物で構成されており、気孔の体積率が15体積%以上とされているので、熱膨張の吸収代が確保されて耐熱衝撃性が向上するとともに、この気孔によってスカムを十分に吸着することができる。一方、気孔の体積率が70体積%以下とされているので、強度が確保されており、溶融金属の流れ等による折損を抑制することができる。以上により、熱衝撃性に優れるとともにスカムの巻き込みを長時間にわたって十分に抑制することができ、安定して鋳片の鋳造を行うことが可能である。
 特に、上記(2)に記載のスカム吸着部材によれば、スカム吸着部材の強度が補強部材により確保されているため、溶融金属の流れ等による折損を抑制することができる。更には、スカム吸着部材のサイズを小さくすることができ、交換や補修などのメンテナンスが容易となる。
 更に、上記(3)に記載のスカム吸着部材によれば、補強部材に取り付けられるスカム吸着部材がセラミックスファイバーからなる多孔質シートで構成されるため、構造が非常に簡単となる。また、鋳造条件に応じて、熱伝導性、耐熱性等を考慮して適切な多孔質シートを選択することで、的確にスカム吸着部材の表面における地金の生成及び成長を抑制することが可能となる。
 更に、上記(4)に記載のスカム吸着部材によれば、スカムの吸着性、耐熱衝撃性、スカムに対する耐食性等の各種特性に優れた材質を選択することで、各種鋳造条件に応じたスカム吸着部材を適用することができ、長時間安定して鋳造することが可能となる。
 更に、上記(5)に記載のスカム吸着部材によれば、気孔の平均径が10μm以上50μm未満の範囲内とされているので、スカムを十分に吸着することができる。なお、気孔の平均径は、水銀圧入法(JIS R 1655(2003))により測定され、累積体積率が50%の気孔径を「気孔の平均径」とする。
 更に、上記(6)に記載のスカム吸着部材によれば、気孔の体積率が20体積%以上とされているので、熱膨張の吸収代が的確に確保され、耐熱衝撃性が十分に向上するとともに、この気孔によってスカムを十分に吸着することができる。一方、気孔の体積率が50体積%以下とされているので、強度が十分確保されており、溶融金属の流れ等による折損を抑制することができる。
 また、上記(7)及び(8)に記載の双ロール式連続鋳造装置及び鋳片の製造方法によれば、上述のスカム吸着部材が溶融金属プール部に配設されているので、スカム吸着部材によってスカムを吸着することができ、スカムが冷却ロールに巻き込まれることを抑制できる。また、熱衝撃性や強度に優れており、長時間使用することができる。よって、表面品質に優れた鋳片を安定して鋳造することができる。
本発明の一実施形態に係るスカム吸着部材を用いる双ロール式連続鋳造装置の一例を示す説明図である。 図1に示す双ロール式連続鋳造装置の一部拡大説明図である。 図1に示す双ロール式連続鋳造装置の溶鋼プール部の断面説明図である。 図3に示す溶鋼プール部の概略上面図であり、浸漬ノズルから排出される溶鋼の流れを示す。 スカム吸着部材が補強部材に取り付けられた態様を示す説明図である。
 上記課題を解決するために、本発明者らが鋭意検討した結果、以下のような知見を得た。
 従来、スカム堰を安定に使用するための方策として、スカム堰へのスカム付着を抑制する手法に主眼が置かれてきた。具体的には、スカムに対して濡れにくいCを含む材料系とすることでスカムに対して接触防止を図る手法が取られてきた。しかし、この手法では、凝固シェルへスカムが捕捉されてしまい、鋳片品位が低下してしまう問題点があった。さらに、Cを含む材料系ではスカム堰への地金付着が進行し、それが脱離して薄肉鋳片に巻き込まれてしまう問題点があった。これらは、高熱伝導率であり、スラグに対する濡れにくいというCの性質に起因するものであり、Cを使用した場合にはこれらの問題点を解決することは困難である。
 一方、スカムの鋳片への捕捉を抑制するため、Al質のスカム堰にスカムを吸着させる手法が考えられた。しかしながら、単純にAl質とするだけではスカムの吸着量は低位であり、CaOが含まれる組成のスカムに対して使用された場合にはスカム堰の溶損が発生し、耐用性に難があった。このように、従来検討された手法ではスカム堰に求められる特性を十分満足するものは存在しなかった。
 本発明者らは鋭意研究の末、スカム堰の気孔を適切に制御することで、気孔が膨張の吸収代となり高耐熱衝撃性の実現が可能であること、更に気孔がスカムの吸着代となりスカムの吸着を長時間持続させつつ、気孔の体積率(以後、気孔率とも称する)が高い場合には高断熱性により地金の付着をも抑制できることを知見した。さらに、スカム堰を構成する材質を適切に制御することで、たとえ気孔率の高いスカム堰としてもスカムによる浸食速度を低減することができ、高い耐食性をも実現可能であることとの知見を得た。
