WO2020063624A1 - 一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法 - Google Patents

一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法 Download PDF

Info

Publication number
WO2020063624A1
WO2020063624A1 PCT/CN2019/107702 CN2019107702W WO2020063624A1 WO 2020063624 A1 WO2020063624 A1 WO 2020063624A1 CN 2019107702 W CN2019107702 W CN 2019107702W WO 2020063624 A1 WO2020063624 A1 WO 2020063624A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
casing
metal powder
turntable
printing
Prior art date
Application number
PCT/CN2019/107702
Other languages
English (en)
French (fr)
Inventor
王晓明
朱胜
赵阳
王思捷
韩国峰
石晶
常青
任智强
滕涛
孙瑜
董伟
孟瑶
王延洋
许富民
白兆丰
韩阳
李国斌
Original Assignee
大连理工大学
王晓明
朱胜
赵阳
王思捷
韩国峰
石晶
常青
任智强
滕涛
孙瑜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学, 王晓明, 朱胜, 赵阳, 王思捷, 韩国峰, 石晶, 常青, 任智强, 滕涛, 孙瑜 filed Critical 大连理工大学
Priority to US17/280,127 priority Critical patent/US11420257B2/en
Publication of WO2020063624A1 publication Critical patent/WO2020063624A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0888Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting construction of the melt process, apparatus, intermediate reservoir, e.g. tundish, devices for temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0892Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid casting nozzle; controlling metal stream in or after the casting nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention belongs to the technical field of preparing ultrafine spherical microparticles, and in particular, relates to a device for electromagnetically cutting a capillary jet to prepare particles and a centrifugal atomization method, and to efficiently prepare a spherical metal powder for 3D printing in a fibrous splitting mode and method.
  • 3D printing technology is different from traditional processing technology. It uses metal powder, polymer materials and other adhesive materials as raw materials to prepare objects in a layer-by-layer deposition method. Its production efficiency is high, raw materials are less wasted, and workpieces with complex structures can be manufactured. . With the rapid development of 3D printing technology, the demand for spherical metal powder for 3D printing has become more urgent.
  • the 3D printing spherical powder needs to have the characteristics of excellent fluidity and spreadability and high sphericity, and it must meet the requirements of uniform and controllable size and no satellite drops, which is also a limiting factor for the development of 3D printing technology.
  • the methods for producing spherical metallic spherical particles at home and abroad include the atomization method, the shredding method or the perforating remelting method, and the uniform droplet forming method.
  • the atomization method has a wide dispersion of spherical particles, and it must be sieved and tested several times to obtain particles that can meet the requirements of use.
  • the wire cutting method or hole remelting method is difficult for materials that are not plastically processed.
  • the produced spherical particles must be degreased; in the uniform droplet forming method, the metal jet is easily affected by the environment during the production process, resulting in a certain particle size distribution of the generated particles, and real-time adjustment and control during the production process cannot be performed .
  • an apparatus and method for efficiently preparing spherical metal powder for 3D printing in a fibrous splitting mode are provided.
  • the invention mainly combines two methods of preparing particles by using electromagnetic force to cut capillary jet and centrifugal atomization method, and simultaneously inductively heats the surface of the disc, so that the molten metal liquid breaks through the traditional splitting mode of the molten metal and realizes only when the mist
  • the fibrous division can be achieved only when the transformation medium is an aqueous solution or an organic solution, so that a very small particle size, a narrow and controllable particle size distribution range, high sphericity, good fluidity and spreadability, no satellite drops, 3D printing spherical metal powder with high atomization efficiency and very high yield of fine powder.
  • a device for efficiently preparing a spherical metal powder for 3D printing in a fibrous splitting mode comprising: a shell, a crucible disposed in the shell, and a powder collection area, the powder collection area being placed at the bottom of the shell, The crucible is placed in the upper part of the powder collection area, the shell is provided with a crucible air inlet pipe that extends into the crucible, and the shell is also provided with a mechanical pump and a mechanical pump in communication with the crucible.
  • a diffusion pump, the casing is further provided with a cavity intake pipe;
  • thermocouple is provided inside the crucible, an induction heater is provided outside the crucible, a nozzle with a small hole is provided at the bottom of the crucible, a concentrator is arranged below the nozzle, and an induction coil is provided on the outer periphery of the concentrator. ;
  • the powder collection area includes a collection tray provided at the bottom of the casing and a turntable connected to a motor for atomizing metal droplets, and the volume of the casing is sufficient for the droplets to be centrifuged,
  • the broken flying range can ensure that the micro droplets will not solidify on the inner wall of the cavity, and the area of the collection tray is large enough to collect metal powder.
  • the turntable includes a base body, an atomizing plane and a vent hole;
  • the longitudinal section of the base body composed of the upper receiving part and the lower supporting part is similar to a "T-shaped" main structure, and the upper surface of the receiving part is provided with a circular groove with a certain radius coaxial with the center of the circle;
  • the base body is made of a material having a thermal conductivity of less than 20W / m / k;
  • the atomizing plane is a disc structure that matches the circular groove and interference fits with the circular groove.
  • the atomizing plane adopts a wetting angle with a uniform droplet of less than 90. ° made of material;
  • the vent hole is disposed in the receiving portion and the support portion, the upper end surface of the vent hole is in contact with the lower end surface of the atomizing plane, and the lower end of the vent hole is in communication with the outside;
  • An induction heating coil is also provided on the periphery of the turntable.
  • the height of the support portion of the base body should not be too high, and it should be smaller than the height of the receiving portion.
  • the upper end surface of the atomizing plane protrudes from the upper end surface of the receiving portion, and the protruding range is 0.1-0.5 mm.
  • the protruding height only needs to meet the requirement that the discrete metal droplets do not contact the substrate and fly directly into the chamber and fall into the collection tray.
  • the substrate is made of zirconium dioxide ceramic, silica glass, or stainless steel, and is not limited to the foregoing materials, as long as it meets a material with a thermal conductivity of less than 20 W / m / k.
  • the upper end face of the vent hole is less than or equal to the lower end face of the atomization plane.
  • the purpose of the vent hole is to clean the gas in the turntable when the vacuum is drawn, and it is safer when the turntable is rotating at high speed.
  • the aperture range of the small holes of the nozzle is between 0.02mm-2.0mm.
  • the wetting angle between the material of the crucible and the molten metal placed in the crucible is greater than 90 °.
  • the rotation speed of the turntable is 10,000 rpm to 50,000 rpm.
  • the heating thickness range of the induction heating coil is between 5-20mm, and it is connected to a frequency converter and a regulated power supply provided outside the casing, and the voltage control range of the regulated power supply is between 0-50V. between.
  • the center of the turntable and the nozzle at the lower part of the crucible are on the same axis; the casing at the same level as the turntable is provided with an observation window for high-speed camera photography.
  • the invention also discloses a method for efficiently preparing spherical metal powder for 3D printing in the fibrous splitting mode of the device, which is characterized in that:
  • the metal material to be melted is placed in a crucible provided in the upper part of the casing and sealed, and a nozzle is provided at the bottom of the crucible;
  • 3Heating Use an induction heater to melt the metal material in the crucible, and monitor the temperature in the crucible in real time through a thermocouple set in the crucible, and keep the temperature of the metal material completely melted;
  • Induction heating Use a motor to drive the turntable to rotate at a high speed at a preset speed, and use an induction heating coil to heat the surface temperature of the rotating disc at a high speed above the melting point of the metal;
  • the motor is used to make the rotating disc at a high speed at a preset speed. Rotate, and then use an induction heating coil to heat the upper surface of the high-speed rotating turntable above the melting point of the metal material. Under the action of centrifugal force, the radial fibers of the droplets break up to form micro-droplets, and the droplets solidify to form metal powder after free fall;
  • the metal powder is collected by a collection tray provided at the bottom of the casing.
  • the effective current value of the modulated AC signal is 30A-60A
  • the carrier frequency is 3MHz-30MHz
  • the modulation frequency is 200Hz-20000Hz
  • the duty ratio is 50%.
  • the heating voltage range of the induction heating coil is 0-50V, and the induction heating time is 5-15min.
  • the pressure in the shell after evacuating reaches 0.1 MPa, and the heat preservation time is 15-20 minutes after the metal material is completely melted; in step 5, the differential pressure generated between the crucible and the shell is 0-200 kPa.
  • the present invention has the following advantages:
  • a method for preparing particles by electromagnetic force cutting capillary jet and a centrifugal atomization method is designed.
  • the metal droplet overcomes the shortcomings of high density and low viscosity, and presents a solution-specific fibrous split mode for efficient 3D printing.
  • the turntable disclosed by the present invention is a mosaic structure.
  • the material with poor thermal conductivity that is, less than 20W / m / k, is used as a substrate, which can effectively reduce the heat transferred from the turntable to high-speed motors and prevent It affects the normal operation of high-speed motors;
  • the material with good wettability with the atomized melt material that is, the wetting angle is less than 90 °, is used as the atomization plane, which is conducive to the spread of droplets on the atomization plane, so that metal liquid mist Full
  • the molten metal material in the crucible is ejected through a nozzle with a small hole at the bottom of the crucible to form a capillary jet.
  • the induction coil generates an electromagnetic force.
  • the electromagnetic force acts on the capillary jet through the concentrator.
  • a sausage string is gradually formed, and finally dispersed into droplets of the same size and the same distance.
  • the droplets drop freely to the center of the rotating disk at high speed. Due to the effect of induction heating, it is uniform. When the droplet reaches the upper surface of the turntable, it is still in a molten state.
  • the droplet metal Due to the better wettability between the droplet metal and the upper surface material of the turntable, the droplet metal can be completely spread on the atomized surface without being ejected. Under the action of centrifugal force, The uniform droplets will spread in a fibrous shape on the turntable, and will be dispersed into smaller droplets at the edge of the turntable. They will fly out along the trajectory of the fibrous spread, and the flying microdroplets will freely fall to solidify to form metal powder.
  • the metal particles produced by electromagnetic force cutting of capillary jets have uniform particle size, high sphericity, and consistent thermal history, but the production of particles by a single-hole nozzle cannot meet the demand.
  • the combination of the two methods has greatly improved the productivity of metal powders.
  • the metal spherical ultrafine powder produced in the present invention combines the advantages of the two methods, has uniform particle size and high production efficiency, and can meet industrial production.
  • the process method of the invention has strong controllability, which is as follows: the temperature of the crucible can be accurately controlled by an induction heater, and the pressure difference between the crucible and the shell can be controlled by passing an inert gas into the crucible and the shell, thereby controlling the speed of the jet; The small hole size of the nozzle provided at the bottom of the crucible can control the size of the jet, thereby controlling the particle size of the metal particles. Therefore, a uniform spherical metal ultrafine powder can be obtained, and the production efficiency is high.
  • the present invention can efficiently prepare metal spherical ultra-fine powders with uniform size, high sphericity, consistent thermal history, and controllable particle size of different particle sizes that simultaneously meet the requirements, and has high production efficiency, simple structure, and cost. Low, suitable for industrial production.
  • the biggest feature of the process of the present invention is that the metal droplets overcome the shortcomings of high density and low viscosity, and can have unique fibrous discrete splitting modes such as aqueous solutions and organic solutions. Compared with the current particle size of molten metal powder, Great progress can be expected in terms of ultra-fine powder and particle size distribution control.
  • FIG. 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a schematic structural diagram of a turntable of the present invention.
  • FIG. 3 is a comparison diagram of the surface of the turntable of the present invention after the experiment with that of the original turntable, wherein (a) is the surface of the turntable with fibrous splits, and (b) is the surface of the turntable in the prior art.
  • orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal”, “top, bottom” and the like indicate the orientation Or the positional relationship is usually based on the orientation or positional relationship shown in the drawings, only for the convenience of describing the present invention and simplifying the description. Unless otherwise stated, these orientation words do not indicate and imply the device or element referred to. It must have a specific orientation or be constructed and operated in a specific orientation, so it cannot be understood as a limitation on the scope of protection of the present invention: the orientation words “inside and outside” refer to the inside and outside relative to the outline of each component itself.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure Shows the spatial position relationship between one device or feature and other devices or features. It should be understood that spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device as described in the figures. For example, if a device in the figure is turned over, devices described as “above” or “above” other devices or constructions will be positioned “below the other devices or constructions” or “below” Under its device or structure. " Thus, the exemplary term “above” may include both directions “above” and “below”. The device can also be positioned in other different ways (rotated 90 degrees or at other orientations), and the relative description of space used here is explained accordingly.
  • the present invention provides a device for efficiently preparing a spherical metal powder for 3D printing in a fibrous splitting mode, which includes a shell 16, a crucible 1 and a powder collection area disposed in the shell 16,
  • the powder collection area is placed on the bottom of the shell 16,
  • the crucible 1 is placed on the upper part of the powder collection area, and the shell 16 is provided with a crucible air inlet pipe 19 that extends into the crucible 1.
  • the casing 16 is further provided with a diffusion pump 17 which is in communication with the crucible 1 and a mechanical pump 18, and a cavity intake pipe 3 is also provided on the casing 16;
  • the crucible 1 is provided with a thermocouple inside, the crucible 1 is provided with an induction heater 2, the bottom of the crucible 1 is provided with a nozzle 15 with a small hole, and the diameter of the small hole of the nozzle 15 ranges from 0.02mm- Between 2.0mm.
  • a concentrator 5 is provided below the nozzle 15, and an induction coil 4 is provided on the outer periphery of the concentrator 5;
  • the powder collection area includes a collection tray 9 provided at the bottom of the housing and a turntable 7 for atomizing metal droplets connected to the motor 8 and disposed above the collection tray 9;
  • the turntable 7 includes a base, an atomizing plane 22 and a vent hole 23;
  • the longitudinal section of the base body composed of the upper receiving portion 20 and the lower supporting portion 21 is a "T-shaped" main structure.
  • the upper surface of the receiving portion 20 is provided with a circular recess with a certain radius coaxial with the center of the circle.
  • the atomizing plane 22 is a disc structure that matches the circular groove and interference fits with the circular groove.
  • the atomizing plane 22 is wetted with a uniform droplet 6. Made of materials with an angle less than 90 °;
  • a vent hole 23 is penetratingly provided in the receiving portion 20 and the support portion 21, an upper end surface of the vent hole 23 is in contact with a lower end surface of the atomizing plane 22, and a lower end of the vent hole 23 is in communication with the outside;
  • An induction heating coil 13 is also provided on the periphery of the turntable 7.
  • the turntable 7 is a copper-inlaid stainless steel disk, and the rotation speed of the turntable 7 is 10,000 rpm to 50,000 rpm.
  • the heating thickness range of the induction heating coil 13 is between 5-20mm. It is connected to a frequency converter and a regulated power supply provided outside the casing 16, and the voltage control range of the regulated power supply is between 0-50V. between.
  • the center of the turntable 7 is on the same axis as the nozzle 15 in the lower part of the crucible 1; the purpose is that the droplets can be dropped uniformly on the center of the turntable, which is good for spreading.
  • the casing 16 on the same level as the turntable 7 is provided with an observation window 12 for shooting by a high-speed camera 11.
  • the volume of the shell 16 should be sufficient for the molten droplets 6 to fall to the bottom of the collection pan 9 after centrifugal crushing, to ensure that it will not solidify on the inner wall of the shell 16, and the area of the collection pan 9 should be sufficient It is sufficient to be able to collect the metal powder 10.
  • the mechanical pump 18 and the diffusion pump 17 are used to evacuate the casing 16 and the crucible 1; a nozzle 15 connected to the casing 16 is installed at the bottom of the crucible 1, and the material to be prepared in the crucible 1 is processed by the induction heater 2.
  • the capillary jet 14 can be generated in the nozzle 15; the induction coil 4 and the concentrator 5 are installed below the nozzle 15, and when a modulated AC signal is applied to the induction coil 4, the induction coil 4 will jet to the capillary 14 The electromagnetic force 14 is applied and the capillary jet 14 is broken into uniform droplets 6, and the droplets 6 fall freely on the disc 7 that rotates at high speed.
  • high purity inert protective gas such as helium, argon
  • the droplets 6 Due to the centrifugal force, the droplets 6 will spread on the turntable in a fibrous shape and then split into The minute liquid droplets fly out, and the minute liquid droplets freely fall to solidify into the metal powder 10, and the metal powder 10 is collected by a collecting pan 9.
  • the invention also discloses a method for efficiently preparing spherical metal powder for 3D printing in the fibrous splitting mode of the device, including the following steps,
  • 3Heating Use the induction heater 2 to melt the metal material in the crucible 1, and monitor the temperature in the crucible 1 in real time through the thermocouple provided in the crucible 1, and keep the temperature after the metal material is completely melted;
  • Induction heating Use the motor 8 to drive the turntable 7 to rotate at a high speed at a preset speed, and use the induction heating coil 13 to heat the surface temperature of the rotating disc 7 to a temperature above the melting point of the metal.
  • the turntable is a copper-inlaid stainless steel disc, and the rotation speed is 10000rpm-50000rpm, induction heating voltage range is 0-50V, induction heating time is 5-15min;
  • the modulated AC signal is applied to the induction coil 4 provided on the outer periphery of the concentrator 5 aligned with the nozzle 15 in the middle of the housing 16, and the effective current value of the modulated AC signal is 30A-60A ,
  • the carrier frequency is 3MHz-30MHz, the modulation frequency is 200Hz-20000Hz, and the duty cycle is 50%;
  • the crucible inlet tube 19 provided on the casing 16 and extending into the crucible 1 passes in a high-purity inert protective gas, so that a certain differential pressure is generated between the crucible 1 and the casing 16. Under the action of this differential pressure, the molten metal flows out of the nozzle 15 and forms a capillary jet 14, which is broken into uniform droplets 6 by the electromagnetic force applied to it by the induction coil 4, and the uniform droplets 6 fall freely on The center of the high-speed rotating turntable 7 is spread on the turntable 7 under the effect of centrifugal force.
  • the motor 8 is used to rotate the turntable 7 at a high speed at a preset speed, and then the induction heating coil 13 is used to rotate the high-speed
  • the upper surface of the turntable 7 is heated to a temperature above the melting point of the metal material. Under the action of centrifugal force, the uniform droplets 6 are split into radial droplets to form micro-droplets, and the droplets are solidified to form metal powder 10 by free-falling;
  • the metal powder 10 is collected by a collection tray 9 provided at the bottom of the casing 16.
  • the Sn-0.3Ag-0.7Cu raw material is broken into small pieces, washed with ultrasonic vibration and placed in crucible 1, and the pore size of the nozzle 15 is selected according to requirements. For example, to prepare 50 ⁇ m-100 ⁇ m particles, select a pore diameter of 1.0mm-2.0mm; the amount of Sn-0.3Ag-0.7Cu raw materials is put into 1 / 2-3 / 4 of crucible 1, as shown in Figure 1;
  • the induction heater 2 is used to heat the crucible 1 at a heating temperature of 260 ° C, and the metal material in the crucible 1 is melted, and the temperature is maintained at 260 ° C for 20 minutes;
  • a high-purity inert protective gas, argon, is passed into the crucible 1 through the crucible inlet pipe 19, so that a stable pressure difference is generated between the shell 16 and the crucible 1. Under the effect of this pressure difference, the molten metal flows out of the nozzle 15 and forms Capillary jet 14 At the same time, a modulated alternating current signal is applied to the induction coil 4, and this signal generates a changing magnetic field around the induction coil 4. The magnetic field is concentrated on the capillary jet 14 via the concentrator 5, and an eddy current is generated in the capillary jet 14. Under the interaction of current and magnetic field, the capillary jet 14 is broken into uniform droplets 6. The liquid droplet 6 falls freely on the high-speed rotating turntable 7, and due to the centrifugal force, the liquid droplet 6 is broken into micro droplets one by one, and the micro droplets are solidified into metal powder 10 by free fall;
  • the dropping process of the droplet 6 and the process of dropping the droplet 6 to the turntable 7 and being broken into micro-droplets by centrifugal force can be recorded by the high-speed camera 11.
  • (b) is an atomizing disc obtained by atomizing in the prior art. Because the wettability of the atomizing disc material and the prepared metal powder material is too small, and the temperature of the turntable is too low during the atomization process. , Resulting in a liquid-like split of the liquid, and a thicker solidified liquid film will appear on the atomized surface. The liquid film surface is very rough, which is not conducive to the further atomization of the subsequent metal droplets, which will seriously affect the atomization effect and atomization efficiency. . (a) For the atomized surface obtained by the method of the present invention, it can be seen that the atomization mode is changed into an obvious fibrous split mode, and the linear split mode greatly improves the miniaturization and production efficiency of the metal powder.

Abstract

一种纤维状分裂模式下高效制备3D打印用球形金属粉末(10)的装置及方法。装置包括壳体(16)、设置于壳体(16)内的坩埚(1)和粉末收集区,设置在粉末收集区的转盘(7)为镶嵌式结构,选择导热性较差的材料作为转盘(7)的基体部分,选择与液滴(6)的润湿角小于90°的金属材料,镶嵌进主体部分作为转盘(7)的雾化平面(22),转盘(7)内设有通气孔(23)。制备3D打印用球形金属粉末(10)的方法,主要结合电磁力切割毛细管射流(14)制备微粒子技术和离心雾化法两种方法,突破了传统金属分裂模式,使熔融金属呈现出纤维状分裂,从而能够制备出粒径分布区间窄、圆球度高、流动性好、铺展性优良且尺寸均匀可控、无卫星滴的3D打印专用的球形金属粉末(10),适宜工业化生产。

Description

一种纤维状分裂模式下高效制备3D打印用球形金属粉末的装置及方法 技术领域
本发明属于超细球形微粒子制备技术领域,具体而言,尤其涉及一种电磁力切割毛细管射流制备粒子技术与离心雾化法结合,纤维状分裂模式下高效制备3D打印用球形金属粉末的装置及方法。
背景技术
随着加工技术的不断发展与革新,球形粉末材料在电子封装、精密制备、生体材料等方面均有广泛应用,随着3D打印技术的发展,球形粉末制备技术在此方面尤为受到关注。3D打印技术与传统加工技术不同,其以金属粉末、高分子材料等可粘合材料为原料,以逐层沉积的方式来制备物件,其生产效率高,原料浪费少,可制造结构复杂的工件。在3D打印技术迅猛发展的同时,3D打印用球形金属粉末的需求也越发急迫。3D打印用球形粉末需具有优良的流动性及铺展性,高球形度的特点,且其需满足尺寸均匀可控、无卫星滴的要求,这也是3D打印技术发展的限制因素。
目前,国内外生产球形金属球形粒子的方法有雾化法、切丝法或打孔重熔法、均一液滴成型法等。雾化法制备球形粒子的分散度较宽,必须通过多次筛分及检测才能得到能够满足使用要求的颗粒;切丝法或打孔重熔法对于塑性加工不好的材料比较困难,此外还必须将制得的球形粒子进行脱脂处理;均一液滴成型法在生产过程中金属射流容易受到环境的影响,导致产生的粒子存在一定的粒径分布,且在生产过程中无法进行实时调整和控制。此外,由于金属所具有的高密度、低粘度的特点,因而只能呈现出膜状及柱状分裂,液滴尺寸较大;此外,雾化法易产生卫星滴,因粉末表面粘连卫星滴,其流动性和铺展性均会下降。因此,该方法生产的粉末无法满足要求。
因此,有必要提供一种制备效率高,粉末质量高的超微细球形金属粉 末的制备装置及方法以解决现有技术中的不足。
发明内容
根据上述提出球形粒子的分散度较宽、粒径分布不均、易产生卫星滴等技术问题,而提供一种纤维状分裂模式下高效制备3D打印用球形金属粉末的装置及方法。本发明主要结合电磁力切割毛细管射流制备微粒子技术和离心雾化法两种方法,同时对圆盘表面进行感应加热,从而使熔融金属液突破了传统的熔融金属的分裂模式,实现了只有当雾化介质为水溶液或有机溶液时才能实现的纤维状分裂,从而可以制备得到粒径非常小、粒径分布区间窄且可控、圆球度高、有良好流动性和铺展性、无卫星滴、雾化效率高、细粉收得率非常高的3D打印专用球形金属粉末。
本发明采用的技术手段如下:
一种纤维状分裂模式下高效制备3D打印用球形金属粉末的装置,包括:壳体、设置于所述壳体内的坩埚和粉末收集区,所述粉末收集区置于所述壳体的底部,所述坩埚置于所述粉末收集区的上部,所述壳体上设有伸入于所述坩埚内的坩埚进气管,所述壳体上还设有与所述坩埚相连通的和机械泵扩散泵,所述壳体上还设有腔体进气管;
所述坩埚内部设有热电偶,所述坩埚外部设有感应加热器,所述坩埚底部设有带小孔的喷嘴,所述喷嘴下方设有集中器,所述集中器的外周设有感应线圈;
所述粉末收集区包括设置在所述壳体底部的收集盘和设置于所述收集盘上方的与电机相连的用于雾化金属液滴的转盘;所述壳体体积足够液滴经离心、破碎后的飞行降落范围,能够保证微液滴不会凝固在腔体内壁,收集盘的面积足够大能够收集金属粉末。
所述转盘包括基体,雾化平面和通气孔;
所述基体由上部的承接部和下部的支撑部构成的纵截面呈类“T型”的主体结构,所述承接部上表面设有与其圆心同轴的具有一定半径的圆形凹槽;其中,所述基体采用导热性小于20W/m/k的材料制成;
所述雾化平面为圆盘结构,该圆盘结构与所述圆形凹槽相匹配且与所述 圆形凹槽过盈配合,所述雾化平面采用与均一液滴润湿角小于90°的材料制成;
所述通气孔贯通设置在所述承接部及所述支撑部内,所述通气孔的上端面与所述雾化平面的下端面接触,所述通气孔的下端与外界连通;
所述转盘的外围还设有感应加热线圈。
优选地,基体支撑部的高度不宜太高,小于承接部的高度为宜。所述雾化平面的上端面凸出于所述承接部上端面,凸出范围为0.1-0.5mm。凸出高度只要满足利于离散的金属液滴不接触基体,直接飞到腔室内落入收集盘内即可。所述基体采用二氧化锆陶瓷、二氧化硅玻璃或不锈钢制成,不局限于上述几种材质,只要满足导热性小于20W/m/k的材料均可。所述通气孔的上端面小于等于所述雾化平面的下端面,通气孔设置的目的是为了在抽真空时可以将转盘内间隙的气体抽的更干净,转盘高速旋转时更加安全,因此通气孔的上端面与雾化平面的下端面的接触面积越大抽真空时雾化平面的稳定性越好。
进一步地,所述喷嘴的小孔的孔径范围在0.02mm-2.0mm之间。
进一步地,所述坩埚的材料与置于所述坩埚内的熔融金属的润湿角大于90°。
进一步地,所述转盘的转速为10000rpm-50000rpm。
进一步地,所述感应加热线圈的加热厚度范围在5-20mm之间,它与设置在所述壳体外的变频器和稳压电源相连,所述稳压电源的电压控制范围在0-50V之间。
进一步地,所述转盘的中心与所述坩埚下部的喷嘴处于同一轴线上;与所述转盘在同一水平面的所述壳体上设有用于高速摄影机摄影的观察窗。
本发明还公开了一种采用上述的装置纤维状分裂模式下高效制备3D打印用球形金属粉末的方法,其特征在于,
①装料:将待熔融的金属材料放入设置在壳体内上部的坩埚内后密封,所述坩埚的底部设有喷嘴;
②抽真空:利用机械泵和扩散泵对所述坩埚和所述壳体抽真空,并充入高纯度惰性保护气体,使壳体内压力达到预设值;
③加热:使用感应加热器将所述坩埚内的金属材料熔化,并通过所述坩埚内设置的热电偶实时监测所述坩埚内的温度,待金属材料完全熔化后保温;
④感应加热:利用电机带动转盘在预设转速下高速旋转,利用感应加热线圈将高速旋转的旋转圆盘表面温度加热到金属的熔点以上;
⑤制备粉末:将调制交流电信号施加给设置在所述壳体中部与所述喷嘴对准的集中器外周的感应线圈,通过设置在所述壳体上并伸入于所述坩埚内的坩埚进气管将高纯度惰性保护气体(如氦气,氩气)通入,使所述坩埚与所述壳体内产生一定的差压,在该差压的作用下,熔融金属从喷嘴中流出并形成毛细管射流,毛细管射流在感应线圈对其施加的电磁力作用下断裂成均一液滴,均一液滴自由降落在高速旋转的转盘的中心,并铺展,利用电机使所述转盘在预设转速下高速旋转,接着利用感应加热线圈将高速旋转的转盘上表面加热到金属材料的熔点温度以上在离心力的作用下,液滴放射状纤维分裂形成微液滴,液滴经自由降落凝固形成金属粉末;
⑥粒子收集:用设置于所述壳体底部的收集盘收集金属粉末。
进一步地,所述调制交流电信号的电流有效值为30A-60A,载波频率为3MHz-30MHz,调制频率为200Hz-20000Hz,占空比为50%。
进一步地,所述感应加热线圈的加热电压范围为0-50V,感应加热时间为5-15min。
进一步地,所述壳体内抽真空后的压力达到0.1MPa,金属材料完全熔化后保温时间为15-20分钟;步骤⑤中,所述坩埚与所述壳体内产生的差压为0-200kPa。
较现有技术相比,本发明具有以下优点:
本发明设计了一种电磁力切割毛细管射流制备微粒子技术与离心雾化法结合的方法下,金属液滴克服高密度、低粘度的缺点,呈现出溶液特有的纤维状分裂模式下高效制备3D打印专用球形金属粉末的装置,本发明公开的转盘为镶嵌式结构,采用导热性较差即导热性小于20W/m/k的材料作为基体,可有效减少由转盘传递到高速电机上的热量,防止其影响高速电机正常工作;采用与雾化熔体材料具有良好润湿性即润湿角小于90°的材料作为雾化平面,有利于液滴在雾化平面的铺展,从而可以使金属液雾化充分;
坩埚中熔化的金属材料在压力的作用下,通过坩埚底部的带小孔的喷嘴射出,形成毛细管射流,同时感应线圈产生电磁力,将该电磁力经集中器作用于毛细管射流上,毛细管射流在表面张力和电磁力扰动的共同作用下,逐渐形成腊肠式液滴串,最终离散成尺寸大小一致、间距相等的液滴,液滴自由降落至高速旋转的转盘中心,由于感应加热的作用,均匀液滴到达转盘上表面时还处于熔融状态,由于液滴金属与转盘上表面材料有较好的润湿性,液滴金属能完全铺展在雾化表面而不被弹出,在离心力的作用下,均匀液滴会在转盘上呈纤维状铺展,并在转盘边缘离散成更加微小的液滴,沿纤维状铺展的轨迹飞出,飞出的微液滴经自由降落凝固形成金属粉末。
利用电磁力切割毛细管射流生产的金属粒子粒径均一、圆球度高、热履历一致,但单孔喷嘴制备粒子产量无法满足需求,两种方法结合后,大幅提升了金属粉末的生产率。本发明中产生的金属球形超细粉体结合两种方法的优点,粒径尺寸均匀、生产效率高,可满足工业生产。
本发明的工艺方法可控性强,表现如下:通过感应加热器可精确控制坩埚温度,通过向坩埚与壳体内通入惰性气体,可控制坩埚与壳体的压力差,从而控制射流的速度;坩埚底部设置的喷嘴的小孔尺寸可控制射流尺寸,从而控制金属粒子的粒径,因此可以获得尺寸均匀的金属球形超细粉体,生产效率高。
综上,本发明能够高效制备出同时满足要求的不同粒径的大小均一、圆球度高、热履历一致、粒径可控的金属球形超细粉体,且生产效率高、结构简单、成本低,适宜工业化生产。同时本发明工艺最大的特点是金属的液滴克服密度大,粘度低的缺点,能够出现水溶液,有机溶液等所特有的纤维状离散分裂模式,与现在的熔滴金属粉末的粒径相比,在粉末的超微细化方面及粒度分布调控方面可预期取得飞跃性的进步。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下 面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的结构示意图。
图2为本发明的转盘的结构示意图。
图3为本发明的转盘在实验后其表面与原转盘实验后的表面对比图,其中,(a)为呈纤维状分裂的转盘表面,(b)为现有技术中转盘表面。
图中:1、坩埚;2、感应加热器;3、腔进气管;4、感应线圈;5、集中器;6、均一液滴;7、转盘;8、电机;9、收集盘;10、金属粉末;11、高速摄影机;12、观察窗;13、感应加热线圈;14、毛细管射流;15、喷嘴;16、壳体;17、扩散泵;18、机械泵;19、坩埚进气管;20、承接部;21、支撑部;22、雾化平面;23、通气孔。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布 置、数字表达式和数值不限制本发明的范围。同时,应当清楚,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员己知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任向具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制:方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其位器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
如图1所示,本发明提供了一种纤维状分裂模式下高效制备3D打印用 球形金属粉末的装置,包括:壳体16、设置于所述壳体16内的坩埚1和粉末收集区,所述粉末收集区置于所述壳体16的底部,所述坩埚1置于所述粉末收集区的上部,所述壳体16上设有伸入于所述坩埚1内的坩埚进气管19,所述壳体16上还设有与所述坩埚1相连通的和机械泵18扩散泵17,所述壳体16上还设有腔体进气管3;
所述坩埚1内部设有热电偶,所述坩埚1外部设有感应加热器2,所述坩埚1底部设有带小孔的喷嘴15,所述喷嘴15的小孔的孔径范围在0.02mm-2.0mm之间。
所述喷嘴15下方设有集中器5,所述集中器5的外周设有感应线圈4;
所述粉末收集区包括设置在所述壳体底部的收集盘9和设置于所述收集盘9上方的与电机8相连的用于雾化金属液滴的转盘7;
如图2所示,所述转盘7包括基体,雾化平面22和通气孔23;
所述基体由上部的承接部20和下部的支撑部21构成的纵截面呈类“T型”的主体结构,所述承接部20上表面设有与其圆心同轴的具有一定半径的圆形凹槽;其中,所述基体采用导热性小于20W/m/k的材料制成;
所述雾化平面22为圆盘结构,该圆盘结构与所述圆形凹槽相匹配且与所述圆形凹槽过盈配合,所述雾化平面22采用与均一液滴6润湿角小于90°的材料制成;
通气孔23贯通设置在所述承接部20及所述支撑部21内,所述通气孔23的上端面与所述雾化平面22的下端面接触,所述通气孔23的下端与外界连通;
所述转盘7的外围还设有感应加热线圈13。所述转盘7选用镶铜不锈钢圆盘,所述转盘7的转速为10000rpm-50000rpm。所述感应加热线圈13的加热厚度范围在5-20mm之间,它与设置在所述壳体16外的变频器和稳压电源相连,所述稳压电源的电压控制范围在0-50V之间。
所述转盘7的中心与所述坩埚1下部的喷嘴15处于同一轴线上;目的是为了液滴可均匀的滴落在转盘中心,利于铺展。
与所述转盘7在同一水平面的所述壳体16上设有用于高速摄影机11摄影的观察窗12。
所述壳体16的体积要足够熔融液滴6经离心破碎后飞行降落到底部 的收集盘9内的范围,能够保证不会凝固在壳体16的内壁上,收集盘9的面积要保证足够大能够收集金属粉末10即可。
工作时,机械泵18和扩散泵17用于对壳体16和坩埚1抽取真空;坩埚1底部安装有与壳体16相连的喷嘴15,利用感应加热器2对坩埚1中需制备的材料进行加热,并通过坩埚进气管19和腔体进气管3向坩埚1和壳体16中通入高纯度惰性保护气体,如氦气、氩气,使坩埚1和壳体16之间保持稳定的压力差,在该压力差作用下,喷嘴15中可产生毛细管射流14;感应线圈4和集中器5安装在喷嘴15下方,在对感应线圈4施加调制交流电信号时,感应线圈4会向毛细管射流14施加电磁力并使毛细管射流14断裂成均一液滴6,液滴6自由降落在高速旋转的圆盘7上,由于离心力的作用,液滴6会在转盘上呈纤维状铺展,然后分裂成微小的液滴飞出,微液滴自由降落凝固成金属粉末10,用收集盘9收集金属粉末10。
本发明还公开了一种采用上述的装置纤维状分裂模式下高效制备3D打印用球形金属粉末的方法,包括如下步骤,
①装料:将待熔融的金属材料放入设置在壳体16内上部的坩埚1内后密封,所述坩埚1的底部设有喷嘴15;所述坩埚1的材料与置于所述坩埚1内的熔融金属的润湿角大于90°。
②抽真空:利用机械泵18和扩散泵17对所述坩埚1和所述壳体16抽真空,并充入高纯度惰性保护气体,使壳体16内压力达到预设值;所述高纯度惰性保护气体为氦气、氩气,使壳体16内压力达到0.1MPa;
③加热:使用感应加热器2将所述坩埚1内的金属材料熔化,并通过所述坩埚1内设置的热电偶实时监测所述坩埚1内的温度,待金属材料完全熔化后保温;
④感应加热:利用电机8带动转盘7在预设转速下高速旋转,利用感应加热线圈13将高速旋转的旋转圆7盘表面温度加热到金属的熔点以上,转盘为镶铜不锈钢圆盘,转速为10000rpm-50000rpm,感应加热电压范围为0-50V,感应加热时间为5-15min;
⑤制备粉末:将调制交流电信号施加给设置在所述壳体16中部与所 述喷嘴15对准的集中器5外周的感应线圈4,所述调制交流电信号的电流有效值为30A-60A,载波频率为3MHz-30MHz,调制频率为200Hz-20000Hz,占空比为50%;
通过设置在所述壳体16上并伸入于所述坩埚1内的坩埚进气管19将高纯度惰性保护气体通入,使所述坩埚1与所述壳体16内产生一定的差压,在该差压的作用下,熔融金属从喷嘴15中流出并形成毛细管射流14,毛细管射流14在感应线圈4对其施加的电磁力作用下断裂成均一液滴6,均一液滴6自由降落在高速旋转的转盘7的中心,在离心力的作用下,会在转盘7上呈纤维状铺展,利用电机8使所述转盘7在预设转速下高速旋转,接着利用感应加热线圈13将高速旋转的转盘7上表面加热到金属材料的熔点温度以上在离心力的作用下,均一液滴6放射状纤维分裂形成微液滴,液滴经自由降落凝固形成金属粉末10;
⑥粒子收集:用设置于所述壳体16底部的收集盘9收集金属粉末10。
实施例1
批量制备Sn-0.3Ag-0.7Cu球形粉末的具体实施方式:
将Sn-0.3Ag-0.7Cu原材料破碎成小块,进行超声震动清洗后放入坩埚1中,根据需求选择喷嘴15的孔径大小,如制备25μm-50μm粒子,选择0.02mm-1.0mm的孔径,如制备50μm-100μm粒子,选择1.0mm-2.0mm的孔径;Sn-0.3Ag-0.7Cu原材料的放入量达到坩埚1的1/2-3/4,如图1所示;
用机械泵18将壳体16、坩埚1抽到低真空5Pa以下,再利用扩散泵17将壳体16、坩埚1抽到高真空0.001Pa;利用坩埚进气管19、腔体进气管3通入高纯度惰性保护气体氩气,使壳体16、坩埚1内的压力达到0.1MPa;
利用感应加热器2对坩埚1进行加热,加热温度为260℃,熔化坩埚1内的金属材料,温度达到260℃后保温20min;
通过坩埚进气管19向坩埚1中通入高纯度惰性保护气体氩气,使得壳体16和坩埚1间产生稳定的压力差,在此压力差作用下,熔化的金属从喷嘴15中流出并形成毛细管射流14。与此同时,对感应线圈4施加调制交流电信号,该信号会在感应线圈4周围产生变化的磁场,磁场经集中器5集中作用于毛细管射流14,使毛细管射流14中产生涡电流,在涡电 流与磁场的相互作用下,毛细管射流14断裂成均匀液滴6。液滴6自由下落在高速旋转的转盘7上,由于离心力的作用,液滴6被逐个破碎成微液滴,微液滴经自由降落凝固成金属粉末10;
透过观察窗12,液滴6的下落过程及液滴6下落至转盘7由离心力作用破碎成微液滴的过程可由高速摄影机11记录。
待收集结束后,停止向感应线圈4施加调制交流电信号,即停止液滴喷射;停止高速电机8,从而转盘7停止旋转;关闭感应加热器2,待温度降至室温,取出收集盘9中的金属粉末10;最后关闭腔体进气管3和坩埚进气管19,用机械泵18将坩埚1和壳体16抽到低真空5Pa以下,以便使设备在停用时处于真空状态。
如图3所示,(b)中为现有技术雾化后得到的雾化盘,由于雾化盘材料与制备的金属粉末材料润湿性太小,且在雾化过程中转盘温度太低,导致液体呈膜状分裂,且雾化表面会出现较厚的已凝固液膜,该液膜表面十分粗糙,不利于后续金属液滴的进一步雾化,会严重影响雾化效果和雾化效率。(a)为通过本发明方法得到的雾化表面,可以看出雾化模式转变为明显的纤维状分裂模式,线状的分裂模式大大提高了金属粉末的微细化和生产效率。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种纤维状分裂模式下高效制备3D打印用球形金属粉末的装置,包括:壳体(16)、设置于所述壳体(16)内的坩埚(1)和粉末收集区,所述粉末收集区置于所述壳体(16)的底部,所述坩埚(1)置于所述粉末收集区的上部,所述壳体(16)上设有伸入于所述坩埚(1)内的坩埚进气管(19),所述壳体(16)上还设有与所述坩埚(1)相连通的和机械泵(18)扩散泵(17),所述壳体(16)上还设有腔体进气管(3);
    所述坩埚(1)内部设有热电偶,所述坩埚(1)外部设有感应加热器(2),所述坩埚(1)底部设有带小孔的喷嘴(15),所述喷嘴(15)下方设有集中器(5),所述集中器(5)的外周设有感应线圈(4);
    所述粉末收集区包括设置在所述壳体底部的收集盘(9)和设置于所述收集盘(9)上方的与电机(8)相连的用于雾化金属液滴的转盘(7);
    其特征在于:
    所述转盘(7)包括基体,雾化平面(22)和通气孔(23);
    所述基体是由上部的承接部(20)和下部的支撑部(21)构成的纵截面呈类“T型”的主体结构,所述承接部(20)上表面设有与其圆心同轴的具有一定半径的圆形凹槽;其中,所述基体采用导热性小于20W/m/k的材料制成;
    所述雾化平面(22)为圆盘结构,所述圆盘结构与所述承接部的圆形凹槽相匹配且与所述圆形凹槽过盈配合,所述雾化平面(22)采用与均一液滴(6)润湿角小于90°的材料制成;
    所述通气孔(23)贯通设置在所述承接部(20)及所述支撑部(21)内,所述通气孔(23)的上端面与所述雾化平面(22)的下端面接触,所述通气孔(23)的下端与外界连通;
    所述转盘(7)的外围还设有感应加热线圈(13)。
  2. 根据权利要求1所述的纤维状分裂模式下高效制备3D打印用球形金属粉末的装置,其特征在于,所述喷嘴(15)的小孔的孔径范围在0.02mm-2.0mm之间。
  3. 根据权利要求1所述的纤维状分裂模式下高效制备3D打印用球形金属粉末的装置,其特征在于,所述坩埚(1)的材料与置于所述坩埚(1)内的熔融金属的润湿角大于90°。
  4. 根据权利要求1所述的纤维状分裂模式下高效制备3D打印用球形金属粉末的装置,其特征在于,所述转盘(7)的转速为10000rpm-50000rpm。
  5. 根据权利要求1所述的纤维状分裂模式下高效制备3D打印用球形金属粉末的装置,其特征在于,所述感应加热线圈(13)的加热厚度范围在5-20mm之间,它与设置在所述壳体(16)外的变频器和稳压电源相连,所述稳压电源的电压控制范围在0-50V之间。
  6. 根据权利要求1所述的纤维状分裂模式下高效制备3D打印用球形金属粉末的装置,其特征在于,所述转盘(7)的中心与所述坩埚(1)下部的喷嘴(15)处于同一轴线上;与所述转盘(7)在同一水平面的所述壳体(16)上设有用于高速摄影机(11)摄影的观察窗(12)。
  7. 一种采用如权利要求1-6任意一项权利要求所述的装置纤维状分裂模式下高效制备3D打印用球形金属粉末的方法,其特征在于包括如下步骤,
    ①装料:将待熔融的金属材料放入设置在壳体(16)内上部的坩埚(1)内后密封,所述坩埚(1)的底部设有喷嘴(15);
    ②抽真空:利用机械泵(18)和扩散泵(17)对所述坩埚(1)和所述壳体(16)抽真空,并充入高纯度惰性保护气体,使壳体(16)内压力达到预设值;
    ③加热:使用感应加热器(2)将所述坩埚(1)内的金属材料熔化,并通过所述坩埚(1)内设置的热电偶实时监测所述坩埚(1)内的温度,待金属材料完全熔化后保温;
    ④感应加热:利用电机(8)带动转盘(7)在预设转速下高速旋转,利用感应加热线圈(13)将高速旋转的旋转圆(7)盘表面温度加热到金 属的熔点以上;
    ⑤制备粉末:将调制交流电信号施加给设置在所述壳体(16)中部与所述喷嘴(15)对准的集中器(5)外周的感应线圈(4),通过设置在所述壳体(16)上并伸入于所述坩埚(1)内的坩埚进气管(19)将高纯度惰性保护气体通入,使所述坩埚(1)与所述壳体(16)内产生一定的差压,在该差压的作用下,熔融金属从喷嘴(15)中流出并形成毛细管射流(14),毛细管射流(14)在感应线圈(4)对其施加的电磁力作用下断裂成均一液滴(6),均一液滴(6)自由降落在高速旋转的转盘(7)的中心,并铺展,利用电机(8)使所述转盘(7)在预设转速下高速旋转,接着利用感应加热线圈(13)将高速旋转的转盘(7)上表面加热到金属材料的熔点温度以上在离心力的作用下,均一液滴(6)放射状纤维分裂形成微液滴,微液滴经自由降落凝固形成金属粉末(10);
    ⑥粒子收集:用设置于所述壳体(16)底部的收集盘(9)收集金属粉末(10)。
  8. 根据权利要求7所述的纤维状分裂模式下高效制备3D打印用球形金属粉末的方法,其特征在于,所述调制交流电信号的电流有效值为30A-60A,载波频率为3MHz-30MHz,调制频率为200Hz-20000Hz,占空比为50%。
  9. 根据权利要求7所述的纤维状分裂模式下高效制备3D打印用球形金属粉末的方法,其特征在于,所述感应加热线圈(13)的加热电压范围为0-50V,感应加热时间为5-15min。
  10. 根据权利要求7所述的纤维状分裂模式下高效制备3D打印用球形金属粉末的方法,其特征在于,所述壳体(16)内抽真空后的压力达到0.1MPa,金属材料完全熔化后保温时间为15-20分钟;步骤⑤中,所述坩埚(1)与所述壳体(16)内产生的差压为0-200kPa。
PCT/CN2019/107702 2018-09-25 2019-09-25 一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法 WO2020063624A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/280,127 US11420257B2 (en) 2018-09-25 2019-09-25 Device and method for high-efficiency preparation of spherical metal powder for 3D printing employing separation into fibers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811117142.0 2018-09-25
CN201811117142.0A CN109047786B (zh) 2018-09-25 2018-09-25 一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法

Publications (1)

Publication Number Publication Date
WO2020063624A1 true WO2020063624A1 (zh) 2020-04-02

Family

ID=64765787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107702 WO2020063624A1 (zh) 2018-09-25 2019-09-25 一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法

Country Status (3)

Country Link
US (1) US11420257B2 (zh)
CN (1) CN109047786B (zh)
WO (1) WO2020063624A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109047786B (zh) * 2018-09-25 2020-11-24 大连理工大学 一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法
CN109175392A (zh) * 2018-09-25 2019-01-11 大连理工大学 一种逐液滴离心雾化法专用转盘结构
CN113523294A (zh) * 2021-07-23 2021-10-22 成都先进金属材料产业技术研究院股份有限公司 旋转圆杯制备3d打印用超细球形金属粉末的装置和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323523A (en) * 1978-08-29 1982-04-06 Sato Technical Research Laboratory Ltd. Process and apparatus for producing spherical particles and fibers with a specially fixed size from melts
CN1559696A (zh) * 2004-02-18 2005-01-05 王崇琳 一种低氧含量微球焊料粉末的制备方法及其专用设备
JP2009062573A (ja) * 2007-09-05 2009-03-26 National Institute For Materials Science 遠心噴霧法に用いる回転ディスクとこれを用いた遠心噴霧法
CN104588673A (zh) * 2015-01-28 2015-05-06 大连理工大学 一种高效制备金属球形超细粉体的装置及方法
CN107350477A (zh) * 2017-08-30 2017-11-17 湖南顶立科技有限公司 一种粉末制备装置
CN107775009A (zh) * 2017-12-14 2018-03-09 淮北五星铝业有限公司 一种片状铝粉的制备方法
CN109047786A (zh) * 2018-09-25 2018-12-21 大连理工大学 一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259861A (en) * 1992-03-05 1993-11-09 National Science Council Method for producing rapidly-solidified flake-like metal powder
DE102005050038A1 (de) * 2005-10-14 2007-05-24 E.G.O. Elektro-Gerätebau GmbH Verfahren zum Betrieb einer Induktionsheizeinrichtung
JP2013119663A (ja) * 2011-12-09 2013-06-17 Ducol:Kk 回転ディスク、遠心噴霧法による銀粉末の製造方法及び遠心噴霧装置
JP2017507251A (ja) * 2014-01-27 2017-03-16 ロバルマ, ソシエダッド アノニマRovalma, S.A. 鉄系合金の遠心噴霧法
CN107570721A (zh) * 2017-07-12 2018-01-12 张家港创博金属科技有限公司 一种高效制备超细球形金属粒子的方法及装置
CN109093127B (zh) * 2018-09-25 2020-11-24 中国人民解放军陆军装甲兵学院 基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323523A (en) * 1978-08-29 1982-04-06 Sato Technical Research Laboratory Ltd. Process and apparatus for producing spherical particles and fibers with a specially fixed size from melts
CN1559696A (zh) * 2004-02-18 2005-01-05 王崇琳 一种低氧含量微球焊料粉末的制备方法及其专用设备
JP2009062573A (ja) * 2007-09-05 2009-03-26 National Institute For Materials Science 遠心噴霧法に用いる回転ディスクとこれを用いた遠心噴霧法
CN104588673A (zh) * 2015-01-28 2015-05-06 大连理工大学 一种高效制备金属球形超细粉体的装置及方法
CN107350477A (zh) * 2017-08-30 2017-11-17 湖南顶立科技有限公司 一种粉末制备装置
CN107775009A (zh) * 2017-12-14 2018-03-09 淮北五星铝业有限公司 一种片状铝粉的制备方法
CN109047786A (zh) * 2018-09-25 2018-12-21 大连理工大学 一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法

Also Published As

Publication number Publication date
CN109047786B (zh) 2020-11-24
US20220001448A1 (en) 2022-01-06
US11420257B2 (en) 2022-08-23
CN109047786A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2020063626A1 (zh) 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法
WO2020063623A1 (zh) 基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法
WO2020063620A1 (zh) 一种逐液滴离心雾化法高效制备低熔点球形金属粉末的装置及方法
WO2020063625A1 (zh) 一种逐液滴离心雾化法制备超细球形金属粉末的装置及方法
WO2020063622A1 (zh) 一种制备3d打印用球形金属粉末的装置及方法
WO2020063624A1 (zh) 一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法
WO2020063619A1 (zh) 一种逐液滴雾化法制备超细低熔点球形金属粉末的装置及方法
CN104588673B (zh) 一种高效制备金属球形超细粉体的装置及方法
CN104550988A (zh) 一种基于均匀液滴喷射法的制备超细球形金属粉末的装置及方法
CN205414417U (zh) 一种等离子雾化制备增材制造用高性能粉末的装置
CN104588674B (zh) 一种高效制备超细球形金属粉末的方法及装置
CN104493186B (zh) 一种均一球形微粒子的制备装置及其制备方法
CN104550990A (zh) 一种制备3d打印用超细球形高熔点金属粉末的方法与装置
CN104550989A (zh) 一种制备3d打印用超细球形金属粉末的方法及装置
CN114192790A (zh) 球形钛及钛合金粉末制备装置和方法
CN107570711A (zh) 一种脉冲小孔喷射法连续高效制备均一球形微粒子的方法及装置
WO2020063627A1 (zh) 一种逐液滴离心雾化法专用转盘结构
CN109622981A (zh) 一种高效制备金属粉末的装置及方法
CN210359259U (zh) 一种超声波制备金属球形粉体装置
CN113263181A (zh) 一种高效制备粒径均一可控的球形金属微粒子的方法及其制备装置
CN210280681U (zh) 一种制备金属粉末的装置
CN109676147A (zh) 金属合金粉末制备装置
CN214557394U (zh) 一种离心雾化制备铜合金粉末的装置
CN209407418U (zh) 一种耦合超声旋转电极制粉装置
CN109807339A (zh) 一种制备低氧球形金属粉末的设备及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864898

Country of ref document: EP

Kind code of ref document: A1