WO2020063626A1 - 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法 - Google Patents

一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法 Download PDF

Info

Publication number
WO2020063626A1
WO2020063626A1 PCT/CN2019/107704 CN2019107704W WO2020063626A1 WO 2020063626 A1 WO2020063626 A1 WO 2020063626A1 CN 2019107704 W CN2019107704 W CN 2019107704W WO 2020063626 A1 WO2020063626 A1 WO 2020063626A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
metal
turntable
drop
droplet
Prior art date
Application number
PCT/CN2019/107704
Other languages
English (en)
French (fr)
Inventor
王晓明
朱胜
赵阳
王思捷
韩国峰
石晶
常青
任智强
滕涛
孙瑜
董伟
孟瑶
许富民
白兆丰
王延洋
韩阳
李国斌
Original Assignee
王晓明
大连理工大学
朱胜
赵阳
王思捷
韩国峰
石晶
常青
任智强
滕涛
孙瑜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王晓明, 大连理工大学, 朱胜, 赵阳, 王思捷, 韩国峰, 石晶, 常青, 任智强, 滕涛, 孙瑜 filed Critical 王晓明
Priority to US17/280,025 priority Critical patent/US11331724B2/en
Publication of WO2020063626A1 publication Critical patent/WO2020063626A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin

Definitions

  • the invention belongs to the technical field of preparation of ultrafine spherical microparticles, and in particular, relates to a device and method for efficiently preparing ultrafine spherical metal powder by a droplet-by-drop centrifugal atomization method.
  • Metal additive manufacturing technology is widely used in many fields such as energy and military because of its wide molding range and the ability to process parts of various complex shapes. As a spherical metal powder, its quality has a great influence on the quality of the finished product.
  • the requirements of additive manufacturing technology for metal powders include narrow particle size distribution, low oxygen content, high sphericity, average particle size of less than 50 ⁇ m, and no satellite drops.
  • the current quality of metal powders on the Chinese market is not high, and there is a large gap with foreign technology levels. The powders on the market cannot meet the needs of additive technology, which also severely limits the development of additive technology in China.
  • the current methods for preparing spherical metal powder are: atomization, including gas atomization, water atomization, centrifugal atomization, and rotating electrode atomization.
  • atomization including gas atomization, water atomization, centrifugal atomization, and rotating electrode atomization.
  • the atomization method is very efficient, the size dispersion of the prepared powder is large, and it must be sieved multiple times to obtain a powder that meets the particle size requirements, which greatly reduces the production efficiency, especially when the size has strict requirements; atomization
  • the method is easy to produce satellite drops, which can cause satellite drops to adhere to the powder surface, reduce the fluidity and spreadability of the powder, and easily add impurities during the production process, which cannot meet the requirements of 3D printing powder.
  • a device and method for efficiently preparing ultra-fine spherical metal powders by the droplet-by-drop centrifugal atomization method are provided.
  • the invention mainly combines two methods of uniform liquid droplet spraying method and centrifugal atomization method.
  • a nozzle with a plurality of small holes is provided at the uniform liquid droplet spraying position, and the structure design of the turntable is added, and the induction heating coil is added to the surface of the disc.
  • a device for efficiently preparing ultrafine spherical metal powder by a droplet-by-drop centrifugal atomization method comprising a casing, a crucible disposed in the casing, and a powder collection area, wherein the powder collection area is disposed on the casing. At the bottom, the crucible is placed at the upper part of the powder collection area;
  • thermocouple is provided inside the crucible, a heating belt is provided outside the crucible, a nozzle with a plurality of small holes is provided at the bottom of the crucible, and a piezoelectric ceramic provided on the top of the shell is provided in the crucible.
  • a heating belt is provided outside the crucible, a nozzle with a plurality of small holes is provided at the bottom of the crucible, and a piezoelectric ceramic provided on the top of the shell is provided in the crucible.
  • an electrode plate is arranged directly below the crucible;
  • the shell is provided with a crucible air inlet extending into the crucible, the shell is further provided with a diffusion pump and a mechanical pump, and the shell is further provided with a cavity air inlet and a cavity Vent;
  • the powder collection area includes a collection tray provided at the bottom of the housing, and a turntable connected to a motor and used to atomize metal droplets provided above the collection tray;
  • the turntable includes a base body, an atomizing plane and a vent hole;
  • the longitudinal section of the base body composed of the upper receiving part and the lower supporting part is similar to a "T-shaped" main structure, and the upper surface of the receiving part is provided with a circular groove with a certain radius coaxial with the center of the circle;
  • the base body is made of a material having a thermal conductivity of less than 20 W / m / k; the atomizing plane is further provided with a concentric circular groove matching the nozzle with a plurality of small holes;
  • the atomizing plane is a disc structure, the disc structure matches the circular groove and interference fits with the circular groove, and the atomizing plane is wetted with atomized metal droplets. Made of materials with a wet angle of less than 90 °;
  • the vent hole is disposed in the receiving portion and the support portion, the upper end surface of the vent hole is in contact with the lower end surface of the atomizing plane, and the lower end of the vent hole is in communication with the outside;
  • An induction heating coil is also provided on the periphery of the turntable.
  • the volume of the shell should be sufficient for the droplets to fall to the bottom of the collecting tray after centrifugal crushing, to ensure that they will not solidify on the inner wall of the shell, and the area of the collecting tray must be large enough to collect powder. .
  • the height of the support portion of the base body should not be too high, and it should be smaller than the height of the receiving portion.
  • the upper end surface of the atomizing plane protrudes from the upper end surface of the receiving portion, and the protruding range is 0.1-0.5 mm.
  • the protruding height only needs to meet the requirements that the discrete metal droplets can directly fly into the chamber and fall into the collection tray without contacting the substrate.
  • the substrate is made of zirconium dioxide ceramic, silica glass, or stainless steel, and is not limited to the foregoing materials, as long as it meets a material with a thermal conductivity of less than 20 W / m / k.
  • the upper end face of the vent hole is less than or equal to the lower end face of the atomization plane.
  • the purpose of the vent hole is to clean the gas in the turntable when the vacuum is drawn, and it is safer when the turntable is rotating at high speed.
  • the wetting angle between the material of the crucible and the melt placed in the crucible is greater than 90 °.
  • the aperture range of the small holes of the nozzle is between 0.02mm-2.0mm.
  • the voltage range of the electrode plate is between 100V-400V; the induction heating coil is connected to a frequency converter and a regulated power supply arranged outside the casing, and the heating thickness range of the induction heating coil is 5- Between 20mm, the voltage control range of the regulated power supply is between 0-50V.
  • the rotation speed of the turntable is 10,000 rpm to 50,000 rpm.
  • the piezoelectric ceramic, the oscillation generator, the crucible, the nozzle, the electrode plate, the turntable, and the concentric circular recess are located on the same axis.
  • the invention also discloses a method for efficiently preparing ultrafine spherical metal powder by the above-mentioned device using a droplet-by-drop centrifugal atomization method, which is characterized by including the following steps,
  • 3Heating crucible Set the heating parameters using the heating belt according to the melting point of the raw material to be heated, and monitor the temperature in the crucible in real time through the thermocouple set in the crucible, and keep the temperature after the metal material is completely melted;
  • Induction heating using a motor to make the turntable rotate at a high speed at a preset speed, and then using an induction heating coil to heat the upper surface of the turntable rotating at a high speed above the melting point temperature of the metal material;
  • the crucible air inlet pipe which is arranged on the shell and extends into the crucible passes the high-purity inert protective gas into the crucible to form a positive pressure difference between the inside and outside of the crucible; then input a certain amount to the piezoelectric ceramics
  • the waveform pulse signal makes the oscillation generator generate a certain frequency of oscillation.
  • the voltage of the electrode plate is set to form an electric field with a preset intensity;
  • the metal Due to the differential pressure inside and outside the crucible, the metal will flow out of the nozzle to form a columnar metal flow. At this time, under a certain frequency of oscillation above, the columnar metal flow will be broken into a series of small metal droplets. The metal droplets act in the electric field during the drop process. Next, due to the surface effect of the charge, the metal droplets are mutually repelled to avoid the re-polymerization of the metal droplets;
  • Metal droplets land freely on a high-speed rotating turntable. They first drop into concentric circular grooves in the center of the turntable and gradually pass through the grooves. Due to the small centrifugal force at this time, the droplets will not be dispersed immediately, but will Spread on the turntable in a circular shape. When the centrifugal force is sufficiently large in a certain range, the spreading metal will be dispersed in the shape of a fiber on the turntable to the edge of the turntable under the action of the centrifugal force, and finally split into tiny droplets that fly out. During the dropping process, the micro-droplets are solidified without a container, forming a metal powder, and landing on a collecting tray;
  • the metal powder is collected by a collection tray provided at the bottom of the casing.
  • the amount of the metal raw material put in is 1 / 4-3 / 4 of the volume of the crucible.
  • manually adjusting the position of the induction coil is 1-2 mm higher than the rotating disc.
  • the high-purity inert protective gas is argon or helium, and the gas is filled into the shell, so that the pressure in the shell reaches 0.1 MPa, and the heat preservation time is 15-20 minutes after the metal material is completely melted.
  • an induction heating voltage range of the induction heating coil is 0-50V, and an induction heating time is 5-15min.
  • a differential pressure generated in the crucible and the casing is 0-200 kPa.
  • the present invention has the following advantages:
  • the invention designs a device which mainly combines two methods of uniform liquid droplet spraying method and centrifugal atomization method to make metal liquid droplets in a fibrous splitting mode to prepare ultrafine metal spherical powder.
  • the molten metal material in the crucible is under differential pressure.
  • small droplets are formed. During the process of the small droplets falling, they will not aggregate under the action of the electric field, and the droplets will fall at a high speed.
  • On the turntable it first drops into the concentric circular groove in the center of the turntable and gradually passes through the groove. Due to the effect of induction heating, the uniform droplets are still molten when they reach the upper surface of the turntable.
  • the pulse micro-hole spray method and the centrifugal atomization method are combined, and the structure design of the turntable is selected.
  • the material with good wettability with metal materials is selected as the atomization surface, and the induction heating device is added to make the molten metal realized. Fibrous splitting method.
  • This splitting method effectively reduces the diameter of the atomized powder and greatly improves the productivity of the metal powder. Therefore, the combination of the two methods results in a fine and small particle size of the metal powder. Narrow distribution range, high sphericity, controllable particle size distribution, consistent thermal history, high yield of fine powder, meeting the requirements of industrial production.
  • the method of the invention has strong controllability, which is manifested in the following points: the heating temperature of the crucible can be accurately controlled through the heating belt, and the pressure difference between the crucible and the housing can be controlled by passing an inert gas into the crucible and the housing;
  • the size of the nozzle with small holes can control the size of uniform droplets;
  • the electrode plate can control the size of the electric field;
  • the induction heating coil can control the temperature on the surface of the turntable, the speed of the rotating disc can be controlled, and the fibrous splitting effect of the molten metal can be controlled Therefore, the particle size distribution of the metal fine particles can be further controlled;
  • the adjustable and controllable process parameters can obtain spherical metal powders with particle size and distribution that meet different requirements, and have high production efficiency.
  • the present invention can efficiently prepare metal powder that meets the requirements of 3D printing through fibrous fission of molten metal, with controllable particle size, small particle size, narrow particle size distribution interval, high sphericity, no satellite drops, fluidity and Good spreadability, consistent thermal history, very high production efficiency, low production cost, and can be used for industrial production.
  • FIG. 1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a schematic structural diagram of a turntable of the present invention.
  • FIG. 3 is a comparison diagram of the surface of the turntable of the present invention after the experiment with that of the original turntable, wherein (a) is the surface of the turntable with fibrous splits, and (b) is the surface of the turntable in the prior art.
  • orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal”, “top, bottom” and the like indicate the orientation Or the positional relationship is usually based on the orientation or positional relationship shown in the drawings, only for the convenience of describing the present invention and simplifying the description. Unless otherwise stated, these orientation words do not indicate and imply the device or element referred to. It must have a specific orientation or be constructed and operated in a specific orientation, so it cannot be understood as a limitation on the scope of protection of the present invention: the orientation words “inside and outside” refer to the inside and outside relative to the outline of each component itself.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure Shows the spatial position relationship between one device or feature and other devices or features. It should be understood that spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device as described in the figures. For example, if a device in the figure is turned over, devices described as “above” or “above” other devices or constructions will be positioned “below the other devices or constructions” or “below” Under its device or structure. " Thus, the exemplary term “above” may include both directions “above” and “below”. The device can also be positioned in other different ways (rotated 90 degrees or at other orientations), and the relative description of space used here is explained accordingly.
  • the present invention provides a device for efficiently preparing ultra-fine spherical metal powder by a droplet-by-drop centrifugal atomization method, which includes a shell 20, a crucible 2 disposed in the shell 20, and a powder collection area.
  • the powder collection area is placed on the bottom of the casing 20, and the crucible 2 is placed on the upper part of the powder collection area;
  • thermocouple 19 is provided inside the crucible 2, and a heating belt 6 is provided outside the crucible 2.
  • a nozzle 14 with a plurality of small holes is provided at the bottom of the crucible 2.
  • the material of the crucible 2 and the crucible 2 are placed in the crucible.
  • the wetting angle of the internal melt 5 is greater than 90 °.
  • the aperture of the small holes of the nozzle 14 ranges from 0.02 mm to 2.0 mm.
  • the crucible 2 is provided with an oscillation generator 3 connected to a piezoelectric ceramic 1 provided on the top of the casing; an electrode plate 7 is provided directly below the crucible; the voltage range of the electrode plate 7 is 100V-400V between;
  • the shell 20 is provided with a crucible air inlet 4 that extends into the crucible 2.
  • the shell 20 is further provided with a diffusion pump 17 and a mechanical pump 16.
  • the shell 20 is further provided with a cavity.
  • the powder collection area includes a collection tray 10 provided at the bottom of the housing 20, and a turntable 8 for atomizing droplets of metal powder, which is connected to the motor 11 and is disposed above the collection tray 10.
  • the turntable 8 includes a base, an atomizing plane 23 and a vent hole 24;
  • the base body is a main structure with a “T-shaped” longitudinal section formed by an upper receiving portion 21 and a lower supporting portion 22.
  • the upper surface of the receiving portion 21 is provided with a circle with a certain radius coaxial with the center of the circle.
  • the atomizing plane 23 is a disc structure.
  • the disc structure matches the circular groove and interference fits with the circular groove.
  • the atomizing plane 23 uses the atomizing liquid droplets 13. Made of materials with a wetting angle of less than 90 °;
  • the ventilation hole 24 is penetrated and provided in the receiving portion 21 and the support portion 22.
  • the upper end surface of the ventilation hole 24 is in contact with the lower end surface of the atomizing plane 23.
  • the lower end of the ventilation hole 24 is outside.
  • An induction heating coil 12 is also provided on the periphery of the turntable 8.
  • the rotation speed of the turntable 8 is 10,000 rpm-50,000 rpm.
  • the induction heating coil 12 is connected to a frequency converter and a regulated power supply provided outside the casing 20.
  • the heating thickness range of the induction heating coil 12 is between 5-20mm.
  • the voltage control range of the regulated power supply Between 0-50V.
  • the piezoelectric ceramic 1, the oscillation generator 3, the crucible 2, the nozzle 14, the electrode plate 7, the turntable 8, and the concentricity are located on the same axis.
  • the purpose is for the droplets to drop evenly in the center of the turntable, which is good for spreading.
  • the volume of the casing 20 should be sufficient for the droplets to fall to the bottom of the collection tray after centrifugal crushing, to ensure that they will not solidify on the inner wall of the casing 20, and the area of the collection tray 10 must be large enough to collect Just powder.
  • the mechanical pump 16 and the diffusion pump 17 are used to evacuate the casing 20 and the crucible 2; the bottom of the crucible 2 is equipped with a nozzle 14 with a small hole, and the raw material to be prepared in the crucible 2 is heated by the heating belt 6, and High-purity inert protective gases, such as helium and argon, are passed into the crucible 2 and the casing 20 through the crucible inlet tube 4 and the cavity inlet tube 15 to maintain a certain positive pressure difference between the crucible 2 and the casing 20, Then, a certain waveform pulse signal is input to the piezoelectric ceramic 1 so that the oscillation generator 3 generates oscillation with a certain frequency.
  • High-purity inert protective gases such as helium and argon
  • the voltage of the electrode plate 7 is set to form an electric field of a proper size. Due to the differential pressure inside and outside the crucible 2, the metal will flow out from the nozzle 14 to form a columnar metal flow. At this time, under a certain frequency of oscillation above, the columnar metal flow will be broken into a series of small metal droplets 13, and the metal droplets 13 descend. Under the action of an electric field, due to the surface effect of the electric charges, the metal droplets 13 are mutually repelled to avoid re-polymerization of the metal droplets 13. The liquid droplet 13 freely falls on the rotating disc 8 rotating at a high speed. The molten metal droplet 13 in the molten state first drops into the concentric circular groove 25 in the center of the rotating disc 8.
  • the metal droplet 13 will not It is scattered immediately, but spreads on the turntable 8 in a circular shape.
  • the centrifugal force is spread to a certain range, the spread metal is dispersed in a fiber line on the turntable 8 to the edge of the turntable 8 under the action of the centrifugal force.
  • the liquid droplets are split into tiny droplets and fly out.
  • the micro-droplets are solidified without a container during the falling process, forming a metal powder 9 and landing on the collecting tray 10.
  • the invention also discloses a method for the above-mentioned device to efficiently prepare ultrafine spherical metal powder by the droplet-by-drop centrifugal atomization method, which includes the following steps,
  • 3Heating the crucible Set the heating parameters using the heating belt 6 according to the melting point of the raw material to be heated, and monitor the temperature in the crucible 2 in real time through the thermocouple 19 provided in the crucible 2;
  • Induction heating Use the motor 11 to rotate the turntable 8 at a high speed at a preset speed, and then use the induction heating coil 12 to heat the upper surface of the high speed rotating turntable 8 to a temperature above the melting point of the metal material;
  • the induction heating voltage range is 0-50V, and the induction heating time is 5-15min.
  • 5Powder preparation a high-purity inert protective gas is passed in through a crucible gas inlet pipe 4 provided on the casing 20 and extending into the crucible 2 to form a positive pressure difference between the inside and outside of the crucible 2;
  • the purity inert protective gas is argon or helium, and the gas is charged into the casing 20 so that the pressure in the casing reaches 0.1 MPa.
  • the heat preservation time is 15-20 minutes.
  • a certain waveform pulse signal is input to the piezoelectric ceramic 1 so that the oscillation generator 3 generates a certain frequency of oscillation.
  • the voltage of the electrode plate 7 is set to form an electric field of a predetermined strength;
  • the metal Due to the differential pressure inside and outside the crucible 2, the metal will flow out from the nozzle 14 to form a columnar metal flow. At this time, under a certain frequency of oscillation above, the columnar metal flow will be broken into a series of small metal droplets 13, and the metal droplets 13 descend. In the presence of an electric field, due to the surface effect of the charges, the metal droplets 13 are mutually repelled to avoid the re-polymerization of the metal droplets 13;
  • the metal droplets 13 land freely on the high-speed rotating turntable 8 and first drop into the concentric groove 25 in the center of the turntable 8 and gradually pass through the grooves. Due to the small centrifugal force at this time, the liquid droplets will not be dispersed immediately. Instead, it will be spread on the turntable 8 in a circular shape. When the centrifugal force is sufficiently large in a certain range, the spread metal will be dispersed in a fiber line on the turntable 8 to the edge of the turntable 8 under the action of the centrifugal force, and finally split into The tiny liquid droplets fly out, and the tiny liquid droplets solidify without a container during the falling process, forming a metal powder 9 and landing on the collecting tray 10;
  • the metal powder 9 is collected by a collection tray 10 provided at the bottom of the casing.
  • the heating belt 6 is used to heat the crucible 2 at a heating temperature of 300 ° C., a heating speed of 15 ° C./min, and a heat preservation of 10 minutes, so that all the metal materials in the crucible 2 are melted into the melt 5;
  • the motor 11 is used to make the speed of the turntable 8 24000r / min, and then the induction heating voltage of the induction heating coil 12 is set to 21V, the induction heating current is 8A, and the induction heating time is 10min.
  • the surface of the high speed rotating turntable 8 is heated to a metal material.
  • the melting temperature is above 183 °C;
  • the voltage of the electrode plate is set to 300V, and then a high-purity inert protective gas argon is passed through the crucible inlet pipe 4 provided in the crucible 2 to generate a positive differential pressure of 50 kPa between the crucible 2 and the housing 20;
  • the piezoelectric ceramic 1 is input with a trapezoidal wave pulse signal, and the frequency is set to 1 MHz, so that the piezoelectric ceramic 1 oscillates up and down.
  • the oscillation generator 3 connected to the piezoelectric ceramic 1 is transmitted to the melt in the vicinity of the nozzle 14.
  • the melt 5 is ejected from the nozzle 14 with a small hole to form a uniform metal droplet 13; the uniform metal droplet 13 freely falls on the high-speed rotating turntable 8, and the uniform metal droplet 13 will first fall on the center of the turntable 8 In the concentric groove 25, the metal melt will gradually flow through the groove. Under the action of centrifugal force, it will spread on the turntable 8 in a fibrous shape, split into tiny droplets and fly out.
  • the container is solidified to form metal powder 9 and land on a collecting tray 10 (the collecting tray may be a circular disk or a circular disk);
  • stop the metal powder 9 in the collection tray 10 After the preparation is finished, stop applying trapezoidal wave pulse signals to the piezoelectric ceramic 1, that is, stop the droplet ejection; stop the high-speed motor 11, so that the turntable 8 stops rotating; close the heating belt 6 and the induction heating coil 12, and wait for the temperature to drop to room temperature.
  • (b) is an atomizing disc obtained by atomizing in the prior art. Because the wettability of the atomizing disc material and the prepared metal powder material is too small, and the temperature of the turntable is too low during the atomization process. , Resulting in a liquid-like split of the liquid, and a thicker solidified liquid film will appear on the atomized surface. The liquid film surface is very rough, which is not conducive to the further atomization of the subsequent metal droplets, which will seriously affect the atomization effect and atomization efficiency. . (a) For the atomized surface obtained by the method of the present invention, it can be seen that the atomization mode is changed into an obvious fibrous split mode, and the linear split mode greatly improves the miniaturization and production efficiency of the metal powder.

Abstract

一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法,该装置包括壳体(20)、设置于所述壳体(20)内的坩埚(2)和粉末收集区,设置在所述粉末收集区的转盘(8)为镶嵌式结构,选择导热性较差的材料为所述转盘(8)的基体部分,选择与液滴的润湿角小于90°的金属材料镶嵌进所述转盘(8)的主体部分作为所述转盘(8)的雾化平面(23),所述雾化平面(23)上设有同心圆凹槽(25),所述转盘(8)内设有通气孔(24)。逐液滴离心雾化法高效制备超细球形金属粉末的方法,主要结合均匀液滴喷射法和离心雾化法,突破传统金属分裂模式,使熔融金属呈现出纤维状分裂,从而能够高效制备出粒径分布区间窄、圆球度高、流动性好、铺展性优良且尺寸均匀可控、无卫星滴的超细球形金属粉末,适宜工业化生产。

Description

一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法 技术领域
本发明属于超细球形微粒子制备技术领域,具体而言,尤其涉及一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法。
背景技术
金属增材制造技术由于其成型范围广,可以加工各种复杂形状的零件,因此在能源、军事等多个领域都得到了广泛应用。而球形金属粉末作为成型的原材料,它的品质对于成品的质量有很大的影响。增材制造技术对金属粉末的需求包括粒度分布窄、氧含量低、球形度高、平均粒径小于50μm且无卫星滴等性能。然而目前我国市场上的金属粉休质量不高,与国外技术水平有较大差距,市场上的粉末还不能满足增材技术的需要,这也严重限制了我国增材技术的发展。
目前制备球形金属粉末的方法主要有:雾化法,包括气雾化法,水雾化法,离心雾化法,旋转电极雾化法等。虽然雾化法制粉效率非常高,但是所制备粉末的尺寸分散度大,必须通过多次筛分才能得到满足粒径要求的粉末,使生产效率大大降低,尤其当尺寸有严格要求时;雾化法易产生卫星滴,使粉末表面粘连卫星滴,降低粉末的流动性及铺展性,且生产过程中易掺入杂质,无法满足3D打印用粉末的要求。
因此,如何制备出粒径分布窄且可控,球形度高、无卫星滴的金属粉末成为有待解决的一大问题。
发明内容
根据上述提出3D打印用金属粉末制备过程中存在的圆球度差,铺展性及流动性差等技术问题,而提供一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法。本发明主要结合均匀液滴喷射法和离心雾化法两种方法,在均匀液滴喷射部位设有带多个小孔的喷嘴,同时对转盘进行结构设计,且增加感应加热线圈对圆盘表面进行感应加热, 从而使金属液突破了传统熔融金属的分裂模式,实现了只有当雾化介质为水溶液或有机溶液时才能实现的纤维状分裂方式,通过这种模式可以实现金属粉末的超微细化且在粒度调控方面可以取得大的飞跃,可以制备得到圆球度高、有良好流动性和铺展性、无卫星滴、细粉收得率非常高的符合使用3D打印使用要求的球形金属粉末。
本发明采用的技术手段如下:
一种逐液滴离心雾化法高效制备超细球形金属粉末的装置,包括壳体、设置于所述壳体内的坩埚和粉末收集区,其中,所述粉末收集区置于所述壳体的底部,所述坩埚置于所述粉末收集区的上部;
所述坩埚内部设有热电偶,所述坩埚外部设有加热带,所述坩埚底部设有带多个小孔的喷嘴,所述坩埚内设有与设置在所述壳体顶部的压电陶瓷相连的振荡发生器;所述坩埚正下方设有电极板;
所述壳体上设有伸入于所述坩埚内的坩埚进气口,所述壳体上还设有扩散泵和机械泵,所述壳体上还设有腔体进气口和腔体排气阀;
所述粉末收集区包括设置在所述壳体底部的收集盘、设置于所述收集盘上方的与电机相连的用于雾化金属液滴的转盘;
所述转盘包括基体,雾化平面和通气孔;
所述基体由上部的承接部和下部的支撑部构成的纵截面呈类“T型”的主体结构,所述承接部上表面设有与其圆心同轴的具有一定半径的圆形凹槽;其中,所述基体采用导热性小于20W/m/k的材料制成;所述雾化平面上还设有一个与所述带多个小孔的喷嘴相匹配的同心圆凹槽;
所述雾化平面为圆盘结构,所述圆盘结构与所述圆形凹槽相匹配且与所述圆形凹槽过盈配合,所述雾化平面采用与雾化的金属液滴润湿角小于90°的材料制成;
所述通气孔贯通设置在所述承接部及所述支撑部内,所述通气孔的上端面与所述雾化平面的下端面接触,所述通气孔的下端与外界连通;
所述转盘的外围还设有感应加热线圈。
所述壳体的体积要足够液滴经离心破碎后飞行降落到底部的收集盘内的范围,能够保证不会凝固在壳体的内壁上,收集盘的面积要保证足够大能够收集粉末即可。
优选地,基体支撑部的高度不宜太高,小于承接部的高度为宜。所述雾化平面的上端面凸出于所述承接部上端面,凸出范围为0.1-0.5mm。凸出高度只要满足利于离散的金属 液滴不接触基体,直接飞到腔室内落入收集盘内即可。所述基体采用二氧化锆陶瓷、二氧化硅玻璃或不锈钢制成,不局限于上述几种材质,只要满足导热性小于20W/m/k的材料均可。所述通气孔的上端面小于等于所述雾化平面的下端面,通气孔设置的目的是为了在抽真空时可以将转盘内间隙的气体抽的更干净,转盘高速旋转时更加安全,因此通气孔的上端面与雾化平面的下端面的接触面积越大抽真空时雾化平面的稳定性越好。
进一步地,所述坩埚的材料与置于所述坩埚内的熔体的润湿角大于90°。
进一步地,所述喷嘴的小孔的孔径范围在0.02mm-2.0mm之间。
进一步地,所述电极板的电压范围在100V-400V之间;所述感应加热线圈与设置在所述壳体外的变频器和稳压电源相连,所述感应加热线圈的加热厚度范围在5-20mm之间,所述稳压电源的电压控制范围在0-50V之间。
进一步地,所述转盘的转速为10000rpm-50000rpm。
进一步地,在所述装置自上而下的方向上,所述压电陶瓷、所述振荡发生器、所述坩埚、所述喷嘴、所述电极板、所述转盘、所述同心圆形凹槽以及所述感应加热线圈位于同一轴线上。
本发明还公开了一种上述的装置采用逐液滴离心雾化法高效制备超细球形金属粉末的方法,其特征在于包括如下步骤,
①装料:将原材料装入设置在壳体内上部的坩埚内,手动调整高度方向上,感应加热线圈位置至转盘为预设距离,后密封壳体;
②抽真空:利用机械泵和扩散泵对所述坩埚和所述壳体抽真空,并充入高纯度惰性保护气体,使壳体内压力达到预设值;
③加热坩埚:根据待加热原材料的熔点设定使用加热带的加热参数,并通过所述坩埚内设置的热电偶实时监测所述坩埚内的温度,待金属材料完全熔化后保温;
④感应加热:利用电机使所述转盘在预设转速下高速旋转,接着利用感应加热线圈将高速旋转的转盘上表面加热到金属材料的熔点温度以上;
⑤粉末制备:通过设置在所述壳体上并伸入于所述坩埚内的坩埚进气管将高纯度惰性保护气体通入,使所述坩埚内外形成正压力差;然后给压电陶瓷输入一定波型的脉冲信号,使得振荡发生器产生一定频率的振荡;最后,设置电极板的电压,形成预设强度的电场;
由于坩埚内外存在差压,金属会从喷嘴流出形成柱状金属流,此时在上方一定频率的振荡下,柱状金属流就会破碎成一系列小的金属液滴,金属液滴下降过程中在电场作用下,会由于电荷的表面效应,使得各个金属液滴之间互相排斥避免了金属液滴的再聚合;
金属液滴自由降落在高速旋转的转盘上,先滴落在转盘中心的同心圆凹槽中并逐渐漫过凹槽,由于此时离心力较小,液滴不会被马上离散出去,而是会呈圆形铺展在转盘上,当铺展到一定范围离心力足够大时,铺展的金属会在离心力的作用下,在转盘上呈纤维线状离散至转盘边缘,最后分裂成微小的液滴飞出,微液滴在下落过程中无容器凝固,形成金属粉末,降落至收集盘上;
⑥粒子收集:用设置于所述壳体底部的收集盘收集金属粉末。
进一步地,所述金属原材料放入量为所述坩埚容积的1/4-3/4。
进一步地,手动调整感应线圈位置比旋转圆盘高1-2mm。
进一步地,所述高纯度惰性保护气体为氩气或氦气,将该气体充入壳体内,使壳体内压力达到0.1MPa,金属材料完全熔化后保温时间为15-20分钟。
进一步地,所述感应加热线圈的感应加热电压范围为0-50V,感应加热时间为5-15min。
进一步地,所述坩埚与所述壳体内产生的差压为0-200kPa。
较现有技术相比,本发明具有以下优点:
本发明设计了一种主要结合均匀液滴喷射法和离心雾化法两种方法,使金属液滴在纤维状分裂模式下制备超细金属球形粉末的装置,坩埚中熔化的金属材料在差压和振荡发生器的作用下,通过坩埚底部的带多个小孔的喷嘴喷出,形成小液滴,小液滴下落过程中,在电场的作用下不会聚合,液滴降落在高速旋转的转盘上,先滴落在转盘中心的同心圆凹槽中并逐渐漫过凹槽,由于感应加热的作用,均匀液滴到达转盘上表面时还处于熔融状态,由于液滴金属与转盘上表面材料有较好的润湿性,在离心力的作用下,均匀液滴会在转盘上呈纤维状铺展,并在转盘边缘离散成更加微小的液滴飞出,自由降落凝固形成金属粉末。脉冲微孔喷射法生产的金属粒子粒径可控,但单孔制备粒子的产量不足以满足日益增加的需求量。通过创新,将脉冲微孔喷射法与离心雾化法相结合,同时对转盘进行结构设计,选择与金属材料润湿性好的材料作为雾化表面,且增加了感应加热装置,使熔融金属实现了纤维状分裂方式,这种分裂方式有效地减小了雾化所得粉末的直径,且极大地提高了金属粉末的生产率,因此,通过两种方法的结合,得到的金属粉末粒径细小、粒径分布区间窄、球形度高、粒径分布可控、热履历一致,细粉收得率高,满足工业生产的要求。
本发明的工艺方法可控性强,表现在如下几点:通过加热带可精确控制坩埚的加热温度,通过向坩埚与壳体内通入惰性气体,可控制坩埚与壳体内的压力差;坩埚底部带 小孔的喷嘴的尺寸可以控制均匀液滴的尺寸;电极板可以控制电场的大小;感应加热线圈可以控制转盘表面的温度,旋转圆盘的转速可控,可以控制熔融金属的纤维状分裂效果,从而可以进一步控制金属微粒子的粒径分布;工艺参数的可调节与可控制,可以得到满足不同要求的粒径尺寸及分布的球形金属粉末,且生产效率高。
综上,本发明可以通过熔融金属的纤维状分裂高效制备出满足3D打印要求的金属粉末,粒径可控、粒径细小、粒径分布区间窄,球形度高、无卫星滴、流动性与铺展性良好、热履历一致,生产效率非常高,生产成本低,可以用于工业生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的结构示意图。
图2为本发明的转盘的结构示意图。
图3为本发明的转盘在实验后其表面与原转盘实验后的表面对比图,其中,(a)为呈纤维状分裂的转盘表面,(b)为现有技术中转盘表面。
图中:1、压电陶瓷;2、坩埚;3、振荡发生器;4、坩埚进气管;5、熔体;6、加热带;7、电极板;8、转盘;9、金属粉末;10、收集盘;11、电机;12、感应加热线圈;13、金属液滴;14、喷嘴;15、腔体进气管;16、机械泵;17、扩散泵;18、腔体排气阀;19、热电偶;20、壳体;21、承接部;22、支撑部;23、雾化平面;24、通气孔;25、同心圆凹槽。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中 的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当清楚,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员己知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任向具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制:方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其位器件或构造之下”。因而,示例性术语 “在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
如图1所示,本发明提供了一种逐液滴离心雾化法高效制备超细球形金属粉末的装置,包括壳体20、设置于所述壳体20内的坩埚2和粉末收集区,其中,所述粉末收集区置于所述壳体20的底部,所述坩埚2置于所述粉末收集区的上部;
所述坩埚2内部设有热电偶19,所述坩埚2外部设有加热带6,所述坩埚2底部设有带多个小孔的喷嘴14,所述坩埚2的材料与置于所述坩埚内的熔体5的润湿角大于90°。所述喷嘴14的小孔的孔径范围在0.02mm-2.0mm之间。所述坩埚2内设有与设置在所述壳体顶部的压电陶瓷1相连的振荡发生器3;所述坩埚正下方设有电极板7;所述电极板7的电压范围在100V-400V之间;
所述壳体20上设有伸入于所述坩埚2内的坩埚进气口4,所述壳体20上还设有扩散泵17和机械泵16,所述壳体20上还设有腔体进气口15和腔体排气阀18;
所述粉末收集区包括设置在所述壳体20底部的收集盘10、设置于所述收集盘10上方的与电机11相连的用于雾化金属粉末液滴的转盘8;
如图2所示,所述转盘8包括基体,雾化平面23和通气孔24;
所述基体是由上部的承接部21和下部的支撑部22构成的纵截面呈类“T型”的主体结构,所述承接部21上表面设有与其圆心同轴的具有一定半径的圆形凹槽;其中,所述基体采用导热性小于20W/m/k的材料制成;所述雾化平面23上还设有一个与所述带多个小孔的喷嘴14相匹配的同心圆凹槽25;
所述雾化平面23为圆盘结构,所述圆盘结构与所述圆形凹槽相匹配且与所述圆形凹槽过盈配合,所述雾化平面23采用与雾化液滴13润湿角小于90°的材料制成;
所述通气孔24贯通设置在所述承接部21及所述支撑部22内,所述通气孔24的上端面与所述雾化平面23的下端面接触,所述通气孔24的下端与外界连通;
所述转盘8的外围还设有感应加热线圈12。所述转盘8的转速为10000rpm-50000rpm。所述感应加热线圈12与设置在所述壳体20外的变频器和稳压电源 相连,所述感应加热线圈12的加热厚度范围在5-20mm之间,所述稳压电源的电压控制范围在0-50V之间。
在所述装置自上而下的方向上,所述压电陶瓷1、所述振荡发生器3、所述坩埚2、所述喷嘴14、所述电极板7、所述转盘8、所述同心圆凹槽25以及所述感应加热线圈12位于同一轴线上。目的是为了液滴可均匀的滴落在转盘中心,利于铺展。
所述壳体20的体积要足够液滴经离心破碎后飞行降落到底部的收集盘内的范围,能够保证不会凝固在壳体20的内壁上,收集盘10的面积要保证足够大能够收集粉末即可。
工作时,机械泵16和扩散泵17用于对壳体20和坩埚2抽真空;坩埚2底部装有带小孔的喷嘴14,利用加热带6对坩埚2中需制备的原材料进行加热,并通过坩埚进气管4和腔体进气管15向坩埚2和壳体20中通入高纯度惰性保护气体,如氦气、氩气,使坩埚2和壳体20之间保持一定的正压力差,然后给压电陶瓷1输入一定波型的脉冲信号,使得振荡发生器3产生一定频率的振荡,最后,设置电极板7的电压,形成一个大小合适的电场。由于坩埚2内外存在差压,金属会从喷嘴14流出形成柱状金属流,此时在上方一定频率的振荡下,柱状金属流就会破碎成一系列小的金属液滴13,金属液滴13下降过程中在电场作用下,会由于电荷的表面效应,使得各个金属液滴13之间互相排斥避免了金属液滴13的再聚合。液滴13自由降落在高速旋转的转盘8上,熔融状态下的金属液滴13,先滴落在转盘8中心的同心圆凹槽25中,由于此时离心力较小,金属液滴13不会被马上离散出去,而是会呈圆形铺展在转盘8上,当铺展到一定范围离心力足够大时,铺展的金属会在离心力的作用下,在转盘8上呈纤维线状离散至转盘8边缘,最后分裂成微小的液滴飞出,微液滴在下落过程中无容器凝固,形成金属粉末9,降落至收集盘10上。
本发明还公开了一种上述的装置采用逐液滴离心雾化法高效制备超细球形金属粉末的方法,包括如下步骤,
①装料:将原材料装入设置在壳体20内上部的坩埚2内,手动调整高度方向上,感应加热线圈12位置至转盘8为预设距离,后密封壳体20;所述金属原材料放入量为所述坩埚2容积的1/4-3/4。
②抽真空:利用机械泵16和扩散泵17对所述坩埚2和所述壳体20抽真空,并充入高纯度惰性保护气体,使壳体20内压力达到预设值;
③加热坩埚:根据待加热原材料的熔点设定使用加热带6的加热参数,并通过所述坩埚2内设置的热电偶19实时监测所述坩埚2内的温度,待金属材料完全熔化后保温;
④感应加热:利用电机11使所述转盘8在预设转速下高速旋转,接着利用感应加热线圈12将高速旋转的转盘8上表面加热到金属材料的熔点温度以上;所述感应加热线圈12的感应加热电压范围为0-50V,感应加热时间为5-15min。
⑤粉末制备:通过设置在所述壳体20上并伸入于所述坩埚2内的坩埚进气管4将高纯度惰性保护气体通入,使所述坩埚2内外形成正压力差;所述高纯度惰性保护气体为氩气或氦气,将该气体充入壳体20内,使壳体内压力达到0.1MPa,金属材料完全熔化后保温时间为15-20分钟。然后给压电陶瓷1输入一定波型的脉冲信号,使得振荡发生器3产生一定频率的振荡;最后,设置电极板7的电压,形成预设强度的电场;
由于坩埚2内外存在差压,金属会从喷嘴14流出形成柱状金属流,此时在上方一定频率的振荡下,柱状金属流就会破碎成一系列小的金属液滴13,金属液滴13下降过程中在电场作用下,会由于电荷的表面效应,使得各个金属液滴13之间互相排斥避免了金属液滴13的再聚合;
金属液滴13自由降落在高速旋转的转盘8上,先滴落在转盘8中心的同心圆凹槽25中并逐渐漫过凹槽,由于此时离心力较小,液滴不会被马上离散出去,而是会呈圆形铺展在转盘8上,当铺展到一定范围离心力足够大时,铺展的金属会在离心力的作用下,在转盘8上呈纤维线状离散至转盘8边缘,最后分裂成微小的液滴飞出,微液滴在下落过程中无容器凝固,形成金属粉末9,降落至收集盘10上;
⑥粒子收集:用设置于所述壳体底部的收集盘10收集金属粉末9。
实施例1
批量制备Sn63Pb37合金球形粉末的具体实施方式:
将Sn63Pb37原材料进行超声震动清洗后放入坩埚2中,Sn63Pb37原材料的放入量达到坩埚2容量的3/4,将加热带6安装到坩埚2上,坩埚2内部插入热电偶;选择实验用的转盘8安装到电机11上,在转盘8外围安装感应加热线圈12,使得感应加热线圈12位置比转盘8盘高1mm,后密封壳体20;
利用机械泵16将壳体20、坩埚2抽到低真空5Pa以下,再利用扩散泵17将壳体20、坩埚2抽到高真空0.001Pa;利用坩埚进气管4、腔体进气管15通入高纯度惰性保护气体氩气,使壳体20、坩埚2内的压力达到0.1MPa;
利用加热带6对坩埚2进行加热,加热温度为300℃,加热速度为15℃/min,保温10min,使坩埚2内的金属材料全部熔化成熔体5;
利用电机11使所述转盘8转速为24000r/min,接着设置感应加热线圈12的感应 加热电压为21V,感应加热电流为8A,感应加热时间为10min,将高速旋转的转盘8表面加热到金属材料的熔点温度183℃以上;
设置电极板的电压为300V,然后通过设置在所述坩埚2内的坩埚进气管4将高纯度惰性保护气体氩气通入,使坩埚2与所述壳体20内产生50kPa的正差压;给压电陶瓷1输入梯形波的脉冲信号,并设置频率为1MHZ,使压电陶瓷1产生上下震荡,由与所述压电陶瓷1相连的振荡发生器3传递给喷嘴14附近区域的熔体5,使得熔体5从带小孔的喷嘴14喷出形成均匀金属液滴13;均匀金属液滴13自由降落在高速旋转的转盘8上,均匀金属液滴13会先落在转盘8中心的同心圆凹槽25内,金属熔体会逐渐漫过凹槽,在离心力的作用下,会在转盘8上呈纤维状铺展,分裂成微小的液滴飞出,微液滴在下落过程中无容器凝固,形成金属粉末9,降落至收集盘10上(收集盘可以为环形盘或圆盘);
待制备结束后,停止向压电陶瓷1施加梯形波脉冲信号,即停止液滴喷射;停止高速电机11,从而转盘8停止旋转;关闭加热带6及感应加热线圈12,待温度降至室温,取出收集盘10中的金属粉末9;最后关闭腔体进气管15和坩埚进气管4,用机械泵16将坩埚2和壳体20抽到低真空5Pa以下,以便使设备在停用时处于真空状态。
如图3所示,(b)中为现有技术雾化后得到的雾化盘,由于雾化盘材料与制备的金属粉末材料润湿性太小,且在雾化过程中转盘温度太低,导致液体呈膜状分裂,且雾化表面会出现较厚的已凝固液膜,该液膜表面十分粗糙,不利于后续金属液滴的进一步雾化,会严重影响雾化效果和雾化效率。(a)为通过本发明方法得到的雾化表面,可以看出雾化模式转变为明显的纤维状分裂模式,线状的分裂模式大大提高了金属粉末的微细化和生产效率。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置,包括壳体(20)、设置于所述壳体(20)内的坩埚(2)和粉末收集区,其中,所述粉末收集区置于所述壳体(20)的底部,所述坩埚(2)置于所述粉末收集区的上部;
    所述坩埚(2)内部设有热电偶(19),所述坩埚(2)外部设有加热带(6),所述坩埚(2)底部设有带多个小孔的喷嘴(14),所述坩埚(2)内设有与设置在所述壳体顶部的压电陶瓷(1)相连的振荡发生器(3);所述坩埚正下方设有电极板(7);
    所述壳体(20)上设有伸入于所述坩埚(2)内的坩埚进气口(4),所述壳体(20)上还设有扩散泵(17)和机械泵(16),所述壳体(20)上还设有腔体进气口(15)和腔体排气阀(18);
    所述粉末收集区包括设置在所述壳体(20)底部的收集盘(10)、设置于所述收集盘(10)上方的与电机(11)相连的用于雾化金属液滴的转盘(8);
    其特征在于:
    所述转盘(8)包括基体,雾化平面(23)和通气孔(24);
    所述基体是由上部的承接部(21)和下部的支撑部(22)构成的纵截面呈类“T型”的主体结构,所述承接部(21)上表面设有与其圆心同轴的具有一定半径的圆形凹槽;其中,所述基体采用导热性小于20W/m/k的材料制成;
    所述雾化平面(23)为圆盘结构,所述圆盘结构与所述圆形凹槽相匹配且与所述圆形凹槽过盈配合,所述雾化平面(23)采用与雾化的金属液滴(13)润湿角小于90°的材料制成;所述雾化平面(23)上还设有一个与所述带多个小孔的喷嘴(14)相匹配的同心圆凹槽(25);
    所述通气孔(24)贯通设置在所述承接部(21)及所述支撑部(22)内,所述通气孔(24)的上端面与所述雾化平面(23)的下端面接触,所述通气孔(24)的下端与外界连通;
    所述转盘(8)的外围还设有感应加热线圈(12)。
  2. 根据权利要求1所述的逐液滴离心雾化法高效制备超细球形金属粉末的装置,其特征在于,所述坩埚(2)的材料与置于所述坩埚内的熔体(5)的润湿角大于90°。
  3. 根据权利要求1所述的逐液滴离心雾化法高效制备超细球形金属粉末的装置,其 特征在于,所述喷嘴(14)的小孔的孔径范围在0.02mm-2.0mm之间。
  4. 根据权利要求1所述的逐液滴离心雾化法高效制备超细球形金属粉末的装置,其特征在于,所述电极板(7)的电压范围在100V-400V之间;所述感应加热线圈(12)与设置在所述壳体(20)外的变频器和稳压电源相连,所述感应加热线圈(12)的加热厚度范围在5-20mm之间,所述稳压电源的电压控制范围在0-50V之间。
  5. 根据权利要求1所述的逐液滴离心雾化法高效制备超细球形金属粉末的装置,其特征在于,所述转盘(8)的转速为10000rpm-50000rpm。
  6. 根据权利要求1所述的逐液滴离心雾化法高效制备超细球形金属粉末的装置,其特征在于,在所述装置自上而下的方向上,所述压电陶瓷(1)、所述振荡发生器(3)、所述坩埚(2)、所述喷嘴(14)、所述电极板(7)、所述转盘(8)、所述同心圆形凹槽(25)以及所述感应加热线圈(12)位于同一轴线上。
  7. 一种权利要求1-6任意一项权利要求所述的装置采用逐液滴离心雾化法高效制备超细球形金属粉末的方法,其特征在于包括如下步骤,
    ①装料:将原材料装入设置在壳体(20)内上部的坩埚(2)内,手动调整高度方向上,感应加热线圈(12)位置至转盘(8)为预设距离,后密封壳体(20);
    ②抽真空:利用机械泵(16)和扩散泵(17)对所述坩埚(2)和所述壳体(20)抽真空,并充入高纯度惰性保护气体,使壳体(20)内压力达到预设值;
    ③加热坩埚:根据待加热原材料的熔点设定使用加热带(6)的加热参数,并通过所述坩埚(2)内设置的热电偶(19)实时监测所述坩埚(2)内的温度,待金属材料完全熔化后保温;
    ④感应加热:利用电机(11)使所述转盘(8)在预设转速下高速旋转,接着利用感应加热线圈(12)将高速旋转的转盘(8)上表面加热到金属材料的熔点温度以上;
    ⑤粉末制备:通过设置在所述壳体(20)上并伸入于所述坩埚(2)内的坩埚进气管(4)将高纯度惰性保护气体通入,使所述坩埚(2)内外形成正压力差;然后给压电陶瓷(1)输入一定波型的脉冲信号,使得振荡发生器(3)产生一定频率的振荡;最后,设置电极板(7)的电压,形成预设强度的电场;
    由于坩埚(2)内外存在差压,熔融的金属会从喷嘴(14)流出形成柱状金属流,此时在上方一定频率的振荡下,柱状金属流就会破碎成一系列小的金属液滴(13),金属液滴(13)下降过程中在电场作用下,会由于电荷的表面效应,使得各个金属液滴(13)之间互相排斥避免了金属液滴(13)的再聚合;
    金属液滴(13)自由降落在高速旋转的转盘(8)上,先滴落在转盘(8)中心的同心圆凹槽(25)中并逐渐漫过凹槽,由于此时离心力较小,液滴不会被马上离散出去,而是会呈圆形铺展在转盘(8)上,当铺展到一定范围离心力足够大时,铺展的金属会在离心力的作用下,在转盘(8)上呈纤维线状离散至转盘(8)边缘,最后分裂成微小的液滴飞出,微液滴在下落过程中无容器凝固,形成金属粉末(9),降落至收集盘(10)上;
    ⑥粒子收集:用设置于所述壳体底部的收集盘(10)收集金属粉末(9)。
  8. 根据权利要求7所述的逐液滴离心雾化法高效制备超细球形金属粉末的方法,其特征在于,所述金属原材料放入量为所述坩埚(2)容积的1/4-3/4。
  9. 根据权利要求7所述的逐液滴离心雾化法高效制备超细球形金属粉末的方法,其特征在于,所述高纯度惰性保护气体为氩气或氦气,将该气体充入壳体(20)内,使壳体内压力达到0.1MPa,金属材料完全熔化后保温时间为15-20分钟。
  10. 根据权利要求7所述的逐液滴离心雾化法高效制备超细球形金属粉末的方法,其特征在于,所述感应加热线圈(12)的感应加热电压范围为0-50V,感应加热时间为5-15min。
PCT/CN2019/107704 2018-09-25 2019-09-25 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法 WO2020063626A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/280,025 US11331724B2 (en) 2018-09-25 2019-09-25 Apparatus and method for efficiently preparing ultrafine spherical metal powder by one-by-one droplets centrifugal atomization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811116579.2 2018-09-25
CN201811116579.2A CN109128206B (zh) 2018-09-25 2018-09-25 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法

Publications (1)

Publication Number Publication Date
WO2020063626A1 true WO2020063626A1 (zh) 2020-04-02

Family

ID=64823744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107704 WO2020063626A1 (zh) 2018-09-25 2019-09-25 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法

Country Status (3)

Country Link
US (1) US11331724B2 (zh)
CN (1) CN109128206B (zh)
WO (1) WO2020063626A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114192790A (zh) * 2021-11-29 2022-03-18 成都先进金属材料产业技术研究院股份有限公司 球形钛及钛合金粉末制备装置和方法
CN115464141A (zh) * 2022-08-17 2022-12-13 西安建筑科技大学 一种3c产品用轻质高强钢球形粉末的制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109014227A (zh) * 2018-09-25 2018-12-18 大连理工大学 一种逐液滴离心雾化法制备超细球形金属粉末的装置及方法
CN109175392A (zh) * 2018-09-25 2019-01-11 大连理工大学 一种逐液滴离心雾化法专用转盘结构
CN109128206B (zh) 2018-09-25 2020-11-24 中国人民解放军陆军装甲兵学院 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法
CN111397235B (zh) * 2020-03-23 2021-01-19 大连理工大学 一种频率可调型音波射流振荡器
CN111299601A (zh) * 2020-04-29 2020-06-19 辽宁冠达新材料科技有限公司 一种提高金属粉球形率的装置及方法
CN113059169A (zh) * 2021-03-18 2021-07-02 中国科学院力学研究所 一种采用转盘离心雾化法生产高温金属粉末的装置
CN113579241B (zh) * 2021-08-03 2023-04-28 昆山轩塔电子科技有限公司 金属液化雾化装置
CN114264510B (zh) * 2022-03-02 2022-06-03 季华实验室 一种用于粉末制备过程中的取样装置及方法
CN115070036B (zh) * 2022-06-30 2023-08-18 河南科技大学 用于离心喷射成形的水冷式降温离心盘

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145703A (ja) * 1986-12-09 1988-06-17 Nkk Corp 粉末製造装置
US5188168A (en) * 1991-08-02 1993-02-23 Marvalaud, Inc. Chill block melt spinning apparatus
CN104525961A (zh) * 2015-01-28 2015-04-22 大连理工大学 一种高效制备超细高熔点球形金属粉末的方法与装置
CN104550988A (zh) * 2015-01-28 2015-04-29 大连理工大学 一种基于均匀液滴喷射法的制备超细球形金属粉末的装置及方法
CN104588674A (zh) * 2015-01-28 2015-05-06 大连理工大学 一种高效制备超细球形金属粉末的方法及装置
CN107570721A (zh) * 2017-07-12 2018-01-12 张家港创博金属科技有限公司 一种高效制备超细球形金属粒子的方法及装置
CN109128206A (zh) * 2018-09-25 2019-01-04 中国人民解放军陆军装甲兵学院 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897539A (en) * 1957-03-25 1959-08-04 Titanium Metals Corp Disintegrating refractory metals
JPS5940054B2 (ja) * 1978-08-29 1984-09-27 株式会社佐藤技術研究所 融体から特定サイズの球形粒子を製造する方法
US4648820A (en) * 1985-11-14 1987-03-10 Dresser Industries, Inc. Apparatus for producing rapidly quenched metal particles
US4900355A (en) * 1987-11-30 1990-02-13 Miyagi National College Of Technology Method for making high-purity metal powder by jet-cooling
FR2679473B1 (fr) * 1991-07-25 1994-01-21 Aubert Duval Procede et dispositif de production de poudres et notamment de poudres metalliques par atomisation.
CN100509217C (zh) * 2006-09-20 2009-07-08 中国科学院金属研究所 用于制备偏晶合金壳型复合组织粉末的设备及其使用方法
JP2009062573A (ja) * 2007-09-05 2009-03-26 National Institute For Materials Science 遠心噴霧法に用いる回転ディスクとこれを用いた遠心噴霧法
WO2011024757A1 (ja) * 2009-08-25 2011-03-03 株式会社東芝 希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いた冷凍機、測定装置並びにその製造方法
EP3099440A2 (en) * 2014-01-27 2016-12-07 Rovalma, S.A. Centrifugal atomization of iron-based alloys
CN104550990A (zh) * 2015-01-28 2015-04-29 大连理工大学 一种制备3d打印用超细球形高熔点金属粉末的方法与装置
CN205254120U (zh) * 2015-12-11 2016-05-25 东北大学 一种制备金属粉末用离心雾化装置
CN106392088B (zh) * 2016-08-31 2019-01-18 北京康普锡威科技有限公司 一种金属雾化和电场选分装置及方法
CN107350477A (zh) * 2017-08-30 2017-11-17 湖南顶立科技有限公司 一种粉末制备装置
WO2020021122A1 (en) * 2018-07-27 2020-01-30 Innomaq 21, S.L. Method for the obtaining cost effective powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145703A (ja) * 1986-12-09 1988-06-17 Nkk Corp 粉末製造装置
US5188168A (en) * 1991-08-02 1993-02-23 Marvalaud, Inc. Chill block melt spinning apparatus
CN104525961A (zh) * 2015-01-28 2015-04-22 大连理工大学 一种高效制备超细高熔点球形金属粉末的方法与装置
CN104550988A (zh) * 2015-01-28 2015-04-29 大连理工大学 一种基于均匀液滴喷射法的制备超细球形金属粉末的装置及方法
CN104588674A (zh) * 2015-01-28 2015-05-06 大连理工大学 一种高效制备超细球形金属粉末的方法及装置
CN107570721A (zh) * 2017-07-12 2018-01-12 张家港创博金属科技有限公司 一种高效制备超细球形金属粒子的方法及装置
CN109128206A (zh) * 2018-09-25 2019-01-04 中国人民解放军陆军装甲兵学院 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114192790A (zh) * 2021-11-29 2022-03-18 成都先进金属材料产业技术研究院股份有限公司 球形钛及钛合金粉末制备装置和方法
CN114192790B (zh) * 2021-11-29 2024-01-23 成都先进金属材料产业技术研究院股份有限公司 球形钛及钛合金粉末制备装置和方法
CN115464141A (zh) * 2022-08-17 2022-12-13 西安建筑科技大学 一种3c产品用轻质高强钢球形粉末的制备方法
CN115464141B (zh) * 2022-08-17 2023-08-25 西安建筑科技大学 一种3c产品用轻质高强钢球形粉末的制备方法

Also Published As

Publication number Publication date
US20210308763A1 (en) 2021-10-07
US11331724B2 (en) 2022-05-17
CN109128206A (zh) 2019-01-04
CN109128206B (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2020063626A1 (zh) 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法
WO2020063625A1 (zh) 一种逐液滴离心雾化法制备超细球形金属粉末的装置及方法
WO2020063623A1 (zh) 基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法
WO2020063620A1 (zh) 一种逐液滴离心雾化法高效制备低熔点球形金属粉末的装置及方法
WO2020063619A1 (zh) 一种逐液滴雾化法制备超细低熔点球形金属粉末的装置及方法
WO2020063622A1 (zh) 一种制备3d打印用球形金属粉末的装置及方法
CN205414417U (zh) 一种等离子雾化制备增材制造用高性能粉末的装置
CN104588673A (zh) 一种高效制备金属球形超细粉体的装置及方法
CN104550988A (zh) 一种基于均匀液滴喷射法的制备超细球形金属粉末的装置及方法
WO2020063624A1 (zh) 一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法
CN109622982B (zh) 金属粉末的制备装置和制备方法
CN110076347B (zh) 基于等离子熔炼和圆盘旋转雾化的组合式粉体制备方法与装置
CN105252009A (zh) 一种微细球形钛粉末的制造方法
CN114192790B (zh) 球形钛及钛合金粉末制备装置和方法
CN105689718A (zh) 一种复相增强金属基复合材料的成形系统和方法
WO2020063627A1 (zh) 一种逐液滴离心雾化法专用转盘结构
CN109732095A (zh) 一种制备稀有金属球形粉末的装置
WO2023082494A1 (zh) 一种导电材料超细粉体制备装置
CN113059170A (zh) 一种在金属离心雾化中制备小粒径粉末的转盘装置
CN207479613U (zh) 一种制备低氧球形金属粉末的设备
CN219402325U (zh) 一种喷射增材制造用雾化器装置
CN109807339A (zh) 一种制备低氧球形金属粉末的设备及方法
CN209407418U (zh) 一种耦合超声旋转电极制粉装置
CN216297959U (zh) 一种分体式拉瓦尔型气体雾化喷嘴
WO2023015613A1 (zh) 一种等离子体雾化金属粉末生产设备及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866982

Country of ref document: EP

Kind code of ref document: A1