 以下に、上記の知見に基づきなされた本発明の一実施形態に係るスカム吸着部材について、添付した図面を参照して説明する。以下の実施形態においては、鋳造する対象金属を鋼として説明する。なお、本発明は、以下の実施形態に限定されるものではない。
 本実施形態では、溶融金属として溶鋼を用いており、鋼材からなる鋳片1を製造する。なお、鋼種としては、例えば0.001~0.01%C極低炭鋼、0.02~0.05%C低炭鋼、0.06~0.4%C中炭鋼、0.5~1.2%C高炭鋼、SUS304鋼に代表されるオーステナイト系ステンレス鋼、SUS430鋼に代表されるフェライト系ステンレス鋼、3.0~3.5%Si方向性電磁鋼、0.1~6.5%Si無方向性電磁鋼等(なお、%は、質量%)が挙げられる。
 また、本実施形態では、製造される鋳片1の幅が200mm以上1800mm以下の範囲内、厚さが0.8mm以上5mm以下の範囲内とされている。
 本実施形態に係るスカム吸着部材20が適用される双ロール式連続鋳造装置10について説明する。
 双ロール式連続鋳造装置10は鋳片1を製造するための装置であり、図1~図4に示すように、一対の冷却ロール11,11と、上流側ピンチロール12,12及び下流側ピンチロール13,13と、一対のサイド堰15,15と、タンディッシュ18と、浸漬ノズル19と、を備えている。
 上流側ピンチロール12,12及び下流側ピンチロール13,13は、一対の冷却ロール11,11の下流側に設けられて鋳片1を支持する。
 一対のサイド堰15,15は、一対の冷却ロール11,11の幅方向両端部に配設される。そして、一対の冷却ロール11,11と一対のサイド堰15,15とによって溶鋼プール部16が画成される。
 タンディッシュ18は、溶鋼3を保持し、その底面から下方に向けて延びる浸漬ノズル19を介して溶鋼プール部16に溶鋼3を供給する。
 この双ロール式連続鋳造装置10においては、回転する冷却ロール11,11に溶鋼3が接触して冷却されることにより、冷却ロール11,11の周面の上で凝固シェル5,5が成長する。そして、一対の冷却ロール11,11にそれぞれ形成された凝固シェル5,5同士がロールキス点で圧着されることによって、所定厚みの鋳片1が鋳造される。
 ここで、図3に示すように、溶鋼プール部16には、溶鋼3が貯留されており、溶鋼面には、アルミナ皮膜等からなるスカムXが形成されている。
 このスカムXが冷却ロール11に巻き込むことを抑制するために、溶鋼プール部16には、スカム吸着部材20が配設される。詳述すると、図2から図4に示すように、スカム吸着部材20は、浸漬ノズル19と冷却ロール11、11との間に配置され、その一部が溶鋼3内に浸漬されている。
 ここで、本実施形態に係るスカム吸着部材20は、矩形平板状をなしており、図3に示すように、溶鋼3への浸漬深さ(鉛直方向の深さ)Dが5mm以上とされている。なお、この浸漬深さDが5mmを下回った場合には、溶鋼プール部16の表面の波立ちや表面流れによって、スカムXがスカム吸着部材20を潜り抜けることがある。
 図4は、浸漬ノズル19から排出される溶鋼3の流れを示す概略上面図である。この図4に示すように、浸漬深さDが5mm以上である場合には、安定して溶鋼3を循環させることが可能となるため、確実にスカム吸着部材20にスカムを吸着させることができる。
 そして、本実施形態に係るスカム吸着部材20は、耐火性金属酸化物を含有する耐火物(不定形耐火物又は定形れんが)で構成されており、気孔の体積率が15体積%以上70体積%以下である。好ましくは、気孔の体積率は20体積%以上50体積%未満である。
 また、本実施形態におけるスカム吸着部材20においては、気孔の平均径が10μm以上50μm未満であることが好ましい。
 さらに、上述の耐火性金属酸化物としては、Al,ZrO,MgO,SiO,CaO・6Alから選択される少なくとも1種または2種以上を用いることが好ましい。
 以下に、スカム吸着部材20の気孔の体積率、気孔の平均径、耐火性金属酸化物を、上述のように規定した理由について説明する。
(気孔の体積率)
 本実施形態であるスカム吸着部材20においては、上述のように気孔を有しており、この気孔によって、熱膨張の吸収代の確保による耐熱衝撃性向上、スカムの吸着代の付与、伝熱経路の低減による地金付着抑制、といった作用効果を得ることが可能となる。
 ここで、気孔の体積率が15体積%未満の場合には、気孔による上述の作用効果を奏することができなくなるおそれがある。一方、気孔の体積率が70体積%を超えると、強度が不足し、溶鋼流によって折損してしまうおそれがある。
