WO2020065831A1 - リチウムイオン二次電池 - Google Patents
リチウムイオン二次電池 Download PDFInfo
- Publication number
- WO2020065831A1 WO2020065831A1 PCT/JP2018/035973 JP2018035973W WO2020065831A1 WO 2020065831 A1 WO2020065831 A1 WO 2020065831A1 JP 2018035973 W JP2018035973 W JP 2018035973W WO 2020065831 A1 WO2020065831 A1 WO 2020065831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- positive electrode
- compound
- group
- ion secondary
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M2010/4292—Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
- H01M2300/0037—Mixture of solvents
Definitions
- the present technology relates to a lithium ion secondary battery including an electrolyte solution together with a positive electrode and a negative electrode.
- This lithium ion secondary battery is provided with an electrolytic solution together with a positive electrode and a negative electrode. Since the configuration of a lithium ion secondary battery has a great effect on battery characteristics, various studies have been made on the configuration of the lithium ion secondary battery. Specifically, in order to improve the cycle life, in a lithium ion secondary battery in which the electric capacity of the negative electrode is equal to or less than the electric capacity of the positive electrode, the negative electrode capable of inserting and removing lithium ions at 0.4 V (potential with respect to lithium) or more. An active material is used (for example, see Patent Document 1).
- the present technology has been made in view of such a problem, and an object of the present technology is to provide a lithium ion secondary battery capable of obtaining excellent battery characteristics.
- a lithium ion secondary battery includes a positive electrode, a negative electrode active material having a reaction potential of 0.5 V or more at a potential with respect to lithium, and a unit area equal to or less than an electrochemical capacity per unit area of the positive electrode.
- Negative electrode having an electrochemical capacity per unit, a solvent, an electrolyte salt, a diphenyl carbonate compound represented by the following formula (1), an unsaturated cyclic carbonate represented by the following formula (2), and a compound represented by the following formula (3)
- Each of R1 to R10 and R13 to R18 is any one of a hydrogen group, a halogen group, a monovalent hydrocarbon group and a monovalent halogenated hydrocarbon group.
- Each of R11 and R12 is divalent R19 and R20 each represent a divalent hydrocarbon group, a divalent oxygen-containing hydrocarbon group, or a divalent halogenated hydrocarbon group. Any of a hydrogen group and a divalent halogenated oxygen-containing hydrocarbon group, provided that each of R11, R12, R19 and R20 may be omitted, and that each of n1 and n2 is an integer of 1 or more. Is.
- the negative electrode contains the negative electrode active material having a reaction potential of 0.5 V (relative to lithium) or more, and the electrochemical capacity per unit area of the negative electrode is When the electrolyte capacity is not more than the electrochemical capacity per unit area, the electrolyte contains at least one of a diphenyl carbonate compound, an unsaturated cyclic carbonate, a first maleic anhydride compound and a second maleic anhydride compound. And excellent battery characteristics can be obtained.
- the effects of the present technology are not necessarily limited to the effects described here, and may be any of a series of effects related to the present technology described later.
- FIG. 2 is an enlarged cross-sectional view illustrating a configuration of a main part of the lithium ion secondary battery illustrated in FIG. 1. It is a perspective view showing the composition of other lithium ion secondary batteries (laminated film type) of one embodiment of this art.
- FIG. 4 is an enlarged cross-sectional view illustrating a configuration of a main part of the lithium ion secondary battery illustrated in FIG. 3.
- Lithium ion secondary battery (cylindrical type) 1-1. Configuration 1-2. Operation 1-3. Manufacturing method 1-4. Action and effect Lithium ion secondary battery (laminated film type) 2-1. Configuration 2-2. Operation 2-3. Manufacturing method 2-4. Action and effect Modified example 4. Applications of lithium ion secondary batteries
- Lithium ion secondary battery (cylindrical type)> First, a lithium ion secondary battery according to an embodiment of the present disclosure will be described.
- the lithium ion secondary battery described here includes a positive electrode 21 and a negative electrode 22 as described later.
- this lithium ion secondary battery is a secondary battery in which a battery capacity can be obtained by utilizing the lithium occlusion / release phenomenon, and more specifically, for example, by utilizing the lithium occlusion / release phenomenon.
- This is a secondary battery in which the capacity of the negative electrode 22 can be obtained.
- FIG. 1 shows a cross-sectional configuration of the lithium ion secondary battery
- FIG. 2 is an enlarged cross-sectional configuration of a main part (the wound electrode body 20) of the lithium ion secondary battery shown in FIG. .
- FIG. 2 shows only a part of the spirally wound electrode body 20.
- This lithium ion secondary battery is, for example, a cylindrical lithium ion secondary battery in which a battery element (rolled electrode body 20) is housed inside a cylindrical battery can 11, as shown in FIG. .
- the lithium ion secondary battery includes, for example, a pair of insulating plates 12 and 13 and a wound electrode body 20 inside a battery can 11.
- the wound electrode body 20 is, for example, a structure in which a positive electrode 21 and a negative electrode 22 are stacked on each other with a separator 23 interposed therebetween, and then the positive electrode 21, the negative electrode 22, and the separator 23 are wound.
- the wound electrode body 20 is impregnated with an electrolytic solution that is a liquid electrolyte.
- the battery can 11 has, for example, a hollow cylindrical structure in which one end is closed and the other end is open, and includes, for example, a metal material such as iron. However, the surface of the battery can 11 may be plated with a metal material such as nickel, for example.
- Each of the insulating plates 12 and 13 extends, for example, in a direction intersecting the spirally wound peripheral surface of the spirally wound electrode body 20 and is arranged so as to sandwich the spirally wound electrode body 20 therebetween.
- a battery cover 14, a safety valve mechanism 15, and a PTC element 16 are caulked via a gasket 17, so that the open end of the battery can 11 is , Sealed.
- the material for forming the battery lid 14 is, for example, the same as the material for forming the battery can 11.
- the safety valve mechanism 15 and the thermal resistance element 16 are provided inside the battery lid 14, and the safety valve mechanism 15 is electrically connected to the battery lid 14 via the thermal resistance element 16.
- the disk plate 15 ⁇ / b> A is inverted. Connection is lost.
- the electric resistance of the thermal resistance element 16 increases as the temperature rises in order to prevent abnormal heat generation due to a large current.
- the gasket 17 includes, for example, an insulating material. However, the surface of the gasket 17 may be coated with, for example, asphalt.
- a center pin 24 is inserted into a space 20C provided at the center of the wound electrode body 20.
- the center pin 24 does not have to be inserted into the space 20C, for example.
- a positive electrode lead 25 is connected to the positive electrode 21.
- the positive electrode lead 25 contains, for example, a conductive material such as aluminum.
- the positive electrode lead 25 is, for example, electrically connected to the battery cover 14 via the safety valve mechanism 15.
- a negative electrode lead 26 is connected to the negative electrode 22, and the negative electrode lead 26 includes, for example, a conductive material such as nickel.
- the negative electrode lead 26 is, for example, electrically connected to the battery can 11.
- the positive electrode 21 includes, for example, a positive electrode current collector 21A and a positive electrode active material layer 21B provided on the positive electrode current collector 21A, as shown in FIG.
- This positive electrode active material layer 21B may be provided, for example, only on one surface of the positive electrode current collector 21A, or may be provided on both surfaces of the positive electrode current collector 21A.
- FIG. 2 shows a case where, for example, the positive electrode active material layer 21B is provided on both surfaces of the positive electrode current collector 21A.
- the positive electrode current collector 21A contains, for example, a conductive material such as aluminum.
- the positive electrode active material layer 21B contains, as a positive electrode active material, one or more of positive electrode materials capable of inserting and extracting lithium.
- the positive electrode active material layer 21B may further include, for example, one or more of other materials such as a positive electrode binder and a positive electrode conductive agent.
- the positive electrode material contains, for example, a lithium compound, and the lithium compound is a general term for a compound containing lithium as a constituent element. This is because a high energy density can be obtained.
- the type of the lithium compound is not particularly limited, and examples thereof include a lithium composite oxide and a lithium phosphate compound.
- Lithium composite oxide is a general term for oxides containing lithium and one or more kinds of other elements as constituent elements, and has a crystal structure such as a layered rock salt type and a spinel type.
- the lithium phosphate compound is a general term for a phosphate compound containing lithium and one or more kinds of other elements as constituent elements, and has, for example, an olivine-type crystal structure.
- Other elements are elements other than lithium.
- the type of the other element is not particularly limited, but is preferably an element belonging to Group 2 to Group 15 of the long period type periodic table. This is because a high voltage can be obtained.
- the other elements are, for example, nickel, cobalt, manganese, iron, and the like.
- Lithium composite oxides having a layered rock salt type crystal structure include, for example, LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi Examples include 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 .
- the lithium composite oxide having a spinel-type crystal structure is, for example, LiMn 2 O 4 .
- lithium phosphate compound having an olivine-type crystal structure examples include LiFePO 4 , LiMnPO 4 , LiMn 0.5 Fe 0.5 PO 4 , LiMn 0.7 Fe 0.3 PO 4, and LiMn 0.75 Fe 0.25 PO 4 .
- the positive electrode material contains a material having a reaction potential of 4.0 V or higher (high reaction potential material) at a potential with respect to lithium (vs Li / Li + ). This is because the high reaction potential material is extremely stable at the time of charge and discharge, and the charge and discharge reaction easily proceeds stably.
- the type of the high reaction potential material is not particularly limited, and examples thereof include a lithium manganese iron phosphate compound which is one of the above lithium phosphate compounds.
- This lithium manganese iron phosphate compound is a phosphate compound containing lithium (Li), manganese (Mn), and iron (Fe) as constituent elements, and more specifically, for example, by the following formula (11) It is a compound represented.
- the lithium manganese iron phosphate compound may further contain one or more kinds of other metal elements (M11) as constituent elements.
- LiMn x Fe y M11 1-xy PO 4 ⁇ (11) M11 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), where x and y are 0 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 1 are satisfied.)
- the high reaction potential material is, for example, LiMn 0.5 Fe 0.5 PO 4 , LiMn 0.7 Fe 0.3 PO 4, and LiMn 0.75 Fe 0.25 PO 4 which do not contain the other metal element (M11) as a constituent element. And LiMn 0.75 Fe 0.20 Mg 0.05 PO 4 containing another metal element (M11) as a constituent element.
- the positive electrode binder contains, for example, a synthetic rubber and a polymer compound.
- the synthetic rubber is, for example, a styrene-butadiene rubber.
- the polymer compound is, for example, polyvinylidene fluoride and polyimide.
- the positive electrode conductive agent contains, for example, a conductive material such as a carbon material.
- This carbon material is, for example, graphite, carbon black, acetylene black, and Ketjen black.
- the positive electrode conductive agent may be a metal material, a conductive polymer, or the like.
- the negative electrode 22 includes, for example, a negative electrode current collector 22A and a negative electrode active material layer 22B provided on the negative electrode current collector 22A, as shown in FIG.
- the negative electrode active material layer 22B may be provided, for example, only on one surface of the negative electrode current collector 22A, or may be provided on both surfaces of the negative electrode current collector 22A.
- FIG. 2 shows a case where, for example, the negative electrode active material layer 22B is provided on both surfaces of the negative electrode current collector 22A.
- the negative electrode current collector 22A contains, for example, a conductive material such as copper.
- the surface of the negative electrode current collector 22A is preferably roughened using an electrolytic method or the like. This is because the adhesiveness of the anode active material layer 22B to the anode current collector 22A is improved by using the anchor effect.
- the negative electrode active material layer 22B contains, as a negative electrode active material, any one or more of negative electrode materials capable of inserting and extracting lithium. However, the negative electrode active material layer 22B may further include another material such as a negative electrode binder and a negative electrode conductive agent.
- the negative electrode material includes a material having a reaction potential of 0.5 V or more with respect to lithium (low reaction potential material). This is because the low reaction potential material is electrochemically stable as compared with a carbon material or the like, and thus has low electrochemical reactivity. Thereby, the decomposition reaction of the electrolytic solution caused by the reactivity of the negative electrode 22 is suppressed.
- the type of the low reaction potential material is not particularly limited, and examples thereof include a titanium-containing compound and a niobium-containing compound.
- the titanium-containing compound is a general term for a material containing titanium (Ti) as a constituent element, and includes, for example, a titanium oxide, a lithium-titanium composite oxide, and a titanium hydrogen compound.
- the niobium-containing compound is a general term for a material containing niobium (Nb) as a constituent element, and examples thereof include a lithium niobium composite oxide, a hydrogen niobium compound, and a titanium niobium composite oxide. Note that materials corresponding to the niobium-containing compound are excluded from the titanium-containing compound.
- the titanium oxide is, for example, a compound represented by the following formula (21), that is, bronze-type titanium oxide.
- the titanium oxide is, for example, anatase-type, rutile-type or brookite-type titanium oxide (TiO 2 ).
- the titanium oxide may be a composite oxide containing one or more of titanium, phosphorus, vanadium, tin, copper, nickel, iron, cobalt, and the like as a constituent element.
- This composite oxide is, for example, TiO 2 -P 2 O 5 , TiO 2 -V 2 O 5 , TiO 2 -P 2 O 5 -SnO 2 and TiO 2 -P 2 O 5 -MeO.
- Me is, for example, one or more of copper, nickel, iron, and cobalt.
- the potential at which the titanium oxide stores and releases lithium is, for example, 1 V to 2 V with respect to lithium.
- Lithium-titanium composite oxide is a general term for composite oxides containing lithium and titanium as constituent elements.
- the lithium-titanium composite oxide is, for example, a compound represented by each of the following formulas (22) to (24), that is, a ramsdellite-type lithium titanate.
- M22 shown in the formula (22) is a metal element that can be a divalent ion.
- M23 shown in the formula (23) is a metal element that can be a trivalent ion.
- M24 shown in the formula (24) is a metal element that can be a tetravalent ion.
- M22 is at least one of magnesium (Mg), calcium (Ca), copper (Cu), zinc (Zn) and strontium (Sr).
- X satisfies 0 ⁇ x ⁇ . )
- Li [Li y M23 1-3y Ti 1 + 2y ] O 4 (23) (M23 is at least one of aluminum (Al), scandium (Sc), chromium (Cr), manganese (Mn), iron (Fe), germanium (Ga), and yttrium (Y). Y is 0 ⁇ y ⁇ 1 / is satisfied.)
- M24 is at least one of vanadium (V), zirconium (Zr) and niobium (Nb). Z satisfies 0 ⁇ z ⁇ 2/3.
- the crystal structure of the lithium-titanium composite oxide is not particularly limited, but among them, a spinel type is preferable. This is because the battery characteristics are stabilized because the crystal structure does not easily change during charge and discharge.
- the lithium-titanium composite oxide represented by the formula (22) is, for example, Li 3.75 Ti 4.875 Mg 0.375 O 12 .
- the lithium titanium composite oxide represented by the formula (23) is, for example, LiCrTiO 4 or the like.
- the lithium-titanium composite oxide represented by the formula (24) is, for example, Li 4 Ti 5 O 12 and Li 4 Ti 4.95 Nb 0.05 O 12 .
- the hydrogen titanium compound is a general term for a composite oxide containing hydrogen and titanium as constituent elements.
- the hydrogen titanium compound is, for example, H 2 Ti 3 O 7 (3TiO 2 ⁇ 1H 2 O), H 6 Ti 12 O 27 (3TiO 2 ⁇ 0.75H 2 O), H 2 Ti 6 O 13 (3TiO 2 ⁇ 0.5H 2 O) , H 2 Ti 7 O 15 (3TiO 2 ⁇ 0.43H 2 O) and H 2 Ti 12 O 25 (3TiO 2 ⁇ 0.25H 2 O) and the like.
- the lithium-niobium composite oxide is a general term for a composite oxide containing lithium and niobium as constituent elements, and is, for example, LiNbO 2 .
- the niobium hydrogen compound is a general term for a composite oxide containing hydrogen and titanium as constituent elements, and is, for example, H 4 Nb 6 O 17 .
- the titanium-niobium composite oxide is a generic name of a composite oxide containing titanium and niobium as constituent elements, and includes, for example, TiNb 2 O 7 and Ti 2 Nb 10 O 29 .
- lithium may be intercalated.
- Intercalating amount of lithium to Chitan'niobu composite oxide is not particularly limited, for example, intercalating amount of lithium to TiNb 2 O 7 is a 4 equal amounts up to that TiNb 2 O 7.
- the charge termination electrode of the lithium ion secondary battery is the negative electrode 22. That is, the chargeable capacity of the negative electrode material included in the negative electrode 22 is equal to or smaller than the discharge capacity of the positive electrode 21, so that the charge reaction of the lithium ion secondary battery is Whether or not to end is determined according to the chargeable capacity of the negative electrode 22. This is because the charge / discharge reaction proceeds smoothly and stably using a low reaction potential material as the negative electrode active material.
- the fact that the electrochemical capacity per unit area of the negative electrode 22 is equal to or less than the electrochemical capacity per unit area of the positive electrode 21 means that the following two conditions described below are satisfied. ing. In the following, after defining a series of capacities (charge capacity and discharge capacity) relating to charge and discharge of the lithium ion secondary battery, two conditions will be described.
- Initial charge capacity Qc1 (mAh / cm 2 ) per unit area of positive electrode 21 [Initial charge capacity of the positive electrode active material qc1 (mAh / g) percentage of the positive electrode active material in the ⁇ cathode active material layer 21B rc ⁇ cathode active material layer 21B of the area density lc (mg / cm 2)] / 1000
- Initial discharge capacity Qc1 ′ per unit area of positive electrode 21 (mAh / cm 2 ) [First charge capacity of positive electrode active material qc1 (mAh / g) ⁇ First charge / discharge efficiency Ec1 of positive electrode 21 ⁇ Ratio rc of positive electrode active material in positive electrode active material layer 21B ⁇ Area density lc of positive electrode active material layer 21B (Mg / cm 2 )] / 1000 Charge capacity QcN (mAh / cm 2 ) for the second and subsequent times per unit area of positive electrode 21
- a series of capacities (charge capacity and discharge capacity) of the negative electrode 22 are as follows.
- Initial charge capacity Qa1 (mAh / cm 2 ) per unit area of negative electrode 22 [Initial charge capacity of negative electrode active material qa1 (mAh / g) ⁇ ratio of negative electrode active material in negative electrode active material layer 22B ⁇ area density la of negative electrode active material layer 22B (mg / cm 2 )] / 1000
- Initial discharge capacity Qa1 ′ per unit area of negative electrode 22 (mAh / cm 2 ) [Initial charge capacity qa1 (mAh / g) of negative electrode active material ⁇ initial charge / discharge efficiency Ea1 of negative electrode 22 ⁇ ratio of negative electrode active material in negative electrode active material layer 22B ⁇ area density la of negative electrode active material layer 22B (Mg / cm 2 )] / 1000
- Second and subsequent charge capacities QaN (mAh / cm 2 ) per unit area of the negative electrode 22 [Initial discharge capacity Qa1 ′ (mAh / g
- the amount of the negative electrode active material contained in the negative electrode 22 and the amount of the negative electrode active material contained in the positive electrode 21 are set such that the electrochemical capacity per unit area of the negative electrode 22 is equal to or less than the electrochemical capacity per unit area of the positive electrode 21.
- the amount of the positive electrode active material is adjusted to each other.
- the negative electrode material may further include, for example, one or more of the other negative electrode materials other than the low reaction potential material.
- Other negative electrode materials are, for example, carbon materials and metal-based materials.
- the carbon material is a general term for materials containing carbon as a constituent element, and includes, for example, graphitizable carbon, non-graphitizable carbon, and graphite.
- the metal-based material is a general term for a material containing any one or more of metal elements as constituent elements, and the metal element is, for example, silicon and tin. This metal-based material may be a simple substance, an alloy, a compound, a mixture of two or more of them, or a material containing one or two or more phases thereof.
- the metal-based material may include, for example, one or more of the metalloid elements.
- the metal-based material for example, Si, SiO v (0 ⁇ v ⁇ 2), Sn, SnO w (0 ⁇ w ⁇ 2), and the like SnSiO 3 and Mg 2 Sn.
- the details regarding the negative electrode binder are the same as the details regarding the positive electrode binder, for example.
- the details regarding the negative electrode conductive agent are, for example, the same as the details regarding the positive electrode conductive agent.
- the method for forming the negative electrode active material layer 22B is not particularly limited, and examples thereof include a coating method, a gas phase method, a liquid phase method, a thermal spraying method, and a firing method (sintering method).
- the coating method is, for example, a method in which a solution in which a mixture of a particle (powder) negative electrode active material and a negative electrode binder is dissolved or dispersed in an organic solvent or the like is applied to the negative electrode current collector 22A.
- the vapor phase method includes, for example, a physical deposition method and a chemical deposition method, and more specifically, a vacuum deposition method, a sputtering method, an ion plating method, a laser ablation method, a thermochemical vapor deposition, a chemical vapor deposition. Method (CVD) and plasma enhanced chemical vapor deposition.
- the liquid phase method includes, for example, an electrolytic plating method and an electroless plating method.
- the thermal spraying method is a method in which a molten or semi-molten anode active material is sprayed on the anode current collector 22A.
- the firing method is, for example, a method in which a solution is applied to the negative electrode current collector 22A using a coating method, and then the solution (coating film) is heat-treated at a temperature higher than the melting point of the negative electrode binder or the like.
- a solution is applied to the negative electrode current collector 22A using a coating method, and then the solution (coating film) is heat-treated at a temperature higher than the melting point of the negative electrode binder or the like.
- the separator 23 includes, for example, a porous film such as a synthetic resin and ceramic, and may be a laminated film in which two or more types of porous films are laminated.
- the synthetic resin is, for example, polyethylene.
- the separator 23 may include, for example, the above-described porous film (base layer) and a polymer compound layer provided on the base layer.
- This polymer compound layer may be provided, for example, on only one surface of the base material layer, or may be provided on both surfaces of the base material layer.
- the polymer compound layer contains, for example, a polymer compound such as polyvinylidene fluoride. This is because it has excellent physical strength and is electrochemically stable.
- the polymer compound layer may include, for example, insulating particles such as inorganic particles. This is because safety is improved.
- the type of the inorganic particles is not particularly limited, and examples thereof include aluminum oxide and aluminum nitride.
- the electrolytic solution is impregnated in the wound electrode body 20 as described above. For this reason, the electrolytic solution is impregnated in each of the positive electrode 21, the negative electrode 22, and the separator 23, for example.
- This electrolytic solution contains a solvent, an electrolyte salt, and an additive compound.
- the kind of the additive compound may be only one kind or two or more kinds. As described above, only one kind or two or more kinds may be used in the same manner for the solvent and the electrolyte salt.
- the additive compound is a compound added to the electrolytic solution (solvent and electrolyte salt).
- the additive compound is a diphenyl carbonate compound represented by the following formula (1), an unsaturated cyclic carbonate represented by the following formula (2), and a compound represented by the following formula (3). It contains one or more of a maleic anhydride compound and a second maleic anhydride compound represented by the following formula (4).
- Each of R1 to R10 and R13 to R18 is any one of a hydrogen group, a halogen group, a monovalent hydrocarbon group and a monovalent halogenated hydrocarbon group.
- Each of R11 and R12 is divalent R19 and R20 each represent a divalent hydrocarbon group, a divalent oxygen-containing hydrocarbon group, or a divalent halogenated hydrocarbon group. Any of a hydrogen group and a divalent halogenated oxygen-containing hydrocarbon group, provided that each of R11, R12, R19 and R20 may be omitted, and that each of n1 and n2 is an integer of 1 or more. Is.
- the electrolyte contains the additive compound because a good film derived from the additive compound is formed on the surface of the negative electrode 22 during the initial charge and discharge of the lithium ion secondary battery. Is electrochemically protected. Thereby, the chemical stability of the electrolyte is improved, and the decomposition reaction of the electrolyte is suppressed. In this case, in particular, generation of gas due to the decomposition reaction of the electrolytic solution is also suppressed.
- the additive compound is added to the electrolytic solution. Is contained, at the time of initial charge / discharge, that is, in a state where the reaction potential is low, a dense film having a multilayer structure is formed on the surface of the negative electrode 22. The decomposition reaction of the electrolytic solution on the surface of the negative electrode 22 is suppressed.
- the balance between the discharge capacity of the positive electrode 21 and the charge capacity of the negative electrode 22 does not easily deviate from an appropriate state even after repeated charging and discharging.
- the electrochemical capacity per unit area of the negative electrode 22 is equal to or less than the electrochemical capacity per unit area of the positive electrode 21, the high discharge potential band of the positive electrode 21 is not used in the charging / discharging process. The deterioration reaction of the cathode 21 is suppressed, and the increase in electric resistance due to the deterioration of the cathode 21 is also suppressed.
- the lithium ion secondary battery in which the coating derived from the additive compound is formed on the surface of the negative electrode 22, the lithium ion secondary battery is charged and discharged in a severe environment such as a high temperature environment and a low temperature environment, and the severe environment Even when the lithium ion secondary battery is stored in the inside, the decomposition reaction of the electrolytic solution is significantly suppressed.
- the diphenyl carbonate compound is a compound having diphenyl carbonate as a skeleton as shown in the formula (1).
- the kind of the diphenyl carbonate compound may be only one kind or two or more kinds.
- each of R1 to R10 is not particularly limited as long as it is any one of a hydrogen group, a halogen group, a monovalent hydrocarbon group and a monovalent halogenated hydrocarbon group.
- the halogen group is, for example, any one of a fluorine group (-F), a chlorine group (-Cl), a bromine group (-Br) and an iodine group (-I).
- the monovalent hydrocarbon group is a general term for a monovalent group composed of carbon (C) and hydrogen (H).
- the monovalent hydrocarbon group may be, for example, linear, branched having one or more side chains, or cyclic, and two or more of them are bonded to each other. The state may be performed. Further, the monovalent hydrocarbon group may contain, for example, one or more carbon-carbon unsaturated bonds, or may not contain the carbon-carbon unsaturated bonds.
- the monovalent hydrocarbon group includes, for example, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an aryl group, and a monovalent bonding group.
- the monovalent bonding group is a monovalent group in which two or more of an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, and an aryl group are bonded to each other.
- the type of the alkyl group is not particularly limited, but examples include a methyl group, an ethyl group, a propyl group, and a butyl group.
- the type of the alkenyl group is not particularly limited, but includes, for example, an ethenyl group, a propenyl group and a butenyl group.
- the type of the alkynyl group is not particularly limited, examples thereof include an ethynyl group, a propynyl group, and a butynyl group.
- the type of the cycloalkyl group is not particularly limited, and examples thereof include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
- the type of the aryl group is not particularly limited, but includes, for example, a phenyl group and a naphthyl group.
- the type of the monovalent linking group is not particularly limited, but is, for example, a benzyl group.
- the number of carbon atoms in the alkyl group is not particularly limited, but is, for example, 1 to 4.
- the carbon number of each of the alkenyl group and the alkynyl group is not particularly limited, but is, for example, 2 to 4.
- the carbon number of the cycloalkyl group is not particularly limited, but is, for example, 3 to 6.
- the carbon number of the aryl group is not particularly limited, but is, for example, 6 to 14. This is because the solubility and compatibility of the diphenyl carbonate compound are improved.
- a monovalent halogenated hydrocarbon group is a group in which one or more hydrogen groups (—H) among the above-mentioned monovalent hydrocarbon groups are substituted with a halogen group.
- the details regarding the halogen group contained in the monovalent halogenated hydrocarbon group are, for example, the same as the details regarding the above-described halogen group.
- the kind of the halogen group contained in the monovalent halogenated hydrocarbon group may be, for example, only one kind or two or more kinds.
- each of R11 and R12 is not particularly limited as long as it is any one of a divalent hydrocarbon group and a divalent halogenated hydrocarbon group.
- the divalent hydrocarbon group is a general term for a divalent group composed of carbon and hydrogen.
- the divalent hydrocarbon group may be, for example, linear, branched having one or more side chains, or cyclic, and two or more of them may be bonded to each other. The state may be performed. Further, the divalent hydrocarbon group may contain, for example, one or more carbon-carbon unsaturated bonds, or may not contain the carbon-carbon unsaturated bonds.
- examples of the divalent hydrocarbon group include an alkylene group, an alkenylene group, an alkynylene group, a cycloalkylene group, an arylene group, and a divalent bonding group.
- the divalent bonding group is a divalent group in which two or more of an alkylene group, an alkenylene group, an alkynylene group, a cycloalkylene group, and an arylene group are bonded to each other.
- the type of the alkylene group is not particularly limited, but includes, for example, a methylene group, an ethylene group, a propylene group and a butylene group.
- the type of alkenylene group is not particularly limited, and examples thereof include an ethenylene group, a propenylene group, and a butenylene group.
- the type of the alkynylene group is not particularly limited, and examples thereof include an ethynylene group, a propynylene group, and a butynylene group.
- the type of the cycloalkylene group is not particularly limited, examples thereof include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, and a cyclohexylene group.
- the type of the arylene group is not particularly limited, but includes, for example, a phenylene group and a naphthylene group.
- the type of the divalent linking group is not particularly limited, but is, for example, a benzylene group.
- the number of carbon atoms of the alkylene group is not particularly limited, but is, for example, 1 to 4.
- the carbon number of each of the alkenylene group and the alkynylene group is not particularly limited, but is, for example, 2 to 4.
- the carbon number of the cycloalkylene group is not particularly limited, it is, for example, 3 to 6.
- the carbon number of the arylene group is not particularly limited, but is, for example, 6 to 14. This is because the solubility and compatibility of the second maleic anhydride compound are improved.
- the divalent halogenated hydrocarbon group is a group in which one or two or more hydrogen groups of the above-mentioned divalent hydrocarbon groups are substituted with a halogen group.
- the details regarding the halogen group contained in the divalent halogenated hydrocarbon group are, for example, the same as the details regarding the above-described halogen group.
- the kind of the halogen group contained in the divalent halogenated hydrocarbon group may be, for example, only one kind or two or more kinds.
- each of R11 and R12 may be omitted. That is, only R11 may not be provided, only R12 may not be provided, or both R11 and R12 may not be provided.
- diphenyl carbonate compound examples include diphenyl carbonate, dibenzyl carbonate, dibenzyl dicarbonate, and bis (pentafluorophenyl) carbonate.
- the unsaturated cyclic carbonate is a carbonate having a carbon-carbon unsaturated bond (carbon-carbon double bond) inside the ring.
- the type of unsaturated cyclic carbonate may be only one type, or two or more types.
- each of R13 and R14 is not particularly limited as long as it is any one of a hydrogen group, a halogen group, a monovalent hydrocarbon group and a monovalent halogenated hydrocarbon group.
- the details regarding each of the halogen group, the monovalent hydrocarbon group and the monovalent halogenated hydrocarbon group are as described above.
- examples of the unsaturated cyclic carbonate include vinylene carbonate (1,3-dioxol-2-one), methylvinylene carbonate (4-methyl-1,3-dioxol-2-one), and ethylvinylene carbonate. (4-ethyl-1,3-dioxol-2-one), 4,5-dimethyl-1,3-dioxol-2-one, 4,5-diethyl-1,3-dioxol-2-one, 4- And fluoro-1,3-dioxol-2-one and 4-trifluoromethyl-1,3-dioxol-2-one.
- the first maleic anhydride compound is a compound having maleic anhydride as a skeleton as shown in the formula (3).
- the type of the first maleic anhydride compound may be only one type or two or more types.
- each of R15 and R16 is not particularly limited as long as it is any one of a hydrogen group, a halogen group, a monovalent hydrocarbon group and a monovalent halogenated hydrocarbon group.
- the details regarding each of the halogen group, the monovalent hydrocarbon group and the monovalent halogenated hydrocarbon group are as described above.
- the first maleic anhydride compound includes, for example, maleic anhydride, 2,3-dimethyl maleic anhydride, 2.5-dihydro-2,5-dioxo-3-furanacetic acid, citraconic anhydride, and the like. is there.
- the second maleic anhydride compound is a compound having polymaleic anhydride as a skeleton as shown in the formula (4).
- the type of the second maleic anhydride compound may be only one type or two or more types.
- each of R17 and R18 is not particularly limited as long as it is any one of a hydrogen group, a halogen group, a monovalent hydrocarbon group and a monovalent halogenated hydrocarbon group.
- the details regarding each of the halogen group, the monovalent hydrocarbon group and the monovalent halogenated hydrocarbon group are as described above.
- Each of R19 and R20 is, as described above, a divalent hydrocarbon group, a divalent oxygen-containing hydrocarbon group, a divalent halogenated hydrocarbon group, and a divalent halogenated oxygen-containing hydrocarbon group. Any one is not particularly limited. Details regarding each of the divalent hydrocarbon group and the divalent halogenated hydrocarbon group are as described above.
- the divalent oxygen-containing hydrocarbon group is a general term for a group in which one or two or more ether bonds (—O—) have been introduced into the above-described divalent hydrocarbon group. It may be introduced into a divalent hydrocarbon group as a part of a functional group containing oxygen as a constituent element.
- the type of the functional group is not particularly limited, but is, for example, one or more of an alkoxy group, a carbonyl group, a carboxy group, and the like.
- the carbon number of the alkoxy group is not particularly limited, but is, for example, 1 to 4.
- examples of the alkoxy group include a methoxy group and an ethoxy group.
- the divalent halogenated oxygen-containing hydrocarbon group is a group in which one or two or more hydrogen groups of the above-described divalent oxygen-containing hydrocarbon groups are substituted with a halogen group.
- the details regarding the halogen group contained in the divalent halogenated oxygen-containing hydrocarbon group are, for example, the same as the details regarding the above-described halogen group.
- the kind of the halogen group contained in the divalent halogenated oxygen-containing hydrocarbon group may be, for example, only one kind or two or more kinds.
- each of R19 and R20 may be omitted. That is, only R19 may not be provided, only R20 may not be provided, or both R19 and R20 may not be provided.
- the second maleic anhydride compound is preferably a compound represented by the following formula (5). This is because a film derived from the second maleic anhydride compound is more easily formed, and the film quality of the film is further improved.
- R21 is any one of a divalent hydrocarbon group, a divalent oxygen-containing hydrocarbon group, a divalent halogenated hydrocarbon group and a divalent oxygen-containing hydrocarbon group.
- N2 is 1 or more Is an integer.
- the second maleic anhydride compound represented by the formula (5) has, in the formula (4), each of R17 and R18 is a hydrogen group and has R19 (R21 in the formula (5)). The compound does not have.
- R21 is any one of a divalent hydrocarbon group, a divalent oxygen-containing hydrocarbon group, a divalent halogenated hydrocarbon group, and a divalent halogenated oxygen-containing hydrocarbon group.
- a divalent hydrocarbon group a divalent oxygen-containing hydrocarbon group
- a divalent halogenated hydrocarbon group a divalent halogenated oxygen-containing hydrocarbon group.
- the weight average molecular weight of the second maleic anhydride compound is not particularly limited, and can be arbitrarily set. That is, in the second maleic anhydride compound represented by the formula (4), the value of n2 can be arbitrarily set. Similarly, in the second maleic anhydride compound represented by the formula (5), the value of n3 can be arbitrarily set.
- the weight average molecular weight of the second maleic anhydride is, for example, 10,000 to 1,000,000.
- the second maleic anhydride compound is, for example, an ethylene-maleic anhydride copolymer in which R21 is an ethylene group (—C 2 H 4 —), and R21 is a normal propylene group (—C 3 H 6 —).
- the additive compound is preferably a second maleic anhydride compound.
- the second maleic anhydride compound which is a polymer material
- the electrolytic solution as an additive compound
- a film is formed at the time of initial charge and discharge as described above.
- the polymer material is unlikely to be electrochemically decomposed at the time of initial charge and discharge
- a film having a regular structure is formed. That is, at the time of the initial charge and discharge, the second maleic anhydride compound, which is a polymer material, coats the surface of the negative electrode 22 as it is without performing an electrochemical reaction. A film having the reflected dense film quality is formed. Thereby, the chemical stability of the electrolytic solution is sufficiently improved, and the decomposition reaction of the electrolytic solution is sufficiently suppressed.
- the content of the additive compound in the electrolytic solution that is, the total content of the diphenyl compound, the unsaturated cyclic carbonate, the first maleic anhydride compound, and the second maleic anhydride compound in the electrolytic solution is not particularly limited. Among them, the total content of the additive compounds is preferably from 0.1% by weight to 10% by weight, more preferably from 0.3% by weight to 2% by weight. This is because the chemical stability of the electrolytic solution is sufficiently improved while ensuring the solubility and compatibility of the additive compound.
- the content of each of the diphenyl compound, the unsaturated cyclic carbonate and the first maleic anhydride compound in the electrolytic solution is determined. Is preferably 0.1 to 10% by weight, more preferably 0.3 to 2% by weight.
- the content of the second maleic anhydride compound in the electrolytic solution is preferably 0.1% by weight to 10% by weight, more preferably 0.15% by weight. More preferably, it is 3.5% by weight.
- the solvent is, for example, one or more of non-aqueous solvents (organic solvents) and the like.
- the electrolyte containing a non-aqueous solvent is a so-called non-aqueous electrolyte.
- the type of the non-aqueous solvent is not particularly limited, and examples thereof include a cyclic carbonate, a chain carbonate, a lactone, a chain carboxylate, and a nitrile (mononitrile) compound.
- the cyclic carbonate is, for example, ethylene carbonate and propylene carbonate.
- the chain carbonate is, for example, dimethyl carbonate and diethyl carbonate.
- Lactones are, for example, ⁇ -butyrolactone and ⁇ -valerolactone.
- Examples of the chain carboxylic acid ester include methyl acetate, ethyl acetate, and methyl propionate.
- Nitrile compounds include, for example, acetonitrile, methoxyacetonitrile and 3-methoxypropionitrile.
- the non-aqueous solvent may be, for example, another unsaturated cyclic carbonate, halogenated carbonate, sulfonic acid ester, acid anhydride, dicyano compound (dinitrile compound), diisocyanate compound, phosphate ester, or the like.
- unsaturated cyclic carbonates are, for example, vinyl ethylene carbonate and methylene ethylene carbonate.
- halogenated carbonate include 4-fluoro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolan-2-one and fluoromethylmethyl carbonate.
- the sulfonic acid ester include 1,3-propane sultone and 1,3-propene sultone.
- Examples of the acid anhydride include succinic anhydride, glutaric anhydride, maleic anhydride, ethanedisulfonic anhydride, propanedisulfonic anhydride, sulfobenzoic anhydride, sulfopropionic anhydride, and sulfobutyric anhydride.
- the dinitrile compound is, for example, succinonitrile, glutaronitrile, adiponitrile, phthalonitrile and the like.
- the diisocyanate compound is, for example, hexamethylene diisocyanate.
- Phosphate esters include, for example, trimethyl phosphate and triethyl phosphate.
- the electrolyte salt is, for example, one or more of lithium salts and the like.
- the type of the lithium salt is not particularly limited.
- the content of the electrolyte salt is not particularly limited, but is, for example, 0.3 mol / kg or more and 3.0 mol / kg or less based on the solvent.
- lithium ions are released from the positive electrode 21 and the lithium ions are occluded in the negative electrode 22 via the electrolytic solution.
- lithium ions are released from the negative electrode 22 and the lithium ions are occluded in the positive electrode 21 via the electrolytic solution.
- a positive electrode mixture is prepared by mixing a positive electrode active material and, if necessary, a positive electrode binder and a positive electrode conductive agent. Subsequently, the positive electrode mixture slurry is prepared by dispersing or dissolving the positive electrode mixture in an organic solvent or the like. Finally, the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A, and then the positive electrode mixture slurry is dried to form the positive electrode active material layer 21B. Thereafter, the positive electrode active material layer 21B may be compression molded using a roll press or the like. In this case, the positive electrode active material layer 21B may be heated, or compression molding may be repeated a plurality of times.
- a negative electrode active material layer 22B is formed on both surfaces of the negative electrode current collector 22A by a procedure similar to the above-described procedure for manufacturing the positive electrode 21. Specifically, by mixing a negative electrode active material and, if necessary, a negative electrode binder and a negative electrode conductive agent, a negative electrode mixture is formed, and then the negative electrode mixture is dispersed or dissolved in an organic solvent or the like. Thus, a paste-like negative electrode mixture slurry is prepared. Subsequently, after applying the negative electrode mixture slurry to both surfaces of the negative electrode current collector 22A, the negative electrode mixture slurry is dried to form the negative electrode active material layer 22B. Thereafter, the negative electrode active material layer 22B may be compression molded.
- the solvent is stirred by adding the electrolyte salt to the solvent, the solvent is further stirred by adding the additional compound to the solvent.
- the additive compound is one or more of a diphenyl carbonate compound, an unsaturated cyclic carbonate, a first maleic anhydride compound, and a second maleic anhydride compound.
- the cathode lead 25 is connected to the cathode current collector 21A using a welding method or the like, and the anode lead 26 is connected to the anode current collector 22A using a welding method or the like.
- the positive electrode 21 and the negative electrode 22 are stacked on each other with the separator 23 interposed therebetween, the positive electrode 21, the negative electrode 22, and the separator 23 are wound to form a wound body.
- the center pin 24 is inserted into the space 20C provided at the center of the winding body.
- the wound body is housed inside the battery can 11 together with the insulating plates 12 and 13.
- the positive electrode lead 25 is connected to the safety valve mechanism 15 using a welding method or the like
- the negative electrode lead 26 is connected to the battery can 11 using a welding method or the like.
- the electrolytic solution is injected into the battery can 11 to impregnate the wound body with the electrolytic solution.
- each of the positive electrode 21, the negative electrode 22, and the separator 23 is impregnated with the electrolytic solution, so that the wound electrode body 20 is formed.
- the negative electrode 22 contains a low reaction potential material as the negative electrode active material, and the electrochemical capacity per unit area of the negative electrode 22 is reduced by the electric capacity per unit area of the positive electrode 21.
- the electrolytic solution contains an additive compound.
- This additive compound contains one or more of a diphenyl carbonate compound, an unsaturated cyclic carbonate, a first maleic anhydride compound and a second maleic anhydride compound.
- the negative electrode 22 contains the low reaction potential material as the negative electrode active material, and the electrochemical capacity per unit area of the negative electrode 22 is equal to or less than the electrochemical capacity per unit area of the positive electrode 21. Even in such a case, a good film is formed so as to cover the surface of the negative electrode 22 at the time of initial charge and discharge, so that the decomposition reaction of the electrolytic solution is suppressed. Therefore, excellent battery characteristics can be obtained even when a low reaction potential material is used as the negative electrode active material.
- the electrolytic solution contains the second maleic anhydride compound, a film is easily formed and the film quality of the film is improved, so that a higher effect can be obtained.
- the second maleic anhydride compound is a compound represented by the formula (5), a film is more easily formed and the film quality of the film is further improved, so that a higher effect can be obtained. it can.
- the negative electrode active material (low reaction potential material) contains titanium oxide or the like, the decomposition reaction of the electrolytic solution is suppressed also by the electrochemical stability (low reactivity) of the negative electrode active material, Higher effects can be obtained.
- the content of the additive compound in the electrolytic solution is from 0.1% by weight to 10% by weight, the chemical stability of the electrolytic solution is sufficiently improved while the solubility of the additive compound is ensured. Higher effects can be obtained.
- the positive electrode active material contains a high reaction potential material as the positive electrode active material
- the decomposition reaction of the electrolytic solution is suppressed also by the electrochemical stability (low reactivity) of the high reaction potential material. High effects can be obtained.
- the high reaction potential material contains a lithium manganese iron phosphate compound
- the decomposition reaction of the electrolytic solution is further suppressed, so that a higher effect can be obtained.
- FIG. 3 shows a perspective configuration of another lithium ion secondary battery
- FIG. 4 shows a main portion of the lithium ion secondary battery along the line IV-IV shown in FIG. ) Is enlarged.
- FIG. 4 shows a state in which the wound electrode body 30 and the exterior member 40 are separated from each other.
- a battery element (rolled electrode body 30) is housed inside a flexible (or flexible) film-shaped exterior member 40. It is a laminated film type lithium ion secondary battery.
- the wound electrode body 30 is, for example, a structure in which a positive electrode 33 and a negative electrode 34 are stacked on each other via a separator 35 and an electrolyte layer 36, and then the positive electrode 33, the negative electrode 34, the separator 35, and the electrolyte layer 36 are wound. It is.
- the surface of the spirally wound electrode body 30 is protected by, for example, a protective tape 37.
- the electrolyte layer 36 is interposed, for example, between the positive electrode 33 and the separator 35 and is interposed between the negative electrode 34 and the separator 35.
- a positive electrode lead 31 is connected to the positive electrode 33, and the positive electrode lead 31 is led from the inside of the exterior member 40 to the outside.
- the material for forming the positive electrode lead 31 is, for example, the same as the material for forming the positive electrode lead 25, and the shape of the positive electrode lead 31 is, for example, a thin plate shape or a mesh shape.
- a negative electrode lead 32 is connected to the negative electrode 34, and the negative electrode lead 32 is led out from the inside of the exterior member 40 to the outside.
- the lead-out direction of the negative electrode lead 32 is, for example, the same as the lead-out direction of the positive electrode lead 31.
- the material for forming the negative electrode lead 32 is, for example, the same as the material for forming the negative electrode lead 26, and the shape of the negative electrode lead 32 is, for example, the same as the shape of the positive electrode lead 31.
- the exterior member 40 is, for example, a single film that can be folded in the direction of the arrow R illustrated in FIG.
- a recess 40U for accommodating the wound electrode body 30, for example, is provided in a part of the exterior member 40.
- the exterior member 40 is, for example, a laminate (laminated film) in which a fusion layer, a metal layer, and a surface protection layer are laminated in this order from the inside to the outside.
- the fusion layer is, for example, a film containing a polymer compound such as polypropylene.
- the metal layer is, for example, a metal foil containing a metal material such as aluminum.
- the surface protective layer is, for example, a film containing a polymer compound such as nylon.
- the exterior member 40 is, for example, two laminated films, and the two laminated films may be bonded to each other via, for example, an adhesive.
- the adhesive film 41 is inserted between the exterior member 40 and the positive electrode lead 31, for example, to prevent invasion of outside air.
- the adhesive film 41 includes a material having adhesiveness to the positive electrode lead 31, and the material is, for example, a polyolefin resin such as polypropylene.
- An adhesive film 42 having the same function as the adhesive film 41 is inserted between the exterior member 40 and the negative electrode lead 32, for example.
- the material for forming the adhesive film 42 is the same as the material for forming the adhesive film 41 except that the material for the adhesive film 42 has adhesiveness to the negative electrode lead 32 instead of the positive electrode lead 31.
- the positive electrode 33 includes, for example, a positive electrode current collector 33A and a positive electrode active material layer 33B
- the negative electrode 34 includes, for example, a negative electrode current collector 34A and a negative electrode active material layer 34B.
- the respective configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A, and the negative electrode active material layer 34B include, for example, the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A, and the negative electrode.
- the configuration is the same as that of each of the active material layers 22B.
- the negative electrode 34 contains a low reaction potential material as a negative electrode active material, and the electrochemical capacity per unit area of the negative electrode 34 is equal to or less than the electrochemical capacity per unit area of the positive electrode 33.
- the configuration of the separator 35 is, for example, the same as the configuration of the separator 23.
- the electrolyte layer 36 contains a polymer compound together with the electrolytic solution. Since the electrolyte layer 36 described here is a so-called gel electrolyte, the electrolyte solution is held in the electrolyte layer 36 by a polymer compound. This is because high ionic conductivity (for example, 1 mS / cm or more at room temperature) can be obtained and electrolyte leakage can be prevented. However, the electrolyte layer 36 may further include, for example, other materials such as various additives.
- the composition of the electrolyte is as described above. That is, the electrolytic solution contains the additive compound together with the solvent and the electrolyte salt.
- the polymer compound includes, for example, one or both of a homopolymer and a copolymer.
- the homopolymer is, for example, polyvinylidene fluoride
- the copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropyrene.
- the solvent contained in the electrolytic solution is a broad concept including not only a liquid material but also a material having ion conductivity capable of dissociating an electrolyte salt. Therefore, when a high molecular compound having ion conductivity is used, the high molecular compound is also included in the solvent.
- lithium ions are released from the positive electrode 33 and the lithium ions are occluded in the negative electrode 34 via the electrolyte layer 36.
- lithium ions are released from the negative electrode 34 and the lithium ions are occluded in the positive electrode 33 via the electrolyte layer 36.
- the lithium ion secondary battery including the electrolyte layer 36 is manufactured by, for example, three types of procedures described below.
- the positive electrode 33 is manufactured by forming the positive electrode active material layers 33B on both surfaces of the positive electrode current collector 33A in the same procedure as the manufacturing procedure of the positive electrode 21.
- the negative electrode 34 is manufactured by forming the negative electrode active material layers 34B on both surfaces of the negative electrode current collector 34A in the same procedure as the manufacturing procedure of the negative electrode 22.
- a precursor solution is prepared by mixing the electrolytic solution, a polymer compound, an organic solvent and the like. Subsequently, after applying the precursor solution to the positive electrode 33, the precursor solution is dried to form the electrolyte layer 36. After applying the precursor solution to the negative electrode 34, the precursor solution is dried to form the electrolyte layer 36. Subsequently, the positive electrode lead 31 is connected to the positive electrode current collector 33A using a welding method or the like, and the negative electrode lead 32 is connected to the negative electrode current collector 34A using a welding method or the like.
- the wound electrode body 30 is formed by winding the positive electrode 33, the negative electrode 34, the separator 35, and the electrolyte layer 36. Form. Subsequently, a protective tape 37 is attached to the surface of the wound electrode body 30.
- the outer peripheral edges of the exterior member 40 are bonded to each other by using a heat fusion method or the like.
- the adhesive film 41 is inserted between the exterior member 40 and the positive electrode lead 31, and the adhesive film 42 is inserted between the exterior member 40 and the negative electrode lead 32.
- the spirally wound electrode body 30 is sealed inside the exterior member 40, and thus the lithium ion secondary battery is completed.
- the mixture is stirred to form an electrolyte.
- the composition is prepared.
- the exterior member 40 is sealed using a heat fusion method or the like.
- a monomer is thermally polymerized to form a polymer compound.
- the electrolyte solution is held by the polymer compound, so that the electrolyte layer 36 is formed. Therefore, since the wound electrode body 30 is sealed inside the exterior member 40, the lithium ion secondary battery is completed.
- a wound body is prepared by the same procedure as the above-described second procedure except that a separator 35 having a polymer compound layer provided on both surfaces of a base material layer is used, and then a bag-shaped exterior member is formed.
- the wound body is housed inside 40.
- an electrolyte solution is injected into the exterior member 40
- the opening of the exterior member 40 is sealed using a heat fusion method or the like.
- the separator 35 is brought into close contact with each of the positive electrode 33 and the negative electrode 34 via the polymer compound layer by heating the outer member 40 while applying a load to the outer member 40.
- the polymer compound layer impregnated with the electrolytic solution is gelled, so that the electrolyte layer 36 is formed. Therefore, since the wound electrode body 30 is sealed inside the exterior member 40, the lithium ion secondary battery is completed.
- the lithium ion secondary battery is less likely to swell than in the first procedure. Further, in the third procedure, the solvent and the monomer (raw material of the polymer compound) hardly remain in the electrolyte layer 36 as compared with the second procedure, so that the positive electrode 33, the negative electrode 34, and the separator 35 The electrolyte layer 36 is sufficiently adhered.
- the negative electrode 34 contains a low reaction potential material as a negative electrode active material, and the electrochemical capacity per unit area of the negative electrode 34 is When the capacity is equal to or less than the electrochemical capacity, the electrolyte contained in the electrolyte layer 36 contains the additive compound. Therefore, for the same reason as the cylindrical lithium ion secondary battery, the decomposition reaction of the electrolytic solution is suppressed, so that excellent battery characteristics can be obtained.
- the other functions and effects of the laminated film type lithium ion secondary battery are the same as those of the cylindrical lithium ion secondary battery.
- the laminated film type lithium ion secondary battery may include an electrolytic solution instead of the electrolyte layer 36.
- the electrolytic solution is impregnated into each of the positive electrode 33, the negative electrode 34, and the separator 35.
- the electrolyte is injected into the inside of the bag-shaped exterior member 40, so that the wound body is impregnated with the electrolyte solution. Therefore, the wound electrode body 30 is formed. In this case, the same effect can be obtained.
- Lithium-ion secondary batteries are used for machines, devices, appliances, devices and systems (collection of multiple devices, etc.) that can use the lithium-ion secondary battery as a power source for driving and a power storage source for power storage.
- Body is not particularly limited.
- the lithium ion secondary battery used as a power supply may be a main power supply or an auxiliary power supply.
- the main power supply is a power supply that is used preferentially regardless of the presence or absence of another power supply.
- the auxiliary power supply may be, for example, a power supply used in place of the main power supply, or a power supply switched from the main power supply as needed.
- the type of main power supply is not limited to a lithium ion secondary battery.
- Uses of the lithium ion secondary battery are, for example, as follows.
- Electronic devices including portable electronic devices
- portable electronic devices such as video cameras, digital still cameras, mobile phones, notebook computers, cordless phones, headphone stereos, portable radios, portable televisions, and portable information terminals.
- It is a portable living device such as an electric shaver.
- a storage device such as a backup power supply and a memory card.
- Electric tools such as electric drills and electric saws.
- Medical electronic devices such as pacemakers and hearing aids.
- It is an electric vehicle such as an electric vehicle (including a hybrid vehicle).
- It is a power storage system such as a home battery system that stores power in case of emergency.
- the use of the lithium ion secondary battery may be another use other than the use described above.
- the layer 33B was formed.
- the positive electrode active material layer 33B was compression-molded using a roll press.
- the negative electrode 34 When manufacturing the negative electrode 34, first, 90.5 parts by mass of a negative electrode active material (Li 4 Ti 5 O 12 which is a low reaction potential material (lithium-titanium composite oxide)) and a negative electrode binder (polyfluorinated) By mixing 5.0 parts by mass of vinylidene) and 4.5 parts by mass of a negative electrode conductive agent (graphite), a negative electrode mixture was obtained. Subsequently, the negative electrode mixture was charged into an organic solvent (N-methyl-2-pyrrolidone), and the organic solvent was stirred to prepare a paste-like negative electrode mixture slurry.
- a negative electrode active material Li 4 Ti 5 O 12 which is a low reaction potential material (lithium-titanium composite oxide)
- a negative electrode binder polyfluorinated
- the negative electrode mixture slurry is dried to obtain a negative electrode active material.
- the layer 34B was formed.
- the negative electrode active material layer 34B was compression-molded using a roll press.
- each of the positive electrode 33 and the negative electrode 34 by adjusting the amount of the positive electrode active material and the amount of the negative electrode active material to each other, as shown in Table 1, the electrochemical per unit area of the positive electrode 33 was adjusted. The magnitude relationship between the capacity and the electrochemical capacity per unit area of the negative electrode 34 was set, and the charge termination electrode was set.
- an electrolyte salt lithium hexafluorophosphate
- a solvent propylene carbonate and dimethyl carbonate
- the solvent was stirred.
- the additive compounds were diphenyl carbonate (DPC), a diphenyl carbonate compound, vinylene carbonate (VC), an unsaturated cyclic carbonate, maleic anhydride (MA), a first maleic anhydride compound, and a second anhydride.
- DPC diphenyl carbonate
- VC vinylene carbonate
- MA unsaturated cyclic carbonate
- maleic anhydride MA
- a first maleic anhydride compound a first maleic anhydride compound
- the content of the additive compound in the electrolytic solution is as shown in Table 1.
- the positive electrode lead 31 made of aluminum was welded to the positive electrode current collector 33A, and the negative electrode lead 32 made of copper was welded to the negative electrode current collector 34A.
- a protective tape 37 was attached to the laminate to obtain a wound body.
- the used aluminum laminated film was used.
- an adhesive film 41 (polypropylene film) was inserted between the exterior member 40 and the positive electrode lead 31, and an adhesive film 42 (polypropylene film) was inserted between the exterior member 40 and the negative electrode lead 32.
- the three-cycle charge / discharge conditions in each of (A), (C), (E), (G), (I) and (K) are as follows.
- the battery was charged at a constant current of 0.05 C until the voltage reached 3.0 V, and then charged at a constant voltage of 3.0 V until the current reached 0.05 C.
- Constant current discharge was performed at a current of 0.05 C until the voltage reached 0.5 V.
- the charge / discharge conditions in the second cycle were the same as the charge / discharge conditions in the first cycle, except that the current during charging and the current during discharging were each changed to 0.1 C.
- the charge / discharge conditions in the third cycle were the same as the charge / discharge conditions in the first cycle, except that the current during charging and the current during discharging were each changed to 0.2 C.
- 0.05 C, 0.1 C, 0.2 C, and 1 C are current values at which the battery capacity (theoretical capacity) can be discharged in 20 hours, 10 hours, 5 hours, and 1 hour, respectively.
- the static capacity retention ratio (discharge capacity measured at (K) / discharge capacity measured at (A)) X100 was calculated.
- VPM3 multi-channel electrochemical measurement system
- the battery was charged at a constant current of 0.2 C until the voltage reached 3.0 V, and then charged at a constant voltage of 3.0 V until the current reached 0.05 C.
- the battery was charged at a constant current of 0.2 C until a 50% electrochemical capacity was obtained, based on the discharge capacity obtained when the battery was discharged at a constant current until the voltage reached 0.5 V.
- the impedance measurement conditions were a frequency range of 1 MHz to 10 mHz and an AC amplitude (AC Amplitude) of 10 mV. Thus, the impedance at a frequency of 10 Hz was measured.
- the electrochemical capacity per unit area of the negative electrode 34 is larger than the electrochemical capacity per unit area of the positive electrode 33
- the electrolytic solution contained the additive compound (Experimental Examples 7 to 10)
- the dynamic capacity retention increased, as compared with the case where the electrolytic solution did not contain the additive compound (Experimental Example 6).
- the capacity retention ratio decreased, the impedance hardly decreased.
- the electrolyte contained an additive compound, the impedance increased rather depending on the type of the additive compound.
- the electrochemical capacity per unit area of the negative electrode 34 is equal to or less than the electrochemical capacity per unit area of the positive electrode 33, when the charge termination electrode is the negative electrode 34 (Experimental Examples 1 to 5), When the electrolytic solution contains the additive compound (Experimental Examples 2 to 5), the dynamic capacity retention rate and the static capacity retention rate are lower than when the electrolytic solution does not contain the additive compound (Experimental Example 1). Both increased and the impedance decreased.
- a cylindrical lithium ion secondary battery and a laminated film type lithium ion secondary battery have been described, but the present invention is not limited to these.
- other lithium ion secondary batteries such as a prismatic lithium ion secondary battery and a coin type lithium ion secondary battery may be used.
- the battery element has a wound structure
- the present invention is not limited to this.
- the battery element may have another structure such as a laminated structure.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
1.リチウムイオン二次電池(円筒型)
1-1.構成
1-2.動作
1-3.製造方法
1-4.作用および効果
2.リチウムイオン二次電池(ラミネートフィルム型)
2-1.構成
2-2.動作
2-3.製造方法
2-4.作用および効果
3.変形例
4.リチウムイオン二次電池の用途
まず、本技術の一実施形態のリチウムイオン二次電池に関して説明する。
図1は、リチウムイオン二次電池の断面構成を表していると共に、図2は、図1に示したリチウムイオン二次電池の主要部(巻回電極体20)の断面構成を拡大している。ただし、図2では、巻回電極体20の一部だけを示している。
正極21は、例えば、図2に示したように、正極集電体21Aと、その正極集電体21Aに設けられた正極活物質層21Bとを含んでいる。この正極活物質層21Bは、例えば、正極集電体21Aの片面だけに設けられていてもよいし、正極集電体21Aの両面に設けられていてもよい。図2では、例えば、正極活物質層21Bが正極集電体21Aの両面に設けられている場合を示している。
(M11は、コバルト(Co)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。xおよびyは、0<x<1および0<y<1を満たす。)
負極22は、例えば、図2に示したように、負極集電体22Aと、その負極集電体22Aに設けられた負極活物質層22Bとを含んでいる。この負極活物質層22Bは、例えば、負極集電体22Aの片面だけに設けられていてもよいし、負極集電体22Aの両面に設けられていてもよい。図2では、例えば、負極活物質層22Bが負極集電体22Aの両面に設けられている場合を示している。
(wは、1.85≦w≦2.15を満たす。)
(M22は、マグネシウム(Mg)、カルシウム(Ca)、銅(Cu)、亜鉛(Zn)およびストロンチウム(Sr)のうちの少なくとも1種である。xは、0≦x≦1/3を満たす。)
(M23は、アルミニウム(Al)、スカンジウム(Sc)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、ゲルマニウム(Ga)およびイットリウム(Y)のうちの少なくとも1種である。yは、0≦y≦1/3を満たす。)
(M24は、バナジウム(V)、ジルコニウム(Zr)およびニオブ(Nb)のうちの少なくとも1種である。zは、0≦z≦2/3を満たす。)
正極21の単位面積当たりにおける初回の充電容量Qc1(mAh/cm2 )
=[正極活物質の初回の充電容量qc1(mAh/g)×正極活物質層21B中における正極活物質の割合rc×正極活物質層21Bの面積密度lc(mg/cm2 )]/1000
正極21の単位面積当たりにおける初回の放電容量Qc1’(mAh/cm2 )
=[正極活物質の初回の充電容量qc1(mAh/g)×正極21の初回の充放電効率Ec1×正極活物質層21B中における正極活物質の割合rc×正極活物質層21Bの面積密度lc(mg/cm2 )]/1000
正極21の単位面積当たりにおける2回目以降の充電容量QcN(mAh/cm2 )
=[正極21の単位面積当たりにおける初回の放電容量Qc1’(mAh/g)×正極21の充放電効率EcN]/1000
正極21の単位面積当たりにおける2回目以降の放電容量QcN’(mAh/cm2 )
=[直前のサイクルにおける正極21の単位面積当たりにおける充電容量QcN×正極21の充放電効率EcN]/1000
負極22の単位面積当たりにおける初回の充電容量Qa1(mAh/cm2 )
=[負極活物質の初回の充電容量qa1(mAh/g)×負極活物質層22B中における負極活物質の割合ra×負極活物質層22Bの面積密度la(mg/cm2 )]/1000
負極22の単位面積当たりにおける初回の放電容量Qa1’(mAh/cm2 )
=[負極活物質の初回の充電容量qa1(mAh/g)×負極22の初回の充放電効率Ea1×負極活物質層22B中における負極活物質の割合ra×負極活物質層22Bの面積密度la(mg/cm2 )]/1000
負極22の単位面積当たりにおける2回目以降の充電容量QaN(mAh/cm2 )
=[負極22の単位面積当たりにおける初回の放電容量Qa1’(mAh/g)×負極22の充放電効率EaN]/1000
負極22の単位面積当たりにおける2回目以降の放電容量QaN’(mAh/cm2 )
=[直前のサイクルにおける負極22の単位面積当たりにおける充電容量QaN×負極22の充放電効率EaN]/1000
正極21の単位面積当たりにおける初回の充電容量Qc1(mAh/cm2 )≧負極22の単位面積当たりにおける初回の充電容量Qa1(mAh/cm2 )
正極21の単位面積当たりにおける2回目以降の充電容量QcN(mAh/cm2 )≧負極22の単位面積当たりにおける2回目以降の充電容量QaN(mAh/cm2 )
負極活物質層22Bの形成方法は、特に限定されないが、例えば、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などである。塗布法は、例えば、粒子(粉末)状の負極活物質と負極結着剤などとの混合物が有機溶剤などにより溶解または分散された溶液を負極集電体22Aに塗布する方法である。気相法は、例えば、物理堆積法および化学堆積法などであり、より具体的には、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長、化学気相成長法(CVD)およびプラズマ化学気相成長法などである。液相法は、例えば、電解鍍金法および無電解鍍金法などである。溶射法は、溶融状態または半溶融状態の負極活物質を負極集電体22Aに噴き付ける方法である。焼成法は、例えば、塗布法を用いて負極集電体22Aに溶液を塗布したのち、その溶液(塗膜)を負極結着剤などの融点よりも高い温度で熱処理する方法であり、より具体的には、雰囲気焼成法、反応焼成法およびホットプレス焼成法などである。
セパレータ23は、例えば、合成樹脂およびセラミックなどの多孔質膜を含んでおり、2種類以上の多孔質膜が互いに積層された積層膜でもよい。合成樹脂は、例えば、ポリエチレンなどである。
電解液は、上記したように、巻回電極体20に含浸されている。このため、電解液は、例えば、正極21、負極22およびセパレータ23のそれぞれに含浸されている。
添加化合物は、電解液(溶媒および電解質塩)に添加される化合物である。具体的には、添加化合物は、下記の式(1)で表される炭酸ジフェニル化合物、下記の式(2)で表される不飽和環状炭酸エステル、下記の式(3)で表される第1無水マレイン酸化合物および下記の式(4)で表される第2無水マレイン酸化合物のうちのいずれか1種類または2種類以上を含んでいる。
炭酸ジフェニル化合物は、式(1)に示したように、炭酸ジフェニルを骨格とした化合物である。炭酸ジフェニル化合物の種類は、1種類だけでもよいし、2種類以上でもよい。
不飽和環状炭酸エステルは、式(2)に示したように、環の内部に炭素間不飽和結合(炭素間二重結合)を有する炭酸エステルである。不飽和環状炭酸エステルの種類は、1種類だけでもよいし、2種類以上でもよい。
第1無水マレイン酸化合物は、式(3)に示したように、無水マレイン酸を骨格とした化合物である。第1無水マレイン酸化合物の種類は、1種類だけでもよいし、2種類以上でもよい。
第2無水マレイン酸化合物は、式(4)に示したように、ポリ無水マレイン酸を骨格とした化合物である。第2無水マレイン酸化合物の種類は、1種類だけでもよいし、2種類以上でもよい。
中でも、添加化合物は、第2無水マレイン酸化合物であることが好ましい。高分子材料である第2無水マレイン酸化合物を添加化合物として電解液に含有させると、上記したように、初期の充放電時において被膜が形成される。この場合には、高分子材料が初期の充放電時において電気化学的に分解しにくいため、規則的な構造(緻密な膜質)を有する被膜が形成される。すなわち、初期の充放電時において、高分子材料である第2無水マレイン酸化合物が電気化学反応せずにそのまま負極22の表面を被覆するため、その第2無水マレイン酸化合物の規則的な構造が反映された緻密な膜質を有する被膜が形成される。これにより、電解液の化学的安定性が十分に向上するため、その電解液の分解反応も十分に抑制される。
電解液中における添加化合物の含有量、すなわち電解液中におけるジフェニル化合物、不飽和環状炭酸エステル、第1無水マレイン酸化合物および第2無水マレイン酸化合物の総含有量は、特に限定されない。中でも、添加化合物の総含有量は、0.1重量%~10重量%であることが好ましく、0.3重量%~2重量%であることがより好ましい。添加化合物の溶解性および相溶性などが担保されながら、電解液の化学的安定性が十分に向上するからである。
溶媒は、例えば、非水溶媒(有機溶剤)などのうちのいずれか1種類または2種類以上である。非水溶媒を含む電解液は、いわゆる非水電解液である。
電解質塩は、例えば、リチウム塩などのうちのいずれか1種類または2種類以上である。リチウム塩の種類は、特に限定されないが、例えば、六フッ化リン酸リチウム(LiPF6 )、四フッ化ホウ酸リチウム(LiBF4 )、ビス(フルオロスルホニル)イミドリチウム(LiN(SO2 F)2 )、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3 SO2 )2 )、ジフルオロリン酸リチウム(LiPF2 O2 )およびフルオロリン酸リチウム(Li2 PFO3 )などである。電解質塩の含有量は、特に限定されないが、例えば、溶媒に対して0.3mol/kg以上3.0mol/kg以下である。
このリチウムイオン二次電池では、例えば、充電時において、正極21からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極22に吸蔵される。また、リチウムイオン二次電池では、例えば、放電時において、負極22からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極21に吸蔵される。
リチウムイオン二次電池を製造する場合には、例えば、以下で説明する手順により、正極21の作製、負極22の作製および電解液の調製を行ったのち、リチウムイオン二次電池の組み立てを行う。
最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などに正極合剤を分散または溶解させることにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体21Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層21Bを形成する。こののち、ロールプレス機などを用いて正極活物質層21Bを圧縮成型してもよい。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。
上記した正極21の作製手順と同様の手順により、負極集電体22Aの両面に負極活物質層22Bを形成する。具体的には、負極活物質と、必要に応じて負正極結着剤および負極導電剤などとを混合することにより、負極合剤としたのち、有機溶剤などに負極合剤を分散または溶解させることにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体22Aの両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層22Bを形成する。こののち、負極活物質層22Bを圧縮成型してもよい。
溶媒に電解質塩を加えることにより、その溶媒を撹拌したのち、その溶媒に添加化合物を加えることにより、その溶媒をさらに撹拌する。この添加化合物は、上記したように、炭酸ジフェニル化合物、不飽和環状炭酸エステル、第1無水マレイン酸化合物および第2無水マレイン酸化合物のうちのいずれか1種類または2種類以上である。これにより、溶媒中において電解質塩および添加化合物が分散または溶解される。
最初に、溶接法などを用いて正極集電体21Aに正極リード25を接続させると共に、溶接法などを用いて負極集電体22Aに負極リード26を接続させる。続いて、セパレータ23を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回体を形成する。続いて、巻回体の巻回中心に設けられた空間20Cにセンターピン24を挿入する。
この円筒型のリチウムイオン二次電池によれば、負極22が負極活物質として低反応電位材料を含んでいると共に、その負極22の単位面積当たりの電気化学容量が正極21の単位面積当たりの電気化学容量以下である場合において、電解液が添加化合物を含んでいる。この添加化合物は、炭酸ジフェニル化合物、不飽和環状炭酸エステル、第1無水マレイン酸化合物および第2無水マレイン酸化合物のうちのいずれか1種類または2種類以上を含んでいる。
図3は、他のリチウムイオン二次電池の斜視構成を表していると共に、図4は、図3に示したIV-IV線に沿ったリチウムイオン二次電池の主要部(巻回電極体30)の断面構成を拡大している。ただし、図4では、巻回電極体30と外装部材40とが互いに離間された状態を示している。
このリチウムイオン二次電池は、例えば、図3に示したように、柔軟性(または可撓性)を有するフィルム状の外装部材40の内部に電池素子(巻回電極体30)が収納されたラミネートフィルム型のリチウムイオン二次電池である。
外装部材40は、例えば、図3に示した矢印Rの方向に折り畳み可能な1枚のフィルムである。外装部材40の一部には、例えば、巻回電極体30を収納するための窪み40Uが設けられている。
正極33は、例えば、正極集電体33Aおよび正極活物質層33Bを含んでいると共に、負極34は、例えば、負極集電体34Aおよび負極活物質層34Bを含んでいる。正極集電体33A、正極活物質層33B、負極集電体34Aおよび負極活物質層34Bのそれぞれの構成は、例えば、正極集電体21A、正極活物質層21B、負極集電体22Aおよび負極活物質層22Bのそれぞれの構成と同様である。すなわち、負極34は、負極活物質として低反応電位材料を含んでいると共に、その負極34の単位面積当たりの電気化学容量は、正極33の単位面積当たりの電気化学容量以下である。また、セパレータ35の構成は、例えば、セパレータ23の構成と同様である。
電解質層36は、電解液と共に高分子化合物を含んでいる。ここで説明する電解質層36は、いわゆるゲル状の電解質であるため、その電解質層36中では、電解液が高分子化合物により保持されている。高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、電解液の漏液が防止されるからである。ただし、電解質層36は、例えば、さらに、各種の添加剤などの他の材料を含んでいてもよい。
このリチウムイオン二次電池では、例えば、充電時において、正極33からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して負極34に吸蔵される。また、リチウムイオン二次電池では、例えば、放電時において、負極34からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して正極33に吸蔵される。
電解質層36を備えたリチウムイオン二次電池は、例えば、以下で説明する3種類の手順により製造される。
最初に、正極21の作製手順と同様の手順により、正極集電体33Aの両面に正極活物質層33Bを形成することにより、正極33を作製する。また、負極22の作製手順と同様の手順により、負極集電体34Aの両面に負極活物質層34Bを形成することにより、負極34を作製する。
最初に、正極33および負極34を作製したのち、正極33に正極リード31を接続させると共に、負極34に負極リード32を接続させる。続いて、セパレータ35を介して正極33および負極34を互いに積層させたのち、その正極33、負極34およびセパレータ35を巻回させることにより、巻回体を形成する。続いて、巻回体の表面に保護テープ37を貼り付ける。続いて、巻回体を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40のうちの一辺の外周縁部を除いた残りの外周縁部同士を互いに接着させることにより、袋状の外装部材40の内部に巻回体を収納する。
最初に、基材層の両面に高分子化合物層が設けられたセパレータ35を用いることを除いて、上記した第2手順と同様の手順により、巻回体を作製したのち、袋状の外装部材40の内部に巻回体を収納する。続いて、外装部材40の内部に電解液を注入したのち、熱融着法などを用いて外装部材40の開口部を密封する。最後に、外装部材40に加重をかけながら、その外装部材40を加熱することにより、高分子化合物層を介してセパレータ35を正極33および負極34のそれぞれに密着させる。これにより、電解液が含浸された高分子化合物層はゲル化するため、電解質層36が形成される。よって、外装部材40の内部に巻回電極体30が封入されるため、リチウムイオン二次電池が完成する。
このラミネートフィルム型のリチウムイオン二次電池によれば、負極34が負極活物質として低反応電位材料を含んでいると共に、その負極34の単位面積当たりの電気化学容量が正極33の単位面積当たりの電気化学容量以下である場合において、電解質層36に含まれている電解液が添加化合物を含んでいる。よって、円筒型のリチウムイオン二次電池と同様の理由により、電解液の分解反応が抑制されるため、優れた電池特性を得ることができる。これ以外のラミネートフィルム型のリチウムイオン二次電池に関する作用および効果は、円筒型のリチウムイオン二次電池に関する作用および効果と同様である。
ラミネートフィルム型のリチウムイオン二次電池は、電解質層36の代わりに電解液を備えていてもよい。この場合には、電解液が巻回電極体30に含浸されているため、その電解液が正極33、負極34およびセパレータ35のそれぞれに含浸されている。また、袋状の外装部材40の内部に巻回体が収納されたのち、その袋状の外装部材40の内部に電解液が注入されることにより、その巻回体に電解液が含浸されるため、巻回電極体30が形成される。この場合においても同様の効果を得ることができる。
上記したリチウムイオン二次電池の用途は、例えば、以下で説明する通りである。
正極33を作製する場合には、最初に、正極活物質(高反応電位材料(リチウムマンガン鉄リン酸化合物)であるLiMn0.75Fe0.25PO4 )90.5質量部と、正極結着剤(ポリフッ化ビニリデン)5.0質量部と、正極導電剤(黒鉛)4.5質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体33A(帯状のアルミニウム箔,厚さ=12μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層33Bを形成した。最後に、ロールプレス機を用いて正極活物質層33Bを圧縮成型した。
リチウムイオン二次電池の電池特性を評価したところ、表1に示した結果が得られた。ここでは、電池特性としてサイクル特性および電気抵抗特性を調べた。
サイクル特性を調べる場合には、最初に、リチウムイオン二次電池の状態を安定化させるために、常温環境中(温度=23℃)においてリチウムイオン二次電池を1サイクル充放電させた。
(A)3サイクル充放電
(B)100サイクル充放電
(C)3サイクル充放電
(D)100サイクル充放電
(E)3サイクル充放電
(F)100サイクル充放電
(G)3サイクル充放電
(H)100サイクル充放電
(I)3サイクル充放電
(J)100サイクル充放電
(K)3サイクル充放電
電気抵抗特性を調べる場合には、常温環境中(温度=25℃)において充電率(SOC)が50%に到達するまでリチウムイオン二次電池を充電させたのち、電気化学測定装置(Bio-Logic社のマルチチャンネル電気化学測定システム VPM3)を用いてリチウムイオン二次電池のインピーダンス(Ω)を測定した。
表1に示したように、負極活物質として低反応電位材料(チタン含有化合物であるリチウムチタン複合酸化物)を用いた場合には、サイクル特性および電気抵抗特性のそれぞれがリチウムイオン二次電池の構成に応じて大きく変動した。
これらのことから、負極34が負極活物質として低反応電位材料を含んでいると共に、その負極34の単位面積当たりの電気化学容量が正極33の単位面積当たりの電気化学容量以下である場合において、電解液が添加化合物を含んでいると、サイクル特性および電気抵抗特性が改善された。よって、リチウムイオン二次電池において優れた電池特性が得られた。
Claims (7)
- 正極と、
対リチウム電位において0.5V以上の反応電位を有する負極活物質を含むと共に、前記正極の単位面積当たりの電気化学容量以下である単位面積当たりの電気化学容量を有する負極と、
溶媒と、電解質塩と、下記の式(1)で表される炭酸ジフェニル化合物、下記の式(2)で表される不飽和環状炭酸エステル、下記の式(3)で表される第1無水マレイン酸化合物および下記の式(4)で表される第2無水マレイン酸化合物のうちの少なくとも1種と、を含む電解液と
を備えた、リチウムイオン二次電池。
- 前記電解液は、前記第2無水マレイン酸化合物を含む、
請求項1記載のリチウムイオン二次電池。 - 前記負極活物質は、チタン酸化物、リチウムチタン複合酸化物、水素チタン化合物、リチウムニオブ複合酸化物、水素ニオブ化合物およびチタンニオブ複合酸化物のうちの少なくとも1種を含む、
請求項1ないし請求項3のいずれか1項に記載のリチウムイオン二次電池。 - 前記電解液中における前記炭酸ジフェニル化合物、前記不飽和環状炭酸エステル、前記第1無水マレイン酸化合物および前記第2無水マレイン酸化合物のうちの少なくとも1種の含有量は、0.1重量%以上10重量%以下である、
請求項1ないし請求項4のいずれか1項に記載のリチウムイオン二次電池。 - 前記正極は、対リチウム電位において4.0V以上の反応電位を有する正極活物質を含む、
請求項1ないし請求項5のいずれか1項に記載のリチウムイオン二次電池。 - 前記正極活物質は、リチウムマンガン鉄リン酸化合物を含む、
請求項6記載のリチウムイオン二次電池。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3114636A CA3114636A1 (en) | 2018-09-27 | 2018-09-27 | Lithium-ion secondary battery |
PCT/JP2018/035973 WO2020065831A1 (ja) | 2018-09-27 | 2018-09-27 | リチウムイオン二次電池 |
EP18935318.8A EP3859860A4 (en) | 2018-09-27 | 2018-09-27 | LITHIUM-ION SECONDARY BATTERY |
KR1020217008917A KR20210046764A (ko) | 2018-09-27 | 2018-09-27 | 리튬 이온 이차 전지 |
JP2020547723A JPWO2020065831A1 (ja) | 2018-09-27 | 2018-09-27 | リチウムイオン二次電池 |
CN201880097990.1A CN112771704A (zh) | 2018-09-27 | 2018-09-27 | 锂离子二次电池 |
US17/201,527 US20210202995A1 (en) | 2018-09-27 | 2021-03-15 | Lithium-ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/035973 WO2020065831A1 (ja) | 2018-09-27 | 2018-09-27 | リチウムイオン二次電池 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/201,527 Continuation US20210202995A1 (en) | 2018-09-27 | 2021-03-15 | Lithium-ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020065831A1 true WO2020065831A1 (ja) | 2020-04-02 |
Family
ID=69950509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/035973 WO2020065831A1 (ja) | 2018-09-27 | 2018-09-27 | リチウムイオン二次電池 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20210202995A1 (ja) |
EP (1) | EP3859860A4 (ja) |
JP (1) | JPWO2020065831A1 (ja) |
KR (1) | KR20210046764A (ja) |
CN (1) | CN112771704A (ja) |
CA (1) | CA3114636A1 (ja) |
WO (1) | WO2020065831A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112768767A (zh) * | 2020-12-30 | 2021-05-07 | 广东国光电子有限公司 | 一种电解液及使用该电解液的锂二次电池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000058115A (ja) * | 1998-07-31 | 2000-02-25 | Sanyo Electric Co Ltd | 非水系電池用電解液およびこの電解液を用いた二次電池 |
JP2004311272A (ja) * | 2003-04-09 | 2004-11-04 | Sony Corp | 電解液およびそれを用いた電池 |
JP2011054490A (ja) * | 2009-09-03 | 2011-03-17 | Mitsubishi Chemicals Corp | 非水系電解液及びそれを用いたリチウム二次電池 |
JP2011091039A (ja) | 2009-09-25 | 2011-05-06 | Toshiba Corp | 非水電解質電池、電池パック、及び自動車 |
WO2015033620A1 (ja) * | 2013-09-05 | 2015-03-12 | 石原産業株式会社 | 非水電解質二次電池及びその製造方法 |
WO2018116529A1 (en) * | 2016-12-22 | 2018-06-28 | Murata Manufacturing Co., Ltd. | Secondary battery |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1414099A4 (en) * | 2001-07-27 | 2009-05-27 | Mitsubishi Chem Corp | NONAQUEOUS ELECTROLYTIC SOLUTION AND SECONDARY CELL USING SAID NONAQUEOUS ELECTROLYTIC SOLUTION |
US9012096B2 (en) * | 2004-05-28 | 2015-04-21 | Uchicago Argonne, Llc | Long life lithium batteries with stabilized electrodes |
JP4679112B2 (ja) * | 2004-10-29 | 2011-04-27 | 三洋電機株式会社 | 非水電解質二次電池及びその製造方法 |
US7927742B2 (en) * | 2004-10-29 | 2011-04-19 | Medtronic, Inc. | Negative-limited lithium-ion battery |
WO2007064043A1 (ja) * | 2005-12-02 | 2007-06-07 | Gs Yuasa Corporation | 非水電解質電池及びその製造方法 |
JP2007220496A (ja) * | 2006-02-17 | 2007-08-30 | Hitachi Vehicle Energy Ltd | カルボン酸無水有機化合物を電解液に含むリチウム二次電池 |
CN101512823B (zh) * | 2006-09-05 | 2012-10-24 | 株式会社杰士汤浅国际 | 非水电解质电池及其制造方法 |
JP2010165542A (ja) * | 2009-01-15 | 2010-07-29 | Sony Corp | 電解質および二次電池 |
KR101297173B1 (ko) * | 2011-02-09 | 2013-08-21 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
JP5668929B2 (ja) * | 2011-03-23 | 2015-02-12 | ソニー株式会社 | 二次電池、電子機器、電動工具、電動車両および電力貯蔵システム |
US9385367B2 (en) * | 2011-06-27 | 2016-07-05 | National University Of Singapore | Approach for manufacturing efficient mesoporous nano-composite positive electrode LiMn1-xFexPO4 materials |
JP6135253B2 (ja) * | 2012-06-07 | 2017-05-31 | ソニー株式会社 | 電極、リチウム二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
WO2013187487A1 (ja) * | 2012-06-15 | 2013-12-19 | 三菱化学株式会社 | 非水系電解液二次電池及びその使用方法 |
KR20160010411A (ko) * | 2013-05-22 | 2016-01-27 | 이시하라 산교 가부시끼가이샤 | 비수 전해질 2차 전지의 제조 방법 |
EP3012896B1 (en) * | 2013-06-21 | 2018-03-28 | UBE Industries, Ltd. | Nonaqueous electrolyte solution, electricity storage device using same, and biphenyl group-containing carbonate compound used in same |
US9947960B2 (en) * | 2014-02-05 | 2018-04-17 | Johnson Controls Technology Company | Electrolytes for low impedance, wide operating temperature range lithium-ion battery module |
CN104466249A (zh) * | 2014-12-30 | 2015-03-25 | 薛利 | 一种以钛酸锂为负极的锂离子电池的电解液 |
WO2017035132A1 (en) * | 2015-08-24 | 2017-03-02 | Wildcat Discovery Technologies, Inc | High energy electrolyte formulations |
WO2017210573A1 (en) * | 2016-06-02 | 2017-12-07 | Wildcat Discovery Technologies, Inc. | High voltage electrolyte additives |
US20180013143A1 (en) * | 2016-07-06 | 2018-01-11 | Sony Corporation | Secondary battery and method of manufacturing the same, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus |
CN106328998A (zh) * | 2016-09-19 | 2017-01-11 | 东莞市杉杉电池材料有限公司 | 一种钛酸锂电池及其电解液 |
CN108258311B (zh) * | 2016-12-29 | 2020-07-10 | 深圳新宙邦科技股份有限公司 | 锂离子电池非水电解液及锂离子电池 |
CN108172894B (zh) * | 2017-12-30 | 2019-04-26 | 骆驼集团新能源电池有限公司 | 一种耐高温型钛酸锂电池及其化成老化方法 |
CN108281709A (zh) * | 2018-01-09 | 2018-07-13 | 北京英耐时新能源科技有限公司 | 一种耐低温的超长寿命钛酸锂电池及其制备方法 |
CN112753117B (zh) * | 2018-09-27 | 2024-01-09 | 株式会社村田制作所 | 锂离子二次电池用电解液以及锂离子二次电池 |
-
2018
- 2018-09-27 EP EP18935318.8A patent/EP3859860A4/en not_active Withdrawn
- 2018-09-27 CA CA3114636A patent/CA3114636A1/en not_active Abandoned
- 2018-09-27 CN CN201880097990.1A patent/CN112771704A/zh active Pending
- 2018-09-27 KR KR1020217008917A patent/KR20210046764A/ko not_active Application Discontinuation
- 2018-09-27 JP JP2020547723A patent/JPWO2020065831A1/ja active Pending
- 2018-09-27 WO PCT/JP2018/035973 patent/WO2020065831A1/ja unknown
-
2021
- 2021-03-15 US US17/201,527 patent/US20210202995A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000058115A (ja) * | 1998-07-31 | 2000-02-25 | Sanyo Electric Co Ltd | 非水系電池用電解液およびこの電解液を用いた二次電池 |
JP2004311272A (ja) * | 2003-04-09 | 2004-11-04 | Sony Corp | 電解液およびそれを用いた電池 |
JP2011054490A (ja) * | 2009-09-03 | 2011-03-17 | Mitsubishi Chemicals Corp | 非水系電解液及びそれを用いたリチウム二次電池 |
JP2011091039A (ja) | 2009-09-25 | 2011-05-06 | Toshiba Corp | 非水電解質電池、電池パック、及び自動車 |
WO2015033620A1 (ja) * | 2013-09-05 | 2015-03-12 | 石原産業株式会社 | 非水電解質二次電池及びその製造方法 |
WO2018116529A1 (en) * | 2016-12-22 | 2018-06-28 | Murata Manufacturing Co., Ltd. | Secondary battery |
Non-Patent Citations (2)
Title |
---|
See also references of EP3859860A4 |
ZHANG S.S.: "A review on electrolyte additives for lithium-ion batteries", JOURNAL OF POWER SOURCES, vol. 162, 2006, pages 1379 - 94, XP055557116, DOI: 10.1016/j.jpowsour.2006.07.074 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112768767A (zh) * | 2020-12-30 | 2021-05-07 | 广东国光电子有限公司 | 一种电解液及使用该电解液的锂二次电池 |
Also Published As
Publication number | Publication date |
---|---|
EP3859860A4 (en) | 2022-09-21 |
JPWO2020065831A1 (ja) | 2021-08-30 |
CN112771704A (zh) | 2021-05-07 |
CA3114636A1 (en) | 2020-04-02 |
US20210202995A1 (en) | 2021-07-01 |
EP3859860A1 (en) | 2021-08-04 |
KR20210046764A (ko) | 2021-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6536572B2 (ja) | 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 | |
JP6179372B2 (ja) | リチウムイオン二次電池用活物質、リチウムイオン二次電池用電極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 | |
KR20120109316A (ko) | 이차 전지, 전자 기기, 전동 공구, 전기 차량 및 전력 저장 시스템 | |
US11916196B2 (en) | Electrolytic solution for lithium-ion secondary battery and lithium-ion secondary battery | |
CN110832678A (zh) | 二次电池、电池包、电动车辆、电力储存系统、电动工具及电子设备 | |
JP2013131395A (ja) | 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 | |
WO2020065832A1 (ja) | 導電性物質、正極および二次電池 | |
US11276878B2 (en) | Anode for lithium ion secondary battery and lithium ion secondary battery | |
US20210202995A1 (en) | Lithium-ion secondary battery | |
JPWO2019207616A1 (ja) | リチウムイオン二次電池 | |
CN112771705B (zh) | 锂离子二次电池用电解液及锂离子二次电池 | |
JP6135798B2 (ja) | リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 | |
JP2023128176A (ja) | 二次電池用正極および二次電池 | |
WO2020065833A1 (ja) | 二次電池 | |
JP2023128175A (ja) | 二次電池用正極活物質、二次電池用正極および二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18935318 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020547723 Country of ref document: JP Kind code of ref document: A Ref document number: 20217008917 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 3114636 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018935318 Country of ref document: EP Effective date: 20210428 |