WO2020071073A1 - 放熱材、放熱材の製造方法、放熱材キット及び発熱体 - Google Patents

放熱材、放熱材の製造方法、放熱材キット及び発熱体

Info

Publication number
WO2020071073A1
WO2020071073A1 PCT/JP2019/035748 JP2019035748W WO2020071073A1 WO 2020071073 A1 WO2020071073 A1 WO 2020071073A1 JP 2019035748 W JP2019035748 W JP 2019035748W WO 2020071073 A1 WO2020071073 A1 WO 2020071073A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
region
metal particles
heat dissipating
resin
Prior art date
Application number
PCT/JP2019/035748
Other languages
English (en)
French (fr)
Inventor
真紀 高橋
拓司 安藤
竹澤 由高
隆伸 小林
丸山 直樹
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201980064996.3A priority Critical patent/CN112888760A/zh
Priority to US17/281,997 priority patent/US20210332281A1/en
Priority to JP2020550245A priority patent/JPWO2020071073A1/ja
Priority to TW108136003A priority patent/TW202024294A/zh
Publication of WO2020071073A1 publication Critical patent/WO2020071073A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/089Coatings, claddings or bonding layers made from metals or metal alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • H05K7/20427Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing having radiation enhancing surface treatment, e.g. black coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/001Particular heat conductive materials, e.g. superconductive elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components