 このため、本実施形態であるスカム吸着部材20においては、気孔の体積率を15体積%以上70体積%以下の範囲内に設定している。
 なお、気孔による上述の作用効果を確実に奏功せしめるためには、気孔の体積率の下限を20体積%以上とすることが好ましい。また、溶鋼流による折損を確実に抑制するためには、気孔の体積率の上限を50体積%未満とすることが好ましい。
 ここで、スカム吸着部材20における気孔率の制御は、軽量骨材、有機繊維の使用や、混練時に使用する水分量を調整することによって実施することができる。
 なお、軽量骨材は、それ自体が気孔を有していることから、成形後の気孔率を向上させることが可能となる。また、有機繊維や水分は、加熱時に消失して成形体の内部に気泡を生成させることから、気孔率を向上させることが可能となる。
(気孔の平均径)
 スカム吸着部材20における気孔は、上述のようにスカムを吸着する作用を有する。ここで、気孔の平均径を10μm以上とすることにより、スカムの浸透量が確保され、スカムを十分に吸着することができる。一方、スカム吸着部材20における気孔の平均径を50μm未満とすることにより、スカム吸着部材20の気孔とスカムとが十分に接触することになり、スカムを十分に吸着することができる。
 よって、本実施形態であるスカム吸着部材20においては、気孔の平均径を10μm以上50μm未満の範囲内に設定している。なお、スカムの吸着作用を確実に奏功せしめるためには、スカム吸着部材20における気孔の平均径の下限を25μm以上とすることが好ましく、気孔の平均径の上限を40μm以下とすることがより好ましい。
 なお、本実施形態における気孔の平均径は、水銀圧入法(JIS R 1655(2003))によって測定され、累積体積率が50%の気孔径を「気孔の平均径」とした。
 また、気孔の平均径は、有機繊維の添加量や、混練時の水分量を適切に制御することにより調整することができる。これにより、本実施形態であるスカム吸着部材20においては、いわゆる多孔質断熱材のように単純に気孔が多い材料とは異なり、スカムの吸着に寄与する気孔の量や径を制御することができる。
(耐火性金属酸化物)
 本実施形態であるスカム吸着部材20を構成する耐火性金属酸化物としては、Al,ZrO,MgO,SiO,CaO・6Alから選択される少なくとも1種または2種以上を用いることができる。
 主成分としてAlを選択した場合には、高気孔率としても比較的高強度なスカム吸着部材20とすることができる。なお、主成分としてAlを選択した場合に、後述する他の成分を配合することにより、吸着性の高いAlによる耐食性の低下を他の成分で抑制し、多孔質にした場合であっても強度を維持しつつ、且つスカムによる浸食を抑制することができ、高耐用なスカム吸着部材20を得ることができる。
 主成分としてZrOを選択した場合には、その低熱伝導率から地金付着抑制能の向上が図れるとともに、CaOに対する耐食性の高さからスカムに対する耐食性向上効果が得られる。
 主成分としてCaO・6Alを選択した場合には、その板状構造から高気孔率の実現が容易でスカム吸着能の向上が得られるとともに、FeOに対する耐食性の高さからスカムに対する耐食性の向上効果が得られる。
 主成分としてMgOを選択した場合には、CaO、FeOに対する耐食性の高さから、上述のCaO・6Al、ZrOと比較してスカムに対するさらに高い耐食性が得られる。
 主成分としてSiOを選択した場合には、その熱膨張率の低さから耐熱衝撃性の向上の効果が得られる。これにより、耐食性を重視して比較的低気孔率としたい場合に、耐熱衝撃性が低下する懸念のある材料においても、安定に使用可能な耐用性を得ることができる。
 以上のような本実施形態に係るスカム吸着部材20は、耐火性金属酸化物を含有する耐火物で構成されており、スカム吸着部材20における気孔の体積率が15体積%以上であるので、熱膨張の吸収代が確保され、耐熱衝撃性が向上するとともに、この気孔によってスカムを十分に吸着することができる。一方、気孔の体積率が70体積%以下であるので、強度が確保されており、溶鋼3の流れ等による折損を抑制することができる。
 よって、熱衝撃性に優れるとともにスカムの巻き込みを長時間にわたって十分に抑制することができ、安定して鋳片1の鋳造を行うことが可能である。
 また、本実施形態に係るスカム吸着部材20においては、気孔の平均径が10μm以上50μm未満の範囲内であるので、スカム吸着部材20の気孔にスカムが十分に浸透することになり、スカムを的確に吸着することができる。よって、スカムの鋳片1への巻き込みをさらに抑制でき、表面品質に優れた鋳片1を製造することができる。
