WO2020078478A1 - 生物样品中多种代谢物定量检测方法及代谢芯片 - Google Patents

生物样品中多种代谢物定量检测方法及代谢芯片 Download PDF

Info

Publication number
WO2020078478A1
WO2020078478A1 PCT/CN2019/112389 CN2019112389W WO2020078478A1 WO 2020078478 A1 WO2020078478 A1 WO 2020078478A1 CN 2019112389 W CN2019112389 W CN 2019112389W WO 2020078478 A1 WO2020078478 A1 WO 2020078478A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
cis
biological sample
trans
metabolic
Prior art date
Application number
PCT/CN2019/112389
Other languages
English (en)
French (fr)
Inventor
贾伟
谢国祥
王鹭
Original Assignee
深圳市绘云生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绘云生物科技有限公司 filed Critical 深圳市绘云生物科技有限公司
Priority to US17/309,062 priority Critical patent/US20220026398A1/en
Priority to EP19872428.8A priority patent/EP3869192A4/en
Publication of WO2020078478A1 publication Critical patent/WO2020078478A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5085Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above for multiple samples, e.g. microtitration plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N2030/042Standards
    • G01N2030/045Standards internal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/067Preparation by reaction, e.g. derivatising the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2560/00Chemical aspects of mass spectrometric analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7057(Intracellular) signaling and trafficking pathways
    • G01N2800/7066Metabolic pathways

Definitions

  • the invention relates to the field of biological sample detection, in particular to a quantitative determination method for multiple metabolic components such as amino acids, phenols, phenyl or benzyl derivatives, indole, organic acids, fatty acids, sugars and bile acids in biological samples.
  • a detection method for measuring biological samples by tandem mass spectrometry using chemical derivation method and a metabolic chip used in the method is a quantitative determination method for multiple metabolic components such as amino acids, phenols, phenyl or benzyl derivatives, indole, organic acids, fatty acids, sugars and bile acids in biological samples.
  • Metabolomics involves unbiased analysis of the full set of metabolites (metabome) present in cells, body fluids and tissues.
  • metal small molecule
  • metabolites are detected on metabolomics platforms based on nuclear magnetic resonance (NMR) or mass spectrometry (MS) but only in biological fluids (serum / plasma or urine) and those suffering from metabolic diseases Relative (non-absolute) concentrations were provided in the tissues of the test subjects to determine that they were different from the control group.
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • Relative (non-absolute) concentrations were provided in the tissues of the test subjects to determine that they were different from the control group.
  • the huge chemical diversity of the metabolome poses a huge challenge for the quantitative measurement of these metabolites. Due to the lack of a quantitative metabolomics platform to achieve large-scale biological sample analysis, the clinical utility and application of metabolomics has not yet been realized.
  • Quantitative metabolomics focuses on identifying and quantifying as many metabolites as possible in biological samples. Compared to traditional targeted and non-targeted methods, quantitative metabolomics has many advantages, including minimal cross-platform variability, improved robustness, maintaining full-spectrum metabolic characteristics, and more detailed information about the identity and concentration of specific metabolites information.
  • GC-MS gas chromatography-mass spectrometry
  • LC-MS liquid chromatography-mass spectrometry
  • Amino acids, phenols, phenyl or benzyl derivatives, indole, organic acids, fatty acids, sugars and bile acids are important substances involved in the body's physiological metabolism. Such substances maintain a certain level of normal metabolism in the human body. Changes in the concentration of such substances often indicate abnormalities in the human metabolic pathway. Through the detection of the concentration of these substances, combined with clinical manifestations, to help the judgment of clinical diseases.
  • An object of the present invention is to provide a quantitative detection method capable of simultaneously quantitatively detecting multiple metabolic components in a biological sample and a metabolic chip applied to the method.
  • the various metabolic components include but are not limited to various amino acids, phenols, phenyl or benzyl derivatives, indole, organic acids, fatty acids, sugars and bile acids.
  • the quantitative detection method of multiple metabolic components in the biological sample of the present invention is realized by the following scheme: after derivatizing the biological sample, liquid chromatography-mass spectrometry is used to detect the derivatized biological sample; in the derivatization process, 3- Nitrophenylhydrazine is used as a derivatization reagent, and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide is used as a derivatization reaction catalyst; the biological sample is selected from mammalian urine, blood, Cerebrospinal fluid, tissues, cells, saliva, and fecal samples; multiple metabolic components in the biological sample are selected from amino acids, phenols, phenyl or benzyl derivatives, indole, organic acids, fatty acids, sugars and One or more of bile acids, the content of these metabolic components in biological samples is across orders of magnitude.
  • the detection method of the present invention specifically includes the following steps:
  • the concentration of 3-nitrophenylhydrazine used is 150-220mM, and the concentration of 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide is 80-120mM;
  • the temperature is 20-40 ° C and the reaction time is 30-60 minutes.
  • the volume ratio of methanol to water in step e) above is 1: 1.
  • the processing method of the biological sample in step b) is preferably: take an appropriate amount of biological sample, extract with cold methanol: chloroform: water mixed solvent (volume ratio 3: 1: 1), shake For a few seconds, the sample was centrifuged at 10,000-20000 rpm and low temperature for 5-15 minutes, and the supernatant was transferred to the autosampler glass vial for subsequent derivatization determination.
  • the processing method of the biological sample in step b) is preferably: freeze-drying the stool sample; using an appropriate amount of cold methanol: chloroform: water mixed solvent (volume ratio 3: 1: 1) Homogenize, the sample is centrifuged at 10,000-20000 rpm and low temperature for 15-30 minutes, and the supernatant is transferred to the autosampler glass vial for subsequent derivatization treatment.
  • step b) The processing method of the biological sample is preferably: add a suitable amount of cold methanol: chloroform: water mixed solvent (volume ratio 3: 1: 1) to the sample, and homogenize the sample, the sample is at Centrifuge at 20,000 rpm for 15-30 minutes at 4 ° C, and transfer the supernatant to an autosampler glass vial for subsequent derivatization.
  • the detection method provided by the present invention uses 3-nitrophenylhydrazine in the presence of 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide and amino acids, phenols, phenyl or Benzyl derivatives, indole, organic acids, fatty acids, sugars and bile acids are derivatized to generate corresponding derivatives, which improves the sensitivity of detection and reduces the difficulty of detection. It can carry out many different levels of substances in biological samples Quantitative detection overcomes the shortcomings of the existing technology and achieves the effect of high-throughput quantitative detection.
  • the present invention uses common labeling and carbon 13-labeled derivatization reagents to react with standard products and sample solutions, so the chromatographic behavior, ionization efficiency of mass spectrometry and matrix effects can be completely consistent, avoiding systematic errors.
  • the invention provides a quantitative detection method for multiple cross-scale metabolic components in biological samples.
  • the present invention can calculate the content of the index component in the sample by preparing a standard curve.
  • the applicant further provides a metabolic chip for the detection method on the basis of this, the metabolic chip includes
  • the present invention further provides a metabolic chip for the above detection method.
  • the metabolic chip of the present invention refers to a device that combines the detection method of the present invention to quantitatively detect multiple metabolic components with high efficiency, including a chip carrier, a filtering device, a standard product, and a dry solid powder of a quality control product.
  • the chip carrier is a microtiter plate, and the microtiter plate may be a commercially available 48-well plate, 96-well plate, and 384-well plate microtiter plate suitable for liquid chromatography measurement.
  • An independent filter device is provided in each well of the microtiter plate, and the filter device is a filter membrane made of polyvinylidene fluoride, cellulose acetate or nylon with a pore size of 0.20-0.45 micrometer ( ⁇ m).
  • the filter device separates each well of the microtiter plate into upper and lower parts.
  • the dried powders of standard products and quality control products are powders obtained by dehydrating or freeze-drying their solutions. These solid powders are placed on the filter device in each well of the microtiter plate.
  • the quality control product is formulated into a corresponding solution, dehydrated or freeze-dried to obtain a powder, which is placed on the filter device in each well of the metabolic chip.
  • the standard is selected from one or more of amino acids, phenols, phenyl or benzyl derivatives, indole, organic acids, fatty acids, sugars and bile acids; the quality control is selected from One or more of the amino acids corresponding to the above standards, phenols, phenyl or benzyl derivatives, indole, organic acids, fatty acids, sugars and bile acids.
  • the standard product and quality control product can be selected from the following components: fructose 1,6-diphosphate, 10Z-nadecaenoic acid, 11-transoctadecenoic acid, 11-cis octadecanoic acid
  • Carbenoic acid 12-dehydrocholic acid, 12-hydroxystearic acid, 12-ketolithholic acid, 1-methylhistidine, 2,2-dimethylsuccinic acid, 2,3-diaminopropionic acid Acid, 24-glucoside chenodeoxycholic acid, 2-butenoic acid, 2-oxoadipic acid, 2-methyl-4-pentenoic acid, 2-methyl- ⁇ -alanine, 2-methyl Butyric acid, 2-methylhexanoic acid, 2-methylglutaric acid, 2-methylglutamic acid, 2-furoic acid, 2-hydroxy-2-methylbutanoic acid, 2-hydroxy-3-methyl Butyric acid, 2-hydroxybutyric acid, 2-hydroxyhexanoic acid, 2-hydroxycinna
  • the method for using the metabolic chip of the present invention includes the following steps:
  • the content of each target detection substance can be calculated.
  • the detection results obtained by the metabolic chip can also be calculated using the metabolite batch quantification software developed by Shenzhen Eyun Biotechnology Co., Ltd. to quickly obtain the content of each target component.
  • the combination of the calculation software and the metabolic chip of the present invention can greatly improve the work efficiency.
  • the attached drawings are chromatograms of typical amino acids, organic acids, fatty acids, sugars, and bile acids detected in blood samples of Examples.
  • Figure 1 is a chromatogram of typical short-chain fatty acids
  • Figure 2 is a chromatogram of typical amino acids
  • Figure 3 is a typical organic acid chromatogram
  • Figure 4 is a typical sugar chromatogram
  • Figure 5 is a typical bile acid chromatogram
  • Metabolic chip to measure multiple index components in 10 human blood and stool samples
  • Serum samples collect venous whole blood samples and place them in anticoagulation tubes. After blood collection, invert and mix 5 to 6 times immediately. Centrifuge the plasma within 30 minutes and place them in centrifuge tubes. Use cold methanol in the centrifuge tubes: chloroform: water Extract the mixed solvent (volume ratio 3: 1: 1), shake for a few seconds, centrifuge the sample at 10,000-20000 and 4 ° C for 5-15 minutes to obtain the supernatant, and transfer the supernatant to the autosampler glass vial Medium; use all aqueous serum or urine sample extracts for subsequent derivatization.
  • Fecal sample freeze-dry the fecal sample; homogenize the appropriate amount of freeze-dried fecal sample with a suitable amount of cold methanol: chloroform: water mixed solvent (volume ratio 3: 1: 1), the sample is at a speed of 10000-20000 and 4 ° C Centrifuge for 15-30 minutes to obtain the supernatant, and transfer the supernatant to the autosampler glass vial for subsequent derivatization.
  • Preparation of standard product solution take the standard products of metabolites mentioned in the previous instructions including amino acids, phenols, phenyl or benzyl derivatives, indole, organic acids, fatty acids, sugars and bile acids, fully dissolve with methanol, mix Homogenize and prepare a 1 mg / ml solution, which is a concentrated stock solution, and prepare a series of concentrations for preparing a standard curve.
  • Preparation of quality control solution Take the corresponding quality control product, fully dissolve with methanol, mix well, and prepare a 1 mg / ml solution, which is a concentrated stock solution, diluted to a certain concentration, labeled with carbon 13 3-nitrate Phenylphenylhydrazine and 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide reaction.
  • the derivatization reagent is formulated into a 200 mM solution with 75% methanol aqueous solution, mixed well, sealed and stored at 4 ° C until use.
  • reaction catalyst for derivatization (1- (3-dimethylaminopropyl) -3-ethylcarbodiimide): the reaction catalyst is prepared with pyridine into a solution of 120 mmol, mixed well, sealed and stored at 4 ° C until use .
  • Ion source Multi-reaction monitoring conditions for multiple substances detected by tandem mass spectrometry are shown in Table 1.
  • the electrospray ion source adopts negative ion scanning mode (ESI-), the specific conditions are as follows: capillary voltage 1.2kV, cone voltage 55V, extraction cone voltage 4V, ion source temperature 150 °C, desolvent gas temperature 550 °C, reverse cone Gas flow 50L / h, desolvation gas 650L / h, low quality area resolution 4.7, high quality area resolution 15, multi-reaction detection mode to collect data.
  • ESI- negative ion scanning mode
  • the concentration of substances in 10 human blood and stool samples was determined (see Table 1 and Table 2 respectively). It can be seen that by measuring a single sample, the method of the present invention can quantify a variety of substances with different properties across an order of magnitude at a time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Steroid Compounds (AREA)

