WO2023015613A1 - 一种等离子体雾化金属粉末生产设备及其生产方法 - Google Patents

一种等离子体雾化金属粉末生产设备及其生产方法 Download PDF

Info

Publication number
WO2023015613A1
WO2023015613A1 PCT/CN2021/114497 CN2021114497W WO2023015613A1 WO 2023015613 A1 WO2023015613 A1 WO 2023015613A1 CN 2021114497 W CN2021114497 W CN 2021114497W WO 2023015613 A1 WO2023015613 A1 WO 2023015613A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
raw material
cooling
plasma
plasma jet
Prior art date
Application number
PCT/CN2021/114497
Other languages
English (en)
French (fr)
Inventor
严圣军
李要建
裴思鲁
孙钟华
钟雷
陈乐文
李申杰
吕浩
顾本华
Original Assignee
江苏天楹等离子体科技有限公司
中国天楹股份有限公司
江苏天楹环保能源成套设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏天楹等离子体科技有限公司, 中国天楹股份有限公司, 江苏天楹环保能源成套设备有限公司 filed Critical 江苏天楹等离子体科技有限公司
Publication of WO2023015613A1 publication Critical patent/WO2023015613A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to a metal powder production equipment and a production method thereof, in particular to a plasma atomized metal powder production equipment and a production method thereof, belonging to the field of additive manufacturing.
  • Metal powders are widely used in advanced manufacturing industries such as additive manufacturing, and their sphericity, particle size distribution and other characteristics have a significant impact on the performance of manufactured products.
  • the particle size of metal powder is required to be below 106 ⁇ m, and the high-precision manufacturing industry even requires a particle size of 45 ⁇ m.
  • the powder is required to have characteristics such as high fluidity and low impurity content.
  • Plasma atomization uses the heat energy of high-temperature and high-speed plasma jets to melt metal materials, and then uses the mechanical energy of the jets to break and atomize the molten metals, and finally forms particle powders with target particle sizes.
  • the produced powders have a concentrated particle size distribution and flow Good performance, low component pollution and other advantages.
  • the plasma atomization method has low energy efficiency.
  • patent CN108025364A uses induction heating to accelerate the process to produce TC4 titanium alloy powder, and the unit energy consumption is 31.2kWh/kg;
  • patent TW 202012074A points out that multi-channel wire materials are fed, and direct current is used to heat the raw materials to reduce unit energy consumption to 4kWh/kg, but D 50 rises from 15 ⁇ m to close to 45 ⁇ m, reducing product usability.
  • the plasma jet generator used in plasma atomization is a turbulent plasma torch. The powder at the bottom of the chemical reactor is hoisted and collides with unformed metal droplets, forming satellite balls.
  • the technical problem to be solved by the present invention is to provide a plasma atomized metal powder production equipment and its production method, improve the energy utilization rate of the plasma atomized powder and solve the problem of satellite balls.
  • a plasma atomized metal powder production equipment characterized in that: it includes a cooling collection tower and a high-temperature laminar plasma jet generator, the cooling collection tower is provided with a raw material inlet, and the high-temperature laminar plasma jet generator is set In the cooling collection tower, the raw material inlet and the high-temperature laminar flow plasma jet generator are oppositely arranged in the cooling collection tower along the same straight line, and the lower end of the cooling collection tower is provided with a powder outlet.
  • the cooling collection tower includes a wedge-shaped shell, several intermediate cylindrical sections, an upper conical section and a cover plate, several intermediate cylindrical sections are connected end-to-end along the vertical direction, and the upper end of the wedge-shaped shell is connected to the lower end of several intermediate cylindrical sections , the lower end of the upper conical section is connected to the upper ends of several intermediate cylindrical sections, and the cover plate is fixed on the upper end of the upper conical section.
  • the raw material inlet is set at the center of the cover plate, the raw material is a rod or wire and the raw material is fed downwards in the vertical direction driven by the feeding motor, and the high-temperature laminar plasma jet generator is fixed on the The jet of the high-temperature laminar plasma jet generator is set concentrically with the raw material on the inclined surface of the wedge-shaped housing opposite to the conveying direction of the raw material.
  • a powder collector is also included, the powder outlet is arranged at the lowermost end of the wedge-shaped housing, and the powder collector is fixed on the powder outlet.
  • the high-temperature laminar flow plasma jet generator includes an anode, a cathode, a cathode cooling base, an intermediate pole, an intake ring and an insulating ring, the intake ring is fixed at one end of the intermediate pole, and the other end of the intermediate pole is fixed to one end of the insulating ring The other end of the insulating ring is connected to one end of the anode, the cathode cooling base passes through the center of the intake ring and is located in the inner hole of the intermediate pole, and the cathode is fixed on the cathode cooling base and one end of the intermediate pole.
  • the inner hole of the intermediate pole includes a first cylindrical hole, a first tapered hole, a second cylindrical hole and a second tapered hole, the diameter of the first cylindrical hole is larger than the diameter of the second cylindrical hole, and one end of the first cylindrical hole is connected to One end of the first tapered hole is connected, the other end of the first tapered hole is connected with one end of the second cylindrical hole, the other end of the second cylindrical hole is connected with one end of the second tapered hole, and the diameter of the other end of the second tapered hole is between the diameter of the first cylindrical hole and the diameter of the second cylindrical hole. between the diameters of the second cylindrical bore.
  • one end of the cathode cooling base is a tapered end
  • the top of the tapered end has a groove matching the cathode
  • the cathode is fixed in the groove of the tapered end