 さらに、本実施形態に係るスカム吸着部材20においては、耐火性金属酸化物が、Al,ZrO,MgO,SiO,CaO・6Alから選択される少なくとも1種または2種以上であるので、スカムの吸着性、耐熱衝撃性、スカムに対する耐食性等の各種特性に優れた材質を選択することで、各種鋳造条件に応じたスカム吸着部材20を適用することができ、長時間安定して鋳片1を鋳造することが可能となる。
 また、本実施形態に係るスカム吸着部材20を用いた双ロール式連続鋳造装置10及び鋳片1の製造方法によれば、スカム吸着部材20の一部が溶鋼プール部16に浸漬するように配設されているので、このスカム吸着部材20によってスカムを十分に吸着することができる。このため、スカムが冷却ロール11に巻き込まれることを抑制できる。また、スカム吸着部材20の耐熱衝撃性、耐食性に優れているので、長時間安定して使用することができる。よって、表面品質に優れた鋳片1を安定して鋳造することが可能となる。
 以上、本発明の実施形態に係るスカム吸着部材、及び、これを用いた双ロール式連続鋳造装置及び鋳片の製造方法について具体的に説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、図1に示すように、ピンチロールを配設した双ロール式連続鋳造装置を例に挙げて説明したが、これらのロール等の配置に限定はなく、適宜設計変更してもよい。
 また、本実施形態では、図1に示すように、タンディッシュ18の底部にスカム吸着部材20の上端が連結されているが、スカム吸着部材20は棒状部材によりタンディッシュ18の底部から吊り下げられてもよい。
 以上の本実施形態では、スカム吸着部材20を単体として用いる場合について説明したが、これに限定されることはない。例えば図5に示すように、スカム吸着部材20は、補強部材21に取り付けられて複合体として用いられてもよい。
 スカムの吸着、地金の付着といった現象は溶融金属との接触界面で生じることから、少なくとも溶融金属と接触する部位にスカム吸着部材20が配置されれば、上記の実施形態と同様の作用効果を奏することが可能となる。従って、スカム吸着部材20と補強部材21との複合体とすることで、スカム吸着部材20のサイズを小さくすることができ、交換や補修などのメンテナンスが容易となる。
 上述のように、溶融金属と接触しない補強部材21は、気孔率を特に限定しなくともその効果を得ることができることから、スカム吸着性以外の性質は従来材と同程度を維持するためにも、吸着の起こるスカム吸着部材20のみを多孔質とし、補強部材21の気孔率は従来材程度にするのが好ましい。同様に、補強部材21の材質についても、スカム吸着部材20と同材質に限定されない。
 スカム吸着部材20と補強部材21との複合体は、例えば不定形耐火物を用い、まず緻密質で強度を担保するための補強部材21を鋳込んだ後、その周りにスカム吸着部材20の多孔質材料が施工されるように金枠や発泡枠を用いて鋳込む、鋳込み分けによって作製することができる。また、補強部材21とスカム吸着部材20とを別々に鋳込み、モルタルにより接着させることでも作製することができる。
 また、スカム吸着部材20と補強部材21との複合体とする場合、スカム吸着部材20としてセラミックスファイバーからなる多孔質シートを用いてもよい。セラミックスファイバーは、例えばアルミナファイバーやジルコニアファイバーであればよい。このような多孔質シートを用いる場合、補強部材21の片面又は両面に張り付ける、又は、補強部材21の周囲に巻き付けることで容易に複合体を形成することが可能である。
 ここで、図5に示す複合体においては、スカム吸着部材20の厚さが0.5mmを超えていると、スカムの吸着可能部位が確保され、スカム吸着の効果を長く維持することが可能となる。よって、図5に示す複合体においては、スカム吸着部材20の厚さは0.5mmを超えることが好ましく、3mmを超えることがより好ましい。
 なお、スカムの吸着はスカム吸着部材20の表面にある開気孔によって生じるが、開気孔は表面から10mm以内にあるものが大部分を占めるため、スカム吸着部材20の厚さが10mmを超えてもスカム吸着の効果への寄与は少ない。このため、図5に示す複合体においては、スカム吸着部材20の厚さの上限は10mm以下とすることが好ましい。
 以下に、本発明の効果を確認すべく、実施した実験結果について説明する。