Abstract

一种生物样品中多种代谢成分定量检测方法及用于该方法的代谢芯片。检测方法是对生物样品进行衍生化处理后采用液相色谱质谱联用检测衍生化后的生物样品。在衍生化处理中,采用3-硝基苯肼作为衍生化试剂,以1-(3-二甲氨基丙基)-3-乙基碳二亚胺作为衍生化反应催化剂。检测方法可以实现高灵敏度检测且检测可覆盖跨量级的多个代谢成分,简单快捷,适合应用于临床和科研检验。代谢芯片包括芯片载体微量滴定板和相关试剂,可以实现在同一微量滴定板上对生物样品中的多个跨量级的代谢物如氨基酸、酚类、苯基或苄基衍生物、吲哚、有机酸、脂肪酸、糖及胆汁酸进行定量检测。

Description

生物样品中多种代谢物定量检测方法及代谢芯片 技术领域
本发明涉及生物样品检测领域,具体地涉及生物样品中多个代谢成分如氨基酸、酚类、苯基或苄基衍生物、吲哚、有机酸、脂肪酸、糖及胆汁酸的定量测定方法,更具体涉及一种采用化学衍生法串联质谱测定生物样品的检测方法及用于该方法的代谢芯片。
背景技术
代谢组学涉及对细胞、体液和组织中存在的全套代谢物(代谢组)的无偏分析。目前,基于核磁共振(NMR)或质谱(MS)的代谢组学平台检测到许多小分子(MW<1500)代谢物但仅在生物流体(血清/血浆或尿液)和患有代谢疾病的受试者的组织中提供相对(非绝对)浓度,以确定它们与对照组的浓度不同。代谢组的巨大化学多样性对这些代谢物的全谱的定量测量提出了巨大的挑战。由于缺乏定量代谢组学平台以实现大规模生物样品分析,代谢组学的临床实用性和应用尚未实现。
定量代谢组学专注于识别和定量生物样品中尽可能多的代谢物。与传统的靶向和非靶向方法相比,定量代谢组学有许多优点,包括最小的跨平台变异性,改善的稳健性,维持全谱代谢特征以及关于特定代谢物身份和浓度的更详细信息。
关于代谢物浓度的定量,可靠的分析数据是开发基于代谢的临床试验或在转化研究中对生物体和生物系统的功能进行透彻理解的先决条件。
技术挑战之一是代谢物的浓度范围跨越十几个数量级,例如血液中的葡萄糖在毫摩尔范围内,以及在飞摩尔范围内的一些类二十烷酸等化合物中存在。化合物的大小和极性差异也存在不同平台的挑战。为了克服这些挑战,已应用气相色谱-质谱(GC-MS)和液相色谱-质谱(LC-MS)来最大化覆盖率。但仍未解决同时对多个指标进行定量检测的难题。
只有少数主要代谢途径,如糖酵解、有氧呼吸、三羧酸(TCA)循环、脂肪酸氧化(β-氧化)及糖异生等,细胞用于转移能量和维持代谢稳态,储存和处置主要类别的分子(如氨基酸,碳水化合物和脂类)的这些关键途径中的缺陷将导致代谢紊乱。因此,这些代谢物的定量测定应该能够反映生物系统中代谢的独特特征。
氨基酸、酚类、苯基或苄基衍生物、吲哚、有机酸、脂肪酸、糖和胆汁酸是参与人体生理代谢的重要物质,这类物质在人体内正常代谢保持一定的水平。这类物质的浓度改变往往提示人体代谢途径发生异常。通过检测这些物质的浓度,结合临床表现,帮助临床疾病的判断。
针对现有技术之不足,在本发明中,我们目的在于提供一种能够同时定量检测生物样本中多种成分的代谢芯片及检测方法。
发明内容
本发明的目的是提供一种能够同时定量检测生物样本中多种代谢成分的定量检测方法及应用于此方法的代谢芯片。所述多种代谢成分包括但不限于多种氨基酸、酚类、苯基或苄基衍生物、吲哚、有机酸、脂肪酸、糖及胆汁酸。
本发明生物样本中多种代谢成分定量检测方法通过如下方案实现:对生物样品进行衍生化处理后采用液相色谱-质谱联用检测衍生化后的生物样品;在衍生化处理中,采用3-硝基苯肼作为衍生化试剂,以1-(3-二甲氨基丙基)-3-乙基碳二亚胺作为衍生化反应催化剂;所述生物样本选自哺乳动物的尿液、血液、脑脊液、组织、细胞、唾液和粪便样本;所述生物样本中的多种代谢成分选自生物样品中的氨基酸、酚类、苯基或苄基衍生物、吲哚、有机酸、脂肪酸、糖及胆汁酸中之一种或多种,这些代谢成分在生物样本中的含量是跨数量级的。
本发明检测方法具体包括以下步骤:
a)收集生物样本;
b)将生物样本以甲醇、氯仿和水的混合溶剂萃取,离心后取上清液,即为生物样本提取物;
c)将b)中得到的生物样本提取物中加入相同体积的3-硝基苯肼甲醇溶液和1-(3-二甲氨基丙基)-3-乙基碳二亚胺吡啶溶液,漩涡混匀,加热进行衍生化;所用的3-硝基苯肼浓度为100-320毫摩尔/升(本专利申请中亦以“mM”表示“毫摩尔/升”),1-(3-二甲氨基丙基)-3-乙基碳二亚胺浓度为50-200毫摩尔/升;反应温度为20-60℃,反应时长10-120分钟;
d)在上述c)中得到的衍生后生物样本提取物中加入经碳13标记的3-硝基苯肼和1-(3-二甲氨基丙基)-3-乙基碳二亚胺反应得到的同位素内标液;
e)将d)中样品加入甲醇水混合溶液稀释,以液相色谱-质谱联用进行氨基酸、酚类、苯基或苄基衍生物、吲哚、有机酸、脂肪酸、糖及胆汁酸的测定。
优选地,上述步骤c)中,所用的3-硝基苯肼浓度为150-220mM,1-(3-二甲氨基丙基)-3-乙基碳二亚胺浓度为80-120mM;反应温度为20-40℃,反应时长30-60分钟。
优选地,上述步骤e)中甲醇水的体积比为1:1。
生物样本为尿液、血液、唾液或脑脊液时,步骤b)生物样本的处理方式优选为:取适量生物样本,用冷甲醇:氯仿:水混合溶剂(体积比3:1:1)萃取,摇动数秒钟,将样品在10000-20000转/分钟的转速和低温下离心5-15分钟,将上清液转移到自动进样器玻璃小瓶中用于随后的衍生化测定。
生物样本为粪便样本时,步骤b)生物样本的处理方式优选为:将粪便样品进行冻干处理;将适量冻干的粪便样品用适量冷甲醇:氯仿:水混合溶剂(体积比3:1:1)匀浆,样品在10000-20000转/分钟的转速和低温下离心15-30分钟,将上清液转移到自动进样器玻璃小瓶用于随后的衍生化处理。
生物样本为组织或细胞样本时,步骤b)生物样本的处理方式优选为:在样本中加入适量冷甲醇:氯仿:水混合溶剂(体积比3:1:1)匀浆处理,样品在10000-20000转/分钟的转速和4℃下离心15-30分钟,将上清液转移到自动进样器玻璃小瓶用于随后的衍生化处理。
本发明提供的检测方法采用3-硝基苯肼在1-(3-二甲氨基丙基)-3-乙基碳二亚胺存在的环境下与样品中的氨基酸、酚类、苯基或苄基衍生物、吲哚、有机酸、脂肪酸、糖以及胆汁酸进行衍生化反应,生成相应的衍生物,提高检测的灵敏度,降低检测难度,能够对生物样本中多个不同量级的物质进行定量检测,克服了现有技术的缺陷,达到了高通量定量检测的效果。此外,本发明采用了普通标记以及碳13标记的衍生试剂与标准品以及样本溶液进行反应,所以色谱行为、质谱的离子化效率和基质效应均能完全一致,避免了系统误差。
发明提供了生物样品中多种跨量级代谢成分的定量检测方法。如一般技术人员所能理解的,本发明可通过制备标准曲线计算样品中指标成分的含量。申请人在此基础上进一步提供用于该检测方法的的代谢芯片,所述代谢芯片包括
本发明进一步提供用于上述检测方法的代谢芯片。本发明所述代谢芯片指结合本发明检测方法高效率定量检测多个代谢成分的装置,包括芯片载体、过滤装置、标准品和质控品的干燥固体粉末。其中所述芯片载体为微量滴定板,微量滴定板可以是市售的适用于液相色谱测定的48孔板、96孔板和384孔板微量滴定板。在微量滴定板的每个孔设置一个独立的过滤装置,所述过滤装置为孔径为0.20-0.45微米(μm)的聚偏二氟乙烯、乙酸纤维素或尼龙为材料的过滤膜。过滤装置将微量滴定板的每个孔分隔为上下两部分。
标准品和质控品的干燥粉末系由其溶液脱水或冷冻干燥得到的粉末,这些固体粉末置于微量滴定板的每个孔中的过滤装置之上。按照本领域一般技术人员可理解的,标准品粉末制备时,先按照制备标准曲线所需的标准品浓度梯度配制不同的标准品溶液,然后经脱水或冷冻干燥得到粉末,放置于代谢芯片的相应孔中的过滤装置之上。以及按照本领域一般技术人员所理解的,质控品配制成相应溶液,经脱水或冷冻干燥得到粉末,放置于代谢芯片的每个孔中的过滤装置之上。
所述的标准品选自氨基酸,酚类、苯基或苄基衍生物、吲哚、有机酸,脂肪酸,糖类与胆汁酸标准品之一种或多种;所述的质控品选自与上述标准品对应的氨基酸,酚类、苯基或苄基衍生物、吲哚、有机酸,脂肪酸,糖类与胆汁酸标准品之一种或多种。
具体地,标准品和质控品可以选自如下所述的成分:1,6-二磷酸果糖,10Z-十九碳烯酸,11-反式十八碳烯酸,11-顺式十八碳烯酸,12-去氢胆酸,12-羟基硬脂酸,12-酮石胆酸,1-甲基组氨酸,2,2-二甲基琥珀酸,2,3-二氨基丙酸,24-葡萄糖苷鹅脱氧胆酸,2-丁烯酸,2-氧代己二酸,2-甲基-4-戊烯酸,2-甲基-β-丙氨酸,2-甲基丁酸,2-甲基己酸,2-甲基戊二酸,2-甲基谷氨酸,2-糠酸,2-羟基-2-甲基丁酸,2-羟基-3-甲基丁酸,2-羟基丁酸,2-羟基己酸,2-羟基肉桂酸,2-羟基苯乙酸,2-羟基马尿酸,2-苯基丙酸,2-苯甘氨酸,3-(3-羟基苯基)-3-羟基丙酸,3-(4-羟基苯基)乳酸,3,4-二羟基杏仁酸,3,4-二羟苯基丙酸,3,4-脱氢-DL-脯氨酸,3,5-二碘-L-甲状腺素,3β-胆酸,3-吡啶乙酸,3-吲哚丙烯酸,3-吲哚丙酸,3-吲哚乙 酰胺,3-氧基丙氨酸,3-氨基水杨酸,3-氯-L-酪氨酸,3-甲基-2-氧代丁酸,3-甲基-2-氧基戊酸,3-甲基吲哚,3-甲基己二酸,3-甲基谷氨酸,3-硝基酪氨酸,3-硫酸牛磺石胆酸,3-硫酸石胆酸,3-羟基-2-氨基苯甲酸,3-羟基丁酸,3-羟基丙酸,3-羟基异戊酸,3-羟基苯乙酸,3-羟基马尿酸,3-脱氢胆酸,3-苯基丁酸,4-甲基-2-氧基戊酸,4-甲基己酸,4-甲氧基苯乙酸,4-羟基-3-甲氧基扁桃酸,4-羟基肉桂酸,4-羟基苯甲酸,4-羟基马尿酸,4-羟苯乳酸,4-羟苯基丙酮酸,4-苯基丁酸,5-氨基酮戊酸,5-羟色氨酸,5-羟色胺,5-羟赖氨酸,6,7-二酮石胆酸,6-磷酸葡萄糖酸,6-酮石胆酸,7,12-二酮石胆酸,7-酮石胆酸,7-酮脱氧胆酸,9,11-共轭亚油酸,D-2-羟基戊二酸,D-半乳糖,D-木糖,D-木酮糖,D-果糖,D-核糖,D-核糖-5-磷酸,D-核酮糖,D-核酮糖-5-磷酸,D-甘露糖,D-葡萄糖,D-麦芽糖,L-2-氨基丁酸,L-3-苯基乳酸,L-丙氨酸,L-丝氨酸,L-乙酰肉碱,L-乳酸,L-别苏氨酸,L-半胱氨酸,L-同型丝氨酸,L-同型半胱氨酸,L-同型瓜氨酸,L-哌啶酸,L-天冬氨酸,L-天冬酰胺,L-山梨糖,L-木质酸,L-正亮氨酸,L-犬尿氨酸,L-甲状腺原氨酸,L-精氨酸,L-组氨酸,L-缬氨酸,L-胱氨酸,L-胱硫醚,L-脯氨酸,L-色氨酸,L-苏氨酸,L-苯丙氨酸,L-苹果酸,L-蛋氨酸,L-谷氨酰胺,L-谷氨酸,L-赖氨酸,L-酪氨酸,L-阿拉伯糖,N-(3-苯基丙酰基)甘氨酸,N-乙酰-L丙氨酸,N-乙酰-L-天冬氨酸,N-乙酰-L-苯基丙氨酸,N-乙酰-L-蛋氨酸,N-乙酰-L-酪氨酸,N-乙酰丝氨酸,N-乙酰基-D-葡糖胺,N-乙酰基-L苯丙氨酸,N-乙酰甘露糖胺,N-乙酰神经氨酸,N-乙酰组氨酸,N-乙酰羟色胺,N-乙酰色氨酸,N-乙酰谷氨酰胺,N-乙酰赖氨酸,N-乙酰鸟氨酸,N-甲基烟酰胺,N-苯乙酰基-谷氨酰胺,N-苯乙酰苯丙氨酸,S-腺苷同型半胱氨酸,α-D-葡萄糖,α-乳糖,α-亚麻酸,α-羟基异丁酸,α-酮戊二酸,α-鼠胆酸,β-D-海藻糖,β-丙氨酸,β-熊胆酸,β-鼠胆酸,γ-L-谷氨酰-L-丙氨酸,γ-亚麻酸,γ-氨基丁酸,ω-鼠胆酸,丁酸,三甲胺氮氧化物,三磷酸腺苷,丙二酸,丙酸,乙酰乙酸,乙酰半胱氨酸,乙酰甘氨酸,乙酰鸟氨酸,乙酸,乙酸胍,乙醇酸,乳果糖,乳酰谷胱甘肽,二十一烷酸,二十一碳烯酸(顺-12),二十七烷酸,二十三烷酸,二十三碳烯酸(顺-14),二十二烷酸,二十二碳三烯酸,二十二碳二烯酸(顺-13,16),二十二碳五烯酸,二十二碳六烯酸,二十二碳四烯酸,二十二碳烯酸(反-13),二十二碳烯酸(顺-13),二十五烷酸,二十八烷酸,二十六烷酸,二十四烷酸,二十烷酸,二十碳三烯酸,二十碳二烯酸,二十碳五烯酸,二十碳烯酸(反-11),二十碳烯酸(顺-11),二十碳烯酸(顺-5),二十碳烯酸(顺-8),二甲基甘氨酸,二磷酸腺苷,亚油酸,亮氨酸,别异亮氨酸,别石胆酸,别胆酸,十一烯酸,十七烷酸,十三酸,十九烷酸,十九碳二烯酸,十五烷酸,半乳糖酸,半乳糖醇,半胱氨酸甲酯,原儿茶酸,原胆酸,去氢石胆酸,去甲脱氧胆酸,反-9-十四烯酸,反乌头酸,反式-4-羟基脯氨酸,反式-9-十七烯酸,反式-9-十五烯酸,反式-9-十六烯酸,反式亚麻酸,反式肉桂酸,反油酸,同型半胱氨酸,吡咯-2-羧酸,吡啶甲酸,吲哚,吲哚-3-乙酸甲酯,吲哚-3-羧酸,吲哚乙酸,嘌呤,壬二酸,壬酸,多巴,多巴胺,密二糖,富马酸,对乙酰氨基酚,对氨基马尿酸,对甲酚硫酸盐,对称型二甲基精氨酸,对羟基扁桃酸,对羟基苯乙酸,尿黑酸,己二酸,庚二酸,异丁酸,异亮氨酸,异戊酸,柠檬酸,异熊脱氧胆酸,异猪脱氧胆酸,异石胆酸,异胆酸,异脱氧胆酸,戊二酸,戊烯二酸,戊酸,扁桃酸,月桂酸,果糖-6-磷酸,柠槺酸,柠檬酸,柠苹酸, 核糖内脂,核糖酸,棉子糖,棕榈油酸,棕榈酸,正缬氨酸,正-羟基苯乙酸,氧化型谷胱甘肽,氨基己二酸,氨基己酸,水杨尿酸,油酸,海藻糖,烟酸,焦谷氨酸,熊胆酸,熊脱氧胆酸,牛磺-a-鼠胆酸,牛磺-b-鼠胆酸,牛磺-w-鼠胆酸,牛磺熊脱氧胆酸,牛磺猪胆酸,牛磺猪脱氧胆酸,牛磺石胆酸,牛磺胆酸,牛磺脱氢胆酸,牛磺鹅脱氧胆酸,猪胆酸,猪脱氧胆酸,琥珀酰丙酮,琥珀酸,瓜氨酸,甘氨去氢胆酸,甘氨石胆酸,甘氨脱氧胆酸,甘氨酸,甘氨鹅脱氧胆酸,甘油醛,甘油醛-3-磷酸,甘磷酸胆碱,甘胺熊脱氧胆酸,甘胺猪胆酸,甘胺猪脱氧胆酸,甘胺胆酸,甘胺脯氨酸,甘胺酰-L-亮氨酸,甘露糖-6-磷酸,甘露醇,甲基丙二酸,甲基琥珀酸,甲酸,癸酸,石胆酸,硒代蛋氨酸,硫胺,硫酸甘氨石胆酸,硬脂酸,碘噻罗宁,磷酸二羟丙酮,磷酸核糖焦磷酸,磷酸肌酸,羟基丙酮酸,羟基苯乙酸甘氨酸,肉桂酸,肌氨酸,肌肽,肌酸,肌醇,肾上腺素,胆碱,胆酸,脱氢胆酸,脱甲胆酸,腺苷一磷酸,花生四烯酸,苯丙酮酸,苯乙胺,苯基丙酸,苯基乳酸,苯甲酰胺,苯甲酸,草酸,莽草酸,葡糖二酸,葡萄糖-6-磷酸,葡萄糖内脂,葵二酸,蓖麻油酸,蔗糖,蛋氨酸亚砜,衣康酸,褪黑素,谷胱甘肽,豆蔻酸,赤糖酸,赤藓糖,辛二酸,辛酸,邻苯二甲酸,酒石酸,酪胺,金鸡纳酸,间氨基苯甲酸,非对称型二甲基精氨酸,鞣酸,顺-10,12-十八碳二烯酸,顺-12,15-二十一碳二烯酸,顺-12-十三烯酸,顺-15-二十四碳烯酸,顺-2-羟基肉桂酸,顺-9-十四烯酸,顺式-10-十七烯酸,顺式-11-十二碳烯酸,顺式-4-羟基脯氨酸,顺式-5-十二碳烯酸,顺式-7-十六烯酸,顺式-9-十七烯酸,顺式乌头酸,香草酸,马尿酸,马来酸,高香草酸,鸟氨酸,鸟苷一磷酸,鸟苷三磷酸,鹅肌肽,鹅脱氧胆酸,麦芽三糖,麦芽糖醇,鼠李糖,鼠脱氧胆酸。
本发明代谢芯片的使用方法,包括如下步骤:
1.收集生物样本;
2.根据样本类型,按照前述相应方法制备相应生物样本提取物;
3.将制得的生物样本提取物等量添加于代谢芯片的各个孔中,在各孔中加入相同体积的3-硝基苯肼甲醇溶液和1-(3-二甲氨基丙基)-3-乙基碳二亚胺吡啶溶液,漩涡混匀,加热进行衍生化;所用的3-硝基苯肼浓度为100-320mM,1-(3-二甲氨基丙基)-3-乙基碳二亚胺浓度为50-200mM;反应温度为20-60℃,反应时长10-120分钟;
4.在上述3中得到的衍生后生物样本提取物中加入经碳13标记的3-硝基苯肼和1-(3-二甲氨基丙基)-3-乙基碳二亚胺反应得到的同位素内标液;
5.将4中代谢芯片中各孔加入甲醇水混合溶液稀释,将代谢芯片置于串联质谱仪器以液相色谱质谱联用进行氨基酸、酚类、苯基或苄基衍生物、吲哚、有机酸、脂肪酸、糖及胆汁酸的测定,根据结果计算得到样本中目标代谢产物的浓度。
如本领域一般技术人员所理解的,根据测试结果,结合标准曲线可以计算得到各目标检测物质的含量。也可将代谢芯片得到的检测结果使用深圳市绘云生物科技有限公司开发的代谢物批 量定量软件进行计算,快速得到各目标成分的含量。计算软件与本发明代谢芯片相结合,更大地提高工作效率。
附图说明
附图为实施例血液样本中检测到的典型氨基酸、有机酸、脂肪酸、糖以及胆汁酸的色谱图。
由此可见多种目标检测成分能够被有效分离并检测到,从而实现高通量定量检测。
图1为典型短链脂肪酸的色谱图
图2为典型氨基酸的色谱图
图3为典型有机酸色谱图
图4为典型糖色谱图
图5为典型胆汁酸色谱图
具体实施方式
代谢芯片测定10个人体血液和粪便样本中多个指标成分
1、仪器
液相色谱-串联质谱仪(LC-MS/MS),配备电喷雾离子源(ESI)。
2、样本的制备
血清样本:采集静脉全血样本,置于抗凝管中,采血后立即颠倒混匀5~6次,于30min以内离心分离血浆置于离心管中,在离心管中用冷甲醇:氯仿:水混合溶剂(体积比3:1:1)萃取,摇动数秒钟,将样品在10000-20000转速和4℃下离心5-15分钟获得上清液,将上清液转移到自动进样器玻璃小瓶中;将所有含水血清或尿液样本提取物用于随后的衍生化处理。
粪便样本:将粪便样品进行冻干处理;将适量冻干的粪便样品用适量冷甲醇:氯仿:水混合溶剂(体积比3:1:1)匀浆,样品在10000-20000转速和4℃下离心15-30分钟获得上清液,将上清液转移到自动进样器玻璃小瓶用于随后的衍生化处理。
3、试剂配制
标准品溶液的配制:取前述说明书中所述代谢物的标准品包括氨基酸、酚类、苯基或苄基衍生物、吲哚、有机酸、脂肪酸、糖及胆汁酸,用甲醇充分溶解,混匀,配制成1毫克/毫升溶液,即为浓缩储备液,配制成系列浓度用以制备标准曲线。
质控品溶液的配制:取相应的质控品,用甲醇充分溶解,混匀,配制成1毫克/毫升溶液,即为浓缩储备液,稀释成一定浓度,经与碳13标记的3-硝基苯肼和1-(3-二甲氨基丙基)-3-乙基碳二亚胺反应得到。
衍生化试剂的配制(3-硝基苯肼)的配制:衍生化试剂用75%甲醇水溶液配制成200mM的溶液,混匀,密封4℃保存待用。
衍生用反应催化剂(1-(3-二甲氨基丙基)-3-乙基碳二亚胺)的配制:反应催化剂用吡啶配制成120毫摩尔的溶液,混匀,密封4℃保存待用。
4检验方法
取5μL处理好的生物样本,加入衍生化试剂20微升,衍生化催化剂20微升,在30℃下反应60分钟,反应液加入甲醇水混合溶液稀释,13200转/分的转速下离心15分钟,取上清液,
进样5μL进行LC-MS/MS分析。
质谱条件:
离子源:串联质谱检测多种物质的多反应监测条件见表1。电喷雾离子源采用负离子扫描模式(ESI-),具体条件如下:毛细管电压1.2kV,锥孔电压55V,萃取锥孔电压4V,离子源温度150℃,脱溶剂气温度550℃,反向锥孔气流50L/h,脱溶剂气650L/h,低质量区分辨率4.7,高质量区分辨率15,多反应检测模式采集数据。
梯度洗脱条件:采用UPLC BEH C18色谱柱(100mm×2.1mm,1.7μm);柱温40℃;流动相A:水(0.1%甲酸),B:乙腈(0.1%甲酸,):异丙醇,乙腈和异丙醇的比例为1-2:1;流速为0.4mL/min;进样量为5微升;梯度洗脱条件:0-1min(5%B),1-5min(5-30%B),5-9min(30-50%B),9-12min(50-75%B),12-15min(75-95%B),15-16min(95-100%B),16-8min(100%B),18-20min(5%B)。
5.测定结果
采用本发明检测方法,测定了10个人体血液和粪便样本中物质的浓度(分别见表1和表2)。可见本发明方法通过测定单个样品,可以一次性的定量跨量级的多种不同性质的物质。
表1正常人血液中物质浓度测定结果
所测定的目标代谢物质 浓度值 浓度单位
2-甲基戊酸 120.32±5.18 μg/mL