Definitions

  • the present invention relates to a heat radiator, a method of manufacturing the heat radiator, a heat radiator kit, and a heat generator.
  • a radiator such as a metal plate or a heat sink is mounted near the heating element of the electronic device, and the heat generated by the heating element is conducted to the radiator and dissipated to the outside.
  • a sheet-shaped heat radiating material has been studied as a heat radiating means that can be adapted to miniaturization of electronic devices.
  • Patent Document 1 describes a heat dissipating material in which a coating film in which a thermally conductive filler is dispersed in a silicone resin is formed on a heat dissipating sheet layer.
  • a heat dissipating material is arranged around an electronic device covered with a resin member such as a resin case, much of the infrared radiation radiated from the heat dissipating material is absorbed without transmitting through the resin member. As a result, a new heat spot may be generated on the resin member, and a sufficient radiation heat transfer effect may not be obtained.
  • Means for solving the above problems include the following embodiments.
  • a heat dissipating material including a metal particle and a resin, and having therein a region in which the metal particles arranged along a surface direction are present at a relatively high density.
  • ⁇ 3> The heat radiating material according to ⁇ 1> or ⁇ 2>, wherein the region has a function of changing an absorption wavelength spectrum of the heat radiating material measured using a Fourier transform infrared spectrophotometer.
  • ⁇ 4> The heat dissipating material according to any one of ⁇ 1> to ⁇ 3>, wherein the heat dissipating material has the region in the middle in the thickness direction.
  • ⁇ 5> The heat dissipating material according to any one of ⁇ 1> to ⁇ 3>, wherein the heat dissipating material has the region near a surface facing the heating element.
  • ⁇ 6> The heat dissipating material according to any one of ⁇ 1> to ⁇ 3>, wherein the heat dissipating material has the region near a surface opposite to a surface facing the heating element.
  • ⁇ 7> The heat dissipating material according to any one of ⁇ 1> to ⁇ 6>, wherein a thickness of the region is in a range of 0.1 ⁇ m to 100 ⁇ m.
  • ⁇ 8> The heat dissipating material according to any one of ⁇ 1> to ⁇ 7>, wherein a ratio of a thickness of the region to a total thickness of the heat dissipating material is in a range of 0.1% to 99%.
  • ⁇ 9> The heat dissipating material according to any one of ⁇ 1> to ⁇ 9>, wherein the region has an uneven structure derived from the metal particles on a surface.
  • the heat dissipating material according to any one of ⁇ 1> to ⁇ 10> comprising: a region 1, a region 2, and a region 3 satisfying the following (A) and (B) in this order.
  • a heat dissipating material kit comprising metal particles and a resin, and used for producing the heat dissipating material according to any one of ⁇ 1> to ⁇ 10>.
  • a heating element comprising the heat radiating material according to any one of ⁇ 1> to ⁇ 11>.
  • a heat radiating material capable of efficiently radiating and transferring heat generated by a heating element and a method of manufacturing the heat radiating material are provided.
  • a heat dissipating material kit for manufacturing the heat dissipating material and a heating element including the heat dissipating material.
  • FIG. 2 is a schematic cross-sectional view of a sample manufactured in Example 1.
  • FIG. 6 is a schematic cross-sectional view of a sample manufactured in Example 2.
  • FIG. 9 is a schematic cross-sectional view of a sample manufactured in Example 3.
  • 9 is a schematic cross-sectional view of a sample manufactured in Comparative Example 3.
  • FIG. 5 is an absorption wavelength spectrum of a sample manufactured in Example 1.
  • 5 is an absorption wavelength spectrum of a sample manufactured in Comparative Example 1.
  • 7 is an absorption wavelength spectrum of a sample manufactured in Comparative Example 2.
  • 13 is a schematic cross-sectional view of an electronic device manufactured in Example 7.
  • FIG. 19 is a schematic cross-sectional view of the electronic device manufactured in Example 8.
  • FIG. FIG. 14 is a schematic cross-sectional view of a heat pipe manufactured in Example 9.
  • the term "step” includes, in addition to a step independent of other steps, even if the purpose of the step is achieved even if it cannot be clearly distinguished from the other steps, the step is also included.
  • the numerical ranges indicated by using “to” include the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit or lower limit described in one numerical range may be replaced with the upper limit or lower limit of the numerical range described in other stages.
  • the upper limit or the lower limit of the numerical range may be replaced with the value shown in the embodiment.
  • each component may include a plurality of corresponding substances.
  • the content or content of each component is, unless otherwise specified, the total content or content of the plurality of substances present in the composition. Means quantity.
  • a plurality of types of particles corresponding to each component may be included.
  • the particle size of each component means a value of a mixture of the plurality of types of particles present in the composition unless otherwise specified.
  • the term "layer" includes, when observing a region where the layer exists, in addition to a case where the layer is formed over the entire region and a case where the layer is formed only on a part of the region. included.
  • the heat dissipating material of the present embodiment is a heat dissipating material that includes metal particles and a resin, and has therein a region in which the metal particles arranged along the surface direction are present at a relatively high density.
  • the “inside” of the heat radiator means a portion other than the surface of the heat radiator.
  • the “plane direction” means a direction along the main surface of the heat radiating material, and the “region where the metal particles are present at a relatively high density” refers to the metal particles as compared with other regions of the heat radiating material. Means a region where a high density exists.
  • the heat dissipating material having the above structure exhibits an excellent heat dissipating effect when it is attached to a heating element. The reason is not necessarily clear, but is considered as follows.
  • a region (hereinafter, also referred to as a metal particle layer) in which metal particles arranged along the surface direction are present at a relatively high density is formed inside the heat radiating material.
  • the metal particle layer has a fine uneven structure due to the shape of the metal particles on the surface, and when heat is transmitted from the heating element to the metal particle layer, surface plasmon resonance occurs, and the wavelength range of the radiated electromagnetic wave is reduced. It is thought to change. As a result, for example, it is considered that the emissivity of the electromagnetic wave in the wavelength range where the resin is difficult to absorb is relatively increased, the heat storage by the resin is suppressed, and the heat dissipation is improved.
  • the “resin” may include both a resin included in the heat radiating material and a resin (such as a resin case) disposed outside the heat radiating material.
  • the metal particle layer included in the heat radiator has a function of changing the wavelength spectrum of the electromagnetic wave radiated by the heat radiator.
  • resins tend to be hard to absorb (easily transmit) electromagnetic waves in a relatively low wavelength infrared region (for example, 2 ⁇ m to 10 ⁇ m). Therefore, in one embodiment, the metal particle layer included in the heat radiator has a function of changing the wavelength range of the electromagnetic wave radiated by the heat radiator so as to increase the emissivity of the electromagnetic wave in the infrared region.
  • Whether or not the metal particle layer has the above function can be determined by whether or not the absorption wavelength spectrum measured using a Fourier transform infrared spectrophotometer changes. Specifically, the absorption wavelength spectrum of the sample manufactured under the same conditions as the heat dissipation material of the present embodiment except that the metal particle layer is not included, and the absorption wavelength spectrum of the heat dissipation material of the present embodiment are compared and confirmed. be able to.
  • surface plasmon resonance is generated by forming a metal particle layer inside. Therefore, for example, surface plasmon resonance can be generated by a simple method as compared with a method of processing the surface of a metal plate to form a fine uneven structure to generate surface plasmon resonance.
  • the form of the metal particle layer is not particularly limited as long as surface plasmon resonance can occur.
  • a clear boundary may or may not be formed between the metal particle layer and another region.
  • the metal particle layer may be present continuously in the heat radiating material or may be present discontinuously (including the pattern shape).
  • the metal particles contained in the metal particle layer may or may not be in contact with adjacent particles.
  • the thickness of the metal particle layer (when the thickness is not constant, the thickness of the portion where the thickness is minimum) is not particularly limited. For example, it may be in the range of 0.1 ⁇ m to 100 ⁇ m.
  • the thickness of the metal particle layer can be adjusted by, for example, the amount of the metal particles contained in the metal particle layer, the size of the metal particles, and the like.
  • the ratio of the metal particle layer to the entire heat dissipating material is not particularly limited.
  • the ratio of the thickness of the metal particle layer to the total thickness of the heat radiating material may be in the range of 0.1% to 99%, or may be in the range of 1% to 50%.
  • the density of the metal particles in the metal particle layer is not particularly limited as long as surface plasmon resonance can occur.
  • the ratio of the metal particles occupying the observation surface is preferably 50% or more based on the area, and 75% or more. More preferably, it is even more preferably 90%.
  • the “observation surface when observed from the front of the metal particle layer” is a surface observed from a direction (thickness direction of the heat radiation material) perpendicular to the arrangement direction of metal particles (surface direction of the heat radiation material).
  • Means The ratio can be calculated, for example, from an electron microscope image using image processing software.
  • the position of the metal particles (metal particle layer) in the heat radiating material is not particularly limited as long as it is formed inside the heat radiating material. For example, it may be located at the center in the thickness direction of the heat radiating material. Further, the heat radiating material may be located closer to the surface facing the heating element, or the heat radiating material may be located closer to the surface opposite to the surface facing the heating element.
  • metal particles means particles whose surface is at least partially made of metal, and the inside of the particles may or may not be metal. From the viewpoint of improving heat dissipation by heat conduction, the inside of the particles is preferably made of metal. In the case where at least a part of the surface of the metal particles is a metal, if an electromagnetic wave from the outside can reach the surface of the metal particle, a substance other than the metal, such as a resin and a metal oxide, may be used. The case where it exists around is also included.
  • the metal contained in the metal particles includes copper, aluminum, nickel, iron, silver, gold, tin, titanium, chromium, palladium and the like.
  • the metal contained in the metal particles may be only one kind or two or more kinds. Further, it may be a single substance or an alloy.
  • the shape of the metal particles is not particularly limited as long as a desired uneven structure can be formed on the surface of the metal particle layer.
  • the shape of the metal particles is spherical, flake-like, needle-like, rectangular parallelepiped, cubic, tetrahedral, hexahedral, polyhedral, cylindrical, hollow, or a three-dimensional needle-like structure extending from the core in four different axial directions. And the like.
  • a spherical shape or a shape close to a spherical shape is preferable.
  • the size of the metal particles is not particularly limited.
  • the volume average particle diameter of the metal particles is preferably in the range of 0.1 ⁇ m to 30 ⁇ m.
  • electromagnetic waves particularly, infrared light having a relatively low wavelength
  • the volume average particle diameter of the metal particles is 0.1 ⁇ m or more, the cohesive force of the metal particles is suppressed, and the metal particles tend to be easily arranged.
  • the volume average particle diameter of the metal particles may be set in consideration of the type of material other than the metal particles used for the heat dissipating material. For example, the smaller the volume average particle diameter of the metal particles, the smaller the period of the concavo-convex structure formed on the surface of the metal particle layer, and the shorter the wavelength at which the surface plasmon resonance generated in the metal particle layer is maximized. The absorptance of the electromagnetic wave by the metal particle layer becomes maximum at the wavelength where the surface plasmon resonance becomes maximum.
  • the wavelength at which the surface plasmon resonance generated in the metal particle layer is maximum is short, the wavelength at which the absorption rate of the electromagnetic wave by the metal particle layer is maximum is short, and the emissivity of the electromagnetic wave at the wavelength is increased according to Kirchhoff's law. Tend to. Therefore, by appropriately selecting the volume average particle diameter of the metal particles, the emission wavelength of the metal particle layer can be converted to a wavelength range in which the resin contained in the heat dissipation material is difficult to absorb, and the heat dissipation tends to be further improved. .
  • the volume average particle diameter of the metal particles contained in the metal particle layer may be 10 ⁇ m or less, 5 ⁇ m or less, or 3 ⁇ m or less.
  • the wavelength range of the radiated electromagnetic wave can be converted to a low wavelength range (for example, 6 ⁇ m or less) where the resin is difficult to absorb. Thereby, the heat storage by the resin can be suppressed, and the heat dissipation can be further improved.
  • the volume average particle diameter of the metal particles is a particle diameter (D50) when the integration from the small diameter side becomes 50% in a volume-based particle size distribution curve obtained by a laser diffraction / scattering method.
  • the dispersion of the particle diameter of the metal particles contained in the metal particle layer is small. By suppressing the variation in the particle diameter of the metal particles, it is easy to form a periodic uneven structure on the surface of the metal particle layer, and surface plasmon resonance tends to easily occur.
  • the variation in the particle diameter of the metal particles is, for example, that the particle diameter (D10) when the integration from the small diameter side becomes 10% in the volume-based particle size distribution curve becomes A ( ⁇ m) and the integration from the small diameter side becomes 90%.
  • the particle diameter (D90) is B ( ⁇ m)
  • the value of A / B is preferably about 0.3 or more, more preferably about 0.4 or more, More preferably, it is about 0.6 or more.
  • the type of resin contained in the heat dissipating material is not particularly limited, and can be selected from known thermosetting resins, thermoplastic resins, ultraviolet curable resins, and the like. Specifically, phenol resin, alkyd resin, aminoalkyd resin, urea resin, silicone resin, melamine urea resin, epoxy resin, polyurethane resin, unsaturated polyester resin, vinyl acetate resin, acrylic resin, chlorinated rubber resin, vinyl chloride Resins, fluororesins, and the like. Among these, acrylic resin, unsaturated polyester resin, epoxy resin and the like are preferable from the viewpoint of heat resistance, availability and the like.
  • the resin contained in the heat dissipating material may be only one kind or two or more kinds.
  • the heat dissipating material may include materials other than resin and metal particles.
  • it may contain ceramic particles, additives and the like.
  • the heat dissipating material contains ceramic particles, for example, the heat dissipating effect of the heat dissipating material can be further improved.
  • the ceramic particles include particles of boron nitride, aluminum nitride, aluminum oxide, magnesium oxide, titanium oxide, zirconia, iron oxide, copper oxide, nickel oxide, cobalt oxide, lithium oxide, silicon dioxide, and the like.
  • the ceramic particles contained in the metal particle layer may be only one kind or two or more kinds. Further, the surface may be covered with a film made of a resin, an oxide, or the like.
  • the size and shape of the ceramic particles are not particularly limited.
  • the size and shape of the metal particles described above may be the same as those described as preferred embodiments.
  • the heat dissipating material contains the additive, a desired function can be imparted to the heat dissipating material or a material for forming the heat dissipating material.
  • the additive include a dispersant, a film-forming auxiliary, a plasticizer, a pigment, a silane coupling agent, and a viscosity modifier.
  • the shape of the heat dissipating material is not particularly limited and can be selected according to the application and the like.
  • a sheet shape, a film shape, a plate shape and the like can be mentioned.
  • it may be a layer formed by applying a heat dissipating material to the heating element.
  • the thickness of the heat dissipating material (when the thickness is not constant, the thickness of the portion where the thickness is minimum) is not particularly limited.
  • the thickness is preferably in the range of 1 ⁇ m to 500 ⁇ m, and more preferably 10 ⁇ m to 200 ⁇ m.
  • the thickness of the heat dissipating material is 500 ⁇ m or less, the heat dissipating material is less likely to be a heat insulating layer, and good heat dissipation tends to be maintained.