 表1、表2に示す耐火性金属酸化物を用いて、アルミナセメントを外掛けで11mass%添加した配合物に焼き飛ばし材として綿を添加し、水と混練し、鋳型に注ぎ入れて24時間の養生後110℃で24時間の乾燥を行うことでスカム吸着部材を作製した。気孔率の制御は焼き飛ばし材と添加水分の量によって行った。尚、表1、表2における焼飛ばし材と添加水分は、いずれも外掛けの質量%を意味している。
 得られたスカム吸着部材について、気孔の体積率、気孔の平均径、耐熱衝撃性、スカム吸着性、耐食性、地金の付着性を以下のようにして評価した。評価結果を表3、表4に示す。
(気孔の体積率)
 気孔の体積率(見掛気孔率)の測定は、煮沸法(JIS R 2205(1992))により行った。複層化したスカム吸着部材の表層領域の気孔の体積率は、表層領域のみを切削し取出した上で測定を行った。
(気孔の平均径)
 気孔の平均径の測定は水銀圧入法(JIS R 1655(2003))により行った。複層化したスカム吸着部材の表層領域の気孔の平均径は、表層領域のみを切削し取り出した上で測定した。
(耐熱衝撃性)
 耐熱衝撃性の評価では、1550℃の溶銑中に40mm×40mm×160mmの耐火物を浸漬させ、5分間保持した後、空冷させる条件で耐熱衝撃性試験を行った。この一連の加熱、冷却の操作を繰り返し行い、5回以内に折損したものは「Bad」、5回から10回のサイクルの間に折損したものは「Good」、11回以上折損なく維持できたものは「Very Good」と表記した。
(スカムの吸着性)
 スカムの吸着性は、1550℃の溶銑にスカムを200g浮かべ、この溶銑に対して40mm×100mm×25mm形状に加工した耐火物を浸漬させ、30分間保持した後の重量の増分によって評価した。表3、表4には実施例1で示すスカム吸着部材における重量増分によって規格化した値を表示した。スカムの組成は質量比で38%FeO-24%Al-14%CaO-24%SiOとした。数値が大きいと、スカム吸着部材に対して多くのスカムが吸着されているということであり、スカム吸着能が長時間維持できることを示す。なお、溶鋼を用いると地金の付着が生じることから、スカムのみの吸着性を評価するために、溶銑を用いて試験を行った。100以上の場合を合格基準とした。
(耐食性)
 スカムに対する耐食性は、1550℃の溶鋼にスカムを200g浮かべ、この溶鋼に対してφ50mm×150mmの耐火物を浸漬させ150rpmの回転を付与し、スカムと溶鋼界面の寸法変化を測定することで評価を行った。表3、表4には実施例1で示すスカム吸着部材における寸法変化によって規格化した値を表示した。数値が大きいと、スカムに対して溶損が進行しやすいことを示し、使用中の溶損による折損のリスクが高まることを示している。80超の場合を合格基準とした。
(地金の付着性)
 地金の付着性は、1580℃の溶鋼中に40mm×40mm×160mmの耐火物を浸漬させ、10秒間保持した後、溶鋼から引き上げ空冷する前後での重量の増分によって評価した。表3、表4には実施例1で示すスカム吸着部材における重量増分によって規格化した値を表示した。数値が大きいと、より多くの地金が付着していることを示し、鋳片への地金巻き込みのリスクが高くなることを示している。100以下の場合を合格基準とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 気孔の体積率(見掛気孔率)の増大に伴いスカムの吸着量が増加するとともに地金付着量が低減する傾向が見られた。その一方で、気孔の体積率(見掛気孔率)を増加させると耐食性は低下するものの、ZrO、MgO、CA6(CaO・6Al)の使用により耐食性の低減を抑制できる結果であった。またSiOの使用によりスカム吸着部材の耐熱衝撃性の向上が可能な結果であった。
 以上の結果から、本発明によれば、無予熱に近い状態で溶融金属と接触しても亀裂を発生させない耐熱衝撃性を有し、6時間を超える鋳造時間においても溶損することなく、自身の有する気孔にスカムを吸収・吸着除去することでスカムの凝固シェルへの捕捉を抑制することができるスカム吸着部材を提供可能であることが確認された。
 本発明によれば、無予熱に近い状態で溶融金属と接触しても亀裂を発生させない耐熱衝撃性を有し、6時間を超える鋳造時間においても溶損することなく、自身の有する気孔にスカムを吸収・吸着除去することでスカムの凝固シェルへの捕捉を抑制することができるスカム吸着部材、このスカム吸着部材を用いた双ロール式連続鋳造装置、及び、鋳片の製造方法を提供することができる。
1 薄肉鋳片(鋳片)
3 溶鋼
5 凝固シェル
11 冷却ロール
16 溶鋼プール部(溶融金属プール部)
20 スカム吸着部材
21 補強部材