2-羟基丁酸 2.32±0.44 μg/mL
3-(3-羟基苯基)-3-羟基丙酸 10.31±0.19 μg/mL
3-羟基苯乙酸 6.07±6.12 μg/mL
3-吲哚乙腈 2.51±0.15 μg/mL
3-甲基-2-氧代戊酸 4.37±5.08 μg/mL
4-甲基己酸 2.96±0.07 μg/mL
亚麻酸 97.19±33.87 μg/mL
花生四烯酸 5.54±0.45 μg/mL
花生四烯酸 5.62±2.4 μg/mL
二十二烷酸 8.96±0.27 μg/mL
β-丙氨酸 10.37±0.44 μg/mL
癸酸 1.22±0.19 μg/mL
辛酸 1.39±0.5 μg/mL
柠檬酸 7.03±1.56 μg/mL
二十二碳六烯酸 15.1±4.36 μg/mL
二十二碳五烯酸n6 15.31±4.16 μg/mL
二十二碳三烯酸 8.76±0.95 μg/mL
十二烷酸 0.91±0.16 μg/mL
多巴胺 23.53±3.93 μg/mL
二十碳烯酸 11.18±3.38 μg/mL
芥酸 15.25±11.34 μg/mL
γ-氨基丁酸 14.68±2.7 μg/mL
谷胱甘肽 6.7±1.62 μg/mL
乙醇酸 159.46±56.76 μg/mL
十七烷酸 5.78±6.5 μg/mL
L-α-氨基丁酸 2.41±0.48 μg/mL
L-天冬酰胺 12.32±0.57 μg/mL
L-天冬氨酸 3.8±0.64 μg/mL
L-谷氨酸 8.93±0.53 μg/mL
L-组氨酸 16.76±1.54 μg/mL
L-高丝氨酸 12.53±7.81 μg/mL
L-异亮氨酸 5.9±2.18 μg/mL
L-亮氨酸 5.88±3.97 μg/mL
L-赖氨酸 33.73±4.42 μg/mL
L-蛋氨酸 6.78±0.73 μg/mL
L-正亮氨酸 3.33±1.25 μg/mL
L-苯丙氨酸 8.57±0.84 μg/mL
L-脯氨酸 11.32±5.94 μg/mL
L-丝氨酸 9.78±0.68 μg/mL
L-色氨酸 30.49±2.93 μg/mL
L-酪氨酸 20.02±4.37 μg/mL
L-缬氨酸 28.87±7.87 μg/mL
亚油酸 162.6±57.21 μg/mL
甲基琥珀酸 34.76±29.31 μg/mL
肉豆蔻酸 2.91±0.52 μg/mL
肉豆蔻酸 3.39±0.51 μg/mL
N-乙酰色氨酸 29.5±1.24 μg/mL
神经酸 82.71±4.32 μg/mL
十二烷酸 5.9±2.13 μg/mL
正缬氨酸 0.86±0.01 μg/mL
鸟氨酸 22.56±5.54 μg/mL
羰基己二酸 11.55±2.52 μg/mL
氧戊二酸 21.89±5.22 μg/mL
棕榈酸 87.29±30.74 μg/mL
棕榈油酸 86.36±30.14 μg/mL
十五烷酸 1.81±0.12 μg/mL
庚二酸 4.47±1.23 μg/mL
丙酸 0.16±0.03 μg/mL
腐胺 19.96±1.32 μg/mL
焦谷氨酸 5.59±2 μg/mL
硬脂酸 38.06±14.04 μg/mL
琥珀酸 36.45±12.11 μg/mL
顺-附子酸 2.66±0.11 μg/mL
对羟基苯乙酸 2.51±0.15 μg/mL
棕榈油酸 19.32±11.42 uM
神经酸 0.25±0.06 uM
胆酸 67.57±38.23 nM
去氧鹅胆酸 383±559.28 nM
脱氧胆酸 241.97±197.98 nM
果糖 5.23±1.18 uM
葡萄糖 3.29±0.66 mM
二高-g-亚油酸 2.51±1.01 uM
甘露糖 34.87±9.22 uM
甘氨胆酸 314.89±345.38 nM
甘氨鹅去氧脱氧胆酸 750.99±574.2 nM
甘氨猪胆酸 16.31±10.67 nM
甘氨石胆酸 12.41±10.41 nM
甘氨熊胆酸 123.97±124.56 nM
猪胆酸 26.09±11.26 nM
石胆酸 12.61±4.68 nM
油酸 239.05±84.26 uM
棕榈油酸 19.32±11.42 uM
牛磺胆酸 88.59±66.4 nM
牛磺去氧胆酸 68.66±47.85 nM
二十四碳酸 2.28±0.89 uM
牛磺猪胆酸 4.06±4.7 nM
牛磺熊胆酸 26.16±0.81 nM
熊胆酸 69.29±44.3 nM
g-亚油酸 20.47±8.36 uM
表2正常人粪便中物质浓度测定结果
所测定的目标代谢物质 浓度值 浓度单位
(1)-2-甲基戊酸 0.1±0.19 μg/mL
1H-吲哚-3-乙酰胺 0.54±0.07 μg/mL
2-羟基丁酸 29.5±7.89 ng/mL
3-(3-羟基苯基)-3-羟基丙酸 0.19±0.11 μg/mL
3-羟基丁酸 0.3±0.29 μg/mL
3-羟基苯乙酸 0.39±0.36 μg/mL
3-吲哚乙腈 0.17±0.11 μg/mL
3-异丙酸 0.32±0.09 μg/mL
3-甲基-2-氧代戊酸 0.5±0.2 ng/mL
3-甲基戊酸 0.2±0.3 ng/mL
4-羟基苯甲酸 0.42±0.55 μg/mL
4-羟基肉桂酸 0.25±0.07 μg/mL
4-甲基己酸 0.7±0.6 ng/mL
5-十二碳烯酸 0.84±2.1 μg/mL
己二酸 88.6±10.6 ng/mL
α-亚麻酸 8.07±9.95 μg/mL
氨基己二酸 0.14±0.04 μg/mL
花生四烯酸 3.83±2.82 μg/mL
花生四烯酸 0.97±0.88 μg/mL
二十二烷酸 0.33±0.32 μg/mL
β-丙氨酸 0.41±0.12 μg/mL
丁酸 0.88±0.69 μg/mL
癸酸 0.13±0.22 μg/mL
己酸 0.53±0.53 μg/mL
辛酸 0.37±0.55 μg/mL
柠康酸 45.8±4.97 ng/mL
2-甲基苹果酸 0.18±0.07 μg/mL
柠檬酸 0.34±0.32 μg/mL
D-2-羟基戊二酸 0.14±0.06 μg/mL
二十二碳六烯酸 0.43±0.3 μg/mL
二十二碳五烯酸n6 0.45±0.41 μg/mL
二十二碳三烯酸 0.16±0.02 μg/mL
十二烷酸 1.07±2.33 μg/mL
二十碳烯酸 8.91±6.15 μg/mL
芥酸 0.41±0.36 μg/mL
乙基甲基乙酸 0.73±0.38 μg/mL
富马酸 0.12±0.04 μg/mL
γ-氨基丁酸 0.81±0.37 μg/mL
戊二酸 0.32±0.27 μg/mL
谷胱甘肽 3.33±5.08 μg/mL
甘油酸 4.11±2.07 μg/mL
乙醇酸 0.27±0.21 μg/mL
十七烷酸 1.06±1.15 μg/mL
庚酸 0.12±0.15 μg/mL
同型半胱氨酸 1.1±1.01 μg/mL
氢化肉桂酸 0.36±0.21 μg/mL
羟基苯基乳酸 0.48±0.27 μg/mL
羟基丙酸 0.17±0.2 μg/mL
吲哚 0.4±0.34 μg/mL
吲哚乙酸 0.29±0.02 μg/mL
异柠檬酸 89.5±5.67 ng/mL
衣康酸 92.4±15.4 ng/mL
L-α-氨基丁酸 74.7±16.7 ng/mL
L-天冬酰胺 0.88±0.59 μg/mL
L-天冬氨酸 2.44±1.03 μg/mL
L-谷氨酸 10.35±8.3 μg/mL
L-组氨酸 0.39±0.07 μg/mL
L-高丝氨酸 0.45±0.42 μg/mL
L-异亮氨酸 0.23±0.11 μg/mL
L-亮氨酸 0.25±0.42 μg/mL
L-赖氨酸 2.29±0.65 μg/mL
L-蛋氨酸 1.54±0.91 μg/mL
L-正亮氨酸 0.13±0.25 μg/mL
L-苯丙氨酸 0.85±0.91 μg/mL
L-脯氨酸 0.4±0.21 μg/mL
L-丝氨酸 0.42±0.31 μg/mL
L-色氨酸 0.62±0.16 μg/mL
L-酪氨酸 2.19±1.06 μg/mL
L-缬氨酸 1.05±0.6 μg/mL
亚油酸 0.012±0.05 mg/mL
苹果酸 0.38±0.21 μg/mL
丙二酸 0.12±0.06 μg/mL
甲基琥珀酸 0.13±0.02 μg/mL
肉豆蔻酸 0.54±0.54 μg/mL
肉豆蔻酸 0.53±0.53 μg/mL
N-乙酰 0.61±0.07 μg/mL
神经酸 1.33±0.9 μg/mL
烟酸 0.31±0.09 μg/mL
十二烷酸 0.21±0.11 μg/mL
正缬氨酸 29.5±4.56 ng/mL
鸟氨酸 1.29±1.12 μg/mL
草酸 3.49±5.07 μg/mL
羰基己二酸 0.72±0.41 μg/mL
氧戊二酸 0.17±0.17 μg/mL
棕榈酸 3.79±2.29 μg/mL
棕榈油酸 3.69±2.19 μg/mL
壬酸 87.4±12.5 ng/mL
十五烷酸 0.31±0.24 μg/mL
苯酚 58.7±6.78 ng/mL
苯乙酸 1.49±1.14 μg/mL
苯基乳酸 71.5±8.79 ng/mL
庚二酸 0.31±0.22 μg/mL
丙酸 10.09±6.03 μg/mL
焦谷氨酸 2.6±3.95 μg/mL
硬脂酸 1.22±1.63 μg/mL
辛二酸 0.11±0.03 μg/mL
琥珀酸 0.42±0.32 μg/mL
酒石酸 80.3±9.97 ng/mL
硫胺素 2.23±4.06 μg/mL
戊酸 1.39±1.36 μg/mL
香草酸 0.17±0.04 μg/mL
顺-附子酸 70.05±10.08 ng/mL
对甲酚 0.24±0.19 μg/mL
对羟基苯乙酸 0.3±0.22 μg/mL

Claims (12)

  1. 生物样本中多种代谢成分定量检测方法,其特征在于,对生物样品进行衍生化处理后采用液相色谱-质谱联用检测衍生化后的生物样品;在衍生化处理中,采用3-硝基苯肼作为衍生化试剂,以1-(3-二甲氨基丙基)-3-乙基碳二亚胺作为衍生化反应催化剂;所述生物样本选自哺乳动物的尿液、血液、脑脊液、组织、细胞、唾液和粪便样本;所述生物样本中的多种代谢成分选自生物样品中的氨基酸、酚类、苯基或苄基衍生物、吲哚、有机酸、脂肪酸、糖及胆汁酸中之一种或多种,这些代谢成分在生物样本中的含量是跨数量级的。
  2. 如权利要求1所述的检测方法,包括以下步骤:
    a)收集生物样本;
    b)将生物样本以甲醇、氯仿和水的混合溶剂萃取,离心后取上清液,即为生物样本提取物;
    c)将b)中得到的生物样本提取物中加入相同体积的3-硝基苯肼甲醇溶液和1-(3-二甲氨基丙基)-3-乙基碳二亚胺吡啶溶液,漩涡混匀,加热进行衍生化;所用的3-硝基苯肼浓度为100-320毫摩尔/升,1-(3-二甲氨基丙基)-3-乙基碳二亚胺浓度为50-200毫摩尔/升;反应温度为20-60℃,反应时长10-120分钟;
    d)在上述c)中得到的衍生后生物样本提取物中加入经碳13标记的3-硝基苯肼和1-(3-二甲氨基丙基)-3-乙基碳二亚胺反应得到的同位素内标液;
    e)将d)中样品加入甲醇水混合溶液稀释,以液相色谱-质谱联用进行氨基酸、酚类、苯基或苄基衍生物、吲哚、有机酸、脂肪酸、糖及胆汁酸的测定。
  3. 如权利要求2所述的检测方法,其特征在于,步骤c)中,所用的3-硝基苯肼浓度为150-220毫摩尔/升,1-(3-二甲氨基丙基)-3-乙基碳二亚胺浓度为80-120毫摩尔/升;反应温度为20-40℃,反应时长30-60分钟。
  4. 如权利要求2所述的检测方法,其特征在于,生物样本为尿液、血液、唾液或脑脊液时,步骤b)生物样本的处理方式为:取适量生物样本,用冷甲醇:氯仿:水混合溶剂(体积比3:1:1)萃取,摇动数秒钟,将样品在10000-20000转/分钟的转速和低温下离心5-15分钟,将上清液转移到自动进样器玻璃小瓶中用于随后的衍生化处理。
  5. 如权利要求2所述的检测方法,其特征在于,生物样本为粪便样本时,步骤b)生物样本的处理方式为:将粪便样品进行冻干处理;将适量冻干的粪便样品用适量冷甲醇:氯仿:水混合溶剂(体积比3:1:1)匀浆,样品在10000-20000转/分钟的转速和低温下离心15-30分钟,将上清液转移到自动进样器玻璃小瓶用于随后的衍生化处理。
  6. 如权利要求2所述的检测方法,其特征在于,生物样本为组织或细胞样本时,步骤b)生物样本的处理方式为:在样本中加入适量冷甲醇:氯仿:水混合溶剂(体积比3:1:1)匀浆处理,样品在10000-20000转/分钟的转速和4℃下离心15-30分钟,将上清液转移到自动进样器玻璃小瓶用于随后的衍生化处理。
  7. 如权利要求2所述的检测方法,其特征在于,步骤e)中甲醇水的体积比为1:1。
  8. 如权利要求1至7任一所述的检测方法,所述生物样品的多种代谢成分可以选自如下所述的多种代谢物:1,6-二磷酸果糖,10Z-十九碳烯酸,11-反式十八碳烯酸,11-顺式十八碳烯酸,12-去氢胆酸,12-羟基硬脂酸,12-酮石胆酸,1-甲基组氨酸,2,2-二甲基琥珀酸,2,3-二氨基丙酸,24-葡萄糖苷鹅脱氧胆酸,2-丁烯酸,2-氧代己二酸,2-甲基-4-戊烯酸,2-甲基-β-丙氨酸,2-甲基丁酸,2-甲基己酸,2-甲基戊二酸,2-甲基谷氨酸,2-糠酸,2-羟基-2-甲基丁酸,2-羟基-3-甲基丁酸,2-羟基丁酸,2-羟基己酸,2-羟基肉桂酸,2-羟基苯乙酸,2-羟基马尿酸,2-苯基丙酸,2-苯甘氨酸,3-(3-羟基苯基)-3-羟基丙酸,3-(4-羟基苯基)乳酸,3,4-二羟基杏仁酸,3,4-二羟苯基丙酸,3,4-脱氢-DL-脯氨酸,3,5-二碘-L-甲状腺素,3β-胆酸,3-吡啶乙酸,3-吲哚丙烯酸,3-吲哚丙酸,3-吲哚乙酰胺,3-氧基丙氨酸,3-氨基水杨酸,3-氯-L-酪氨酸,3-甲基-2-氧代丁酸,3-甲基-2-氧基戊酸,3-甲基吲哚,3-甲基己二酸,3-甲基谷氨酸,3-硝基酪氨酸,3-硫酸牛磺石胆酸,3-硫酸石胆酸,3-羟基-2-氨基苯甲酸,3-羟基丁酸,3-羟基丙酸,3-羟基异戊酸,3-羟基苯乙酸,3-羟基马尿酸,3-脱氢胆酸,3-苯基丁酸,4-甲基-2-氧基戊酸,4-甲基己酸,4-甲氧基苯乙酸,4-羟基-3-甲氧基扁桃酸,4-羟基肉桂酸,4-羟基苯甲酸,4-羟基马尿酸,4-羟苯乳酸,4-羟苯基丙酮酸,4-苯基丁酸,5-氨基酮戊酸,5-羟色氨酸,5-羟色胺,5-羟赖氨酸,6,7-二酮石胆酸,6-磷酸葡萄糖酸,6-酮石胆酸,7,12-二酮石胆酸,7-酮石胆酸,7-酮脱氧胆酸,9,11-共轭亚油酸,D-2-羟基戊二酸,D-半乳糖,D-木糖,D-木酮糖,D-果糖,D-核糖,D-核糖-5-磷酸,D-核酮糖,D-核酮糖-5-磷酸,D-甘露糖,D-葡萄糖,D-麦芽糖,L-2-氨基丁酸,L-3-苯基乳酸,L-丙氨酸,L-丝氨酸,L-乙酰肉碱,L-乳酸,L-别苏氨酸,L-半胱氨酸,L-同型丝氨酸,L-同型半胱氨酸,L-同型瓜氨酸,L-哌啶酸,L-天冬氨酸,L-天冬酰胺,L-山梨糖,L-木质酸,L-正亮氨酸,L-犬尿氨酸,L-甲状腺原氨酸,L-精氨酸,L-组氨酸,L-缬氨酸,L-胱氨酸,L-胱硫醚,L-脯氨酸,L-色氨酸,L-苏氨酸,L-苯丙氨酸,L-苹果酸,L-蛋氨酸,L-谷氨酰胺,L-谷氨酸,L-赖氨酸,L-酪氨酸,L-阿拉伯糖,N-(3-苯基丙酰基)甘氨酸,N-乙酰-L丙氨酸,N-乙酰-L-天冬氨酸,N-乙酰-L-苯基丙氨酸,N-乙酰-L-蛋氨酸,N-乙酰-L-酪氨酸,N-乙酰丝氨酸,N-乙酰基-D-葡糖胺,N-乙酰基-L苯丙氨酸,N-乙酰甘露糖胺,N-乙酰神经氨酸,N-乙酰组氨酸,N-乙酰羟色胺,N-乙酰色氨酸,N-乙酰谷氨酰胺,N-乙酰赖氨酸,N-乙酰鸟氨酸,N-甲基烟酰胺,N-苯乙酰基-谷氨酰胺,N-苯乙酰苯丙氨酸,S-腺苷同型半胱氨酸,α-D-葡萄糖,α-乳糖,α-亚麻酸,α-羟基异丁酸,α-酮戊二酸,α-鼠胆酸,β-D-海藻糖,β-丙氨酸,β-熊胆酸,β-鼠胆酸,γ-L-谷氨酰-L-丙氨酸,γ-亚麻酸,γ-氨基丁酸,ω-鼠胆酸,丁酸,三甲胺氮氧化物,三磷酸腺苷,丙二酸,丙酸,乙酰乙酸,乙酰半胱氨酸,乙酰甘氨酸,乙酰鸟氨酸,乙酸,乙酸胍,乙醇酸,乳果糖,乳酰谷胱甘肽,二十一烷酸,二十一碳烯酸(顺-12),二十七烷酸,二十三烷酸,二十三碳烯酸(顺-14),二十二烷酸,二十二碳三烯酸,二十二碳二烯酸(顺-13,16),二十二碳五烯酸,二十二碳六烯酸,二十二碳四烯酸,二十二碳烯酸(反-13),二十二碳烯酸(顺-13),二十五烷酸,二十八烷酸,二十六烷酸,二十四烷酸,二十烷酸,二十碳三烯酸,二十碳二烯酸,二十碳五烯酸,二十碳烯酸(反- 11),二十碳烯酸(顺-11),二十碳烯酸(顺-5),二十碳烯酸(顺-8),二甲基甘氨酸,二磷酸腺苷,亚油酸,亮氨酸,别异亮氨酸,别石胆酸,别胆酸,十一烯酸,十七烷酸,十三酸,十九烷酸,十九碳二烯酸,十五烷酸,半乳糖酸,半乳糖醇,半胱氨酸甲酯,原儿茶酸,原胆酸,去氢石胆酸,去甲脱氧胆酸,反-9-十四烯酸,反乌头酸,反式-4-羟基脯氨酸,反式-9-十七烯酸,反式-9-十五烯酸,反式-9-十六烯酸,反式亚麻酸,反式肉桂酸,反油酸,同型半胱氨酸,吡咯-2-羧酸,吡啶甲酸,吲哚,吲哚-3-乙酸甲酯,吲哚-3-羧酸,吲哚乙酸,嘌呤,壬二酸,壬酸,多巴,多巴胺,密二糖,富马酸,对乙酰氨基酚,对氨基马尿酸,对甲酚硫酸盐,对称型二甲基精氨酸,对羟基扁桃酸,对羟基苯乙酸,尿黑酸,己二酸,庚二酸,异丁酸,异亮氨酸,异戊酸,柠檬酸,异熊脱氧胆酸,异猪脱氧胆酸,异石胆酸,异胆酸,异脱氧胆酸,戊二酸,戊烯二酸,戊酸,扁桃酸,月桂酸,果糖-6-磷酸,柠槺酸,柠檬酸,柠苹酸,核糖内脂,核糖酸,棉子糖,棕榈油酸,棕榈酸,正缬氨酸,正-羟基苯乙酸,氧化型谷胱甘肽,氨基己二酸,氨基己酸,水杨尿酸,油酸,海藻糖,烟酸,焦谷氨酸,熊胆酸,熊脱氧胆酸,牛磺-a-鼠胆酸,牛磺-b-鼠胆酸,牛磺-w-鼠胆酸,牛磺熊脱氧胆酸,牛磺猪胆酸,牛磺猪脱氧胆酸,牛磺石胆酸,牛磺胆酸,牛磺脱氢胆酸,牛磺鹅脱氧胆酸,猪胆酸,猪脱氧胆酸,琥珀酰丙酮,琥珀酸,瓜氨酸,甘氨去氢胆酸,甘氨石胆酸,甘氨脱氧胆酸,甘氨酸,甘氨鹅脱氧胆酸,甘油醛,甘油醛-3-磷酸,甘磷酸胆碱,甘胺熊脱氧胆酸,甘胺猪胆酸,甘胺猪脱氧胆酸,甘胺胆酸,甘胺脯氨酸,甘胺酰-L-亮氨酸,甘露糖-6-磷酸,甘露醇,甲基丙二酸,甲基琥珀酸,甲酸,癸酸,石胆酸,硒代蛋氨酸,硫胺,硫酸甘氨石胆酸,硬脂酸,碘噻罗宁,磷酸二羟丙酮,磷酸核糖焦磷酸,磷酸肌酸,羟基丙酮酸,羟基苯乙酸甘氨酸,肉桂酸,肌氨酸,肌肽,肌酸,肌醇,肾上腺素,胆碱,胆酸,脱氢胆酸,脱甲胆酸,腺苷一磷酸,花生四烯酸,苯丙酮酸,苯乙胺,苯基丙酸,苯基乳酸,苯甲酰胺,苯甲酸,草酸,莽草酸,葡糖二酸,葡萄糖-6-磷酸,葡萄糖内脂,葵二酸,蓖麻油酸,蔗糖,蛋氨酸亚砜,衣康酸,褪黑素,谷胱甘肽,豆蔻酸,赤糖酸,赤藓糖,辛二酸,辛酸,邻苯二甲酸,酒石酸,酪胺,金鸡纳酸,间氨基苯甲酸,非对称型二甲基精氨酸,鞣酸,顺-10,12-十八碳二烯酸,顺-12,15-二十一碳二烯酸,顺-12-十三烯酸,顺-15-二十四碳烯酸,顺-2-羟基肉桂酸,顺-9-十四烯酸,顺式-10-十七烯酸,顺式-11-十二碳烯酸,顺式-4-羟基脯氨酸,顺式-5-十二碳烯酸,顺式-7-十六烯酸,顺式-9-十七烯酸,顺式乌头酸,香草酸,马尿酸,马来酸,高香草酸,鸟氨酸,鸟苷一磷酸,鸟苷三磷酸,鹅肌肽,鹅脱氧胆酸,麦芽三糖,麦芽糖醇,鼠李糖,鼠脱氧胆酸。
  9. 用于权利要求1至8任一所述检测方法的代谢芯片,包括芯片载体、过滤装置、标准品和质控品的干燥固体粉末,其中所述芯片载体为微量滴定板,微量滴定板每个孔设置一个独立的过滤装置,标准品和质控品溶液脱水或冷冻干燥得到粉末置于微量滴定板的每个孔中的过滤装置之上;所述的标准品选自氨基酸,酚类、苯基或苄基衍生物、吲哚、有机酸,脂肪酸,糖类与胆汁酸标准品之一种或多种;所述的质控品选自与上述标准品对应的氨基酸,酚类、苯基或苄基衍生物、吲哚、有机酸,脂肪酸,糖类与胆汁酸标准品之一种或多种。
  10. 如权利要求9所述的代谢芯片,其特征在于,所述微量滴定板选自48孔板、96孔板和384孔板,所述过滤装置为孔径为0.20-0.45微米的聚偏二氟乙烯、乙酸纤维素或尼龙为材料的过滤膜。
  11. 如权利要求9所述的代谢芯片,其特征在于,标准品和质控品可以选自如下所述的多种代谢物:1,6-二磷酸果糖,10Z-十九碳烯酸,11-反式十八碳烯酸,11-顺式十八碳烯酸,12-去氢胆酸,12-羟基硬脂酸,12-酮石胆酸,1-甲基组氨酸,2,2-二甲基琥珀酸,2,3-二氨基丙酸,24-葡萄糖苷鹅脱氧胆酸,2-丁烯酸,2-氧代己二酸,2-甲基-4-戊烯酸,2-甲基-β-丙氨酸,2-甲基丁酸,2-甲基己酸,2-甲基戊二酸,2-甲基谷氨酸,2-糠酸,2-羟基-2-甲基丁酸,2-羟基-3-甲基丁酸,2-羟基丁酸,2-羟基己酸,2-羟基肉桂酸,2-羟基苯乙酸,2-羟基马尿酸,2-苯基丙酸,2-苯甘氨酸,3-(3-羟基苯基)-3-羟基丙酸,3-(4-羟基苯基)乳酸,3,4-二羟基杏仁酸,3,4-二羟苯基丙酸,3,4-脱氢-DL-脯氨酸,3,5-二碘-L-甲状腺素,3β-胆酸,3-吡啶乙酸,3-吲哚丙烯酸,3-吲哚丙酸,3-吲哚乙酰胺,3-氧基丙氨酸,3-氨基水杨酸,3-氯-L-酪氨酸,3-甲基-2-氧代丁酸,3-甲基-2-氧基戊酸,3-甲基吲哚,3-甲基己二酸,3-甲基谷氨酸,3-硝基酪氨酸,3-硫酸牛磺石胆酸,3-硫酸石胆酸,3-羟基-2-氨基苯甲酸,3-羟基丁酸,3-羟基丙酸,3-羟基异戊酸,3-羟基苯乙酸,3-羟基马尿酸,3-脱氢胆酸,3-苯基丁酸,4-甲基-2-氧基戊酸,4-甲基己酸,4-甲氧基苯乙酸,4-羟基-3-甲氧基扁桃酸,4-羟基肉桂酸,4-羟基苯甲酸,4-羟基马尿酸,4-羟苯乳酸,4-羟苯基丙酮酸,4-苯基丁酸,5-氨基酮戊酸,5-羟色氨酸,5-羟色胺,5-羟赖氨酸,6,7-二酮石胆酸,6-磷酸葡萄糖酸,6-酮石胆酸,7,12-二酮石胆酸,7-酮石胆酸,7-酮脱氧胆酸,9,11-共轭亚油酸,D-2-羟基戊二酸,D-半乳糖,D-木糖,D-木酮糖,D-果糖,D-核糖,D-核糖-5-磷酸,D-核酮糖,D-核酮糖-5-磷酸,D-甘露糖,D-葡萄糖,D-麦芽糖,L-2-氨基丁酸,L-3-苯基乳酸,L-丙氨酸,L-丝氨酸,L-乙酰肉碱,L-乳酸,L-别苏氨酸,L-半胱氨酸,L-同型丝氨酸,L-同型半胱氨酸,L-同型瓜氨酸,L-哌啶酸,L-天冬氨酸,L-天冬酰胺,L-山梨糖,L-木质酸,L-正亮氨酸,L-犬尿氨酸,L-甲状腺原氨酸,L-精氨酸,L-组氨酸,L-缬氨酸,L-胱氨酸,L-胱硫醚,L-脯氨酸,L-色氨酸,L-苏氨酸,L-苯丙氨酸,L-苹果酸,L-蛋氨酸,L-谷氨酰胺,L-谷氨酸,L-赖氨酸,L-酪氨酸,L-阿拉伯糖,N-(3-苯基丙酰基)甘氨酸,N-乙酰-L丙氨酸,N-乙酰-L-天冬氨酸,N-乙酰-L-苯基丙氨酸,N-乙酰-L-蛋氨酸,N-乙酰-L-酪氨酸,N-乙酰丝氨酸,N-乙酰基-D-葡糖胺,N-乙酰基-L苯丙氨酸,N-乙酰甘露糖胺,N-乙酰神经氨酸,N-乙酰组氨酸,N-乙酰羟色胺,N-乙酰色氨酸,N-乙酰谷氨酰胺,N-乙酰赖氨酸,N-乙酰鸟氨酸,N-甲基烟酰胺,N-苯乙酰基-谷氨酰胺,N-苯乙酰苯丙氨酸,S-腺苷同型半胱氨酸,α-D-葡萄糖,α-乳糖,α-亚麻酸,α-羟基异丁酸,α-酮戊二酸,α-鼠胆酸,β-D-海藻糖,β-丙氨酸,β-熊胆酸,β-鼠胆酸,γ-L-谷氨酰-L-丙氨酸,γ-亚麻酸,γ-氨基丁酸,ω-鼠胆酸,丁酸,三甲胺氮氧化物,三磷酸腺苷,丙二酸,丙酸,乙酰乙酸,乙酰半胱氨酸,乙酰甘氨酸,乙酰鸟氨酸,乙酸,乙酸胍,乙醇酸,乳果糖,乳酰谷胱甘肽,二十一烷酸,二十一碳烯酸(顺-12),二十七烷酸,二十三烷酸,二十三碳烯酸(顺-14),二十二烷酸,二十二碳三烯酸,二十二碳二烯酸(顺-13,16),二十二碳五烯酸,二十二碳六烯酸,二十二碳四烯酸,二十二碳 烯酸(反-13),二十二碳烯酸(顺-13),二十五烷酸,二十八烷酸,二十六烷酸,二十四烷酸,二十烷酸,二十碳三烯酸,二十碳二烯酸,二十碳五烯酸,二十碳烯酸(反-11),二十碳烯酸(顺-11),二十碳烯酸(顺-5),二十碳烯酸(顺-8),二甲基甘氨酸,二磷酸腺苷,亚油酸,亮氨酸,别异亮氨酸,别石胆酸,别胆酸,十一烯酸,十七烷酸,十三酸,十九烷酸,十九碳二烯酸,十五烷酸,半乳糖酸,半乳糖醇,半胱氨酸甲酯,原儿茶酸,原胆酸,去氢石胆酸,去甲脱氧胆酸,反-9-十四烯酸,反乌头酸,反式-4-羟基脯氨酸,反式-9-十七烯酸,反式-9-十五烯酸,反式-9-十六烯酸,反式亚麻酸,反式肉桂酸,反油酸,同型半胱氨酸,吡咯-2-羧酸,吡啶甲酸,吲哚,吲哚-3-乙酸甲酯,吲哚-3-羧酸,吲哚乙酸,嘌呤,壬二酸,壬酸,多巴,多巴胺,密二糖,富马酸,对乙酰氨基酚,对氨基马尿酸,对甲酚硫酸盐,对称型二甲基精氨酸,对羟基扁桃酸,对羟基苯乙酸,尿黑酸,己二酸,庚二酸,异丁酸,异亮氨酸,异戊酸,柠檬酸,异熊脱氧胆酸,异猪脱氧胆酸,异石胆酸,异胆酸,异脱氧胆酸,戊二酸,戊烯二酸,戊酸,扁桃酸,月桂酸,果糖-6-磷酸,柠槺酸,柠檬酸,柠苹酸,核糖内脂,核糖酸,棉子糖,棕榈油酸,棕榈酸,正缬氨酸,正-羟基苯乙酸,氧化型谷胱甘肽,氨基己二酸,氨基己酸,水杨尿酸,油酸,海藻糖,烟酸,焦谷氨酸,熊胆酸,熊脱氧胆酸,牛磺-a-鼠胆酸,牛磺-b-鼠胆酸,牛磺-w-鼠胆酸,牛磺熊脱氧胆酸,牛磺猪胆酸,牛磺猪脱氧胆酸,牛磺石胆酸,牛磺胆酸,牛磺脱氢胆酸,牛磺鹅脱氧胆酸,猪胆酸,猪脱氧胆酸,琥珀酰丙酮,琥珀酸,瓜氨酸,甘氨去氢胆酸,甘氨石胆酸,甘氨脱氧胆酸,甘氨酸,甘氨鹅脱氧胆酸,甘油醛,甘油醛-3-磷酸,甘磷酸胆碱,甘胺熊脱氧胆酸,甘胺猪胆酸,甘胺猪脱氧胆酸,甘胺胆酸,甘胺脯氨酸,甘胺酰-L-亮氨酸,甘露糖-6-磷酸,甘露醇,甲基丙二酸,甲基琥珀酸,甲酸,癸酸,石胆酸,硒代蛋氨酸,硫胺,硫酸甘氨石胆酸,硬脂酸,碘噻罗宁,磷酸二羟丙酮,磷酸核糖焦磷酸,磷酸肌酸,羟基丙酮酸,羟基苯乙酸甘氨酸,肉桂酸,肌氨酸,肌肽,肌酸,肌醇,肾上腺素,胆碱,胆酸,脱氢胆酸,脱甲胆酸,腺苷一磷酸,花生四烯酸,苯丙酮酸,苯乙胺,苯基丙酸,苯基乳酸,苯甲酰胺,苯甲酸,草酸,莽草酸,葡糖二酸,葡萄糖-6-磷酸,葡萄糖内脂,葵二酸,蓖麻油酸,蔗糖,蛋氨酸亚砜,衣康酸,褪黑素,谷胱甘肽,豆蔻酸,赤糖酸,赤藓糖,辛二酸,辛酸,邻苯二甲酸,酒石酸,酪胺,金鸡纳酸,间氨基苯甲酸,非对称型二甲基精氨酸,鞣酸,顺-10,12-十八碳二烯酸,顺-12,15-二十一碳二烯酸,顺-12-十三烯酸,顺-15-二十四碳烯酸,顺-2-羟基肉桂酸,顺-9-十四烯酸,顺式-10-十七烯酸,顺式-11-十二碳烯酸,顺式-4-羟基脯氨酸,顺式-5-十二碳烯酸,顺式-7-十六烯酸,顺式-9-十七烯酸,顺式乌头酸,香草酸,马尿酸,马来酸,高香草酸,鸟氨酸,鸟苷一磷酸,鸟苷三磷酸,鹅肌肽,鹅脱氧胆酸,麦芽三糖,麦芽糖醇,鼠李糖,鼠脱氧胆酸。
  12. 权利要求9至11任一所述的代谢芯片的使用方法,包括如下步骤:
    a)收集生物样本;
    b)根据样本类型,按照权利要求4或5或6所述相应方法制备相应生物样本提取物;
    c)将制得的生物样本提取物等量添加于代谢芯片的各个孔中,在各孔中加入相同体积的3-硝基苯肼甲醇溶液和1-(3-二甲氨基丙基)-3-乙基碳二亚胺吡啶溶液,漩涡混匀,加热进行衍生化;所用的3-硝基苯肼浓度为100-320毫摩尔/升,1-(3-二甲氨基丙基)-3-乙基碳二亚胺浓度为50-200毫摩尔/升;反应温度为20-60℃,反应时长10-120分钟;
    d)在上述c)中得到的衍生后生物样本提取物中加入经碳13标记的3-硝基苯肼和1-(3-二甲氨基丙基)-3-乙基碳二亚胺反应得到的同位素内标液;
    e)将d)中代谢芯片中各孔加入甲醇水混合溶液稀释,将代谢芯片置于串联质谱仪器以液相色谱质谱联用进行氨基酸、酚类、苯基或苄基衍生物、吲哚、有机酸、脂肪酸、糖及胆汁酸的测定,根据结果计算得到样本中目标代谢产物的浓度。
PCT/CN2019/112389 2018-10-19 2019-10-21 生物样品中多种代谢物定量检测方法及代谢芯片 WO2020078478A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/309,062 US20220026398A1 (en) 2018-10-19 2019-10-21 Quantitative detection method of multiple metabolites in biological sample and metabolic chip
EP19872428.8A EP3869192A4 (en) 2018-10-19 2019-10-21 METHOD FOR QUANTITATIVE DETECTION OF VARIOUS METABOLITES IN A BIOLOGICAL SAMPLE AND METABOLIC CHIP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811223486.X 2018-10-19
CN201811223486.XA CN109298115B (zh) 2018-10-19 2018-10-19 生物样品中多种代谢物定量检测方法及代谢芯片

Publications (1)

Publication Number Publication Date
WO2020078478A1 true WO2020078478A1 (zh) 2020-04-23

Family

ID=65158340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112389 WO2020078478A1 (zh) 2018-10-19 2019-10-21 生物样品中多种代谢物定量检测方法及代谢芯片

Country Status (4)

Country Link
US (1) US20220026398A1 (zh)
EP (1) EP3869192A4 (zh)
CN (1) CN109298115B (zh)
WO (1) WO2020078478A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766315A (zh) * 2020-06-10 2020-10-13 广东省农业科学院农业生物基因研究中心 一种基于葡萄糖酸含量变化比值判别水稻劣变种子的方法
CN112666287A (zh) * 2020-12-22 2021-04-16 上海鹿明生物科技有限公司 基于gcmsms高通量分析动物肠道菌群代谢物的方法及应用
CN113358797A (zh) * 2021-07-07 2021-09-07 贵州省烟草科学研究院 一种鲜烟叶中同时分析黄酮、苯丙烷、香豆素及酚酰胺类次生代谢物的色谱分析方法
CN114563495A (zh) * 2022-02-28 2022-05-31 杭州民生药业股份有限公司 一种乙酰半胱氨酸及其有关物质的检测方法
CN115267014A (zh) * 2022-08-08 2022-11-01 杭州凯莱谱精准医疗检测技术有限公司 一种检测三羧酸循环中有机酸的方法
CN115407010A (zh) * 2022-09-15 2022-11-29 中国检验检疫科学研究院 一种利用广泛靶向代谢组学技术鉴别食用槟榔中活性成分的方法

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580864B (zh) * 2019-02-18 2019-09-06 华南农业大学 一种动物性食品中那西肽残留的检测方法
CN109917040A (zh) * 2019-04-02 2019-06-21 清华大学 一种基于液质联用定量多种肠道菌群有机酸的方法
CN110045040A (zh) * 2019-05-17 2019-07-23 江南大学 一种测定肠道内容物或粪便中短链脂肪酸含量的方法
CN110133137A (zh) * 2019-05-22 2019-08-16 贵州天楼生物发展有限公司 木瓜发酵饮料中有机酸含量的检测方法
EP3977112A4 (en) * 2019-05-31 2023-09-20 Metabolon Inc. MASS SPECTROMETRY TESTING METHOD FOR DETECTING METABOLITES
CN110208413B (zh) * 2019-06-18 2021-09-28 中国药科大学 血清生物标志物在制备issu的诊断试剂中的应用
CN110579540A (zh) * 2019-08-08 2019-12-17 武汉久安药业有限公司 地塞米松磷酸钠注射液的质量标准及其检测方法
CN110514772A (zh) * 2019-08-09 2019-11-29 中国医学科学院基础医学研究所 透明肾细胞癌代谢标志物在肾细胞癌早期筛查和诊断产品中的应用
CN110618221B (zh) * 2019-10-31 2022-03-11 厦门泓益检测有限公司 一种水产品中脱氢胆酸的检测方法
CN111024874A (zh) * 2019-12-30 2020-04-17 上海百趣生物医学科技有限公司 液相色谱质谱联用法定量检测儿茶酚胺及其代谢物的方法
CN111044642A (zh) * 2019-12-31 2020-04-21 贵州医科大学 一种同时测定五种神经递质含量的方法
CN111175409B (zh) * 2020-02-12 2022-09-30 深圳大学 一种测定番茄有机酸和酸性氨基酸混合物的高效液相色谱方法
SE545279C2 (en) * 2020-03-11 2023-06-13 Perstorp Ab A stable pvc composition comprising an environment-friendly plasticizer
CN111505134A (zh) * 2020-03-23 2020-08-07 华中农业大学 一种使用高效液相色谱测定粪便中褪黑素的方法
CN111650286A (zh) * 2020-04-01 2020-09-11 上海中科新生命生物科技有限公司 一种基于气相色谱-质谱检测人血清内中长链脂肪酸的方法
CN111650314A (zh) * 2020-06-05 2020-09-11 深圳华大临床检验中心 非衍生法串联质谱检测遗传代谢疾病相关物质的试剂盒和方法
CN113834927A (zh) * 2020-06-08 2021-12-24 南京市口腔医院 预测口腔粘膜癌前病变患者发生癌变的唾液代谢标志物及其应用
CN111983083B (zh) * 2020-08-20 2022-08-30 首都医科大学附属北京朝阳医院 检测代谢物标志物在制备多发性骨髓瘤诊断工具中的应用
CN114487141A (zh) * 2020-10-28 2022-05-13 杭州中美华东制药有限公司 一种吲哚布芬原料药中基因毒性杂质的检测方法
CN114624343B (zh) * 2020-12-10 2023-01-24 中国科学院大连化学物理研究所 一种用于血清中45种炎症及免疫代谢物相对定量的方法
CN112505187A (zh) * 2020-12-11 2021-03-16 北京诺禾致源科技股份有限公司 Uplc-ms/ms联用检测粪便中胆汁酸的方法
CN112748195A (zh) * 2020-12-23 2021-05-04 沈阳农业大学 一种利用gc-nci-ms对脂肪酸、氨基酸和多官能团有机酸同时检测的方法
CN115032286A (zh) * 2021-03-08 2022-09-09 江成鸿 组合物在制备诊断婴幼儿血管瘤和/或监测其进展及预后的药物中的应用及试剂盒和药物
CN113030327B (zh) * 2021-03-12 2022-03-25 杭州度安医学检验实验室有限公司 一种基于hplc-ms/ms诊断泌尿结石的试剂盒和应用
CN113138246B (zh) * 2021-04-25 2023-02-10 深圳市中医院 一种靶向测定生物样本中短链脂肪酸的检测方法
CN113237975B (zh) * 2021-05-18 2023-04-11 河北医科大学 初步推断死因的方法以及检测内源性代谢产物的方法
CN113447586B (zh) * 2021-06-28 2023-03-31 郑州大学第一附属医院 一种用于贲门癌筛查的标志物及检测试剂盒
CN116773710A (zh) * 2021-07-13 2023-09-19 清华大学 一种覆盖多种代谢物的代谢组和代谢流的试剂盒和使用方法
CN113567585A (zh) * 2021-07-26 2021-10-29 郑州大学第一附属医院 一种基于外周血的食管鳞癌筛查标志物及试剂盒
CN113702550A (zh) * 2021-07-27 2021-11-26 杭州汇健科技有限公司 一种代谢谱检测试剂盒及使用方法与应用
CN113624888B (zh) * 2021-08-20 2023-09-05 山东省分析测试中心 一种血清和粪便中吲哚乙酸和吲哚丙酸的检测方法
CN114113573B (zh) * 2021-11-08 2022-11-11 中国医学科学院阜外医院 糖尿病患者早期预测心血管疾病(cvd)的生物标志物及其用途
CN114062573A (zh) * 2021-12-22 2022-02-18 重庆医科大学国际体外诊断研究院 一种同时检测大鼠血浆中四种吲哚类物质的高效液相色谱法
CN114216989A (zh) * 2021-12-23 2022-03-22 重庆医科大学国际体外诊断研究院 高效液相色谱法检测血浆吲哚类物质的试剂盒及其应用
CN114324662B (zh) * 2021-12-30 2022-09-16 中南大学 用于诊断或预防糖尿病的血清生物标志物的应用
CN114002421B (zh) * 2021-12-30 2022-04-05 佛山市第三人民医院(佛山市精神卫生中心) 外泌体代谢物作为双相情感障碍标志物的应用
CN114414339B (zh) * 2022-01-24 2023-08-25 上海市农业科学院 一种基于非靶向代谢组学检测宫内生长受限羔羊血浆代谢物的方法
CN114740100B (zh) * 2022-03-10 2024-03-01 西北农林科技大学 一种植物中没食子单宁的lc-ms/ms检测方法
CN114814022B (zh) * 2022-04-24 2023-10-13 中国检验检疫科学研究院 赤芝二醇和甘油-3-磷酸胆碱作为生物标志物在检验木瓜热处理有效性中的应用
CN115060834B (zh) * 2022-04-29 2023-11-10 无锡市妇幼保健院 一种与icp辅助诊断相关的血清/血浆代谢分子标志物及其应用
CN117003696A (zh) * 2022-04-29 2023-11-07 北京大学 重氮类化合物及其制备方法和应用
CN114965764A (zh) * 2022-05-18 2022-08-30 陕西安宁云生生物技术有限公司 便秘的诊断和治疗
CN115015460B (zh) * 2022-06-01 2024-05-03 中国检验检疫科学研究院 一种运用广泛靶向代谢组学技术鉴定冬虫夏草产地的方法
CN115219613B (zh) * 2022-06-16 2023-12-22 上海市食品药品检验研究院 一种化妆品中壬二酸和壬二酰二甘氨酸钾的检测方法
CN115201357A (zh) * 2022-06-17 2022-10-18 陕西盘龙医药研究院 一种小儿咽扁颗粒中猪去氧胆酸的限量检测方法
CN115420825B (zh) * 2022-08-31 2023-12-22 北京大学第三医院(北京大学第三临床医学院) 一种胆汁酸的检测方法及胆汁酸衍生物
CN115792031A (zh) * 2022-12-20 2023-03-14 北京诺禾致源科技股份有限公司 有机酸的定量检测方法
CN115856157A (zh) * 2023-01-05 2023-03-28 中国医学科学院北京协和医院 血液或尿液代谢标志物及其在子宫内膜癌分型中的应用
CN115856173A (zh) * 2023-03-01 2023-03-28 北京诺禾致源科技股份有限公司 中心碳和氨基酸的检测方法及其应用
CN116858646B (zh) * 2023-07-13 2024-03-01 山东英盛生物技术有限公司 一种用于非靶代谢检测中的质控品配制及应用方法
CN117214314B (zh) * 2023-07-21 2024-06-07 深圳爱湾智造科技有限公司 一种有机酸含量检测盒及检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114175A (ja) * 1988-10-24 1990-04-26 Hiroshi Miwa カルボン酸類の定量分析法
JP2015087199A (ja) * 2013-10-30 2015-05-07 国立大学法人北海道大学 カプリン酸定量方法
CN107870214A (zh) * 2017-11-13 2018-04-03 广州京诚检测技术有限公司 一种水中甲醛衍生物的测定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN2014DN02241A (zh) * 2005-06-30 2015-07-10 Biocrates Life Sciences Ag
EP3362060A4 (en) * 2015-10-18 2019-06-19 Wei Jia BIOMARKERS ASSOCIATED WITH DIABETES AND DISEASE TREATMENT ASSOCIATED WITH DIABETES

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114175A (ja) * 1988-10-24 1990-04-26 Hiroshi Miwa カルボン酸類の定量分析法
JP2015087199A (ja) * 2013-10-30 2015-05-07 国立大学法人北海道大学 カプリン酸定量方法
CN107870214A (zh) * 2017-11-13 2018-04-03 广州京诚检测技术有限公司 一种水中甲醛衍生物的测定方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAN, JUN ET AL.: "An Isotope-Labeled Chemical Derivatization Method for the Quantitation of Short-Chain Fatty Acids in Human Feces by Liquid Chromatography-Tandem Mass Spectrometry", ANALYTICA CHIMICA ACTA, vol. 854, 15 November 2014 (2014-11-15), pages 86 - 94, XP055541558, DOI: 10.1016/j.aca.2014.11.015 *
HAN, JUN ET AL.: "Quantitation of Low Molecular Weight Sugars by Chemical Derivatization- Liquid Chromatography/Multiple Reaction Monitoring/Mass Spectrometry", ELECTROPHORESIS, vol. 37, no. 13, 31 December 2016 (2016-12-31), pages 1851 - 1860, XP055807955 *
See also references of EP3869192A4 *
ZENG, MINGFEI ET AL.: "Fast Quantification of Short Chain Fatty Acids and Ketone Bodies by Liquid Chromatography-Tandem Mass Spectrometry after Facile Derivatization Coupled with Liquid-Liquid Extraction", JOURNAL OF CHROMATOGRAPHY B, vol. 1083, 8 March 2018 (2018-03-08), pages 137 - 145, XP085371247, DOI: 10.1016/j.jchromb.2018.02.040 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766315A (zh) * 2020-06-10 2020-10-13 广东省农业科学院农业生物基因研究中心 一种基于葡萄糖酸含量变化比值判别水稻劣变种子的方法
CN112666287A (zh) * 2020-12-22 2021-04-16 上海鹿明生物科技有限公司 基于gcmsms高通量分析动物肠道菌群代谢物的方法及应用
CN112666287B (zh) * 2020-12-22 2022-02-15 上海鹿明生物科技有限公司 基于gcmsms高通量分析动物肠道菌群代谢物的方法及应用
CN113358797A (zh) * 2021-07-07 2021-09-07 贵州省烟草科学研究院 一种鲜烟叶中同时分析黄酮、苯丙烷、香豆素及酚酰胺类次生代谢物的色谱分析方法
CN114563495A (zh) * 2022-02-28 2022-05-31 杭州民生药业股份有限公司 一种乙酰半胱氨酸及其有关物质的检测方法
CN114563495B (zh) * 2022-02-28 2023-09-15 杭州民生药业股份有限公司 一种乙酰半胱氨酸及其有关物质的检测方法
CN115267014A (zh) * 2022-08-08 2022-11-01 杭州凯莱谱精准医疗检测技术有限公司 一种检测三羧酸循环中有机酸的方法
CN115407010A (zh) * 2022-09-15 2022-11-29 中国检验检疫科学研究院 一种利用广泛靶向代谢组学技术鉴别食用槟榔中活性成分的方法
CN115407010B (zh) * 2022-09-15 2024-01-23 中国检验检疫科学研究院 一种利用广泛靶向代谢组学技术鉴别食用槟榔中活性成分的方法

Also Published As

Publication number Publication date
CN109298115A (zh) 2019-02-01
EP3869192A4 (en) 2022-07-27
EP3869192A1 (en) 2021-08-25
US20220026398A1 (en) 2022-01-27
CN109298115B (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
WO2020078478A1 (zh) 生物样品中多种代谢物定量检测方法及代谢芯片
Zhao et al. High throughput and quantitative measurement of microbial metabolome by gas chromatography/mass spectrometry using automated alkyl chloroformate derivatization
Möller et al. Development and validation of a single analytical method for the determination of tryptophan, and its kynurenine metabolites in rat plasma
Ramautar et al. CE–MS for metabolomics: developments and applications in the period 2014–2016
WO2022120752A1 (zh) 利用液相色谱-串联质谱定量分析生物样本中游离氨基酸的方法
Brose et al. A Fast One-Step Extraction and UPLC–MS/MS Analysis for E 2/D 2 Series Prostaglandins and Isoprostanes
CN109661581B (zh) 用于生物胺的衍生化的方法和试剂盒
Bessonneau et al. Analysis of human saliva metabolome by direct immersion solid-phase microextraction LC and benchtop orbitrap MS
de Oliveira et al. Solid-phase microextraction and chiral HPLC analysis of ibuprofen in urine
US8945933B2 (en) Liquid chromatography-mass spectrometry methods for multiplexed detection and quantitation of free amino acids
Frison et al. Determination of γ‐hydroxybutyric acid (GHB) in plasma and urine by headspace solid‐phase microextraction and gas chromatography/positive ion chemical ionization mass spectrometry
Berrou et al. Multiple stir bar sorptive extraction combined with gas chromatography-mass spectrometry analysis for a tentative identification of bacterial volatile and/or semi-volatile metabolites
Liu et al. Establishment of a two-dimensional chiral HPLC system for the simultaneous detection of lactate and 3-hydroxybutyrate enantiomers in human clinical samples
Zou et al. Rapid simultaneous determination of gut microbial phenylalanine, tyrosine, and tryptophan metabolites in rat serum, urine, and faeces using LC–MS/MS and its application to a type 2 diabetes mellitus study
Akoto et al. Fatty acid profiling of raw human plasma and whole blood using direct thermal desorption combined with gas chromatography–mass spectrometry
Struys et al. Investigations by mass isotopomer analysis of the formation of D-2-hydroxyglutarate by cultured lymphoblasts from two patients with D-2-hydroxyglutaric aciduria
Fuchs et al. Two mass-spectrometric techniques for quantifying serine enantiomers and glycine in cerebrospinal fluid: potential confounders and age-dependent ranges
Zhang et al. Direct determination of anabolic steroids in pig urine by a new SPME–GC–MS method
Zheng et al. Simultaneous determination of free and total choline and l‐carnitine in infant formula using hydrophilic interaction liquid chromatography with tandem mass spectrometry
Martens-Lobenhoffer et al. Determination of ornithine in human plasma by hydrophilic interaction chromatography–tandem mass spectrometry
Luo et al. UHPLC/MS based large-scale targeted metabolomics method for multiple-biological matrix assay
Jaworska et al. Development of a capillary electrophoretic method for the analysis of amino acids containing tablets
Sieminska et al. A single extraction 96-well method for LC-MS/MS quantification of urinary eicosanoids, steroids and drugs
Ferchaud‐Roucher et al. Solid‐phase microextraction method for carbon isotopic analysis of volatile carboxylic acids in human plasma by gas chromatography/combustion/isotope ratio mass spectrometry
Liu et al. Simultaneous determination of thirteen substances related to NAFLD in mouse brain tissue using 3‐aminobutyric acid as internal standard by HPLC–FLD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019872428

Country of ref document: EP

Effective date: 20210519