  • the thickness of the heat radiator is 1 ⁇ m or more, the function of the heat radiator tends to be sufficiently obtained.
  • the wavelength region of the electromagnetic wave absorbed or emitted by the heat radiating material is not particularly limited, from the viewpoint of thermal emissivity, the absorption or emissivity for each wavelength at room temperature (25 ° C.) at 3 ⁇ m to 30 ⁇ m is closer to 1.0. preferable. Specifically, it is preferably 0.8 or more, and more preferably 0.9 or more.
  • the absorptance or emissivity of the electromagnetic wave can be measured by an emissivity meter (for example, D and SAERD manufactured by Kyoto Electronics Industry Co., Ltd.), a Fourier transform infrared spectrophotometer, or the like. According to Kirchhoff's law, the absorption and emissivity of electromagnetic waves can be considered equal.
  • the wavelength region of the electromagnetic wave absorbed or emitted by the heat radiating material can be measured by a Fourier transform infrared spectrophotometer. Specifically, the transmittance and the reflectance of each wavelength are measured, and can be calculated by the following formula.
  • Absorbance (emissivity) 1-transmittance-reflectance
  • the heat dissipating material is not particularly limited. For example, it may be attached to a portion corresponding to a heating element of an electronic device and used to dissipate heat generated by the heating element. Further, it may be used to transmit heat generated by the heating element to a radiator such as a metal plate or a heat sink.
  • the metal particle layer preferably has an uneven structure derived from metal particles on the surface. It is considered that when heat is transmitted from the heating element to the metal particle layer having an uneven structure derived from metal particles on the surface, surface plasmon resonance occurs and the wavelength range of the emitted electromagnetic wave changes. As a result, for example, it is considered that the emissivity of the electromagnetic wave in the wavelength range not absorbed by the resin contained in the heat radiating material is relatively increased, the heat storage by the resin is suppressed, and the heat radiation is improved.
  • the heat dissipating material may include a region 1, a region 2, and a region 3 satisfying the following (A) and (B) in this order.
  • the heat dissipating material having the above configuration exhibits an excellent heat dissipating effect when it is attached to a heating element.
  • the reason is not necessarily clear, but is considered as follows.
  • the resin has a property of hardly absorbing short-wavelength infrared light and easily absorbing long-wavelength infrared light. For this reason, it is considered that by increasing the absorptivity of electromagnetic waves in the wavelength range of 2 ⁇ m to 6 ⁇ m, which is difficult for the resin to absorb (ie, increasing the emissivity), the heat storage by the resin is suppressed, and the heat dissipation is improved.
  • the heat radiating material having the above configuration solves the above problem by providing a region 2 in which the integrated value of the electromagnetic wave absorption in the wavelength region of 2 ⁇ m to 6 ⁇ m is higher than that of the regions 1 and 3.
  • a layer (metal particle layer) having a fine uneven structure formed by the metal particles by containing a relatively large amount of metal particles and configured to generate a surface plasmon resonance effect is used.
  • the region 1 and the region 3 include a layer (resin layer) containing a relatively large amount of resin.
  • the position of the region 2 is not particularly limited as long as it is between the region 1 and the region 3, and may be disposed in the middle of the heat radiating material in the thickness direction, or may be disposed on the side close to the heating element. It may be arranged on the opposite side. A clear boundary may exist or may not exist between the adjacent regions (for example, the metal particle occupancy may change stepwise in the thickness direction).
  • the “metal particle occupancy” means the ratio of the metal particles occupying the region on a volume basis.
  • the “electromagnetic wave absorptance” can be measured in the same manner as the above-described electromagnetic wave absorptivity of the heat radiating material.
  • the region 2 Since the region 2 is disposed between the region 1 and the region 3, the state in which the metal particles included in the region 2 are arranged is maintained, and stable heat radiation tends to be obtained.
  • the materials, thicknesses, and the like included in the regions 1 and 3 may be the same or different. For example, when the region 1 is located on the heating element side, heat can be transmitted more efficiently by using a material having high thermal conductivity for the region 1, and further improvement in heat dissipation can be expected.
  • the method for manufacturing a heat radiator of the present embodiment includes a step of arranging metal particles on a first resin layer, a step of arranging a second resin layer on the metal particles, In this order.
  • the metal particles form a metal particle layer included in the above-described heat radiating material from the viewpoint of generating good surface heat radiation by causing surface plasmon resonance in the metal particles. That is, it is preferable that the metal particles satisfy the details and preferred embodiments of the metal particle layer included in the heat dissipation material described above.
  • the first resin layer and the second resin layer used in the above method may include a resin contained in the heat radiating material described above, and may further include ceramic particles, additives, and the like contained in the heat radiating material described above. May be included.
  • the metal particles used in the above method may be metal particles contained in the above-described heat dissipation material.
  • the materials and dimensions of the first resin layer and the second resin layer may be the same or different. From the viewpoint of workability, it is preferably in a state of being formed in advance (a resin film or the like). From the viewpoint of securing the adhesion between the resin layers, the metal particles or the adherend, both or one of the first resin layer and the second resin layer has adhesiveness on both surfaces or one surface. There may be.
  • the surface of the first resin layer on which the metal particles are arranged has adhesiveness. If the surface of the first resin layer on which the metal particles are arranged has adhesiveness, the movement of the metal particles when arranging the metal particles on the first resin layer is appropriately controlled, and Tend to be suppressed.
  • the method of arranging the metal particles on the first resin layer is not particularly limited.
  • a method of arranging metal particles or a composition containing metal particles using a brush, a sieve, an electrospray, a coater, an inkjet device, a screen printing device, or the like can be used.
  • the metal particles form aggregates, it is preferable to perform a process of breaking the aggregates before disposing.
  • the method of arranging the second resin layer on the metal particles arranged on the first resin layer is not particularly limited. For example, there is a method of laminating a film-shaped second resin layer while heating as necessary.
  • the above method may be one in which the heat radiating material is manufactured alone or one in which the heat radiating material is formed on the surface of the heating element.
  • a method of forming the heat radiating material on the surface of the heating element there is a method of arranging the first resin layer on the surface of the heating element before the step of arranging the metal particles on the first resin layer.
  • the method for manufacturing a heat radiating material of the present embodiment includes a step of arranging metal particles on a plane, and a step of arranging a first resin layer on the metal particles to obtain a laminate. A step of separating the laminate from the plane; and a step of disposing a second resin layer on the metal particles in this order.
  • a heat radiating material including metal particles and a resin and having a structure in which the metal particles are unevenly distributed.
  • the details and preferred aspects of the materials and techniques described in the method of the first embodiment can be referred to.
  • the heat dissipating material kit of the present embodiment is a heat dissipating material kit including metal particles and a resin, and used for manufacturing the above-described heat dissipating material.
  • the details and preferred embodiments of the metal particles, the resin, and other components included in the heat dissipation material kit are the same as the details and preferred embodiments of the metal particles, the resin, and other components described in the above-described heat dissipation material and the method for producing the same.
  • the metal particles may be in a state as it is or in a state of a composition containing a dispersion medium or the like.
  • the resin may be in a pre-formed state (such as a resin film) or may not be formed.
  • the method of manufacturing the heat radiating material using the heat radiating material kit is not particularly limited.
  • the above-described method for manufacturing a heat dissipating material may be used.
  • the heating element of the present embodiment includes the heat radiating material of the above-described embodiment.
  • the type of the heating element is not particularly limited.
  • an IC integrated circuit
  • an electronic component such as a semiconductor element, a heat pipe, and the like.
  • the manner in which the heat radiator is attached to the heating element is not particularly limited.
  • a heat dissipating material having tackiness may be directly attached, or may be attached via an adhesive or the like.
  • the heat radiator When the heat radiator is attached to the heating element, even if the metal particle layer in the heat radiator is mounted closer to the heat generator, the heat is generated so that the position of the metal particle layer in the heat radiator is closer to the opposite side of the heat generator.
  • a body may be attached.
  • the heating element may include a radiator.
  • a heat radiator is interposed between the main body of the heating element and the radiator. Since the heat radiating material is interposed between the main body of the heating element and the radiator, excellent heat radiating properties are achieved.
  • the radiator include a plate made of metal such as aluminum, iron, and copper, and a heat sink.
  • the portion of the main body to which the heat radiating material is attached may or may not be flat. If the portion of the main body to which the heat radiating material is attached is not flat, the heat radiating material may be attached using a flexible heat radiating material.
  • Example 1 5 g of copper particles (volume average particle diameter: 1.6 ⁇ m) crushed using a vibration stirrer are placed on one side of a double-sided tape (100 mm ⁇ 100 mm, thickness 25 ⁇ m) made of an acrylic resin without a base material, and are commercially available. Copper particles were spread all over using a brush, and excess copper particles were removed with an air duster to form a metal particle layer. The ratio of the metal particles when the metal particle layer was observed from the front was 80% or more based on the area.
  • an acrylic resin film (Tg: 75 ° C., molecular weight: 30,000, 100 mm ⁇ 100 mm, thickness 25 ⁇ m) formed on a polyethylene terephthalate (PET) substrate was heated at 80 ° C. on the metal particle layer. While laminating. Thereafter, the PET substrate was peeled off, and the surface on the double-sided tape side was adhered to an aluminum plate having a size of 50 mm ⁇ 80 mm and a thickness of 2 mm to prepare a sample.
  • PET polyethylene terephthalate
  • FIG. 1 shows a schematic cross-sectional view of the manufactured sample.
  • the sample 10 includes a metal particle layer 11 formed by collecting copper particles at the center in the thickness direction, and a resin layer 12 and a resin layer 13 disposed on both sides thereof.
  • the resin layer 12 is attached to the aluminum plate 14.
  • the thermal emissivity of the manufactured sample was measured at room temperature (25 ° C.) using an emissivity measuring device (Dand SAERD, manufactured by Kyoto Electronics Industry) (measurement wavelength range: 3 ⁇ m or more). 30 ⁇ m).
  • the emissivity of the sample of Example 1 was 0.9.
  • Example 2 A heat dissipation material sample was prepared in the same manner as in Example 1 except that the thickness of the acrylic resin film formed on the PET substrate was changed to 10 ⁇ m.
  • FIG. 2 shows a schematic cross-sectional view of the manufactured sample.
  • the sample 20 includes a metal particle layer 21 formed by collecting copper particles closer to the surface opposite to the aluminum plate 24 than the center in the thickness direction, and a resin layer 22 disposed on both sides thereof. And a resin layer 23.
  • Example 3 A heat dissipation material sample was prepared in the same manner as in Example 1 except that the thickness of the acrylic resin double-sided tape was changed to 10 ⁇ m.
  • FIG. 3 shows a schematic cross-sectional view of the manufactured sample.
  • the sample 30 includes a metal particle layer 31 formed by collecting copper particles closer to the aluminum plate 34 than the center in the thickness direction, and an acrylic resin layer 32 and an acrylic resin layer disposed on both sides thereof. And a layer 33.
  • Comparative Example 2 The same composition as in Comparative Example 1 was spray-coated on the entire surface of an aluminum plate having a size of 50 mm ⁇ 80 mm and a thickness of 2 mm using a spray coating apparatus to form a composition layer.
  • the composition layer was air-dried and cured by heating at 60 ° C. for 30 minutes to prepare a sample having a thickness of 100 ⁇ m.
  • ⁇ Comparative Example 3> A commercially available heat-radiating paint containing 95% by volume of an acrylic resin and 5% by volume of silicon dioxide particles (volume average particle size: 2 ⁇ m) is sprayed onto a 50 mm ⁇ 80 mm, 2 mm thick aluminum plate using a spray coating apparatus. The composition was applied to form a composition layer. The composition layer was air-dried and cured by heating at 60 ° C. for 30 minutes to prepare a sample having a thickness of 30 ⁇ m.
  • FIG. 4 shows a schematic cross-sectional view of the manufactured sample.
  • the sample 40 includes a silicon dioxide particle 41 and a resin 42, and has a structure in which the silicon dioxide particle 41 is dispersed without being unevenly distributed in a specific portion in the resin 42.
  • Example 1 having the metal particle layer
  • the absorption efficiency was particularly increased in the wavelength range of 10 ⁇ m or less as compared with Comparative Examples 1 (FIG. 6) and Comparative Example 2 (FIG. 7) without the metal particle layer. You can confirm that you are doing.
  • the sample of Comparative Example 2 Compared to the sample of Comparative Example 1, the sample of Comparative Example 2 has an increased absorption efficiency in the wavelength region of 8 ⁇ m or more due to the increased thickness of the sample, and has a higher emissivity than Comparative Example 1. Recognize. On the other hand, it can be seen that the absorption efficiency in the wavelength range of less than 8 ⁇ m hardly changes.
  • a commercially available sheet heating element (polyimide heater) is sandwiched between a pair of aluminum plates (50 mm ⁇ 80 mm, thickness 2 mm).
  • the samples prepared in the examples and comparative examples are used as one aluminum plate.
  • a K thermocouple is bonded to the surface of the aluminum plate with aluminum solder.
  • the sample is allowed to stand at the center of a thermostat set at 25 ° C., and the temperature change on the surface of the aluminum plate is measured.
  • the output of the heater is set so that the surface temperature of the aluminum plate that is not the sample is 100 ° C. Since the heater generates a certain amount of heat, the higher the heat dissipation effect of the sample, the lower the temperature of the aluminum plate surface. That is, it can be said that the lower the surface temperature of the sample, the higher the heat radiation effect.
  • Table 1 shows the measured surface temperatures (maximum temperatures) of the samples.
  • the surface temperature was 85 ° C., 80 ° C. in Comparative Examples 1 and 2 using the sample having the composition layer composed of only the resin, compared to the surface temperature of the non-sampled aluminum plate of 100 ° C. ° C, but the reduction effect is small compared to the embodiment. This is presumably because the sample does not include the metal particle layer, so that the heat radiation effect by heat radiation heat transfer is smaller than that of the example.
  • Example 7 The sample manufactured in Example 1 was attached to an electronic component (heating element) of an electronic device as shown in FIG. 8, and the temperature reduction effect was examined.
  • An electronic device 100 shown in FIG. 8 includes an electronic component 101 and a circuit board 102 on which these are mounted. Above the electronic component 101, the resin layer 12 side of the sample 103 (excluding the aluminum plate) manufactured in Example 1 is attached. When the electronic device was operated, the temperature of the electronic component 101 dropped from 125 ° C. (no sample) to 95 ° C.
  • Example 8> The sample manufactured in Example 1 was attached to an electronic component (heating element) of an electronic device as shown in FIG. 9 and the temperature reduction effect was examined.
  • the electronic device 200 shown in FIG. 9 includes an electronic component 201 and a circuit board 202 on which these are mounted. Further, the periphery of the electronic component 201 is sealed with a resin 204.
  • the resin layer 12 side of the sample 203 (excluding the aluminum plate) manufactured in Example 1 is attached to the upper part of the electronic component 201. When the electronic device was operated, the temperature of the electronic component 201 dropped from 155 ° C. (no sample) to 115 ° C.
  • Example 9 The sample produced in Example 1 was affixed to a heat pipe (heating element) as shown in FIG. 10, and the temperature reduction effect was examined.
  • a heat pipe 300 shown in FIG. 10 is a stainless steel tube 301 (diameter 32 mm), around which the resin layer 12 side of a sample 302 (excluding an aluminum plate) manufactured in Example 2 is adhered.
  • the surface temperature dropped from 85 ° C. (no sample) to 68 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)

Abstract

金属粒子と樹脂とを含み、面方向に沿って配列した前記金属粒子が相対的に高密度で存在する領域を内部に有する、放熱材。

Description

放熱材、放熱材の製造方法、放熱材キット及び発熱体
 本発明は、放熱材、放熱材の製造方法、放熱材キット及び発熱体に関する。
 近年、電子機器の小型化と多機能化に伴い、単位面積当たりの発熱量が増加する傾向にある。その結果、電子機器内で局所的に熱が集中するヒートスポットが発生し、電子機器の故障、短寿命化、動作安定性の低下、信頼性の低下等の問題が生じている。このため、発熱体で生じた熱を外部に放散させてヒートスポットの発生を緩和することの重要性が増している。
 電子機器の放熱対策として、金属板、ヒートシンク等の放熱器を電子機器の発熱体近傍に取り付けて、発熱体で生じた熱を放熱器に伝導し、外部に放散させることが行われている。しかしながら、電子機器の小型化に伴い、電子機器に放熱器を取り付けるのが困難な場合が生じている。そこで、電子機器の小型化に適応しうる放熱手段として、シート状の放熱材が検討されている。
 例えば、特許文献1には、放熱シート層の上にシリコーン樹脂中に熱伝導性フィラーを分散させた塗膜が形成された放熱材が記載されている。しかしながら、このような放熱材を樹脂ケース等の樹脂部材で覆われている電子機器の周囲に配置した場合、放熱材から放射される赤外線の多くが樹脂部材を透過することなく吸収される。その結果、樹脂部材に新たなヒートスポットが生じて充分な放射伝熱効果が得られないおそれがある。
特開2011-222862号公報
 上記事情に鑑み、本発明の一態様は、発熱体で生じた熱を効率よく放射伝熱することが可能な放熱材及びその製造方法を提供することを目的とする。本発明の別の一態様は、この放熱材を製造するための放熱材キット及びこの放熱材を備える発熱体を提供することを目的とする。
 上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>金属粒子と樹脂とを含み、面方向に沿って配列した前記金属粒子が相対的に高密度で存在する領域を内部に有する、放熱材。
<2>前記領域を正面から観察したときに、観察面に占める前記金属粒子の割合が面積基準で50%以上である、<1>に記載の放熱材。
<3>前記領域はフーリエ変換赤外分光光度計を用いて測定される前記放熱材の吸収波長スペクトルを変化させる機能を有する、<1>又は<2>に記載の放熱材。
<4>前記放熱材の厚み方向の真ん中に前記領域を有する、<1>~<3>のいずれか1項に記載の放熱材。
<5>発熱体に対向する面側寄りに前記領域を有する、<1>~<3>のいずれか1項に記載の放熱材。
<6>発熱体に対向する面と逆の面側寄りに前記領域を有する、<1>~<3>のいずれか1項に記載の放熱材。
<7>前記領域の厚みは0.1μm~100μmの範囲内である、<1>~<6>のいずれか1項に記載の放熱材。
<8>前記放熱材全体の厚みに占める前記領域の厚みの割合は0.1%~99%の範囲内である、<1>~<7>のいずれか1項に記載の放熱材。
<9>前記領域は前記金属粒子に由来する凹凸構造を表面に有する、<1>~<9>のいずれか1項に記載の放熱材。
<10>下記(A)及び(B)を満たす領域1、領域2及び領域3をこの順に備える、<1>~<10>のいずれか1項に記載の放熱材。
 (A)領域2の波長2μm~6μmにおける電磁波の吸収率の積分値 > 領域1及び領域3の波長2μm~6μmにおける電磁波の吸収率の積分値
 (B)領域2の金属粒子占有率 > 領域1及び領域3の金属粒子占有率
<11>第1の樹脂層の上に金属粒子を配置する工程と、上記金属粒子の上に第2の樹脂層を配置する工程と、をこの順に有する放熱材の製造方法。
<12>金属粒子と、樹脂とを備え、<1>~10>のいずれか1項に記載の放熱材の製造に用いるための放熱材キット。
<13><1>~<11>のいずれか1項に記載の放熱材を備える発熱体。
 本発明の一態様によれば、発熱体で生じた熱を効率よく放射伝熱することが可能な放熱材及びその製造方法が提供される。本発明の別の一態様によれば、この放熱材を製造するための放熱材キット及びこの放熱材を備える発熱体が提供される。
実施例1で作製したサンプルの断面模式図である。 実施例2で作製したサンプルの断面模式図である。 実施例3で作製したサンプルの断面模式図である。 比較例3で作製したサンプルの断面模式図である。 実施例1で作製したサンプルの吸収波長スペクトルである。 比較例1で作製したサンプルの吸収波長スペクトルである。 比較例2で作製したサンプルの吸収波長スペクトルである。 実施例7で作製した電子機器の断面模式図である。 実施例8で作製した電子機器の断面模式図である。 実施例9で作製したヒートパイプの断面模式図である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。
<放熱材(第1実施形態)>
 本実施形態の放熱材は、金属粒子と樹脂とを含み、面方向に沿って配列した前記金属粒子が相対的に高密度で存在する領域を内部に有する、放熱材である。
 本開示において放熱材の「内部」とは、放熱材の表面以外の部分を意味する。
 本開示において「面方向」とは放熱材の主面に沿った方向を意味し、「金属粒子が相対的に高密度で存在する領域」とは、放熱材の他の領域に比べて金属粒子が高密度で存在する領域を意味する。
 上記構成を有する放熱材は、これを発熱体に取り付けた場合、優れた放熱効果を発揮する。その理由は必ずしも明らかではないが、下記のように考えられる。
 上記放熱材は、面方向に沿って配列した金属粒子が相対的に高密度で存在する領域(以下、金属粒子層ともいう)が放熱材の内部に形成されている。金属粒子層は、表面に金属粒子の形状に起因する微細な凹凸構造を有しており、金属粒子層に発熱体から熱が伝わると表面プラズモン共鳴が生じて、放射される電磁波の波長域が変化すると考えられる。その結果、例えば、樹脂が吸収しにくい波長域の電磁波の放射率が相対的に増大し、樹脂による蓄熱が抑制されて、放熱性が向上すると考えられる。
 ここでいう「樹脂」には、放熱材に含まれる樹脂と、放熱材の外部に配置される樹脂(樹脂ケース等)の両方が含まれうる。
 上述したように、放熱材に含まれる金属粒子層は、放熱材が放射する電磁波の波長スペクトルを変化させる機能を有する。樹脂は一般に、比較的低波長の赤外域(例えば、2μm~10μm)の電磁波を吸収しにくい(透過しやすい)傾向にある。したがってある実施態様では、放熱材に含まれる金属粒子層は、放熱材が放射する電磁波の波長域を、上記赤外域における電磁波の放射率が増大するように変化させる機能を有する。
 金属粒子層が上記機能を有するか否かは、フーリエ変換赤外分光光度計を用いて測定した吸収波長スペクトルが変化するか否かにより判断することができる。具体的には、金属粒子層を含まないこと以外は本実施形態の放熱材と同じ条件で作製したサンプルの吸収波長スペクトルと、本実施形態の放熱材の吸収波長スペクトルとを比較して確認することができる。
 本実施形態の放熱材では、内部に金属粒子層を形成することで、表面プラズモン共鳴を生じさせている。このため、例えば、金属板の表面を加工して微細な凹凸構造を形成して表面プラズモン共鳴を生じさせる等の手法に比べ、簡易な手法で表面プラズモン共鳴を生じさせることができる。
 金属粒子層の形態は、表面プラズモン共鳴を生じうる状態であれば特に制限されない。たとえば、金属粒子層と他の領域との間に明確な境界が形成されていても、形成されていなくてもよい。また、金属粒子層は放熱材中に連続的に存在していても、非連続的(パターン状を含む)に存在していてもよい。金属粒子層に含まれる金属粒子は、隣り合う粒子と接触していても、接触していなくてもよい。
 金属粒子層の厚み(厚みが一定でない場合は、厚みが最小となる部分の厚さ)は、特に制限されない。例えば、0.1μm~100μmの範囲内であってもよい。金属粒子層の厚みは、例えば、金属粒子層に含まれる金属粒子の量、金属粒子の大きさ等によって調節することができる。
 放熱材全体に占める金属粒子層の割合は、特に制限されない。例えば、放熱材全体の厚みに占める金属粒子層の厚みの割合は、0.1%~99%の範囲内であってもよく、1%~50%の範囲内であってもよい。
 金属粒子層における金属粒子の密度は、表面プラズモン共鳴を生じうる状態であれば特に制限されない。例えば、金属粒子層(又は放熱材)を正面(放熱材の主面)から観察したときに、観察面に占める金属粒子の割合が面積基準で50%以上であることが好ましく、75%以上であることがより好ましく、90%であることがさらに好ましい。
 本開示において「金属粒子層の正面から観察したときの観察面」とは、金属粒子の配列方向(放熱材の面方向)に対して垂直な方向(放熱材の厚み方向)から観察される面を意味する。
 上記割合は、例えば、電子顕微鏡画像から画像処理ソフトウェアを用いて計算することができる。
 放熱材における金属粒子(金属粒子層)の位置は、放熱材の内部に形成されていれば、特に制限されない。例えば、放熱材の厚み方向における真ん中に位置していてもよい。また、放熱材が発熱体と対向する面側寄りに位置していても、放熱材が発熱体と対向する面と逆の面側寄りに位置していてもよい。
 本開示において「金属粒子」とは、表面の少なくとも一部が金属である粒子を意味し、粒子の内部は金属であっても、金属でなくてもよい。熱伝導による放熱性を向上させる観点からは、粒子の内部は金属であることが好ましい。
 金属粒子の表面の少なくとも一部が金属である場合には、外部からの電磁波が金属粒子の表面に到達することが可能であれば、樹脂、金属酸化物等の金属以外の物質が金属粒子の周囲に存在している場合も含まれる。
 金属粒子に含まれる金属としては、銅、アルミニウム、ニッケル、鉄、銀、金、錫、チタン、クロム、パラジウム等が挙げられる。金属粒子に含まれる金属は、1種のみであっても2種以上であってもよい。また、単体であっても合金の状態であってもよい。
 金属粒子の形状は、金属粒子層の表面に所望の凹凸構造を形成できるものであれば特に制限されない。金属粒子の形状として具体的には、球状、フレーク状、針状、直方体、立方体、四面体、六面体、多面体、筒状、中空体、核部から異なる4軸方向に伸びた三次元針状構造等が挙げられる。これらの中でも、球状又は球状に近い形状が好ましい。
 金属粒子の大きさは、特に制限されない。例えば、金属粒子の体積平均粒子径は、0.1μm~30μmの範囲内であることが好ましい。金属粒子の体積平均粒子径が30μm以下であると、放熱性の向上に寄与する電磁波(特に、比較的低波長の赤外光)が充分に放射される傾向にある。金属粒子の体積平均粒子径が0.1μm以上であると、金属粒子の凝集力が抑制され、均等に配列しやすくなる傾向にある。
 金属粒子の体積平均粒子径は、放熱材に使用される金属粒子以外の材料の種類を考慮して設定してもよい。例えば、金属粒子の体積平均粒子径が小さいほど、金属粒子層の表面に形成される凹凸構造の周期が小さくなり、金属粒子層で生じる表面プラズモン共鳴が最大となる波長が短くなる。金属粒子層による電磁波の吸収率は、表面プラズモン共鳴が最大となる波長において最大となる。したがって、金属粒子層で生じる表面プラズモン共鳴が最大となる波長が短くなると、金属粒子層による電磁波の吸収率が最大となる波長が短くなり、キルヒホッフの法則に従い、当該波長における電磁波の放射率が増大する傾向にある。このため、金属粒子の体積平均粒子径を適切に選択することで、金属粒子層の放射波長を放熱材料に含まれる樹脂が吸収しにくい波長域に変換でき、放熱性がより向上する傾向にある。
 金属粒子層に含まれる金属粒子の体積平均粒子径は、10μm以下であってもよく、5μm以下であってもよく、3μm以下であってもよい。金属粒子の体積平均粒子径が上記範囲であると、放射する電磁波の波長域を樹脂が吸収しにくい低波長域(例えば、6μm以下)に変換することができる。これにより、樹脂による蓄熱を抑制し、放熱性をより向上することができる。
 本開示において金属粒子の体積平均粒子径は、レーザー回折・散乱法により得られる体積基準の粒度分布曲線において小径側からの積算が50%になるときの粒子径(D50)である。
 金属粒子層による電磁波の吸収又は放射波長を効果的に制御する観点からは、金属粒子層に含まれる金属粒子の粒子径のばらつきは小さいことが好ましい。金属粒子の粒子径のばらつきを抑えることで、金属粒子層の表面に周期性を有する凹凸構造を形成しやすくなり、表面プラズモン共鳴が生じやすくなる傾向にある。
 金属粒子の粒子径のばらつきは、例えば、体積基準の粒度分布曲線において小径側からの積算が10%になるときの粒子径(D10)をA(μm)、小径側からの積算が90%になるときの粒子径(D90)をB(μm)としたとき、A/Bの値が0.3以上となる程度であることが好ましく、0.4以上となる程度であることがより好ましく、0.6以上となる程度であることがさらに好ましい。
 放熱材に含まれる樹脂の種類は特に制限されず、公知の熱硬化性樹脂、熱可塑性樹脂、紫外線硬化性樹脂等から選択できる。具体的には、フェノール樹脂、アルキド樹脂、アミノアルキド樹脂、ユリア樹脂、シリコーン樹脂、メラミン尿素樹脂、エポキシ樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂、酢酸ビニル樹脂、アクリル樹脂、塩化ゴム系樹脂、塩化ビニル樹脂、フッ素樹脂等が挙げられる。これらの中でも耐熱性、入手性等の観点からは、アクリル樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等が好ましい。放熱材に含まれる樹脂は、1種のみであっても2種以上であってもよい。
 放熱材は、樹脂及び金属粒子以外の材料を含んでもよい。例えば、セラミックス粒子、添加剤等を含んでもよい。
 放熱材がセラミックス粒子を含むことで、例えば、放熱材の放熱効果をより高めることができる。セラミックス粒子として具体的には、窒化ホウ素、窒化アルミニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、ジルコニア、酸化鉄、酸化銅、酸化ニッケル、酸化コバルト、酸化リチウム、二酸化ケイ素等の粒子が挙げられる。金属粒子層に含まれるセラミックス粒子は、1種のみであっても2種以上であってもよい。また、表面が樹脂、酸化物等で構成される皮膜で覆われていてもよい。
 セラミックス粒子の大きさ及び形状は、特に制限されない。例えば、上述した金属粒子の大きさ及び形状の好ましい態様として記載したものと同様であってもよい。
 放熱材が添加剤を含むことで、放熱材又は放熱材を形成するための材料に所望の機能を付与することができる。添加剤として具体的には、分散剤、造膜助剤、可塑剤、顔料、シランカップリング剤、粘度調整剤等が挙げられる。
 放熱材の形状は特に制限されず、用途等に応じて選択できる。例えば、シート状、フィルム状、板状等が挙げられる。あるいは、発熱体に放熱材の材料を塗布して形成された層の状態であってもよい。
 放熱材の厚み(厚みが一定でない場合は、厚みが最小となる部分の厚さ)は、特に制限されない。例えば、1μm~500μmの範囲内であることが好ましく、10μm~200μmであることがより好ましい。放熱材の厚みが500μm以下であると、放熱材が断熱層となりにくく良好な放熱性が維持される傾向にある。放熱材の厚みが1μm以上であると、放熱材の機能が充分に得られる傾向にある。
 放熱材が吸収又は放射する電磁波の波長領域は特に制限されないが、熱放射性の観点からは、室温(25℃)下、3μm~30μmにおける各波長に対する吸収率又は放射率が1.0に近いほど好ましい。具体的には0.8以上であることが好ましく、0.9以上であることがより好ましい。
 電磁波の吸収率又は放射率は、放射率測定器(例えば、京都電子工業株式会社製、D and S AERD)、フーリエ変換赤外分光光度計等により測定することができる。キルヒホッフの法則により、電磁波の吸収率と放射率は等しいと考えることができる。
 放熱材が吸収又は放射する電磁波の波長領域は、フーリエ変換赤外分光光度計で測定することができる。具体的には、各波長の透過率と反射率を測定し、下記式にて計算することができる。
 吸収率(放射率)=1-透過率-反射率
 放熱材の用途は、特に制限されない。例えば、電子機器の発熱体に相当する箇所に取り付けて、発熱体で生じた熱を放散させるために用いてもよい。また、発熱体で生じた熱を金属板、ヒートシンク等の放熱器に伝えるために用いてもよい。
 金属粒子層は、金属粒子に由来する凹凸構造を表面に有することが好ましい。金属粒子に由来する凹凸構造を表面に有する金属粒子層に発熱体から熱が伝わると表面プラズモン共鳴が生じて、放射される電磁波の波長域が変化すると考えられる。その結果、例えば、放熱材に含まれる樹脂が吸収しない波長域の電磁波の放射率が相対的に増大し、樹脂による蓄熱が抑制されて、放熱性が向上すると考えられる。
 放熱材は、下記(A)及び(B)を満たす領域1、領域2及び領域3をこの順に備えていてもよい。
 (A)領域2の波長2μm~6μmにおける電磁波の吸収率の積分値) > 領域1及び領域3の波長2μm~6μmにおける電磁波の吸収率の積分値)
 (B)領域2の金属粒子占有率 > 領域1及び領域3の金属粒子占有率
 上記構成を有する放熱材は、これを発熱体に取り付けた場合、優れた放熱効果を発揮する。その理由は必ずしも明らかではないが、下記のように考えられる。
 樹脂は一般に、短波長の赤外光を吸収しにくく、長波長の赤外光を吸収しやすい性質を有する。このため、樹脂が吸収しにくい2μm~6μmの波長域における電磁波の吸収率を高める(すなわち、放射率を高める)ことで、樹脂による蓄熱が抑制されて、放熱性が向上すると考えられる。
 上記構成を有する放熱材は、2μm~6μmの波長域における電磁波の吸収率の積分値が領域1と領域3のそれよりも高い領域2を備えることで、上記の課題を解決している。
 領域2として具体的には、金属粒子を相対的に多く含むことで金属粒子によって形成された微細な凹凸構造を有し、表面プラズモン共鳴効果が生じるように構成された層(金属粒子層)が挙げられる。
 領域1及び領域3として具体的には、樹脂を相対的に多く含む層(樹脂層)が挙げられる。
 領域2の位置は領域1及び領域3の間であれば特に制限されず、放熱材の厚み方向の真ん中に配置されても、発熱体寄り側に配置されても、発熱体に対向する側と逆側寄りに配置されてもよい。
 隣接する領域の間には、明確な境界が存在していても、存在していない(例えば、金属粒子占有率が厚み方向において段階的に変化する)状態であってもよい。
 上記構成において「金属粒子占有率」とは、当該領域に占める金属粒子の体積基準の割合を意味する。「電磁波の吸収率」は、上述した放熱材の電磁波の吸収率と同様にして測定できる。
 領域2が領域1と領域3との間に配置されていることで、領域2に含まれる金属粒子が配列した状態が維持され、安定した放熱性が得られる傾向にある。
 領域1及び領域3に含まれる材料、厚み等は同じであっても異なっていてもよい。例えば、領域1が発熱体側に位置する場合、領域1に熱伝導性の高い材料を用いることで熱をより効率的に伝達でき、放熱性のさらなる向上が期待できる。
<放熱材の製造方法>
 本実施形態の放熱材の製造方法(第1実施形態)は、第1の樹脂層の上に金属粒子を配置する工程と、上記金属粒子の上に第2の樹脂層を配置する工程と、をこの順に有する。
 上記方法によれば、金属粒子と樹脂とを含み、内部に前記金属粒子が偏在した構造を有する放熱材を製造することができる。
 金属粒子に表面プラズモン共鳴を生じさせて良好な放熱性を得る観点からは、金属粒子は上述した放熱材に含まれる金属粒子層を形成していることが好ましい。すなわち、金属粒子は上述した放熱材に含まれる金属粒子層の詳細及び好ましい態様を満たすものであることが好ましい。
 上記方法で使用する第1の樹脂層及び第2の樹脂層は、上述した放熱材に含まれる樹脂を含むものであってもよく、上述した放熱材に含まれるセラミックス粒子、添加剤等をさらに含んでもよい。上記方法で使用する金属粒子は、上述した放熱材に含まれる金属粒子であってもよい。
 第1の樹脂層及び第2の樹脂層の材質及び寸法は同じであっても、異なっていてもよい。作業性の観点からは、あらかじめ成形された状態(樹脂フィルム等)であることが好ましい。樹脂層同士、金属粒子又は被着体との密着性を確保する観点からは、第1の樹脂層及び第2の樹脂層の両方又はいずれか一方は、両面又は片面が粘着性を有するものであってもよい。
 金属粒子の分布ムラを抑制する観点からは、第1の樹脂層の金属粒子が配置される面が粘着性を有していることが好ましい。第1の樹脂層の金属粒子が配置される面が粘着性を有していると、第1の樹脂層上に金属粒子を配置する際の金属粒子の移動が適度に制御されて、金属粒子の分布ムラが抑制される傾向にある。
 第1の樹脂層上に金属粒子を配置する手法は、特に制限されない。例えば、金属粒子又は金属粒子を含む組成物を刷毛、ふるい、エレクトロスプレー、コーター、インクジェット装置、スクリーン印刷装置等を用いて配置する方法が挙げられる。金属粒子が凝集物を形成している場合、配置前に凝集物を解砕する処理を行うことが好ましい。
 第1の樹脂層上に配置された金属粒子の上に第2の樹脂層を配置する方法は、特に制限されない。例えば、フィルム状の第2の樹脂層を、必要に応じて加熱しながらラミネートする方法が挙げられる。
 上記方法は、放熱材を単独で製造するものであっても、発熱体の表面に放熱材を形成するものであってもよい。発熱体の表面に放熱材を形成する方法としては、第1の樹脂層の上に金属粒子を配置する工程の前に、発熱体の表面に第1の樹脂層を配置する方法が挙げられる。
 本実施形態の放熱材の製造方法(第2実施形態)は、金属粒子を平面上に配置する工程と、前記金属粒子の上に第1の樹脂層を配置して積層体を得る工程と、前記積層体を前記平面から分離する工程と、前記金属粒子の上に第2の樹脂層を配置する工程と、をこの順に有する。
 上記方法によれば、金属粒子と樹脂とを含み、内部に前記金属粒子が偏在した構造を有する放熱材を製造することができる。
 上記方法で使用する材料及び手法の詳細及び好ましい態様としては、第1実施形態の方法に記載した材料及び手法の詳細及び好ましい態様を参照できる。
<放熱材キット>
 本実施形態の放熱材キットは、金属粒子と、樹脂とを備え、上述した放熱材の製造に用いるための放熱材キットである。
 放熱材キットに含まれる金属粒子、樹脂及びその他の成分の詳細及び好ましい態様は、上述した放熱材及びその製造方法に記載した金属粒子、樹脂及びその他の成分の詳細及び好ましい態様と同様である。
 金属粒子はそのままの状態であっても、分散媒等を含む組成物の状態であってもよい。
 樹脂はあらかじめ成形された状態(樹脂フィルム等)であっても、成形されていなくてもよい。
 放熱材キットを用いて放熱材を製造する方法は、特に制限されない。例えば、上述した放熱材の製造方法であってもよい。
<発熱体>
 本実施形態の発熱体は、上述した実施形態の放熱材を備える。
 発熱体の種類は、特に制限されない。例えば、電子機器に含まれるIC(集積回路)、半導体素子等の電子部品、ヒートパイプなどが挙げられる。
 発熱体に放熱材が取り付けられる態様は、特に制限されない。例えば、粘着性を有する放熱材を直接取り付けても、接着材等を介して取り付けてもよい。
 発熱体に放熱材が取り付けられる際、放熱材における金属粒子層の位置が発熱体側寄りになるように取り付けても、放熱材における金属粒子層の位置が発熱体と逆側寄りになるように発熱体を取り付けてもよい。
 必要に応じ、発熱体は、放熱器を備えてもよい。この場合、発熱体の本体と放熱器の間に放熱材が介在していることが好ましい。発熱体の本体と放熱器の間に放熱材が介在していることで、優れた放熱性が達成される。放熱器としては、アルミニウム、鉄、銅等の金属からなる板、ヒートシンクなどが挙げられる。
 本体の放熱材が取り付けられる部分は、平面であっても、平面でなくてもよい。本体の放熱材が取り付けられる部分が平面でない場合は、可とう性を有する放熱材を用いて放熱材を取り付けてもよい。
 以下、実施例を参照して本開示をさらに詳細に説明する。ただし本開示は、以下の実施例に記載された内容に限定されるものではない。
<実施例1>
 基材レスのアクリル樹脂製両面テープ(100mm×100mm、厚み25μm)の片面上に、振動撹拌機を用いて解砕された銅粒子(体積平均粒子径:1.6μm)を5g置き、市販されている刷毛を用いて均一に銅粒子を敷き詰め、過剰な銅粒子をエアーダスターで除去することで、金属粒子層を形成した。金属粒子層を正面から観察したときの金属粒子の割合は、面積基準で80%以上であった。
 次に、ポリエチレンテレフタレート(PET)基材上に製膜されたアクリル樹脂フィルム(Tg:75℃、分子量:30,000、100mm×100mm、厚み25μm)を、金属粒子層の上に80℃で加熱しながらラミネートした。その後、PET基材を剥がし、両面テープ側の面を50mm×80mm、厚さ2mmのアルミニウム板に貼り付けて、サンプルを作製した。
 作製したサンプルの断面模式図を、図1に示す。図1に示すように、サンプル10は、厚み方向における中心に銅粒子が集まって形成された金属粒子層11と、その両側に配置される樹脂層12及び樹脂層13と、を備えている。また、樹脂層12側がアルミニウム板14に貼り付けられている。
 作製したサンプル(アルミニウム板を含む)の熱放射率を、放射率測定器(京都電子工業製、D and S AERD)を用いて、室温(25℃)下で測定した(測定波長域:3μm~30μm)。実施例1のサンプルの放射率は、0.9であった。
<実施例2>
 PET基材上に製膜されたアクリル樹脂フィルムの厚みを10μmに変更したこと以外は実施例1と同様にして、放熱材のサンプルを作製した。
 作製したサンプルの断面模式図を、図2に示す。図2に示すように、サンプル20は、厚み方向における中心よりもアルミニウム板24と逆の面側寄りに銅粒子が集まって形成された金属粒子層21と、その両側に配置される樹脂層22及び樹脂層23とを備えている。
<実施例3>
 アクリル樹脂製両面テープの厚みを10μmに変更したこと以外は実施例1と同様にして、放熱材のサンプルを作製した。
 作製したサンプルの断面模式図を、図3に示す。図3に示すように、サンプル30は、厚み方向における中心よりもアルミニウム板34側寄りに銅粒子が集まって形成された金属粒子層31と、その両側に配置されるアクリル樹脂層32及びアクリル樹脂層33とを備えている。
<比較例1>
 アクリル系樹脂100質量%に対して30質量%の酢酸ブチルを混合し、粘度を調整した組成物を調製した。この組成物を吹付塗装装置を用いて50mm×80mm、厚さ2mmのアルミニウム板の全面に吹付塗装し、組成物層を形成した。この組成物層を自然乾燥させ、60℃、30分で加熱硬化させて、膜厚が30μmのサンプルを作製した。
 実施例1と同様にして測定した比較例1のサンプルの放射率は、0.7であった。
<比較例2>
 比較例1と同じ組成物を吹付塗装装置を用いて50mm×80mm、厚さ2mmのアルミニウム板の全面に吹付塗装し、組成物層を形成した。この組成物層を自然乾燥させ、60℃、30分で加熱硬化させて、膜厚が100μmのサンプルを作製した。
 実施例1と同様にして測定した比較例2のサンプルの放射率は、0.9であった。
<比較例3>
 アクリル系樹脂95体積%と、二酸化ケイ素粒子(体積平均粒子径:2μm)5体積%とを含む市販の熱放射性塗料を、吹付塗装装置を用いて50mm×80mm、厚さ2mmのアルミニウム板に吹付塗装し、組成物層を形成した。この組成物層を自然乾燥させ、60℃、30分で加熱硬化させて、膜厚が30μmのサンプルを作製した。
 作製したサンプルの断面模式図を、図4に示す。図4に示すように、サンプル40は、二酸化ケイ素粒子41と樹脂42とを含み、二酸化ケイ素粒子41が樹脂42中の特定の部分に偏在せずに分散した構造を有している。
 実施例1と同様にして測定した比較例3のサンプルの放射率は、0.81であった。
<吸収波長スペクトルの比較>
 実施例1、比較例1及び比較例2で作製したサンプル(アルミニウム板を含む)の吸収波長スペクトルを、フーリエ変換赤外分光光度計により測定した。得られた吸収波長スペクトルをそれぞれ図5、6、7に示す。金属粒子層を備える実施例1(図5)は、金属粒子層を備えていない比較例1(図6)及び比較例2(図7)に比べ、特に10μm以下の波長域における吸収効率が増加していることが確認できる。
 比較例2のサンプルは、比較例1のサンプルに比べ、サンプルの厚みが増したことで8μm以上の波長域での吸収効率が増加し、比較例1よりも放射率が高くなっていることがわかる。一方、8μm未満の波長域での吸収効率はほとんど変化しないことがわかる。
<放熱性の評価>
 実施例及び比較例で作製したサンプルを用いて、下記の手法により放熱性の評価を行った。結果を表1に示す。
 市販の面状発熱体(ポリイミドヒーター)を一対のアルミニウム板(50mm×80mm、厚さ2mm)で挟む。一方のアルミニウム板として、実施例及び比較例で作製したサンプルを使用する。アルミニウム板の表面に、K熱電対をアルミニウム用はんだで接着する。
 この状態で、25℃に設定した恒温槽中央に静置し、アルミニウム板表面の温度変化を測定する。この際、ヒーターの出力は、サンプルでない方のアルミニウム板の表面温度が100℃になるように設定する。ヒーターは一定の熱量を発生しているので、サンプルの放熱効果が高いほど、アルミニウム板表面の温度は低下する。すなわち、サンプルの表面温度が低くなるほど放熱効果が高いといえる。測定したサンプルの表面温度(最高温度)を表1に示す。
Figure JPOXMLDOC01-appb-T000001

 
 表1に示すように、サンプルでない方のアルミニウム板の表面温度100℃に比べ、樹脂のみからなる組成物層を備えるサンプルを用いた比較例1及び比較例2では、表面温度が85℃、80℃に低減したが、実施例に比べるとその低減効果は小さい。これは、サンプルが金属粒子層を含まないために熱放射伝熱による放熱効果が実施例に比べて小さいためと考えられる。
 樹脂中に二酸化ケイ素粒子が一様に分散した状態のサンプルを用いた比較例3では、表面温度が78℃に低減したが、実施例に比べるとその低減効果は小さい。これは、二酸化ケイ素粒子が樹脂中に一様に分散しているために、表面プラズモン共鳴による放熱性の増幅効果が充分に得られていないためと考えられる。二酸化ケイ素粒子と銅粒子の放熱特性は同等であるため、銅粒子が樹脂中に分散した場合も比較例3のような結果を示すと考えられる。
<実施例7>
 図8に示すような電子機器の電子部品(発熱体)に、実施例1で作製したサンプルを貼り付けて、温度低減効果を調べた。
 図8に示す電子機器100は、電子部品101と、これらが実装された回路基板102とを含んでいる。電子部品101の上部には、実施例1で作製したサンプル103(アルミニウム板を除く)の樹脂層12側が取り付けられている。この電子機器を作動したところ、電子部品101の温度が125℃(サンプルなし)から95℃に低下した。
<実施例8>
 図9に示すような電子機器の電子部品(発熱体)に、実施例1で作製したサンプルを貼り付けて、温度低減効果を調べた。
 図9に示す電子機器200は、電子部品201と、これらが実装された回路基板202とを含んでいる。さらに、電子部品201の周囲が樹脂204で封止されている。電子部品201の上部には、実施例1で作製したサンプル203(アルミニウム板を除く)の樹脂層12側が貼り付けられている。この電子機器を作動したところ、電子部品201の温度が155℃(サンプルなし)から115℃に低下した。
<実施例9>
 図10に示すようなヒートパイプ(発熱体)に、実施例1で作製したサンプルを貼り付けて、温度低減効果を調べた。
 図10に示すヒートパイプ300はステンレス鋼の管301(直径32mm)であり、周囲に実施例2で作製したサンプル302(アルミニウム板を除く)の樹脂層12側が貼り付けられている。このヒートパイプの内部に90℃の水を流したところ、表面温度が85℃(サンプルなし)から68℃に低下した。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。

Claims (13)

  1.  金属粒子と樹脂とを含み、面方向に沿って配列した前記金属粒子が相対的に高密度で存在する領域を内部に有する、放熱材。
  2.  前記領域を正面から観察したときに、観察面に占める前記金属粒子の割合が面積基準で50%以上である、請求項1に記載の放熱材。
  3.  前記領域はフーリエ変換赤外分光光度計を用いて測定される前記放熱材の吸収波長スペクトルを変化させる機能を有する、請求項1又は請求項2に記載の放熱材。
  4.  前記放熱材の厚み方向の真ん中に前記領域を有する、請求項1~請求項3のいずれか1項に記載の放熱材。
  5.  発熱体に対向する面側寄りに前記領域を有する、請求項1~請求項3のいずれか1項に記載の放熱材。
  6.  発熱体に対向する面と逆の面側寄りに前記領域を有する、請求項1~請求項3のいずれか1項に記載の放熱材。
  7.  前記領域の厚みは0.1μm~100μmの範囲内である、請求項1~請求項6のいずれか1項に記載の放熱材。
  8.  前記放熱材全体の厚みに占める前記領域の厚みの割合は0.1%~99%の範囲内である、請求項1~請求項7のいずれか1項に記載の放熱材。
  9.  前記領域は前記金属粒子に由来する凹凸構造を表面に有する、請求項1~請求項8のいずれか1項に記載の放熱材。
  10.  下記(A)及び(B)を満たす領域1、領域2及び領域3をこの順に備える、請求項1~請求項9のいずれか1項に記載の放熱材。
     (A)領域2の波長2μm~6μmにおける電磁波の吸収率の積分値 > 領域1及び領域3の波長2μm~6μmにおける電磁波の吸収率の積分値
     (B)領域2の金属粒子占有率 > 領域1及び領域3の金属粒子占有率
  11.  第1の樹脂層の上に金属粒子を配置する工程と、上記金属粒子の上に第2の樹脂層を配置する工程と、をこの順に有する放熱材の製造方法。
  12.  金属粒子と、樹脂とを備え、請求項1~請求項10のいずれか1項に記載の放熱材の製造に用いるための放熱材キット。
  13.  請求項1~請求項10のいずれか1項に記載の放熱材を備える発熱体。
PCT/JP2019/035748 2018-10-04 2019-09-11 放熱材、放熱材の製造方法、放熱材キット及び発熱体 WO2020071073A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980064996.3A CN112888760A (zh) 2018-10-04 2019-09-11 散热材、散热材的制造方法、散热材套组及发热体
US17/281,997 US20210332281A1 (en) 2018-10-04 2019-09-11 Heat radiation material, method for producing heat radiation material, heat radiation material kit, and heat generator
JP2020550245A JPWO2020071073A1 (ja) 2018-10-04 2019-09-11 放熱材、放熱材の製造方法、放熱材キット及び発熱体
TW108136003A TW202024294A (zh) 2018-10-04 2019-10-04 散熱材、散熱材的製造方法、散熱材套組及發熱體