Claims (8)

  1.  回転する一対の冷却ロールと一対のサイド堰とによって形成された溶融金属プール部に溶融金属を供給し、前記冷却ロールの周面に凝固シェルを形成及び成長させて鋳片を製造する双ロール式連続鋳造装置において、前記溶融金属プール部に一部が浸漬するように配設されるスカム吸着部材であって、
     耐火性金属酸化物を含有する耐火物で構成されており、気孔の体積率が15体積%以上70体積%以下である
    ことを特徴とするスカム吸着部材。
  2.  前記スカム吸着部材が補強部材に取り付けられている
    ことを特徴とする請求項1に記載のスカム吸着部材。
  3.  前記スカム吸着部材がセラミックスファイバーからなる多孔質シートで構成される
    ことを特徴とする請求項2に記載のスカム吸着部材。
  4.  前記耐火性金属酸化物が、Al,ZrO,MgO,SiO,CaO・6Alから選択される少なくとも1種または2種以上であることを特徴とする請求項1から請求項3のいずれか一項に記載のスカム吸着部材。
  5.  前記気孔の平均径が10μm以上50μm未満であることを特徴とする請求項1から請求項4のいずれか一項に記載のスカム吸着部材。
  6.  前記気孔の体積率が20体積%以上50体積%未満であることを特徴とする請求項1から請求項5のいずれか一項に記載のスカム吸着部材。
  7.  回転する一対の冷却ロールと一対のサイド堰によって形成された溶融金属プール部に溶融金属を供給し、前記冷却ロールの周面に凝固シェルを形成及び成長させて鋳片を製造する双ロール式連続鋳造装置であって、
     請求項1から請求項6のいずれか一項に記載のスカム吸着部材の一部が、前記溶融金属プール部に浸漬するように配設されている
    ことを特徴とする双ロール式連続鋳造装置。
  8.  回転する一対の冷却ロールと一対のサイド堰によって形成された溶融金属プール部に溶融金属を供給し、前記冷却ロールの周面に凝固シェルを形成及び成長させて鋳片を製造する鋳片の製造方法であって、
     請求項1から請求項6のいずれか一項に記載のスカム吸着部材の一部を、前記溶融金属プール部に浸漬するように配設する
    ことを特徴とする鋳片の製造方法。
PCT/JP2018/038536 2018-10-16 2018-10-16 スカム吸着部材、双ロール式連続鋳造装置、及び、鋳片の製造方法 WO2020079758A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880098340.9A CN112839753B (zh) 2018-10-16 2018-10-16 浮渣吸附构件、双辊式连续铸造装置及铸坯的制造方法
PCT/JP2018/038536 WO2020079758A1 (ja) 2018-10-16 2018-10-16 スカム吸着部材、双ロール式連続鋳造装置、及び、鋳片の製造方法
BR112021005433-2A BR112021005433B1 (pt) 2018-10-16 Membro de adsorção de escória, dispositivo de lingotamento contínuo de rolo duplo e método de produção para placas
KR1020217009246A KR102505042B1 (ko) 2018-10-16 2018-10-16 스컴 흡착 부재, 쌍롤식 연속 주조 장치, 및 주편의 제조 방법
US17/282,123 US20210370390A1 (en) 2018-10-16 2018-10-16 Scum adsorbing member, twin roll continuous casting device, and method of producing slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/038536 WO2020079758A1 (ja) 2018-10-16 2018-10-16 スカム吸着部材、双ロール式連続鋳造装置、及び、鋳片の製造方法

Publications (1)

Publication Number Publication Date
WO2020079758A1 true WO2020079758A1 (ja) 2020-04-23

Family

ID=70283820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038536 WO2020079758A1 (ja) 2018-10-16 2018-10-16 スカム吸着部材、双ロール式連続鋳造装置、及び、鋳片の製造方法

Country Status (4)

Country Link
US (1) US20210370390A1 (ja)
KR (1) KR102505042B1 (ja)
CN (1) CN112839753B (ja)
WO (1) WO2020079758A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115667A (ja) * 1986-11-04 1988-05-20 Kubota Ltd スラグ吸着体
JPH0366450A (ja) * 1989-08-03 1991-03-22 Nippon Steel Corp 表面性状の優れた薄鋳片の連続鋳造装置
JPH04300055A (ja) * 1991-03-27 1992-10-23 Kawasaki Steel Corp 溶融金属中の非金属介在物除去装置
JPH06122067A (ja) * 1992-10-12 1994-05-06 Nippon Muki Co Ltd スラグ吸着用クロス、その製造法並びにスラグ吸着法
JP2002219564A (ja) * 2001-01-23 2002-08-06 Nippon Steel Corp 薄帯連続鋳造における溶鋼スカム除去方法およびその装置
JP2003311385A (ja) * 2002-04-26 2003-11-05 Nippon Chutetsukan Kk 遠心鋳造機用鋳込み取鍋
JP2018176250A (ja) * 2017-04-19 2018-11-15 新日鐵住金株式会社 スカム堰、双ロール式連続鋳造装置、及び、薄肉鋳片の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04197560A (ja) 1990-11-29 1992-07-17 Nippon Yakin Kogyo Co Ltd 金属薄板の連続鋳造方法
JPH05169207A (ja) * 1991-12-25 1993-07-09 Sumitomo Metal Ind Ltd タンディッシュ内の介在物低減方法
JPH05253654A (ja) * 1992-03-13 1993-10-05 Sumitomo Metal Ind Ltd タンディッシュ内溶鋼の介在物低減法と装置
JPH06339754A (ja) 1993-05-31 1994-12-13 Nippon Steel Corp 薄板の連続鋳造方法
JPH0740012A (ja) * 1993-07-30 1995-02-10 Sumitomo Metal Ind Ltd 真空誘導炉用タンディッシュ
JPH07214248A (ja) 1994-01-31 1995-08-15 Nippon Steel Corp 双ロール式連続鋳造機の接触制限板
JP3214994B2 (ja) 1994-12-06 2001-10-02 新日本製鐵株式会社 薄鋳片の連続鋳造方法および連続鋳造用浸漬ノズル
JPH091321A (ja) * 1995-06-21 1997-01-07 Nippon Steel Corp 溶鋼の非金属介在物除去装置
JP3241319B2 (ja) * 1998-03-18 2001-12-25 三菱重工業株式会社 ドラム式ストリップキャスタ
JP2002273551A (ja) 2001-03-15 2002-09-25 Nippon Steel Corp 表面性状の優れた薄帯鋳片を連続鋳造する双ドラム式連続鋳造方法
JP2003039139A (ja) 2001-07-26 2003-02-12 Nippon Steel Corp 双ドラム連鋳機のスカム堰
JP3817188B2 (ja) 2002-03-14 2006-08-30 新日本製鐵株式会社 スカム堰およびスカム堰を有した双ドラム式連続鋳造機による薄肉鋳片の製造方法
KR100674619B1 (ko) * 2005-09-16 2007-01-29 주식회사 포스코 이중 탕면댐을 구비하는 쌍롤식 박판 주조기 및 이를사용하는 박판 제조방법
JP6213101B2 (ja) * 2013-09-26 2017-10-18 新日鐵住金株式会社 スカム堰、薄肉鋳片の製造方法及び薄肉鋳片の製造装置
US9597729B2 (en) * 2015-02-04 2017-03-21 GM Global Technology Operations LLC Metal pouring method for the die casting process
JP6801467B2 (ja) * 2017-01-19 2020-12-16 日本製鉄株式会社 サイド堰、双ロール式連続鋳造装置、及び、薄肉鋳片の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63115667A (ja) * 1986-11-04 1988-05-20 Kubota Ltd スラグ吸着体
JPH0366450A (ja) * 1989-08-03 1991-03-22 Nippon Steel Corp 表面性状の優れた薄鋳片の連続鋳造装置
JPH04300055A (ja) * 1991-03-27 1992-10-23 Kawasaki Steel Corp 溶融金属中の非金属介在物除去装置
JPH06122067A (ja) * 1992-10-12 1994-05-06 Nippon Muki Co Ltd スラグ吸着用クロス、その製造法並びにスラグ吸着法
JP2002219564A (ja) * 2001-01-23 2002-08-06 Nippon Steel Corp 薄帯連続鋳造における溶鋼スカム除去方法およびその装置
JP2003311385A (ja) * 2002-04-26 2003-11-05 Nippon Chutetsukan Kk 遠心鋳造機用鋳込み取鍋
JP2018176250A (ja) * 2017-04-19 2018-11-15 新日鐵住金株式会社 スカム堰、双ロール式連続鋳造装置、及び、薄肉鋳片の製造方法

Also Published As

Publication number Publication date
US20210370390A1 (en) 2021-12-02
KR102505042B1 (ko) 2023-03-03
BR112021005433A2 (pt) 2021-06-15
KR20210052503A (ko) 2021-05-10
CN112839753A (zh) 2021-05-25
CN112839753B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
JP6784221B2 (ja) スカム堰、双ロール式連続鋳造装置、及び、薄肉鋳片の製造方法
WO2020079758A1 (ja) スカム吸着部材、双ロール式連続鋳造装置、及び、鋳片の製造方法
JP6859827B2 (ja) スカム堰、双ロール式連続鋳造装置、及び、薄肉鋳片の製造方法
KR100674619B1 (ko) 이중 탕면댐을 구비하는 쌍롤식 박판 주조기 및 이를사용하는 박판 제조방법
KR20070051785A (ko) 제강을 위한 지르코니아질 내화물질
JP5942712B2 (ja) スカム堰、薄肉鋳片の製造方法、薄肉鋳片の製造装置
TW202015830A (zh) 浮渣吸附構件、雙輥式連續鑄造裝置、及鑄片的製造方法
JP4512560B2 (ja) 連続鋳造用ノズル
JP6926966B2 (ja) スカム吸収シート、双ロール式連続鋳造装置、及び、薄肉鋳片の製造方法
JP6801467B2 (ja) サイド堰、双ロール式連続鋳造装置、及び、薄肉鋳片の製造方法
JP4321292B2 (ja) 鋼の連続鋳造用浸漬ノズル
JP3817188B2 (ja) スカム堰およびスカム堰を有した双ドラム式連続鋳造機による薄肉鋳片の製造方法
JP3891086B2 (ja) 連続鋳造用浸漬ノズル
BR112021005433B1 (pt) Membro de adsorção de escória, dispositivo de lingotamento contínuo de rolo duplo e método de produção para placas
JP2004322208A (ja) 品質特性に優れた鋳片の連続鋳造方法
WO2013190594A1 (ja) 連続鋳造用浸漬ノズルおよびこれを用いた連続鋳造方法
JP4527832B2 (ja) 鋼の連続鋳造方法
JPH05237610A (ja) 連続鋳造ノズル内孔体
JP6992672B2 (ja) スカム堰、双ドラム式連続鋳造装置、及び、薄肉鋳片の製造方法
JPS63112057A (ja) 連続鋳造用浸漬ノズル
JP7124617B2 (ja) スカム堰、双ロール式連続鋳造装置、及び、薄肉鋳片の製造方法
JP4462052B2 (ja) 連続鋳造用鋳型及び鋼の連続鋳造方法
JP2005060128A (ja) 耐火物
JP2000312952A (ja) 連続鋳造用浸漬ノズル
JP3713182B2 (ja) 溶鋼の連続鋳造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217009246

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021005433

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021005433

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210322

122 Ep: pct application non-entry in european phase

Ref document number: 18937230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP