WO2020063623A1 - 基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法 - Google Patents

基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法 Download PDF

Info

Publication number
WO2020063623A1
WO2020063623A1 PCT/CN2019/107701 CN2019107701W WO2020063623A1 WO 2020063623 A1 WO2020063623 A1 WO 2020063623A1 CN 2019107701 W CN2019107701 W CN 2019107701W WO 2020063623 A1 WO2020063623 A1 WO 2020063623A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
turntable
casing
metal powder
droplets
Prior art date
Application number
PCT/CN2019/107701
Other languages
English (en)
French (fr)
Inventor
朱胜
赵阳
王思捷
韩国峰
石晶
常青
任智强
滕涛
孙瑜
王晓明
董伟
许富民
孟瑶
白兆丰
王延洋
韩阳
李国斌
Original Assignee
王晓明
朱胜
大连理工大学
赵阳
王思捷
韩国峰
石晶
常青
任智强
滕涛
孙瑜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王晓明, 朱胜, 大连理工大学, 赵阳, 王思捷, 韩国峰, 石晶, 常青, 任智强, 滕涛, 孙瑜 filed Critical 王晓明
Priority to US17/280,168 priority Critical patent/US11344950B2/en
Publication of WO2020063623A1 publication Critical patent/WO2020063623A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention belongs to the technical field of spherical metal powder preparation, and in particular, relates to a device and method for preparing spherical metal powder based on a uniform atomic droplet atomization method.
  • the methods of industrially producing metal spherical powders at home and abroad are mainly atomization methods, including gas atomization method, water atomization method, and centrifugal atomization method.
  • the size dispersion of the powder prepared by the atomization method is large, and it must be sieved multiple times to obtain a powder that meets the particle size requirements, which greatly reduces the production efficiency, especially when the size has strict requirements; the atomization method is easy to produce satellite droplets. Satellite droplets are adhered to the surface of the powder to reduce the fluidity and spreadability of the powder, which cannot meet the requirements for 3D printing powder.
  • a device and method for preparing spherical metal powder based on the uniform droplet droplet atomization method are provided. It mainly combines the two methods of pulse microporous spray method and centrifugal atomization method, while simultaneously designing the structure of the turntable, and adding induction heating coils to inductively heat the surface of the disc, so that the metal liquid overcomes its own high density and low viscosity limitations. It breaks through the traditional splitting mode of molten metal, and realizes the fibrous splitting mode that can be achieved only when the atomizing medium is an aqueous or organic solution.
  • This method can be used to prepare spherical metal powders with high sphericity, good fluidity and spreadability, no satellite drops, and very high yield of fine powders that meet the requirements for using 3D printing.
  • a device for preparing spherical metal powder based on a uniform droplet droplet atomization method includes a casing, a crucible disposed in the casing, and a collection bin disposed in the lower portion of the casing.
  • the crucible is placed in the casing.
  • Upper part, the collection bin is placed at the lower part of the crucible;
  • the crucible is provided with a transmission rod connected to a piezoelectric ceramic provided outside the casing.
  • the position where the transmission rod is connected to the top of the crucible is sealed by a dynamic seal ring, and the lower end of the transmission rod faces
  • the central hole at the bottom of the crucible is fixed with a gasket with a plurality of small holes at the bottom;
  • a thermocouple is provided inside the crucible, and a resistance heater is provided outside the crucible;
  • the top of the casing is provided with a crucible air inlet and a crucible exhaust valve which extend into the crucible.
  • a diffusion pump and a mechanical pump are also provided on the side wall of the casing.
  • the collection bin is fixed to the casing by a bracket, and an intersecting annular descending pipe is provided between the casing and the collecting bin.
  • the cavity of the collecting bin is directly opposite the lower end of the annular descending pipe.
  • the turntable includes a base body, an atomizing plane and a vent hole;
  • the longitudinal section of the base body composed of the upper receiving part and the lower supporting part is similar to a "T-shaped" main structure, and the upper surface of the receiving part is provided with a circular groove with a certain radius coaxial with the center of the circle;
  • the base body is made of a material having a thermal conductivity of less than 20W / m / k;
  • the atomizing plane is a disc structure, the disc structure matches the circular groove and interference fits with the circular groove, and the atomizing plane is wetted with atomized droplets Made of material with an angle less than 90 °; the center of the atomizing plane is provided with a concentric circular groove matching the gasket with a plurality of small holes for metal droplets to be stored;
  • the vent hole is disposed in the receiving portion and the support portion, the upper end surface of the vent hole is in contact with the lower end surface of the atomizing plane, and the lower end of the vent hole is in communication with the outside;
  • An induction heating coil is also provided on the periphery of the turntable.
  • one side of the casing is provided with a furnace door, and one side of the collection bin is provided with a collection bin door.
  • the connection between the transmission rod and the top of the crucible is sealed with a dynamic seal ring.
  • the transmission rod extends into the cavity of the crucible and the inside of the melt.
  • the melt ejects the hole-forming liquid of the gasket with multiple small holes under the drive of the transmission rod. Drops, the droplets fall freely through the annular downcomer and land into a concentric circular groove in the center of the turntable.
  • the droplets Under the action of centrifugal force, the droplets spread through the concentric circular groove, spreading and fibrous, and finally dispersed into fines at the edge of the turntable
  • the liquid droplets fly out, freely fall and solidify to form a metal powder, and finally land in a collecting tank.
  • the area of the collection tank is large enough to completely collect the metal powder.
  • the height of the collection bin is sufficient for the droplets to solidify when they drop freely after centrifugal crushing.
  • the width of the collection bin is greater than the flying distance of the droplets after centrifugal crushing, that is, droplet centrifugation. After crushing, it solidifies into metal powder during the falling process and falls into the collection tank.
  • the height of the support portion of the base body should not be too high, and it should be smaller than the height of the receiving portion.
  • the upper end surface of the atomizing plane protrudes from the upper end surface of the receiving portion, and the protruding range is 0.1-0.5 mm.
  • the protruding height only needs to meet the requirement that the discrete metal droplets do not contact the substrate and fly directly into the chamber and fall into the collection tray.
  • the substrate is made of zirconium dioxide ceramic, silica glass, or stainless steel, and is not limited to the foregoing materials, as long as it meets a material with a thermal conductivity of less than 20 W / m / k.
  • the upper end face of the vent hole is less than or equal to the lower end face of the atomization plane.
  • the purpose of the vent hole is to clean the gas in the turntable when the vacuum is drawn, and it is safer when the turntable is rotating at high speed.
  • the diameter of the central hole on the crucible is larger than the diameter of the small hole of the gasket with a plurality of small holes, and the diameter of the small hole of the gasket with a plurality of small holes ranges between 0.02 mm and 2.0 mm.
  • the wetting angle between the material of the gasket with a plurality of small holes and the melt placed in the crucible is greater than 90 °.
  • the rotation speed of the turntable is 10,000 rpm to 40,000 rpm.
  • the heating thickness range of the induction heating coil is between 5-20mm, and it is connected to a frequency converter and a regulated power supply provided outside the casing, and the voltage control range of the regulated power supply is between 0-50V. between.
  • the piezoelectric ceramic, the transmission rod, the crucible, the resistance heater, the gasket with a plurality of small holes, and the ring shape are located on the same axis.
  • the invention also discloses a method for preparing spherical metal powder based on the uniform droplet drop-by-point atomization method by using the above device, which is characterized by including the following steps,
  • Evacuation and heating use a mechanical pump and a diffusion pump to evacuate the crucible and the casing, and fill it with a high-purity inert gas; set the heating power of the resistance heater according to the melting point of the raw material to be heated, and the temperature to be heated After reaching the melting point, ensure that the raw material is completely melted into the melt; manually adjust the position of the transmission rod to a preset distance between the transmission rod and a gasket with multiple small holes;
  • Induction heating using a motor to rotate the turntable at a high speed at a preset speed, and then using an induction heating coil to heat the upper surface of the turntable rotating at a high speed above the melting point of the metal material;
  • Powder preparation First, manually adjust the position of the transmission rod to a preset distance between the transmission rod and a washer with multiple small holes; second, by setting on the casing and protruding into the crucible The crucible air inlet passes in a high-purity inert protective gas, so that a positive pressure difference is formed inside and outside the crucible, so that the melt fills the central hole at the bottom of the crucible; finally, a certain waveform pulse signal is input to the piezoelectric ceramic The piezoelectric ceramic generates downward displacement, and is transmitted to the molten metal in the vicinity of the center hole by a transmission rod connected to the piezoelectric ceramic, so that the molten metal is sprayed out from a gasket with a plurality of small holes at the bottom of the center hole. Uniform droplet
  • 5Forming powder uniform droplets fall freely on the rotating disc rotating at high speed through a ring-shaped drop tube.
  • the uniform droplets in the molten state first drop into concentric circular grooves in the center of the disc and gradually flow through the grooves.
  • the centrifugal force is small, and the droplets will not be dispersed immediately, but will spread on the turntable in a circle.
  • the centrifugal force is spread to a certain range, the spreading metal will appear on the turntable under the action of centrifugal force.
  • the fibers are linearly dispersed to the edge of the turntable, and finally split into tiny droplets that fly out.
  • the microdroplets solidify without a container during the falling process, forming a metal powder, and landing on a collecting tray.
  • the raw material is loaded into the crucible through a furnace door, and an amount of the raw material is 1 / 4-3 / 4 of a volume of the crucible.
  • the distance between the position of the transmission rod and the transmission rod and the washer with a small hole is manually adjusted from 2 cm to 5 cm.
  • an induction heating voltage range of the induction heating coil is 0-50V, and an induction heating time is 5-15min.
  • differential pressure between the crucible cavity of the crucible and the cavity of the shell is 0-200 kPa.
  • the present invention has the following advantages:
  • the invention designs a device combining a pulse micro-hole spraying method and a centrifugal atomization method, which can realize the fibrous division of metal droplets on a turntable, so that a device for preparing fine high-melting-point metal spherical powder can be realized.
  • the turntable disclosed by the invention It is a mosaic structure and uses a material with poor thermal conductivity, that is, less than 20W / m / k as a substrate, which can effectively reduce the heat transferred from the turntable to the high-speed motor and prevent it from affecting the normal operation of the high-speed motor.
  • the body material has good wettability, that is, the material with a wetting angle of less than 90 ° as the atomizing plane, which is conducive to the spread of droplets on the atomizing plane, so that the metal liquid can be fully atomized;
  • the molten high melting point metal material in the crucible is sprayed through the small holes at the bottom of the crucible under the effect of differential pressure and pulse disturbance to form uniform droplets.
  • the uniform droplets first drop in the concentric circular grooves in the center of the turntable. And gradually flow through the groove, because the material of the atomizing plane of the turntable and the metal droplets have good wettability, and the centrifugal force of the center of the turntable is small, the droplets will not be dispersed immediately, but will spread on the turntable in a circle.
  • the pulsed microporous spray method can overcome the shortcomings of other methods on high-melting-point metal spraying, and achieve the spraying of high-melting-point metal uniform droplets.
  • the sprayed droplets have no satellite droplets and high sphericity.
  • the combination of the pulse microporous spray method and the atomization method greatly reduces the size of the droplets after atomization, and greatly improves the atomization efficiency, realizes ultra-fine metal powder, and also achieves controllable particle size and high yield. Meet the requirements of industrial production.
  • the method of the invention has strong controllability, which is manifested in the following points: the heating temperature of the crucible can be accurately controlled by the resistance heater; the pressure difference between the crucible and the casing can be controlled by introducing an inert gas into the crucible and the casing; the crucible The size of the small holes of the gasket with multiple small holes at the bottom can control the size of the droplets. After centrifugal atomization, the particle size distribution of the metal particles is further controlled; the induction heating coil can control the temperature of the surface of the turntable, and the speed of the turntable can be controlled. Can control the fibrous splitting effect of molten metal, so that the particle size distribution of metal particles can be further controlled; the process parameters can be adjusted and controlled, and spherical metal powders with different particle size and distribution can be obtained, and the production efficiency Get improved.
  • the invention can efficiently prepare a high melting point spherical metal powder with fine and controllable particle size, narrow particle size distribution range, high sphericity, no satellite drip, good fluidity and spreadability, high production efficiency, low cost, and suitable Industrial production.
  • FIG. 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a schematic structural diagram of a turntable of the present invention.
  • FIG. 3 is a schematic structural diagram of a gasket with holes according to the present invention.
  • FIG. 4 is a comparison diagram of the surface of the turntable of the present invention after the experiment with that of the original turntable, wherein (a) is the surface of the turntable with fibrous splits, and (b) is the surface of the turntable in the prior art.
  • orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal”, “top, bottom” and the like indicate the orientation Or the positional relationship is usually based on the orientation or positional relationship shown in the drawings, only for the convenience of describing the present invention and simplifying the description. Unless otherwise stated, these orientation words do not indicate and imply the device or element referred to. It must have a specific orientation or be constructed and operated in a specific orientation, so it cannot be understood as a limitation on the scope of protection of the present invention: the orientation words “inside and outside” refer to the inside and outside relative to the outline of each component itself.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure Shows the spatial position relationship between one device or feature and other devices or features. It should be understood that spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device as described in the figures. For example, if a device in the figure is turned over, devices described as “above” or “above” other devices or constructions will be positioned “below the other devices or constructions” or “below” Under its device or structure. " Thus, the exemplary term “above” may include both directions “above” and “below”. The device can also be positioned in other different ways (rotated 90 degrees or at other orientations), and the relative description of space used here is explained accordingly.
  • the present invention provides a device for preparing spherical metal powder based on a one-by-one atomization method of uniform liquid droplets, which includes a shell 19, a crucible 5 provided in the shell 19, and a shell provided in the shell.
  • a collection bin 13 at the lower part of the body, the crucible 5 is placed at the upper part of the casing 19, and the collection bin 13 is placed at the lower part of the crucible 5;
  • the crucible 5 is provided with a transmission rod 3 connected to a piezoelectric ceramic 1 provided outside the housing 19, and the position where the transmission rod 3 is connected to the top of the crucible 5 is sealed by a dynamic sealing ring 2.
  • the lower end of the transmission rod 3 faces the central hole at the bottom of the crucible 5, and a gasket 20 with a plurality of small holes is fixed at the bottom of the central hole (as shown in FIG.
  • the gasket 20 with a plurality of small holes It can be a bolt with a hole, or a gasket made of other high-temperature and corrosion-resistant materials with holes, and the gasket 20 with a plurality of small holes is fixed to the bottom of the crucible 5 by screws 7); 5 is provided with a thermocouple inside, and the crucible 5 is provided with a resistance heater 6 outside;
  • the diameter of the central hole on the crucible 5 is larger than the diameter of the small hole of the spacer 20 with a plurality of small holes, and the diameter of the small hole of the spacer 20 with a plurality of small holes ranges from 0.02 mm to 2.0 mm.
  • the wetting angle between the material of the washer 20 with a plurality of small holes and the melt 4 placed in the crucible 5 is greater than 90 °.
  • a crucible air inlet 27 and a crucible exhaust valve 26 projecting into the crucible 5 are provided on the top of the casing 19, and a diffusion pump 23 and a mechanical pump 22 are also provided on the side wall of the casing 19,
  • the housing 19 is further provided with a cavity air inlet 21 and a cavity exhaust valve 24, and one side of the housing 19 is provided with a furnace door 8;
  • the collection bin 13 is fixed to the casing 19 through a bracket 9.
  • An annular descending pipe 10 is interposed between the casing 19 and the collection bin 13.
  • a turntable 11 is provided at a position directly opposite the lower end of the annular downcomer 10, the turntable 11 is connected to the motor 16, a collection tray 15 is provided at the bottom of the collection bin 13, and a collection bin door 14 is provided at one side of the collection bin 13 ;
  • the turntable 11 includes a base, an atomizing plane 30 and a vent hole 31;
  • the longitudinal section of the base body composed of the upper receiving portion 28 and the lower supporting portion 29 is a "T-shaped" main structure.
  • the upper surface of the receiving portion 28 is provided with a circular recess with a certain radius coaxial with the center of the circle.
  • the atomizing plane 30 is a disc structure.
  • the disc structure matches the circular groove and interference fits with the circular groove.
  • the atomizing plane 30 uses droplets that are atomized. 18 made of material with a wetting angle of less than 90 °; the atomizing plane is also provided with a concentric circular groove 32 matching the gasket 20 with a plurality of small holes;
  • the vent hole 31 is penetratingly provided in the receiving portion 28 and the support portion 29. An upper end surface of the vent hole 31 is in contact with a lower end surface of the atomizing plane 30, and a lower end of the vent hole 31 is outside. Connected
  • An induction heating coil 17 is also provided on the periphery of the turntable 11.
  • the rotating speed of the turntable 11 is 10000 rpm-40000 rpm.
  • the heating thickness range of the induction heating coil 17 is between 5-20mm. It is connected to a frequency converter and a regulated power supply provided outside the casing 19.
  • the voltage control range of the regulated power supply is between 0-50V. between.
  • the annular landing tube 10, the turntable 11, the concentric circular groove 32, and the induction heating coil 17 are located on the same axis.
  • the purpose is for the droplets to drop evenly in the center of the turntable, which is good for spreading.
  • the invention discloses a method for preparing a spherical metal powder based on the uniform droplet drop-by-point atomization method using the above device, including the following steps.
  • the raw material is ground to a preset average particle diameter and then loaded into the crucible 5 and sealed; the raw material is loaded into the crucible 5 through the furnace door 8, and the amount of the raw material is equal to the volume of the crucible 5 1 / 4-3 / 4.
  • Evacuation and heating use the mechanical pump 22 and the diffusion pump 23 to evacuate the crucible 5 and the casing 19, and fill it with a high-purity inert gas; set the heating of the resistance heater 6 according to the melting point of the raw material to be heated Power, after the heating temperature reaches the melting point, ensure that the raw material is completely melted into the melt 4; manually adjust the position of the transmission rod 3 to a preset distance between the transmission rod 3 and the gasket 20 with a plurality of small holes;
  • Induction heating using the motor 16 to rotate the turntable 11 at a high speed at a preset speed, and then using an induction heating coil 17 to heat the upper surface of the high speed rotating turntable 11 above the melting point of the metal material;
  • the induction heating voltage range is 0-50V, and the induction heating time is 5-15min.
  • Powder preparation First, manually adjust the position of the transmission rod 3 to a preset distance between the transmission rod 3 and the washer 20 with a plurality of small holes; second, by setting on the casing 19 and extending into the place
  • the crucible air inlet 27 in the crucible 5 passes in a high-purity inert protective gas, so that a positive pressure difference is formed between the inside and outside of the crucible 5, so that the melt 4 fills the central hole at the bottom of the crucible 5;
  • the differential pressure between the crucible cavity and the cavity of the casing 19 is 0-200 kPa.
  • a certain wave type pulse signal is input to the piezoelectric ceramic 1, the piezoelectric ceramic 1 generates a downward displacement, and the transmission rod 3 connected to the piezoelectric ceramic 1 is transmitted to the molten metal in the area near the center hole, so that The molten metal is ejected from the gasket 20 with a plurality of small holes at the bottom of the central hole to form uniform droplets 18;
  • Form powder uniform droplets 18 fall through the ring-shaped drop tube 10 and land freely on the rotating disc 11 at high speed.
  • the uniform droplets 18 in the molten state first drop into the concentric groove 32 in the center of the disc 11 and gradually Flowing through the groove, due to the small centrifugal force at this time, the droplets will not be dispersed immediately, but will spread on the turntable 11 in a circular shape.
  • the centrifugal force is spread to a certain range, the spread metal will be at the centrifugal force.
  • the fibers are scattered on the turntable 11 to the edge of the turntable 11 and finally split into tiny droplets that fly out.
  • the microdroplets solidify without a container during the falling process to form metal powder and land on the collection tray 15.
  • the copper block is broken into block-shaped particles with a diameter of 2 cm, and the crucible 5 with a central hole at the bottom is filled.
  • the amount of copper particles is 1/2 of the capacity of the crucible 5, and then the material is
  • the graphite bolt with multiple small holes (that is, the washer 20 with multiple small holes is in the form of bolts) is mounted to the bottom of the crucible 5 by four screws 7 evenly distributed, and the furnace door 8 is closed; the crucible is mechanically pumped 22
  • the cavity 25, the casing 19, and the collection bin 13 are evacuated to a low vacuum of 1Pa-5Pa, and then the diffusion pump 23 is used to evacuate high vacuum to 10-3Pa, and filled with high-purity inert gas argon to atmospheric pressure; set the power to the resistance heater 6 After the power is turned on, the temperature reaches the melting point of copper, and the temperature is continuously increased to 10 ° C, and the temperature is maintained for 30 minutes, so that all the copper particles in the crucible 5 are melted into the melt
  • a square wave pulse signal is input to the piezoelectric ceramic 1, the piezoelectric ceramic 1 drives the transmission rod 3 to vibrate downward to squeeze the melt 4, and the melt 4 is made of graphite made of a gasket 20 with a plurality of small holes.
  • the droplets 18 are ejected from the holes to form droplets 18; the droplets 18 fall freely through the annular downcomer 10 and land into a concentric circular groove 32 in the center of the high-speed rotating turntable 11, gradually flowing through the groove, and the droplets are subjected to centrifugal force 18 is broken into smaller micro-droplets, and the micro-droplets are solidified without a container during the falling process, forming metal powder 12, and landed in a collecting tray 15 (the collecting tray may be a circular disk or a disc); after the preparation is finished, stop
  • the heating of the resistance heater 6, the heating of the induction heating coil 17, and the rotation of the turntable 11 close the mechanical pump 22, the diffusion pump 23, the cavity inlet 21, the cavity exhaust valve 24, the crucible inlet 27, and the crucible row.
  • the gas valve 26 opens the collection chamber door 14 and takes out the metal powder 12 in the collection pan 15.
  • (b) is an atomizing disc obtained after atomization in the prior art, because the wettability of the atomizing disc material and the prepared metal powder material is too small, and the temperature of the turntable is too low during the atomization process. , Resulting in a liquid-like split of the liquid, and a thicker solidified liquid film will appear on the atomized surface.
  • the liquid film surface is very rough, which is not conducive to the further atomization of the subsequent metal droplets, which will seriously affect the atomization effect and atomization efficiency .
  • (a) For the atomized surface obtained by the method of the present invention, it can be seen that the atomization mode is changed into an obvious fibrous split mode, and the linear split mode greatly improves the miniaturization and production efficiency of the metal powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法。所述装置包括:壳体(19)、设置于壳体(19)内的坩埚(5)和收集仓(13),设置在粉末收集区的转盘(11)为镶嵌式结构,选择导热性较差的材料作为转盘(11)的基体部分,选择与液滴的润湿角小于90°的金属材料镶嵌进主体部分作为转盘(11)的雾化平面(30),雾化平面(30)上设有同心圆凹槽(32),转盘(11)内设有通气孔(31)。所述制备方法结合脉冲微孔喷射和离心雾化法,配合转盘结构并对转盘表面进行感应加热,从而使金属液突破了传统熔融金属的分裂模式,实现了只有当雾化介质为水溶液或有机溶液时才能实现的纤维状分裂方式,制备出满足要求的高熔点金属粉末,粒径可控,圆球度高、无卫星滴、流动铺展性良好,适宜工业化生产。

Description

基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法 技术领域
本发明属于球形金属粉末制备技术领域,具体而言,尤其涉及一种基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法。
背景技术
近年来,材料逐渐向轻小化、集成化的方向不断发展,球形粉末材料在诸如电子封装、能源材料、生物医学等方面均有着广泛应用。国际上,加工方式也在不断变革,3D打印快速成型新技术产生并在研究中不断发展,这种以增材制造为理念的成型技术运用粉末状金属等粘合材料,通过逐层打印的方式制造实体材料。3D打印用的金属粉末要求圆球度高,粒径分布区间窄,无卫星滴,具有良好铺展性和均匀的流动性能等,同时,3D打印用球形金属粉末的需求量也在不断增加。
目前,国内外工业生产金属球形粉末的方法主要为雾化法,包含气雾化法、水雾化法以及离心雾化法等。但是雾化法所制备粉末的尺寸分散度大,必须通过多次筛分才能得到满足粒径要求的粉末,使生产效率大大降低,尤其当尺寸有严格要求时;雾化法易产生卫星滴,使粉末表面粘连卫星滴,降低粉末的流动性及铺展性,无法满足3D打印用粉末的要求。其他方法如切丝或打孔重熔法、均一液滴成型法都局限于制备低熔点的金属粉末,目前对高熔点球形金属粉末的制备处于空缺状态。
上述常用方法均存在一定的技术局限性,因此,有必要提供一种高熔点球形金属粉末的制备方法及制备装置以解决3D打印用粉体制备的技术难题。
发明内容
根据上述提出的3D打印用金属粉末制备过程中存在的圆球度差,铺展性及流动性差等问题,而提供一种基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法。主要结 合脉冲微孔喷射法和离心雾化法两种方法,同时对转盘进行结构设计,且增加感应加热线圈对圆盘表面进行感应加热,从而使金属液克服其自身高密度、低粘度的局限性,突破了传统熔融金属的分裂模式,实现了只有当雾化介质为水溶液或有机溶液时才能实现的纤维状分裂方式,通过这种模式,实现了金属粉末的超微细化,并且在粒度调控方面可以取得飞跃性的进步。利用此方法可以制备得到圆球度高、有良好流动性和铺展性、无卫星滴、细粉收得率非常高的符合使用3D打印使用要求的球形金属粉末。
本发明采用的技术手段如下:
基于均匀液滴逐一雾化法制备球形金属粉末的装置,包括:壳体、设置于所述壳体内的坩埚和设置于所述壳体下部的收集仓,所述坩埚置于所述壳体内的上部,所述收集仓置于所述坩埚的下部;
所述坩埚内设有与设置在所述壳体外部的压电陶瓷相连的传动杆,所述传动杆与所述坩埚顶部连接的位置由动态密封圈密封,所述传动杆的下端对着所述坩埚底部的中心孔,所述中心孔底部固定有带多个小孔的垫片;所述坩埚内部设有热电偶,所述坩埚外部设有电阻加热器;
所述壳体顶部设有伸入于所述坩埚内的坩埚进气口和坩埚排气阀,在所述壳体的侧壁上还设有扩散泵和机械泵,所述壳体上还设有腔体进气口和腔体排气阀,所述壳体的一侧设有炉门;
所述收集仓通过支架与所述壳体相固定,所述壳体和所述收集仓之间设有相贯通的环形降落管,所述收集仓腔体内、与所述环形降落管下端正对的位置设有转盘,所述转盘与电机相连,所述收集仓底部设有收集盘,所述收集仓的一侧设有收集仓门;
所述转盘包括基体,雾化平面和通气孔;
所述基体由上部的承接部和下部的支撑部构成的纵截面呈类“T型”的主体结构,所述承接部上表面设有与其圆心同轴的具有一定半径的圆形凹槽;其中,所述基体采用导热性小于20W/m/k的材料制成;
所述雾化平面为圆盘结构,所述圆盘结构与所述圆形凹槽相匹配且与所述圆形凹槽过盈配合,所述雾化平面采用与雾化的液滴润湿角小于90°的材料制成;所述雾化平面中心设有一个与所述带多个小孔的垫片相匹配的、供金属液滴滴落储存的同心圆凹槽;
所述通气孔贯通设置在所述承接部及所述支撑部内,所述通气孔的上端面与所述雾化平面的下端面接触,所述通气孔的下端与外界连通;
所述转盘的外围还设有感应加热线圈。
为方便原料加入及成品收集,所述壳体的一侧设有炉门,所述收集仓的一侧设有收集仓门。传动杆与坩埚顶部的连接处使用动态密封圈密封,传动杆伸入到坩埚的腔体内及熔体内部,熔体在传动杆的带动下喷射出带多个小孔的垫片的孔形成液滴,液滴自由下落通过环形降落管,降落到转盘中心的同心圆形凹槽中,在离心力作用下液滴漫过同心圆形凹槽,呈纤维状铺展分裂,最后在转盘边缘离散成微细的液滴飞出,自由降落凝固形成金属粉末,最后降落到收集槽中。收集槽的面积足够大能够完全收集金属粉末,收集仓的高度满足液滴经离心破碎后自由下落时可完成凝固,收集仓的宽度满足大于液滴经离心破碎后的飞行距离,即液滴离心破碎后在下落过程中凝固成金属粉末并降落到收集槽中。
优选地,基体支撑部的高度不宜太高,小于承接部的高度为宜。所述雾化平面的上端面凸出于所述承接部上端面,凸出范围为0.1-0.5mm。凸出高度只要满足利于离散的金属液滴不接触基体,直接飞到腔室内落入收集盘内即可。所述基体采用二氧化锆陶瓷、二氧化硅玻璃或不锈钢制成,不局限于上述几种材质,只要满足导热性小于20W/m/k的材料均可。所述通气孔的上端面小于等于所述雾化平面的下端面,通气孔设置的目的是为了在抽真空时可以将转盘内间隙的气体抽的更干净,转盘高速旋转时更加安全,因此通气孔的上端面与雾化平面的下端面的接触面积越大抽真空时雾化平面的稳定性越好。
进一步地,所述坩埚上的中心孔直径大于带多个小孔的垫片的小孔直径,所述带多个小孔的垫片的小孔直径范围在0.02mm-2.0mm之间。
进一步地,所述带多个小孔的垫片的材料与置于所述坩埚内的熔体的润湿角大于90°。
进一步地,所述转盘转速为10000rpm-40000rpm。
进一步地,所述感应加热线圈的加热厚度范围在5-20mm之间,它与设置在所述壳体外的变频器和稳压电源相连,所述稳压电源的电压控制范围在0-50V之间。
进一步地,在所述装置自上而下的方向上,所述压电陶瓷、所述传动杆、所述坩埚、所述电阻加热器、所述带多个小孔的垫片、所述环形降落管、所述转盘、所述同心圆形凹槽及所述感应加热线圈位于同一轴线上。
本发明还公开了一种采用上述的装置基于均匀液滴逐一雾化法制备球形金属粉末的方法,其特征在于包括如下步骤,
①装料:将原料研磨到预设的平均粒径后装入到坩埚内密封;
②抽真空与加热:利用机械泵和扩散泵对所述坩埚和所述壳体抽真空,并充入高纯度惰性气体;根据待加热原料的熔点设定电阻加热器的加热功率,待加热温度到熔点后保使原料完全熔化为熔体;手动调整传动杆的位置至传动杆与带多个小孔的垫片之间为预设距离;
③感应加热:利用电机使所述转盘在预设转速下高速旋转,接着利用感应加热线圈将高速旋转的转盘上表面加热到金属材料的熔点温度以上;
④粉末制备:首先,手动调整传动杆的位置至传动杆与带多个小孔的垫片之间为预设距离;其次,通过设置在所述壳体上并伸入于所述坩埚内的坩埚进气口将高纯度惰性保护气体通入,使所述坩埚内外形成正压力差,促使熔体填满所述坩埚底部的中心孔;最后,给压电陶瓷输入一定波型的脉冲信号,所述压电陶瓷产生向下位移,由与所述压电陶瓷相连的传动杆传递给中心孔附近区域的熔融金属,使得熔融金属从中心孔底部的带多个小孔的垫片喷出形成均匀液滴;
⑤形成粉末:均匀液滴下落通过环形降落管自由降落在高速旋转的转盘上,熔融状态下的均匀液滴,先滴落在转盘中心的同心圆凹槽中,并逐渐漫过凹槽,由于此时离心力较小,液滴不会被马上离散出去,而是会呈圆形铺展在转盘上,当铺展到一定范围离心力足够大时,铺展的金属会在离心力的作用下,在转盘上呈纤维线状离散至转盘边缘,最后分裂成微小的液滴飞出,微液滴在下落过程中无容器凝固,形成金属粉末,降落至收集盘上。
⑥收集粉末:制备结束后,停止电阻加热器的加热、感应加热线圈的加热及转盘的旋转,关闭机械泵、扩散泵、腔体进气口、腔体排气阀、坩埚进气口和坩埚排气阀,打开收集仓门,取出收集盘中的金属粉末。
进一步地,所述原料通过炉门装入到所述坩埚中,原料放入量为所述坩埚容积的1/4-3/4。
进一步地,手动调整传动杆的位置至传动杆与带小孔的垫片之间的距离为2cm-5cm。
进一步地,所述感应加热线圈的感应加热电压范围为0-50V,感应加热时间为5-15min。
进一步地,所述坩埚的坩埚腔与所述壳体的腔体之间达到差压为0-200kPa。
较现有技术相比,本发明具有以下优点:
本发明设计了一种脉冲微孔喷射法与离心雾化法相结合的,可在转盘上实现金属液滴的纤维状分裂,从而可以实现制备微细高熔点金属球形粉末的装置,本发明公开的转盘为 镶嵌式结构,采用导热性较差即导热性小于20W/m/k的材料作为基体,可有效减少由转盘传递到高速电机上的热量,防止其影响高速电机正常工作;采用与雾化熔体材料具有良好润湿性即润湿角小于90°的材料作为雾化平面,有利于液滴在雾化平面的铺展,从而可以使金属液雾化充分;
坩埚中熔化的高熔点金属材料在差压和脉冲扰动的作用下,通过坩埚底部小孔喷出,形成均匀液滴,熔融状态下的均匀液滴,先滴落在转盘中心的同心圆凹槽中并逐渐漫过凹槽,由于转盘雾化平面的材料与金属液滴润湿性好,且转盘中心离心力较小,液滴不会被马上离散出去,而是会呈圆形铺展在转盘上,当铺展到一定范围离心力足够大时,铺展的金属会在离心力的作用下,在转盘上呈纤维线状离散至转盘边缘,最后分裂成微小的液滴飞出,微液滴在下落过程中无容器凝固,形成金属粉末,脉冲微孔喷射法可以克服其他方法在高熔点金属喷射上的不足,实现高熔点金属均匀液滴的喷射,并且喷射出的液滴无卫星滴,球形度高。脉冲微孔喷射法与雾化法结合后,使得雾化后液滴的尺寸大大减小,雾化效率大大提高,实现了金属粉末的超微细化,也实现了粒径可控,产量高,满足工业生产的要求。
本发明的工艺方法可控性强,表现在如下几点:通过电阻加热器可精确控制坩埚的加热温度;通过向坩埚与壳体内通入惰性气体,可控制坩埚与壳体内的压力差;坩埚底部带多个小孔的垫片的小孔的尺寸可以控制液滴的尺寸,经过离心雾化,进一步控制金属微粒子的粒径分布;感应加热线圈可以控制转盘表面的温度,转盘的转速可控,可以控制熔融金属的纤维状分裂效果,从而可以进一步控制金属微粒子的粒径分布;工艺参数的可调节与可控制,可以得到满足不同要求的粒径尺寸及分布的球形金属粉末,且生产效率得到提高。
通过本发明能够高效制备出高熔点球形金属粉末,粒度微细且可控、粒径分布区间窄,圆球度高、无卫星滴、流动性与铺展性良好,且生产效率高、成本低,适宜工业化生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的结构示意图。
图2为本发明的转盘的结构示意图。
图3为本发明带孔的垫片的结构示意图。
图4为本发明的转盘在实验后其表面与原转盘实验后的表面对比图,其中,(a)为呈纤维状分裂的转盘表面,(b)为现有技术中转盘表面。
图中:1、压电陶瓷;2、动态密封圈;3、传动杆;4、熔体;5、坩埚;6、电阻加热器;7、螺钉;8、炉门;9、支架;10、环形降落管;11、转盘;12、金属粉末;13、收集仓;14、收集仓门;15、收集盘;16、电机;17、感应加热线圈;18、液滴;19、壳体;20、带多个小孔的垫片;21、腔体进气口;22、机械泵;23、扩散泵;24、腔体排气阀;25、坩埚腔;26、坩埚排气阀;27、坩埚进气口;28、承接部;29、支撑部;30、雾化平面;31、通气孔;32、同心圆凹槽。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当清楚,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员己知的技 术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任向具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制:方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其位器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
如图1所示,本发明提供了一种基于均匀液滴逐一雾化法制备球形金属粉末的装置,包括:壳体19、设置于所述壳体19内的坩埚5和设置于所述壳体下部的收集仓13,所述坩埚5置于所述壳体19内的上部,所述收集仓13置于所述坩埚5的下部;
所述坩埚5内设有与设置在所述壳体19外部的压电陶瓷1相连的传动杆3,所述传动杆3与所述坩埚5顶部连接的位置由动态密封圈2密封,所述传动杆3的下端对着所述坩埚5底部的中心孔,所述中心孔底部固定有带多个小孔的垫片20(如图3所示,所述 带多个小孔的垫片20可以为带孔的螺栓,亦或者是其他带孔的耐高温耐腐蚀材料制成的垫片,通过螺钉7将带多个小孔的垫片20固定在所述坩埚5底部);所述坩埚5内部设有热电偶,所述坩埚5外部设有电阻加热器6;
所述坩埚5上的中心孔直径大于带多个小孔的垫片20的小孔直径,所述带多个小孔的垫片20的小孔直径范围在0.02mm-2.0mm之间。所述带多个小孔的垫片20的材料与置于所述坩埚5内的熔体4的润湿角大于90°。
所述壳体19顶部设有伸入于所述坩埚5内的坩埚进气口27和坩埚排气阀26,在所述壳体19的侧壁上还设有扩散泵23和机械泵22,所述壳体19上还设有腔体进气口21和腔体排气阀24,所述壳体19的一侧设有炉门8;
所述收集仓13通过支架9与所述壳体19相固定,所述壳体19和所述收集仓13之间设有相贯通的环形降落管10,所述收集仓13腔体内、与所述环形降落管10下端正对的位置设有转盘11,所述转盘11与电机16相连,所述收集仓13底部设有收集盘15,所述收集仓13的一侧设有收集仓门14;
如图2所示,所述转盘11包括基体,雾化平面30和通气孔31;
所述基体由上部的承接部28和下部的支撑部29构成的纵截面呈类“T型”的主体结构,所述承接部28上表面设有与其圆心同轴的具有一定半径的圆形凹槽;其中,所述基体采用导热性小于20W/m/k的材料制成;
所述雾化平面30为圆盘结构,所述圆盘结构与所述圆形凹槽相匹配且与所述圆形凹槽过盈配合,所述雾化平面30采用与雾化的液滴18润湿角小于90°的材料制成;所述雾化平面上还设有一个与所述带多个小孔的垫片20相匹配的同心圆凹槽32;
所述通气孔31贯通设置在所述承接部28及所述支撑部29内,所述通气孔31的上端面与所述雾化平面30的下端面接触,所述通气孔31的下端与外界连通;
所述转盘11的外围还设有感应加热线圈17。所述转盘11转速为10000rpm-40000rpm。所述感应加热线圈17的加热厚度范围在5-20mm之间,它与设置在所述壳体19外的变频器和稳压电源相连,所述稳压电源的电压控制范围在0-50V之间。
在所述装置自上而下的方向上,所述压电陶瓷1、所述传动杆3、所述坩埚5、所述电阻加热器6、所述带多个小孔的垫片20、所述环形降落管10、所述转盘11、所述同心圆形凹槽32及所述感应加热线圈17位于同一轴线上。目的是为了液滴可均匀的滴落在转盘中心,利于铺展。
本发明公开了一种采用上述的装置基于均匀液滴逐一雾化法制备球形金属粉末的方法,包括如下步骤,
①装料:将原料研磨到预设的平均粒径后装入到坩埚5内密封;所述原料通过炉门8装入到所述坩埚5中,原料放入量为所述坩埚5容积的1/4-3/4。
②抽真空与加热:利用机械泵22和扩散泵23对所述坩埚5和所述壳体19抽真空,并充入高纯度惰性气体;根据待加热原料的熔点设定电阻加热器6的加热功率,待加热温度到熔点后保使原料完全熔化为熔体4;手动调整传动杆3的位置至传动杆3与带多个小孔的垫片20之间为预设距离;
③感应加热:利用电机16使所述转盘11在预设转速下高速旋转,接着利用感应加热线圈17将高速旋转的转盘11上表面加热到金属材料的熔点温度以上;所述感应加热线圈17的感应加热电压范围为0-50V,感应加热时间为5-15min。
④粉末制备:首先,手动调整传动杆3的位置至传动杆3与带多个小孔的垫片20之间为预设距离;其次,通过设置在所述壳体19上并伸入于所述坩埚5内的坩埚进气口27将高纯度惰性保护气体通入,使所述坩埚5内外形成正压力差,促使熔体4填满所述坩埚5底部的中心孔;所述坩埚5的坩埚腔与所述壳体19的腔体之间达到差压为0-200kPa。
最后,给压电陶瓷1输入一定波型的脉冲信号,所述压电陶瓷1产生向下位移,由与所述压电陶瓷1相连的传动杆3传递给中心孔附近区域的熔融金属,使得熔融金属从中心孔底部的带多个小孔的垫片20喷出形成均匀液滴18;
⑤形成粉末:均匀液滴18下落通过环形降落管10自由降落在高速旋转的转盘11上,熔融状态下的均匀液滴18,先滴落在转盘11中心的同心圆凹槽32中,并逐渐漫过凹槽,由于此时离心力较小,液滴不会被马上离散出去,而是会呈圆形铺展在转盘11上,当铺展到一定范围离心力足够大时,铺展的金属会在离心力的作用下,在转盘11上呈纤维线状离散至转盘11边缘,最后分裂成微小的液滴飞出,微液滴在下落过程中无容器凝固,形成金属粉末,降落至收集盘15上。
⑥收集粉末:制备结束后,停止电阻加热器6的加热、感应加热线圈17的加热及转盘11的旋转,关闭机械泵22、扩散泵23、腔体进气口21、腔体排气阀24、坩埚进气口27和坩埚排气阀26,打开收集仓门14,取出收集盘15中的金属粉末12。
实施例1
用上述装置和方法制备3D打印用铜金属粉末,具体实施方式如下:
首先,将铜块破碎成粒径为2cm大小的块状颗粒,装入底部带有中心孔的坩埚5中,铜颗粒的装入量达到所述坩埚5容量的1/2,然后将材质为石墨的带多个小孔的螺栓(即带多个小孔的垫片20为螺栓形式)通过均布的四个螺钉7安装到坩埚5的底部,关上炉门8;用机械泵22将坩埚腔25、壳体19及收集仓13抽到低真空1Pa-5Pa,再用扩散泵23抽高真空至10-3Pa,充入高纯度惰性气体氩气至大气压;设定功率为电阻加热器6通电,温度达到铜的熔点后继续升温到过热10℃,保温30min,使坩埚5中铜颗粒全部熔化成熔体4;利用电机16使所述转盘11在预设转速下高速旋转,接着利用感应加热线圈17将高速旋转的转盘11上表面加热到金属材料的熔点温度以上;手动调节传动杆3的位置,使传动杆3与带多个小孔的垫片20相距2-5cm;打开坩埚进气口27和坩埚排气阀26,向坩埚腔25充入高纯惰性气体氩气,使得坩埚腔25与壳体19之间的差压达到50kPa;
其次,给压电陶瓷1输入方形波的脉冲信号,压电陶瓷1带动传动杆3向下振动挤压熔体4,熔体4从材质为石墨的带多个小孔的垫片20的小孔中喷射出来形成液滴18;液滴18自由下落通过环形降落管10,降落到高速旋转的转盘11中心的同心圆形凹槽32中,逐渐漫过凹槽,在离心力的作用下液滴18破碎成更小的微液滴,微液滴在下落过程中无容器凝固,形成金属粉末12,降落至收集盘15中(收集盘可以为环形盘或圆盘);待制备结束后,停止电阻加热器6的加热、感应加热线圈17的加热及转盘11的旋转,关闭机械泵22、扩散泵23、腔体进气口21、腔体排气阀24、坩埚进气口27和坩埚排气阀26,打开收集仓门14,取出收集盘15中的金属粉末12。
如图4所示,(b)中为现有技术雾化后得到的雾化盘,由于雾化盘材料与制备的金属粉末材料润湿性太小,且在雾化过程中转盘温度太低,导致液体呈膜状分裂,且雾化表面会出现较厚的已凝固液膜,该液膜表面十分粗糙,不利于后续金属液滴的进一步雾化,会严重影响雾化效果和雾化效率。(a)为通过本发明方法得到的雾化表面,可以看出雾化模式转变为明显的纤维状分裂模式,线状的分裂模式大大提高了金属粉末的微细化和生产效率。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 基于均匀液滴逐一雾化法制备球形金属粉末的装置,包括:壳体(19)、设置于所述壳体(19)内的坩埚(5)和设置于所述壳体下部的收集仓(13),所述坩埚(5)置于所述壳体(19)内的上部,所述收集仓(13)置于所述坩埚(5)的下部;
    所述坩埚(5)内设有与设置在所述壳体(19)外部的压电陶瓷(1)相连的传动杆(3),所述传动杆(3)与所述坩埚(5)顶部连接的位置由动态密封圈(2)密封,所述传动杆(3)的下端对着所述坩埚(5)底部的中心孔,所述中心孔底部固定有带多个小孔的垫片(20);
    所述壳体(19)顶部设有伸入于所述坩埚(5)内的坩埚进气口(27)和坩埚排气阀(26),在所述壳体(19)的侧壁上还设有扩散泵(23)和机械泵(22),所述壳体(19)上还设有腔体进气口(21)和腔体排气阀(24),所述壳体(19)的一侧设有炉门(8);
    所述收集仓(13)通过支架(9)与所述壳体(19)相固定,所述壳体(19)和所述收集仓(13)之间设有相贯通的环形降落管(10),所述收集仓(13)腔体内、与所述环形降落管(10)下端正对的位置设有转盘(11),所述转盘(11)与电机(16)相连,所述收集仓(13)底部设有收集盘(15),所述收集仓(13)的一侧设有收集仓门(14);
    其特征在于:
    所述转盘(11)包括基体,雾化平面(30)和通气孔(31);
    所述基体由上部的承接部(28)和下部的支撑部(29)构成的纵截面呈类“T型”的主体结构,所述承接部(28)上表面设有与其圆心同轴的具有一定半径的圆形凹槽;其中,所述基体采用导热性小于20W/m/k的材料制成;
    所述雾化平面(30)为圆盘结构,所述圆盘结构与所述圆形凹槽相匹配且与所述圆形凹槽过盈配合,所述雾化平面(30)采用与雾化的液滴(18)润湿角小于90°的材料制成;所述雾化平面上还设有一个与所述带多个小孔的垫片(20)相匹配的同心圆凹槽(32);
    所述通气孔(31)贯通设置在所述承接部(28)及所述支撑部(29)内,所述通气孔(31)的上端面与所述雾化平面(30)的下端面接触,所述通气孔(31)的下端与外界连通;
    所述转盘(11)的外围还设有感应加热线圈(17)。
  2. 根据权利要求1所述的基于均匀液滴逐一雾化法制备球形金属粉末的装置,其特征在于,所述坩埚(5)上的中心孔直径大于带多个小孔的垫片(20)的小孔直径,所述带多个小孔的垫片(20)的小孔直径范围在0.02mm-2.0mm之间。
  3. 根据权利要求1所述的基于均匀液滴逐一雾化法制备球形金属粉末的装置,其特征在于,所述带多个小孔的垫片(20)的材料与置于所述坩埚(5)内的熔体(4)的润湿角大于90°。
  4. 根据权利要求1所述的基于均匀液滴逐一雾化法制备球形金属粉末的装置,其特征在于,所述转盘(11)转速为10000rpm-40000rpm。
  5. 根据权利要求1所述的基于均匀液滴逐一雾化法制备球形金属粉末的装置,其特征在于,所述感应加热线圈(17)的加热厚度范围在5-20mm之间,它与设置在所述壳体(19)外的变频器和稳压电源相连,所述稳压电源的电压控制范围在0-50V之间。
  6. 根据权利要求1所述的基于均匀液滴逐一雾化法制备球形金属粉末的装置,其特征在于,在所述装置自上而下的方向上,所述压电陶瓷(1)、所述传动杆(3)、所述坩埚(5)、所述带多个小孔的垫片(20)、所述环形降落管(10)、所述转盘(11)、所述同心圆形凹槽(32)及所述感应加热线圈(17)位于同一轴线上。
  7. 一种采用如权利要求1-6任意一项权利要求所述的装置基于均匀液滴逐一雾化法制备球形金属粉末的方法,其特征在于包括如下步骤,
    ①装料:将原料研磨到预设的平均粒径后装入到坩埚(5)内密封;
    ②抽真空与加热:利用机械泵(22)和扩散泵(23)对所述坩埚(5)和所述壳体(19)抽真空,并充入高纯度惰性气体;根据待加热原料的熔点设定电阻加热器(6)的加热功率,待加热温度到熔点后保使原料完全熔化为熔体(4);手动调整传动杆(3)的位置至传动杆(3)与带多个小孔的垫片(20)之间为预设距离;
    ③感应加热:利用电机(16)使所述转盘(11)在预设转速下高速旋转,接着利用感应加热线圈(17)将高速旋转的转盘(11)上表面加热到金属材料的熔点温度以上得到熔体(4);
    ④粉末制备:首先,手动调整传动杆(3)的位置至传动杆(3)与带多个小孔的垫片(20)之间为预设距离;其次,通过设置在所述壳体(19)上并伸入于所述坩埚(5)内的坩埚进气口(27)将高纯度惰性保护气体通入,使所述坩埚(5)内外形成正压力差,促使熔体(4)填满所述坩埚(5)底部的中心孔;最后,给压电陶瓷(1)输入一定波型的脉冲信号,所述压电陶瓷(1)产生向下位移,由与所述压电陶瓷(1)相连的传动杆(3)传递给中心孔附近区域的熔融金属,使得熔融金属从中心孔底部的带多个小孔的垫片(20)喷出形成均匀的液滴(18);
    ⑤形成粉末:均匀液滴(18)下落通过环形降落管(10)自由降落在高速旋转的转盘 (11)上,熔融状态下的均匀液滴(18),先滴落在转盘(11)中心的同心圆凹槽(32)中,并逐渐漫过凹槽,由于此时离心力较小,液滴不会被马上离散出去,而是会呈圆形铺展在转盘(11)上,当铺展到一定范围离心力足够大时,铺展的金属会在离心力的作用下,在转盘(11)上呈纤维线状离散至转盘(11)边缘,最后分裂成微小的液滴飞出,微液滴在下落过程中无容器凝固,形成金属粉末,降落至收集盘(15)上;
    ⑥收集粉末:制备结束后,停止电阻加热器(6)的加热、感应加热线圈(17)的加热及转盘(11)的旋转,关闭机械泵(22)、扩散泵(23)、腔体进气口(21)、腔体排气阀(24)、坩埚进气口(27)和坩埚排气阀(26),打开收集仓门(14),取出收集盘(15)中的金属粉末(12)。
  8. 根据权利要求7所述的基于均匀液滴逐一雾化法制备球形金属粉末的方法,其特征在于,所述原料通过炉门(8)装入到所述坩埚(5)中,原料放入量为所述坩埚(5)容积的1/4-3/4。
  9. 根据权利要求7所述的基于均匀液滴逐一雾化法制备球形金属粉末的方法,其特征在于,所述感应加热线圈(17)的感应加热电压范围为0-50V,感应加热时间为5-15min。
  10. 根据权利要求7所述的基于均匀液滴逐一雾化法制备球形金属粉末的方法,其特征在于,所述坩埚(5)的坩埚腔与所述壳体(19)的腔体之间达到差压为0-200kPa。
PCT/CN2019/107701 2018-09-25 2019-09-25 基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法 WO2020063623A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/280,168 US11344950B2 (en) 2018-09-25 2019-09-25 Apparatus and method for preparing spherical metal powder based on one-by-one atomization method for uniform droplets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811117136.5A CN109093127B (zh) 2018-09-25 2018-09-25 基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法
CN201811117136.5 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020063623A1 true WO2020063623A1 (zh) 2020-04-02

Family

ID=64867533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107701 WO2020063623A1 (zh) 2018-09-25 2019-09-25 基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法

Country Status (3)

Country Link
US (1) US11344950B2 (zh)
CN (1) CN109093127B (zh)
WO (1) WO2020063623A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114603148A (zh) * 2022-05-11 2022-06-10 成都大学 一种球形合金粉末的制备装置及制备方法
CN117548679A (zh) * 2024-01-09 2024-02-13 湖南艾缇欧新材料有限公司 一种锡粉制备设备及操作方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109014226A (zh) * 2018-09-25 2018-12-18 大连理工大学 一种制备3d打印用球形金属粉末的装置及方法
CN109014227A (zh) * 2018-09-25 2018-12-18 大连理工大学 一种逐液滴离心雾化法制备超细球形金属粉末的装置及方法
CN109175392A (zh) * 2018-09-25 2019-01-11 大连理工大学 一种逐液滴离心雾化法专用转盘结构
CN109047786B (zh) * 2018-09-25 2020-11-24 大连理工大学 一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法
CN109093127B (zh) 2018-09-25 2020-11-24 中国人民解放军陆军装甲兵学院 基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法
CN110465673B (zh) * 2019-09-28 2020-07-28 南阳裕泰隆粉体材料有限公司 一种防尘式金属粉末生产装置
CN110802236B (zh) * 2019-11-21 2023-07-28 西安赛隆增材技术股份有限公司 一种通过颗粒局部熔化制备细粒径金属粉末的装置及方法
CN115055676A (zh) * 2022-05-25 2022-09-16 中国科学院赣江创新研究院 一种粉末材料原位热处理装置
CN115121779B (zh) * 2022-06-30 2023-08-15 河南科技大学 可调整环状坯件轴向尺寸的离心喷射成形装置
CN116329559B (zh) * 2023-05-30 2023-08-08 中色创新研究院(天津)有限公司 一种铜镍合金的制备设备及其制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2310590A (en) * 1941-07-23 1943-02-09 Marette Harvey Method of forming metal shot
GB754180A (en) * 1953-09-18 1956-08-01 Dow Chemical Co Atomizing aluminium or aluminium alloys
JP2012117117A (ja) * 2010-12-01 2012-06-21 Sanyo Special Steel Co Ltd 粉末作製用ディスク
CN104525961A (zh) * 2015-01-28 2015-04-22 大连理工大学 一种高效制备超细高熔点球形金属粉末的方法与装置
CN104550990A (zh) * 2015-01-28 2015-04-29 大连理工大学 一种制备3d打印用超细球形高熔点金属粉末的方法与装置
CN104588674A (zh) * 2015-01-28 2015-05-06 大连理工大学 一种高效制备超细球形金属粉末的方法及装置
CN109093127A (zh) * 2018-09-25 2018-12-28 中国人民解放军陆军装甲兵学院 基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940054B2 (ja) * 1978-08-29 1984-09-27 株式会社佐藤技術研究所 融体から特定サイズの球形粒子を製造する方法
JP2004211155A (ja) * 2002-12-27 2004-07-29 Tamura Kaken Co Ltd 金属微粒子の製造方法、金属微粒子含有物及びソルダーペースト組成物
JP2009062573A (ja) * 2007-09-05 2009-03-26 National Institute For Materials Science 遠心噴霧法に用いる回転ディスクとこれを用いた遠心噴霧法
CN104588673B (zh) * 2015-01-28 2018-03-13 大连理工大学 一种高效制备金属球形超细粉体的装置及方法
CN107570721A (zh) * 2017-07-12 2018-01-12 张家港创博金属科技有限公司 一种高效制备超细球形金属粒子的方法及装置
CN107350477A (zh) * 2017-08-30 2017-11-17 湖南顶立科技有限公司 一种粉末制备装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2310590A (en) * 1941-07-23 1943-02-09 Marette Harvey Method of forming metal shot
GB754180A (en) * 1953-09-18 1956-08-01 Dow Chemical Co Atomizing aluminium or aluminium alloys
JP2012117117A (ja) * 2010-12-01 2012-06-21 Sanyo Special Steel Co Ltd 粉末作製用ディスク
CN104525961A (zh) * 2015-01-28 2015-04-22 大连理工大学 一种高效制备超细高熔点球形金属粉末的方法与装置
CN104550990A (zh) * 2015-01-28 2015-04-29 大连理工大学 一种制备3d打印用超细球形高熔点金属粉末的方法与装置
CN104588674A (zh) * 2015-01-28 2015-05-06 大连理工大学 一种高效制备超细球形金属粉末的方法及装置
CN109093127A (zh) * 2018-09-25 2018-12-28 中国人民解放军陆军装甲兵学院 基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114603148A (zh) * 2022-05-11 2022-06-10 成都大学 一种球形合金粉末的制备装置及制备方法
CN114603148B (zh) * 2022-05-11 2022-07-05 成都大学 一种球形合金粉末的制备装置及制备方法
CN117548679A (zh) * 2024-01-09 2024-02-13 湖南艾缇欧新材料有限公司 一种锡粉制备设备及操作方法
CN117548679B (zh) * 2024-01-09 2024-03-22 湖南艾缇欧新材料有限公司 一种锡粉制备设备及操作方法

Also Published As

Publication number Publication date
US20210308764A1 (en) 2021-10-07
CN109093127B (zh) 2020-11-24
CN109093127A (zh) 2018-12-28
US11344950B2 (en) 2022-05-31

Similar Documents

Publication Publication Date Title
WO2020063623A1 (zh) 基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法
WO2020063622A1 (zh) 一种制备3d打印用球形金属粉末的装置及方法
WO2020063626A1 (zh) 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法
WO2020063620A1 (zh) 一种逐液滴离心雾化法高效制备低熔点球形金属粉末的装置及方法
CN104588674B (zh) 一种高效制备超细球形金属粉末的方法及装置
WO2020063625A1 (zh) 一种逐液滴离心雾化法制备超细球形金属粉末的装置及方法
WO2020063619A1 (zh) 一种逐液滴雾化法制备超细低熔点球形金属粉末的装置及方法
CN104550990A (zh) 一种制备3d打印用超细球形高熔点金属粉末的方法与装置
CN104550988A (zh) 一种基于均匀液滴喷射法的制备超细球形金属粉末的装置及方法
CN104588673B (zh) 一种高效制备金属球形超细粉体的装置及方法
CN104550989B (zh) 一种制备3d打印用超细球形金属粉末的方法及装置
WO2020063624A1 (zh) 一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法
CN104525961A (zh) 一种高效制备超细高熔点球形金属粉末的方法与装置
CN111230133A (zh) 一种快速凝固金属粉末的生产设备以及生产方法
CN114192790A (zh) 球形钛及钛合金粉末制备装置和方法
CN107570713A (zh) 一种高频脉冲压差法制备金属球形粉末的方法及装置
WO2020063627A1 (zh) 一种逐液滴离心雾化法专用转盘结构
CN111804925B (zh) 一种基于VIGA工艺制备GRCop-42球形粉的方法及装置
TWM631818U (zh) 一種導電材料超細粉末製備裝置
CN113263181A (zh) 一种高效制备粒径均一可控的球形金属微粒子的方法及其制备装置
CN214557394U (zh) 一种离心雾化制备铜合金粉末的装置
CN111496262A (zh) 一种铝钴合金及其粉末冶金成型方法
CN114850484A (zh) 一种稀土金属微球制备装置及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864632

Country of ref document: EP

Kind code of ref document: A1