  • the tapered end The inclined plane is arranged inside the first tapered hole parallel to the first tapered hole.
  • the diameter of the inner hole of the anode and the inner hole of the insulating ring are both equal to the diameter of the other end of the second tapered hole.
  • the inner hole at the other end of the anode is provided with spiral grooves.
  • a production method of plasma atomized metal powder production equipment characterized in that it comprises the following steps:
  • the raw material moves vertically downward from the top of the cooling collection tower driven by the feeding motor, and meets the vertically upward laminar plasma jet;
  • the raw material is continuously heated and melted in the laminar plasma jet, and is broken and atomized by the high-speed laminar plasma jet;
  • the metal droplets formed by atomization are thrown out of the jet range under the action of the circumferential velocity component of the laminar plasma jet, and enter the cooling area of the cooling collection tower.
  • the metal droplets are spheroidized and solidified in the cooling area, and finally collected in the powder collector.
  • the present invention has the following advantages and effects:
  • the present invention uses a high-temperature laminar plasma jet generator to produce a laminar plasma jet that moves relative to the original material.
  • the rotary laminar jet has a long jet distance and wraps the original material in the inner layer of the jet, thus prolonging the The contact distance with the raw material and the heating time improve the energy utilization rate of the jet without adding an additional auxiliary heat source;
  • the present invention heats and atomizes the raw material through the rotating laminar plasma jet.
  • the flow field of the swirling laminar plasma jet is more stable, and the atomized metal When the droplets are thrown out, the metal balls outside the jet will not be absorbed into the jet, thus greatly reducing the probability of satellite balls, and the produced atomized particles have a concentrated particle size and good sphericity;
  • the raw material and the plasma jet of the present invention are relatively advanced, and the raw material can be atomized at a suitable jet velocity by controlling the parameters of the laminar plasma jet generator and the feeding speed of the raw material, which is convenient for powder Particle size is controlled.
  • Fig. 1 is a schematic diagram of a plasma atomized metal powder production equipment of the present invention.
  • Fig. 2 is a schematic diagram of jet flow and raw materials of a plasma atomized metal powder production equipment of the present invention.
  • Fig. 3 is a schematic diagram of the high temperature laminar plasma jet generator of the present invention.
  • a kind of plasma atomization metal powder production equipment of the present invention comprises cooling collection tower 1 and high-temperature laminar flow plasma jet generator 2, has raw material inlet 3 on the cooling collection tower 1,
  • the high-temperature laminar flow plasma jet generator 2 is arranged in the cooling collection tower 1, the raw material inlet 3 and the high-temperature laminar flow plasma jet generator 2 are relatively arranged in the cooling collection tower 1 along the same straight line, and the lower end of the cooling collection tower 1
  • a powder outlet 4 is provided.
  • the raw material is fed from the raw material inlet 3 to the cooling collection tower 1, and the high-temperature laminar plasma jet generator 2 ejects laminar plasma that is just opposite to the raw material feeding direction Jet flow, the raw material is melted and dispersed at high temperature, and finally atomized into metal particles.
  • the cooling collection tower 1 includes a wedge-shaped shell 5, several middle cylindrical sections 6, an upper conical section 7 and a cover plate 8, and several middle cylindrical sections 6 are connected end to end along the vertical direction, and the upper end of the wedge-shaped shell 5 is connected with several middle cylindrical sections 6
  • the lower end of the upper conical section 7 is connected to the upper end of several intermediate cylindrical sections 6, and the cover plate 8 is fixed on the upper end of the upper conical section 7.
  • the wedge-shaped housing 5, several intermediate cylindrical sections 6, the upper end conical section 7 and the upper end and the lower end of the cover plate 8 are provided with flange structures, and the wedge-shaped housing 5, several intermediate cylindrical sections 6, the upper end conical section 7 and the cover plate 8 are locked and fixed by flanges and bolts, and sealing rings are arranged between the flanges to ensure the sealing performance of the entire cooling collection tower 1.
  • Raw material inlet 3 is arranged in the center of cover plate 8, and raw material 9 is a rod or wire and raw material 9 is driven by a feed motor to feed downwards in a vertical direction, and high-temperature laminar flow plasma jet generator 2 is fixed on On the inclined surface of the wedge-shaped casing 5 opposite to the conveying direction of the raw material, the jet of the high-temperature laminar plasma jet generator 2 is arranged concentrically with the raw material. In this way, when atomizing, the high-temperature laminar plasma jet wraps the outside of the raw material and forms a rotating laminar jet, which can well avoid the outside while throwing the molten raw material outward. The particles are adsorbed to the interior of the jet, thus effectively reducing the probability of satellite spheroids of metal particles.
  • the plasma atomized metal powder production equipment of the present invention also includes a powder collector 10 , the powder outlet 4 is arranged at the lowermost end of the wedge-shaped housing 5 , and the powder collector 10 is fixed on the powder outlet 4 . After the atomized metal particles are cooled and solidified in the cooling area of the cooling collection tower 1, they fall down and roll down along the slope of the wedge-shaped housing 5 to the powder outlet 4, and are finally collected by the powder collector 10.
  • the powder collector 10 is detachably fixed on the powder outlet 4, and when the powder collector 10 is full of powder, the powder collector 10 is disassembled and replaced with a new container to continue collecting.