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/037247 WO2020070863A1 (ja) 2018-10-04 2018-10-04 放熱材、放熱材の製造方法、組成物及び発熱体
JPPCT/JP2018/037247 2018-10-04

Publications (1)

Publication Number Publication Date
WO2020071073A1 true WO2020071073A1 (ja) 2020-04-09

Family

ID=70055197

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2018/037247 WO2020070863A1 (ja) 2018-10-04 2018-10-04 放熱材、放熱材の製造方法、組成物及び発熱体
PCT/JP2019/035748 WO2020071073A1 (ja) 2018-10-04 2019-09-11 放熱材、放熱材の製造方法、放熱材キット及び発熱体
PCT/JP2019/035749 WO2020071074A1 (ja) 2018-10-04 2019-09-11 装置及び放熱方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037247 WO2020070863A1 (ja) 2018-10-04 2018-10-04 放熱材、放熱材の製造方法、組成物及び発熱体

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035749 WO2020071074A1 (ja) 2018-10-04 2019-09-11 装置及び放熱方法

Country Status (5)

Country Link
US (3) US20210351102A1 (ja)
JP (3) JPWO2020070863A1 (ja)
CN (3) CN112888758A (ja)
TW (3) TW202019268A (ja)
WO (3) WO2020070863A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7147598B2 (ja) * 2019-01-29 2022-10-05 株式会社デンソー 電源装置
JP2023179992A (ja) * 2022-06-08 2023-12-20 デクセリアルズ株式会社 積層体及びその製造方法
JP2023179996A (ja) * 2022-06-08 2023-12-20 デクセリアルズ株式会社 積層体及びその製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129215A (ja) * 1998-10-21 2000-05-09 Sekisui Chem Co Ltd 熱伝導性粘接着シート及びその製造方法
JP2005116946A (ja) * 2003-10-10 2005-04-28 Shin Etsu Polymer Co Ltd 放熱シートおよびその製造方法
JP2007269924A (ja) * 2006-03-30 2007-10-18 Toyoda Gosei Co Ltd 高熱伝導絶縁体とその製造方法
JP2010251377A (ja) * 2009-04-10 2010-11-04 Bridgestone Corp 電磁波吸収シート及びその製造方法
JP2011016953A (ja) * 2009-07-10 2011-01-27 Kyushu Univ 金属微粒子含有高分子フィルムとその製造方法および用途。
JP2013018233A (ja) * 2011-07-13 2013-01-31 Furukawa-Sky Aluminum Corp 樹脂被覆アルミニウム基材およびその製造方法
JP2013058701A (ja) * 2011-09-09 2013-03-28 Nitto Denko Corp 熱伝導性シートおよびその製造方法
JP2014009343A (ja) * 2012-07-02 2014-01-20 Hitachi Chemical Co Ltd 樹脂シート及びその製造方法、樹脂シート硬化物、並びに放熱用部材

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3410651B2 (ja) * 1998-02-06 2003-05-26 松下電器産業株式会社 半導体装置及びその製造方法
TW200405790A (en) * 2002-08-08 2004-04-01 Dainippon Printing Co Ltd Electromagnetic wave shielding sheet
WO2004086837A1 (ja) * 2003-03-25 2004-10-07 Shin-Etsu Polymer Co., Ltd. 電磁波ノイズ抑制体、電磁波ノイズ抑制機能付物品、およびそれらの製造方法
US7697304B2 (en) * 2004-07-27 2010-04-13 Dai Nippon Printing Co., Ltd. Electromagnetic wave shielding device
US20120285738A1 (en) * 2004-12-07 2012-11-15 Paul Douglas Cochrane Shielding Polymers Formed into Lattices Providing EMI Protection for Electronics Enclosures
JP4631877B2 (ja) * 2007-07-02 2011-02-16 スターライト工業株式会社 樹脂製ヒートシンク
TWI482940B (zh) * 2010-02-22 2015-05-01 Dexerials Corp Thermally conductive
KR101810258B1 (ko) * 2010-03-01 2017-12-18 신닛테츠 수미킨 가가쿠 가부시키가이샤 금속 미립자 복합체 및 그 제조 방법
JP4880793B1 (ja) * 2011-04-19 2012-02-22 有限会社 ナプラ 放熱部材及び電子機器
US20140248504A1 (en) * 2011-09-08 2014-09-04 Hitachi Chemical Company, Ltd. Resin composition, resin sheet, cured resin sheet, resin-adhered metal foil and heat dissipation device
CN202565640U (zh) * 2011-12-30 2012-11-28 深圳市爱诺菲科技有限公司 散热电磁波吸收贴片
KR20140093457A (ko) * 2013-01-18 2014-07-28 엘지전자 주식회사 방열 시트
JP6271164B2 (ja) * 2013-06-17 2018-01-31 日立オートモティブシステムズ株式会社 箱型車載制御装置
JP2016184706A (ja) * 2015-03-26 2016-10-20 大日本印刷株式会社 冷却構造および冷却部品
JP6514795B2 (ja) * 2018-02-21 2019-05-15 日立オートモティブシステムズ株式会社 電子制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129215A (ja) * 1998-10-21 2000-05-09 Sekisui Chem Co Ltd 熱伝導性粘接着シート及びその製造方法
JP2005116946A (ja) * 2003-10-10 2005-04-28 Shin Etsu Polymer Co Ltd 放熱シートおよびその製造方法
JP2007269924A (ja) * 2006-03-30 2007-10-18 Toyoda Gosei Co Ltd 高熱伝導絶縁体とその製造方法
JP2010251377A (ja) * 2009-04-10 2010-11-04 Bridgestone Corp 電磁波吸収シート及びその製造方法
JP2011016953A (ja) * 2009-07-10 2011-01-27 Kyushu Univ 金属微粒子含有高分子フィルムとその製造方法および用途。
JP2013018233A (ja) * 2011-07-13 2013-01-31 Furukawa-Sky Aluminum Corp 樹脂被覆アルミニウム基材およびその製造方法
JP2013058701A (ja) * 2011-09-09 2013-03-28 Nitto Denko Corp 熱伝導性シートおよびその製造方法
JP2014009343A (ja) * 2012-07-02 2014-01-20 Hitachi Chemical Co Ltd 樹脂シート及びその製造方法、樹脂シート硬化物、並びに放熱用部材

Also Published As

Publication number Publication date
US20210332281A1 (en) 2021-10-28
JPWO2020071073A1 (ja) 2021-09-09
TW202019268A (zh) 2020-05-16
JPWO2020071074A1 (ja) 2021-09-02
US20210345518A1 (en) 2021-11-04
WO2020070863A1 (ja) 2020-04-09
WO2020071074A1 (ja) 2020-04-09
CN112888758A (zh) 2021-06-01
TW202033729A (zh) 2020-09-16
JPWO2020070863A1 (ja) 2021-09-02
US20210351102A1 (en) 2021-11-11
CN112888759A (zh) 2021-06-01
TW202024294A (zh) 2020-07-01
CN112888760A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2020071073A1 (ja) 放熱材、放熱材の製造方法、放熱材キット及び発熱体
JP6349543B2 (ja) 冷却構造体および冷却構造体の製造方法
KR20160085253A (ko) 히트 싱크
JP6470004B2 (ja) 車載制御装置
WO2017086241A1 (ja) 放熱器、電子機器、照明機器および放熱器の製造方法
JP2017208505A (ja) 構造体、その構造体を含む電子部品および電子機器
JP2021044403A (ja) 放熱材、放熱材の製造方法及び発熱体
JP2005228855A (ja) 放熱器
JP6451451B2 (ja) 伝導性シートの製造方法
JP5495429B2 (ja) 放熱性複合シート
JP7077526B2 (ja) 複合部材
JP2022096533A (ja) 熱放射フィルム、熱放射フィルムの製造方法及び電子機器
JP2022096532A (ja) 熱放射フィルム、熱放射フィルムの製造方法及び電子機器
JP2022013411A (ja) 放熱材及びその製造方法、放熱材キット、並びに、放熱材形成用組成物
JP7425670B2 (ja) 放熱部材
KR20210071276A (ko) 향상된 수직 열전도도를 갖는 방열시트
JP7153828B1 (ja) 熱伝導性シート
KR20140075255A (ko) 열확산 시트 및 그 제조방법
KR101378500B1 (ko) 방열 플라스틱 조성물이 코팅된 히트싱크 장치
JP6501075B2 (ja) 樹脂構造体とその構造体を用いた電子部品及び電子機器
TWI651210B (zh) 複合多層石墨薄片結構及製造方法、散熱結構與電子裝置
JP2017212254A (ja) 半導体装置
JP6589124B2 (ja) 樹脂構造体とその構造体を用いた電子部品、電子機器
JP2020107771A (ja) 熱伝導性絶縁シート及び複合部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19868877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550245

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19868877

Country of ref document: EP

Kind code of ref document: A1