  • the high-temperature laminar flow plasma jet generator 2 includes an anode 11, a cathode 12, a cathode cooling base 13, an intermediate pole 14, an inlet ring 15 and an insulating ring 16, and the inlet ring 15 is fixed on one end of the intermediate pole 14 , the other end of the intermediate pole 14 is fixedly connected to one end of the insulating ring 16, the other end of the insulating ring 16 is connected to one end of the anode 11, the cathode cooling base 13 passes through the center of the inlet ring 15 and is located in the inner hole of the intermediate pole 14, and the cathode 12 is fixed on The cathode cooling base position 13 and one end of the intermediate pole 14 .
  • the gas enters the discharge chamber of the plasma torch from the gas inlet ring 15, and establishes an arc between the cathode 12 and the intermediate electrode 14, and as the gas flow increases, the arc is transferred between the cathode 12 and the anode 11.
  • the inner hole of the intermediate pole 14 comprises a first cylindrical hole 17, a first tapered hole 18, a second cylindrical hole 19 and a second tapered hole 20, the diameter of the first cylindrical hole 17 is greater than the diameter of the second cylindrical hole 19, and the first cylindrical hole 17
  • One end of the first tapered hole 18 is connected to one end, the other end of the first tapered hole 18 is connected to one end of the second cylindrical hole 19, the other end of the second cylindrical hole 19 is connected to one end of the second tapered hole 20, and the other end of the second tapered hole 20
  • the diameter is between the diameter of the first cylindrical hole 17 and the diameter of the second cylindrical hole 19 .
  • One end of the cathode cooling base 13 is a tapered end, and the top of the tapered end has a groove matching the cathode 12, the cathode 12 is fixed in the groove of the tapered end, and the slope of the tapered end is parallel
  • the first tapered hole is disposed inside the first tapered hole 18 .
  • Both the diameter of the inner hole of the anode 11 and the diameter of the inner hole of the insulating ring 16 are equal to the diameter of the other end of the second tapered hole 20 .
  • the inner hole at the other end of the anode 11 is provided with a spiral groove 21, and the jet is forced to rotate when flowing through the spiral groove 21, and the stability of the jet is enhanced.
  • a water cooling device is installed in the cathode cooling base 13 to cool the electrodes.
  • a production method of plasma atomized metal powder production equipment comprising the following steps:
  • the raw material moves vertically downward from the top of the cooling collection tower driven by the feeding motor, and meets the vertically upward laminar plasma jet;
  • the feeding motor can be a servo motor, which can be adjusted according to the plasma jet temperature, velocity distribution and The material is heated and broken to adjust the feed rate, so that the material breaks just at the position where the jet can provide enough kinetic energy.
  • the raw material is continuously heated and melted in the laminar plasma jet, and is broken and atomized by the high-speed laminar plasma jet; the laminar plasma jet can reduce the axial temperature attenuation (50K) by adjusting parameters such as medium flow and current /mm) and jet velocity attenuation (5m/s/mm).
  • the metal droplets formed by atomization are thrown out of the jet range under the action of the circumferential velocity component of the laminar plasma jet, and enter the cooling area of the cooling collection tower.
  • the metal droplets are spheroidized and solidified in the cooling area, and finally collected in the powder collector.
  • the metal wire or rod is facing the laminar plasma jet with swirling flow.
  • the metal wire or rod is continuously heated and melted by the jet during the traveling process, and finally broken into metal droplets by the jet. .
  • the temperature and velocity of the laminar plasma jet have a maximum value at the outlet of the high-temperature laminar plasma jet generator 2, and then decay uniformly along the axial direction.
  • the position where the atomization occurs can be adjusted (the jet speed is preferably 1100m/s), so as to achieve the purpose of regulating the particle size of the metal droplet.
  • the metal droplets leave the jet area and enter the cooling area under the action of the circumferential flow of the jet. Due to the collimation of the laminar plasma jet and less entrainment of the surrounding air, the interference to the surrounding flow field is reduced, and the environment for metal powder spheroidization and cooling is improved.
  • the invention uses a high-temperature laminar plasma jet generator to produce a laminar plasma jet that moves relative to the raw material, and the rotary laminar jet has a long jet distance and wraps the raw material in the inner layer of the jet, thereby prolonging the distance with the original material.
  • the contact distance and heating time of the material improve the energy utilization rate of the jet without adding an additional auxiliary heat source; the present invention heats and atomizes the raw material through the rotating laminar plasma jet, compared with the turbulent flow of the prior art
  • the flow field of the jet, swirling laminar plasma jet is more stable, and the atomized metal droplets are thrown out without absorbing the metal balls outside the jet into the jet, thus greatly reducing the probability of satellite balls , the produced atomized particles have a concentrated particle size and good sphericity;
  • the raw material and the plasma jet of the present invention are relatively advanced, and the raw material can be precisely controlled by controlling the parameters of the laminar plasma jet generator and the feeding speed of the raw material Atomization at a suitable jet velocity facilitates the control of powder particle size.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种层流等离子体雾化金属粉末生产设备和生产方法,生产设备包含冷却收集塔(1)和高温层流等离子体射流发生器(2),冷却收集塔(1)上开有原材进料口(3),高温层流等离子体射流发生器(2)设置在冷却收集塔(1)内,原材进料口(3)和高温层流等离子射流发生器(2)沿着同一直线相对设置在冷却收集塔(1)内,冷却收集塔(1)下端设置有粉末出口(4)。生产方法采用高温层流等离子体射流发生器(1)生产层流式的等离子体射流与原材相对运动,旋转式的层流射流的射流距离远并且将原材包裹在射流内层,从而延长了与原材的接触距离和加热时间,提高了射流的能量利用率,无需增加额外的辅助热源

Description

一种等离子体雾化金属粉末生产设备及其生产方法 技术领域
本发明涉及一种金属粉末生产设备及其生产方法,特别是一种等离子体雾化金属粉末生产设备及其生产方法,属于增材制造领域。
背景技术
金属粉末被广泛用于增材制造等先进制造行业,其球形度、粒度分布等特征对制造产品性能有显著影响。通常要求金属粉末粒度在106μm以下,高精度的制造行业甚至要求45μm的粒度,同时要求粉末具有高流动性、低杂质含量等特性。
等离子体雾化利用高温高速等离子体射流的热能将金属材料熔融,随后利用射流的机械能将熔融金属破碎、雾化,最终形成具有目标粒径的颗粒粉末,所产粉末具有粒径分布集中、流动性好、成分污染低等优点。但等离子体雾化法能效较低。例如专利CN108025364A使用感应加热对工艺进行加速生产TC4型钛合金粉末,单位能耗31.2kWh/kg;专利TW 202012074 A指出多路丝材进料,并使用直流电对原料进行加热,使单位能耗降低至4kWh/kg,但D 50由15μm上升到接近45μm,降低了产品可用性。其次,目前等离子体雾化所用等离子体射流发生器为湍流等离子体炬,其产生的等离子体射流受约束小、湍流度高、对雾化反应器内的流场干扰大,容易使沉积于雾化反应器底部的粉末卷扬,与未成型的金属液滴碰撞,造成卫星球。
可以知道,等离子体雾化法能效较低的原因在于金属材料熔融需要大量热量,而材料与等离子体射流接触时间极短,等离子体射流的热能未能被充分用于材料加热,反而需要额外的辅助热源。若要延长材料与等离子体射流的接触时间则需降低进料速度,进而牺牲产量。
发明内容
本发明所要解决的技术问题是提供一种等离子体雾化金属粉末生产设备及其生产方法,提高等离子体雾化粉末的能量利用率并解决卫星球问题。
为解决上述技术问题,本发明所采用的技术方案是:
一种等离子体雾化金属粉末生产设备,其特征在于:包含冷却收集塔和高温层流等离子体射流发生器,冷却收集塔上开有原材进料口,高温层流等离子体射流发生器设置在冷却收集塔内,原材进料口和高温层流等离子射流发生器沿着同一直线相对设置在冷却收集塔内,冷却收集塔下端设置有粉末出口。
进一步地,所述冷却收集塔包含楔形壳体、若干中间圆柱段、上端锥形段和盖板,若干 中间圆柱段沿竖直方向首尾连接,楔形壳体的上端与若干中间圆柱段的下端连接,上端锥形段的下端与若干中间圆柱段的上端连接,盖板固定在上端锥形段的上端。
进一步地,所述原材进料口设置在盖板中心,原材为棒材或线材并且原材通过进料电机驱动沿竖直方向向下进料,高温层流等离子体射流发生器固定在沿着原材的输送方向相对的楔形壳体的斜面上,高温层流等离子体射流发生器的射流与原材同心设置。
进一步地,还包含粉末收集器,粉末出口设置在楔形壳体的最下端,粉末收集器固定在粉末出口上。
进一步地,所述高温层流等离子体射流发生器包含阳极、阴极、阴极冷却底座、中间极、进气环和绝缘环,进气环固定在中间极一端,中间极另一端与绝缘环一端固定连接,绝缘环另一端与阳极一端连接,阴极冷却底座穿过进气环中心位置并位于中间极内孔中,阴极固定在阴极冷却底座位与中间极内的一端端部。
进一步地,所述中间极的内孔包含第一圆柱孔、第一锥孔、第二圆柱孔和第二锥孔,第一圆柱孔直径大于第二圆柱孔直径,第一圆柱孔的一端与第一锥孔一端连接,第一锥孔另一端与第二圆柱孔一端连接,第二圆柱孔另一端与第二锥孔一端连接,第二锥孔另一端的直径位于第一圆柱孔直径和第二圆柱孔直径之间。
进一步地,所述阴极冷却底座的一端端部为锥形端头,锥形端头的顶部开有与阴极匹配的凹槽,阴极固定在锥形端头的凹槽内,锥形端头的斜面平行于第一锥孔设置在第一锥孔内侧。
进一步地,所述阳极的内孔直径和绝缘环的内孔的直径均与第二锥孔的另一端端部直径相等。
进一步地,所述阳极的另一端的内孔设置有螺旋形刻槽。
一种等离子体雾化金属粉末生产设备的生产方法,其特征在于包含以下步骤:
原材在进料电机驱动由冷却收集塔顶端竖直向下运动,并与竖直向上喷射的层流等离子体射流交汇;
原材在层流等离子体射流中被持续加热并熔化,并且被高速的层流等离子体射流破碎、雾化;
雾化形成的金属液滴在层流等离子体射流的环向速度分量的作用下被甩出射流范围,并进入冷却收集塔的冷却区域,金属液滴在冷却区域内球化、凝固,最后收集在粉末收集器中。
本发明与现有技术相比,具有以下优点和效果:
1、本发明采用高温层流等离子体射流发生器生产层流式的等离子体射流与原材相对运 动,旋转式的层流射流的射流距离远并且将原材包裹在射流内层,从而延长了与原材的接触距离和加热时间,提高了射流的能量利用率,无需增加额外的辅助热源;
2、本发明通过旋转式的层流等离子体射流对原材进行加热雾化,相比于现有技术的湍流射流,旋流式层流等离子体射流的流场更加稳定,并且将雾化金属液滴甩出的同时不会将射流外的金属球向射流内吸附,从而极大地降低了卫星球产生的概率,生产的雾化颗粒粒径集中、球形度好;
3、本发明原材和等离子体射流相对而进,可以通过控制层流等离子体射流发生器的参数和原材的进料速度,使原材恰好在适宜的射流速度处雾化,方便对粉末粒径进行控制。
附图说明
图1是本发明的一种等离子体雾化金属粉末生产设备的示意图。
图2是本发明的一种等离子体雾化金属粉末生产设备的射流与原材示意图。
图3是本发明的高温层流等离子体射流发生器的示意图。
具体实施方式
为了详细阐述本发明为达到预定技术目的而所采取的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清晰、完整地描述,显然,所描述的实施例仅仅是本发明的部分实施例,而不是全部的实施例,并且,在不付出创造性劳动的前提下,本发明的实施例中的技术手段或技术特征可以替换,下面将参考附图并结合实施例来详细说明本发明。
如图1所示,本发明的一种等离子体雾化金属粉末生产设备,包含冷却收集塔1和高温层流等离子体射流发生器2,冷却收集塔1上开有原材进料口3,高温层流等离子体射流发生器2设置在冷却收集塔1内,原材进料口3和高温层流等离子射流发生器2沿着同一直线相对设置在冷却收集塔1内,冷却收集塔1下端设置有粉末出口4。如图2所示,原材从原材进料口3向冷却收集塔1内进行进料,高温层流等离子体射流发生器2则喷射出与原材进料方向刚好相反的层流等离子体射流,将原材进行高温熔化并打散,最终雾化成金属颗粒。
冷却收集塔1包含楔形壳体5、若干中间圆柱段6、上端锥形段7和盖板8,若干中间圆柱段6沿竖直方向首尾连接,楔形壳体5的上端与若干中间圆柱段6的下端连接,上端锥形段7的下端与若干中间圆柱段6的上端连接,盖板8固定在上端锥形段7的上端。楔形壳体5、若干中间圆柱段6、上端锥形段7和盖板8的上端和下端均设置有法兰结构,楔形壳体5、若干中间圆柱段6、上端锥形段7和盖板8相互之间通过法兰、螺栓锁紧固定,并且法兰之 间设置密封圈保证整个冷却收集塔1的密封性能。
原材进料口3设置在盖板8中心,原材9为棒材或线材并且原材9通过进料电机驱动沿竖直方向向下进料,高温层流等离子体射流发生器2固定在沿着原材的输送方向相对的楔形壳体5的斜面上,高温层流等离子体射流发生器2的射流与原材同心设置。这样在进行雾化时,高温层流等离子体射流包裹在原材的外侧,并形成旋转式的层流射流,在将熔化的原材向外侧甩出的同时,也能够很好地避免将外侧的颗粒吸附到射流内部,从而有效地降低了金属颗粒的卫星球产生的概率。
本发明的等离子体雾化金属粉末生产设备还包含粉末收集器10,粉末出口4设置在楔形壳体5的最下端,粉末收集器10固定在粉末出口4上。雾化的金属颗粒在冷却收集塔1的冷却区域冷却凝固后,向下掉落并沿着楔形壳体5的斜面向下滚落至粉末出口4,最终被粉末收集器10收集,粉末收集器10可拆卸固定在粉末出口4上,当粉末收集器10收集满粉末后,则将粉末收集器10拆卸并更换新的容器进行继续收集。
如图3所示,高温层流等离子体射流发生器2包含阳极11、阴极12、阴极冷却底座13、中间极14、进气环15和绝缘环16,进气环15固定在中间极14一端,中间极14另一端与绝缘环16一端固定连接,绝缘环16另一端与阳极11一端连接,阴极冷却底座13穿过进气环15中心位置并位于中间极14内孔中,阴极12固定在阴极冷却底座位13与中间极14内的一端端部。气体从进气环15进入等离子体炬的放电腔,并在阴极12和中间极14之间建立电弧,随着气流的增加,电弧转移到阴极12和阳极11之间。
中间极14的内孔包含第一圆柱孔17、第一锥孔18、第二圆柱孔19和第二锥孔20,第一圆柱孔17直径大于第二圆柱孔19直径,第一圆柱孔17的一端与第一锥孔18一端连接,第一锥孔18另一端与第二圆柱孔19一端连接,第二圆柱孔19另一端与第二锥孔20一端连接,第二锥孔20另一端的直径位于第一圆柱孔17直径和第二圆柱孔19直径之间。
阴极冷却底座13的一端端部为锥形端头,锥形端头的顶部开有与阴极12匹配的凹槽,阴极12固定在锥形端头的凹槽内,锥形端头的斜面平行于第一锥孔设置在第一锥孔18内侧。阳极11的内孔直径和绝缘环16的内孔的直径均与第二锥孔20的另一端端部直径相等。阳极11的另一端的内孔设置有螺旋形刻槽21,射流流经螺旋形刻槽21时被迫旋转,射流的稳定性得到加强。阴极冷却底座13内设置有水冷装置对电极进行冷却。
一种等离子体雾化金属粉末生产设备的生产方法,包含以下步骤:
原材在进料电机驱动由冷却收集塔顶端竖直向下运动,并与竖直向上喷射的层流等离子体射流交汇;进料电机可以为伺服电机,可根据等离子体射流温度、速度分布和材料受热、 破碎情况调节进料速率,使材料破碎恰好发生在射流能提供足够动能的位置。
原材在层流等离子体射流中被持续加热并熔化,并且被高速的层流等离子体射流破碎、雾化;层流等离子体射流可通过调整介质流量、电流等参数降低轴向温度衰减(50K/mm)和射流速度衰减(5m/s/mm)。
雾化形成的金属液滴在层流等离子体射流的环向速度分量的作用下被甩出射流范围,并进入冷却收集塔的冷却区域,金属液滴在冷却区域内球化、凝固,最后收集在粉末收集器中。
如图2所示,金属丝材或棒材与带旋流的层流等离子体射流对进,金属丝材或棒材在行进过程中被射流持续加热并熔融,最终被射流破碎成金属液滴。层流等离子体射流的温度和速度在高温层流等离子射流发生器2出口具有最大值,而后沿轴向均匀衰减。通过调整层流等离子体射流发生器的参数特性和原材行进速度,能够调整雾化发生的位置(射流速度1100m/s为宜),达到调控金属液滴粒径的目的。金属液滴在射流环向流动的作用下离开射流区进入冷却区。由于层流等离子体射流准直、对周围空气卷吸少,减少对周围流场的干扰,改善金属粉末球化、冷却的环境。
本发明采用高温层流等离子体射流发生器生产层流式的等离子体射流与原材相对运动,旋转式的层流射流的射流距离远并且将原材包裹在射流内层,从而延长了与原材的接触距离和加热时间,提高了射流的能量利用率,无需增加额外的辅助热源;本发明通过旋转式的层流等离子体射流对原材进行加热雾化,相比于现有技术的湍流射流,旋流式层流等离子体射流的流场更加稳定,并且将雾化金属液滴甩出的同时不会将射流外的金属球向射流内吸附,从而极大地降低了卫星球产生的概率,生产的雾化颗粒粒径集中、球形度好;本发明原材和等离子体射流相对而进,可以通过控制层流等离子体射流发生器的参数和原材的进料速度,使原材恰好在适宜的射流速度处雾化,方便对粉末粒径进行控制。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。

Claims (10)

  1. 一种等离子体雾化金属粉末生产设备,其特征在于:包含冷却收集塔和高温层流等离子体射流发生器,冷却收集塔上开有原材进料口,高温层流等离子体射流发生器设置在冷却收集塔内,原材进料口和高温层流等离子射流发生器沿着同一直线相对设置在冷却收集塔内,冷却收集塔下端设置有粉末出口。
  2. 根据权利要求1所述的一种等离子体雾化金属粉末生产设备,其特征在于:所述冷却收集塔包含楔形壳体、若干中间圆柱段、上端锥形段和盖板,若干中间圆柱段沿竖直方向首尾连接,楔形壳体的上端与若干中间圆柱段的下端连接,上端锥形段的下端与若干中间圆柱段的上端连接,盖板固定在上端锥形段的上端。
  3. 根据权利要求2所述的一种等离子体雾化金属粉末生产设备,其特征在于:所述原材进料口设置在盖板中心,原材为棒材或线材并且原材通过进料电机驱动沿竖直方向向下进料,高温层流等离子体射流发生器固定在沿着原材的输送方向相对的楔形壳体的斜面上,高温层流等离子体射流发生器的射流与原材同心设置。
  4. 根据权利要求2所述的一种等离子体雾化金属粉末生产设备,其特征在于:还包含粉末收集器,粉末出口设置在楔形壳体的最下端,粉末收集器固定在粉末出口上。
  5. 根据权利要求1所述的一种等离子体雾化金属粉末生产设备,其特征在于:所述高温层流等离子体射流发生器包含阳极、阴极、阴极冷却底座、中间极、进气环和绝缘环,进气环固定在中间极一端,中间极另一端与绝缘环一端固定连接,绝缘环另一端与阳极一端连接,阴极冷却底座穿过进气环中心位置并位于中间极内孔中,阴极固定在阴极冷却底座位与中间极内的一端端部。
  6. 根据权利要求5所述的一种等离子体雾化金属粉末生产设备,其特征在于:所述中间极的内孔包含第一圆柱孔、第一锥孔、第二圆柱孔和第二锥孔,第一圆柱孔直径大于第二圆柱孔直径,第一圆柱孔的一端与第一锥孔一端连接,第一锥孔另一端与第二圆柱孔一端连接,第二圆柱孔另一端与第二锥孔一端连接,第二锥孔另一端的直径位于第一圆柱孔直径和第二圆柱孔直径之间。
  7. 根据权利要求6所述的一种等离子体雾化金属粉末生产设备,其特征在于:所述阴极冷却底座的一端端部为锥形端头,锥形端头的顶部开有与阴极匹配的凹槽,阴极固定在锥形端头的凹槽内,锥形端头的斜面平行于第一锥孔设置在第一锥孔内侧。
  8. 根据权利要求6所述的一种等离子体雾化金属粉末生产设备,其特征在于:所述阳极的内孔直径和绝缘环的内孔的直径均与第二锥孔的另一端端部直径相等。
  9. 根据权利要求6所述的一种等离子体雾化金属粉末生产设备,其特征在于:所述阳极 的另一端的内孔设置有螺旋形刻槽。
  10. 一种权利要求1-9任一项所述的等离子体雾化金属粉末生产设备的生产方法,其特征在于包含以下步骤:
    原材在进料电机驱动由冷却收集塔顶端竖直向下运动,并与竖直向上喷射的层流等离子体射流交汇;
    原材在层流等离子体射流中被持续加热并熔化,并且被高速的层流等离子体射流破碎、雾化;
    雾化形成的金属液滴在层流等离子体射流的环向速度分量的作用下被甩出射流范围,并进入冷却收集塔的冷却区域,金属液滴在冷却区域内球化、凝固,最后收集在粉末收集器中。
PCT/CN2021/114497 2021-08-12 2021-08-25 一种等离子体雾化金属粉末生产设备及其生产方法 WO2023015613A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110922903.5A CN113600823B (zh) 2021-08-12 2021-08-12 一种层流等离子体雾化金属粉末生产设备及其生产方法
CN202110922903.5 2021-08-12

Publications (1)

Publication Number Publication Date
WO2023015613A1 true WO2023015613A1 (zh) 2023-02-16

Family

ID=78340416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114497 WO2023015613A1 (zh) 2021-08-12 2021-08-25 一种等离子体雾化金属粉末生产设备及其生产方法

Country Status (2)

Country Link
CN (1) CN113600823B (zh)
WO (1) WO2023015613A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2413467Y (zh) * 1999-09-10 2001-01-03 北京航空工艺研究所 一种用于喷涂工艺的等离子发生器
CN206029035U (zh) * 2016-08-31 2017-03-22 成都真火科技有限公司 一种层流电弧等离子体焊接枪
CN107096925A (zh) * 2017-05-10 2017-08-29 江苏天楹环保能源成套设备有限公司 一种新型的等离子体雾化制备球型粉末系统
CN107486560A (zh) * 2017-09-04 2017-12-19 北京金航智造科技有限公司 一种在正压冷却气氛环境下制备球形金属粉末的方法
CN107983965A (zh) * 2017-12-26 2018-05-04 宝鸡市博信金属材料有限公司 高温等离子气雾化超细球形金属粉末制备方法及装备
CN107999780A (zh) * 2017-12-29 2018-05-08 西安赛隆金属材料有限责任公司 一种制备金属球形粉末的装置及方法
JP2018114462A (ja) * 2017-01-18 2018-07-26 パナソニックIpマネジメント株式会社 微粒子製造装置及び製造方法
CN109732095A (zh) * 2019-03-15 2019-05-10 西安赛隆金属材料有限责任公司 一种制备稀有金属球形粉末的装置
CN110834099A (zh) * 2019-11-25 2020-02-25 沈阳工业大学 一种等离子中间送丝气雾化制粉喷嘴及其使用方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935461A (en) * 1996-07-25 1999-08-10 Utron Inc. Pulsed high energy synthesis of fine metal powders
CN105081337B (zh) * 2015-08-26 2017-02-15 宝鸡市博信金属材料有限公司 高频超音速等离子气体制备微细球状金属粉末方法及装置
CN105689728B (zh) * 2016-02-16 2018-10-23 连云港倍特超微粉有限公司 一种生产3d打印用金属合金球形粉体的装置及其方法
CN106288787A (zh) * 2016-09-29 2017-01-04 成都真火科技有限公司 一种利用层流等离子体的冶炼设备
CN107124814A (zh) * 2017-06-20 2017-09-01 四川大学 一种多阴极层流等离子体粉末球化装置
CN207783241U (zh) * 2017-11-07 2018-08-28 成都真火科技有限公司 一种切线送料式层流等离子球化装置
CN207603982U (zh) * 2017-11-07 2018-07-10 成都真火科技有限公司 一种多束层流等离子炬集合式球化装置
CN107896414A (zh) * 2017-11-07 2018-04-10 成都真火科技有限公司 一种层流等离子球化方法
CN108393498A (zh) * 2018-05-30 2018-08-14 刘军发 一种离心辅助等离子雾化的金属粉末制备设备与方法
CN112911778A (zh) * 2019-11-19 2021-06-04 核工业西南物理研究院 一种用于粉末球化处理或精细涂覆的等离子体发生器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2413467Y (zh) * 1999-09-10 2001-01-03 北京航空工艺研究所 一种用于喷涂工艺的等离子发生器
CN206029035U (zh) * 2016-08-31 2017-03-22 成都真火科技有限公司 一种层流电弧等离子体焊接枪
JP2018114462A (ja) * 2017-01-18 2018-07-26 パナソニックIpマネジメント株式会社 微粒子製造装置及び製造方法
CN107096925A (zh) * 2017-05-10 2017-08-29 江苏天楹环保能源成套设备有限公司 一种新型的等离子体雾化制备球型粉末系统
CN107486560A (zh) * 2017-09-04 2017-12-19 北京金航智造科技有限公司 一种在正压冷却气氛环境下制备球形金属粉末的方法
CN107983965A (zh) * 2017-12-26 2018-05-04 宝鸡市博信金属材料有限公司 高温等离子气雾化超细球形金属粉末制备方法及装备
CN107999780A (zh) * 2017-12-29 2018-05-08 西安赛隆金属材料有限责任公司 一种制备金属球形粉末的装置及方法
CN109732095A (zh) * 2019-03-15 2019-05-10 西安赛隆金属材料有限责任公司 一种制备稀有金属球形粉末的装置
CN110834099A (zh) * 2019-11-25 2020-02-25 沈阳工业大学 一种等离子中间送丝气雾化制粉喷嘴及其使用方法

Also Published As

Publication number Publication date
CN113600823B (zh) 2022-07-19
CN113600823A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
CN107096925B (zh) 一种新型的等离子体雾化制备球型粉末系统
CN107661983B (zh) 一种卫星球含量低的金属雾化制粉设备
CN108637267A (zh) 一种利用金属丝材制备金属球形粉末的装置及方法
CN107983965B (zh) 高温等离子气雾化超细球形金属粉末制备方法及装备
CN110181066A (zh) 高球形度3d打印钽粉末、其制备方法及应用
CN108393499A (zh) 一种高能高速等离子制备球形金属粉末的装置和方法
CN108526472A (zh) 一种自由电弧制备金属球形粉末的装置和方法
CN105618773A (zh) 一种用于制备3d打印金属粉末的气雾化装置
CN114226740B (zh) 离心雾化制粉的方法及装置
CN209792610U (zh) 一种超声波振动雾化室及由其组成的雾化制粉设备
CN104858439A (zh) 一种旋流式钛及钛合金熔液超细雾化喷嘴
WO2023015613A1 (zh) 一种等离子体雾化金属粉末生产设备及其生产方法
CN109732095A (zh) 一种制备稀有金属球形粉末的装置
CN113145853A (zh) 一种球状金属粉的气雾化制备装置及方法
CN113290250A (zh) 一种高熵合金粉末的熔体雾化制备方法
CN103182513A (zh) 惰性气体保护等离子体制备金属粉末的装置
CN209736636U (zh) 一种制备稀有金属球形粉末的装置
WO2023082494A1 (zh) 一种导电材料超细粉体制备装置
CN1221349C (zh) 生产超细球形镁粉的方法
CN114713815B (zh) 等离子旋转电极雾化制粉的粉末颗粒飞行轨迹优化
CN215392473U (zh) 一种射频等离子旋转雾化制粉设备
CN217192572U (zh) 用于球形钛合金粉末生产的气雾化制粉设备
CN115625339A (zh) 一种采用射频等离子制备球形粉末的装置及方法
CN112658271A (zh) 一种高效复合式气雾化制粉装置及方法
CN113927039B (zh) 一种基于等离子的无坩埚气雾化制粉装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE