WO2023082494A1 - 一种导电材料超细粉体制备装置 - Google Patents

一种导电材料超细粉体制备装置 Download PDF

Info

Publication number
WO2023082494A1
WO2023082494A1 PCT/CN2022/077816 CN2022077816W WO2023082494A1 WO 2023082494 A1 WO2023082494 A1 WO 2023082494A1 CN 2022077816 W CN2022077816 W CN 2022077816W WO 2023082494 A1 WO2023082494 A1 WO 2023082494A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
chamber
growth
solidification
nucleation
Prior art date
Application number
PCT/CN2022/077816
Other languages
English (en)
French (fr)
Inventor
赵登永
潘经珊
余善海
彭家斌
李容成
Original Assignee
江苏博迁新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏博迁新材料股份有限公司 filed Critical 江苏博迁新材料股份有限公司
Priority to JP2023600037U priority Critical patent/JP3244493U/ja
Publication of WO2023082494A1 publication Critical patent/WO2023082494A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge

Definitions

  • the utility model belongs to the technical field of superfine powder preparation, in particular to a preparation device for superfine powder of conductive materials.
  • the raw materials need to be heated and vaporized at high temperature, and then the gaseous substance is converted into a liquid state and then solidified and formed.
  • the prepared ultra-fine powder particles are microscopic materials, mostly nano-scale, sub-micron or micron-scale powders, the formed particle size is small, the formation speed is very fast, the temperature is very high, and the technical principle of steam discharge and nucleation is simple. , but the practical application is very difficult.
  • the steam is discharged from the inner cavity of the crucible, it is very easy to condense into liquid or solid. The liquid is easy to flow out of the crucible, resulting in material loss, and the solid is easy to cause outlet blockage, which affects the continuous production.
  • ultra-fine metal powder due to the fast process of evaporation, nucleation, growth and solidification, the limitation of equipment structure It will make it difficult to control the nucleation process of metal vapor alone, and sometimes evaporation, nucleation, growth and solidification are concentrated in one structure and completed at one time.
  • ultrafine particles can be prepared in the end, the obtained ultrafine particles are basically defective products with uneven size and chaotic shape, and even conjoined phenomena.
  • the utility model provides a fine powder preparation device made of conductive materials, which controls the temperature intervals in the evaporation chamber, the nucleation chamber, the growth chamber and the curing chamber through the cooperation of the shell and the heat preservation material;
  • the matching design of the crucible, the crucible cover and each channel, the shrinking design of the outlet of the crucible cover, and the change design of the inner diameter of the growth chamber and the solidification chamber better control the collision of particles.
  • the above design conveniently and accurately controls the realization of functions in each interval, and provides conditions for batch production of powders with good spherical shape, uniform particles and good dispersibility.
  • a device for preparing ultrafine powder of conductive materials including a high-temperature evaporation and nucleation furnace body, a growth and solidification temperature control tube, a fluid mixing cooler, and a powder collector;
  • the high-temperature evaporation and nucleation furnace body includes an external shell Body 1, a crucible and a crucible cover are installed inside the shell, and the plasma arc torch that passes through the shell and extends into the inner cavity of the crucible cover passes through the shell and communicates with the inner crucible and the crucible cover.
  • the inner chamber composed of the crucible and the crucible cover is divided into the lower evaporation chamber and the upper nucleation chamber;
  • the growth and solidification temperature control pipe includes the outer casing two and The internal channel for the carrier gas, liquid phase or/and solid phase particles to pass through.
  • An insulating material for controlling the temperature of the growth and solidification process is arranged between the inner channel and the second shell.
  • the inner channel of the growth and solidification temperature control tube The front end of the passage communicates with the side outlet of the crucible cover, and the inner diameter of the side outlet of the crucible cover is smaller than the inner diameter of the installation lower opening of the crucible cover;
  • the fluid mixing cooler includes a shell three and a fluid input channel and a spout passing through the shell three.
  • an insulating material is arranged between the crucible, the crucible cover and the shell one, and the insulating material is used to control the internal temperature of the inner cavity formed by the crucible and the crucible cover, so that the molten state and conductive raw materials in the crucible
  • the central area of the liquid surface is at or above the boiling point to form an evaporation zone, and the temperature of the nucleation cavity in the crucible cover and the edge area of the liquid surface in the crucible is below the boiling point to form a nucleation zone.
  • the lower evaporation zone of the inner cavity formed by the crucible and the crucible cover is mainly located in the inner cavity of the crucible (for example, at least 50% of the volume of the evaporation zone is located in the inner cavity of the crucible), and the upper nucleation zone is mainly located in the inner cavity of the crucible.
  • the inner cavity of the crucible lid eg at least 50% of the volume of the nucleation zone is located in the inner cavity of the crucible lid.
  • the boundary between the evaporation zone and the nucleation zone is a changing surface layer, and the position of the surface layer is determined by the temperature of the inner cavity and the boiling point of the raw material.
  • the surface layer moves up and down with the tip of the plasma arc torch. Following the movement, the lower diameter of the surface layer changes with the increase or decrease of the power of the plasma arc torch.
  • the crucible cover has the shape of a conical frustum or an arc-shaped platform with a small top and a large bottom.
  • the side of the crucible cover is provided with an outlet for carrier gas and particles.
  • the inner diameter of the outlet is smaller than the lower diameter of the connection between the crucible cover and the crucible.
  • the necking structure design increases the probability of particle collision and combination after nucleation, which facilitates the rapid growth of particles in the growth and solidification temperature control tube.
  • the growth and solidification temperature control tube is provided with a growth cavity and a solidification cavity, the growth cavity is located at the end close to the outlet of the crucible cover, and the solidification cavity is close to the fluid mixing cooler.
  • the carrier gas flows in the pipeline, it will form a temperature field and a velocity field.
  • the isotherms of the temperature field and the isovelocities of the velocity field are both bullet-shaped curved surfaces. Therefore, the growth chamber is the main place for the collision and combination of particles.
  • There is a small amount of solidification at the edge of the growth cavity which is the main place for solidification of the grown particles, and only a small amount of growth exists in the center of the solidification cavity.
  • the inner diameter of the growth cavity of the growth and solidification temperature control tube is less than or equal to the inner diameter of the solidification cavity, and both the growth cavity and the solidification cavity are in the shape of a round tube, or a trumpet tube or a stepped tube, etc. tubular.
  • the fluid mixing cooler is in the shape of a tube or a tank, and the inner diameter is greater than or equal to the inner diameter of the inner tube of the solidified tube.
  • the fluid used for cooling in the fluid mixing cooler is gas or liquid or a mixture of liquid and gas.
  • the powder collector is a container where the solidified and shaped ultrafine powder collects.
  • a filter type gas-solid separator or magnetic separator or Cyclone separator when the fluid used for cooling is gas, a centrifugal separator or magnetic separator or gas-solid-liquid separator is installed in the powder collector.
  • the bottom of the powder collector is provided with a powder outlet for discharging ultrafine powder
  • the upper part of the powder collector is provided with a gas outlet for discharging carrier gas. After the carrier gas is discharged through the gas outlet, it can pass through the Pressurized for recycling.
  • the high-temperature evaporation and nucleation furnace body, the growth and solidification temperature control tube, and the fluid mixing cooler are all equipped with shells, and each shell is an integrated structure, or a segmented structure, or has a cross-shared structure. Each shell can be provided with a cooling structure as required.
  • the utility model better solves the problem that it is difficult to control the temperature of high-boiling point material vapor at high temperature above the boiling point for a long time by designing the nucleation and evaporation process in the inner cavity composed of the crucible and the crucible cover in the same furnace body.
  • the nucleation process is controlled away from the evaporation area; the crucible lid is connected to the outlet of the growth chamber with a narrow neck design, and the nucleated particles are carried through the outlet through the carrier gas to achieve rapid growth; the temperature in the solidification chamber is lower than that in the growth chamber.
  • the volume of the carrier gas shrinks and the flow rate becomes slower, and the inner diameter of the curing chamber is greater than or equal to the design of the growth chamber, which also makes the carrier gas flow slower.
  • the combined effect of the two designs provides sufficient curing time. Time and space; fluid mixing cooling can cool ultrafine powder particles faster and facilitate subsequent collection.
  • Fig. 1 is the structural representation of the utility model.
  • Fig. 2 is a structural schematic diagram of the high-temperature evaporation and nucleation furnace body of the present invention.
  • Fig. 3 is a structural schematic diagram of the growth and solidification temperature control tube of the present invention.
  • the utility model provides a conductive material ultrafine powder preparation device, including a high-temperature evaporation and nucleation furnace body 1, a growth and solidification temperature control tube 2, a fluid mixing cooler 3 and a powder collector 4.
  • the high-temperature evaporation and nucleation furnace body 1 includes an external evaporation and nucleation furnace body shell 10, and a crucible 11 and a crucible cover 12 are installed inside the evaporation and nucleation furnace body shell 10,
  • the plasma arc torch 13 that passes through the shell 10 of the evaporation and nucleation furnace and extends into the inner cavity of the crucible cover 12, the crucible 11 that passes through the shell 10 of the furnace body of evaporation and nucleation and communicates with the crucible cover 12 is composed of
  • the feeding device 14 in the inner cavity and the carrier gas preheating input pipe 15 is composed of The feeding device 14 in the inner cavity and the carrier gas preheating input pipe 15 .
  • An insulating material 17 is arranged between the crucible 11, the crucible cover 12 and the evaporation and nucleation furnace body shell 10, and the insulating material 17 is used to control the internal temperature of the inner cavity formed by the crucible 11 and the crucible cover 12, so that the crucible 11 melts state and the liquid surface central region of the conductive raw material 18 is at the boiling point or a temperature above the boiling point, thereby forming an evaporation zone 191; making the temperature of the nucleation cavity in the crucible cover 12 and the liquid surface edge region in the crucible 11 be below the boiling point, Nucleation regions 192 are thereby formed.
  • the boundary between the evaporation zone 191 and the nucleation zone 192 is a changing curved surface layer 19 between the evaporation zone and the nucleation zone.
  • the position of the curved surface layer is determined by the temperature of the inner cavity and the boiling point of the conductive raw material 18 in a molten state. The layer moves as the torch head of the plasma arc torch 13 moves up and down, and the lower diameter of the curved surface layer changes as the power of the plasma arc torch 13 increases or decreases.
  • the crucible cover 12 has a conical or arc-shaped platform with a small top and a large bottom.
  • the side of the crucible cover 12 is provided with an outlet 16 on the side of the crucible cover for carrier gas and particles.
  • the inner diameter of the outlet is smaller than the lower diameter of the connection between the crucible cover 12 and the crucible 11. .
  • the necking structure design of the outlet increases the probability of collision and combination of the nucleated particles, thereby facilitating the rapid growth of the particles in the growth and solidification temperature control tube 2 .
  • the growth and solidification temperature control tube 2 includes an external growth and solidification temperature control tube shell 20 and an internal channel for carrier gas, liquid phase or/and solid phase particles to pass through.
  • An insulating material 23 for controlling the temperature of the growth and curing process is arranged between the channel and the growth and solidification temperature control tube housing 20 , and the front end of the inner channel of the growth and solidification temperature control tube 2 communicates with the outlet 16 on the side of the crucible lid.
  • a growth cavity 21 and a solidification cavity 22 are provided in the inner channel. The growth cavity 21 is located at one end close to the outlet of the crucible cover 12 , and the solidification cavity 22 is close to the fluid mixing cooler 3 .
  • the inner diameter of the growth chamber 21 is smaller than or equal to the inner diameter of the curing chamber 22 . Since the carrier gas flows in the pipeline, a temperature field and a velocity field will be formed, and the isotherms of the temperature field and the isovelocities of the velocity field are both bullet-shaped curved surfaces, so the growth chamber 21 is the main place where particles collide and combine. There is only a small amount of solidification at the edge of the growth cavity 21, which is the main place for the solidification of the grown particles, and only a small amount of growth at the center of the solidification cavity 22.
  • the fluid mixing cooler 3 includes a fluid mixing cooler housing 30 and a fluid mixing cooler fluid input channel 31 passing through the mixing cooler housing 30 .
  • the fluid mixing cooler 3 is tubular or tank-shaped, and its inner diameter is greater than or equal to the inner diameter of the solidification chamber 22 .
  • the powder collector 4 is a container for collecting the ultrafine powder after solidification and forming.
  • the powder collector 4 is provided with a filter type gas-solid separator or magnetic Separator or cyclone separator; when the fluid used for cooling is a liquid or a mixture of liquid and gas, a centrifugal separator or a magnetic separator or a gas-solid-liquid separator is arranged in the powder collector 4 .
  • the bottom of the powder collector 4 is provided with a powder outlet 41 for the discharge of ultrafine powder, and the upper part of the powder collector 4 is provided with a gas outlet 42 for the discharge of the carrier gas. After the carrier gas is discharged through the exhaust port, it can be Pressurized and recycled.
  • the conductive raw material is transported into the crucible 11 by the feeding device 14 through the feeding pipeline, and the plasma arc torch 13 is started, and the plasma arc torch 13 and the conductive raw material are electrically connected through a plasma arc, thereby generating energy to heat the conductive raw material.
  • the conductive material melts and evaporates into steam in the evaporation zone 191 , the steam diffuses into the nucleation zone 192 , the temperature drops from above the boiling point to below the boiling point, and the steam starts to condense into liquid nuclei.
  • the particles enter the solidification chamber 22, the temperature in the solidification chamber 22 drops below the melting point, and the grown particles are solidified into solid particles.
  • the solidified particles are carried by the carrier gas into the fluid mixing cooler 3, and the high-temperature solid particles are rapidly cooled by cooling fluid (liquid or gas or gas-liquid mixed mist).
  • the cooled ultrafine powder is sent into the powder collector 4 for powder collection, and the carrier gas and/and cooling gas are discharged through the gas outlet 42 , and the powder is discharged through the powder outlet 41 .

Abstract

一种导电材料超细粉体制备装置,包括高温蒸发与成核炉体(1)、生长与固化控温管(2)、流体混合冷却器(3)以及粉体收集器(4)。通过壳体(10)、保温材料(17)的配合控制蒸发腔、成核腔、生长腔(21)及固化腔(22)内的温度区间;内部坩埚(11)、坩埚盖(12)及各个通道的配合设计,及坩埚盖(12)出口的缩口设计,以及生长腔(21)与固化腔(22)的内径变化设计,较好地控制了微粒的碰撞。方便而准确地控制各个区间内功能的实现,为批量制备颗粒球状好、颗粒均匀、分散性好的粉体提供了条件。

Description

一种导电材料超细粉体制备装置 技术领域
本实用新型属于超细粉制备技术领域,特别是指一种导电材料超细粉体制备装置。
背景技术
在使用物理蒸发冷凝气相法制备超细粉粒子时,需将原材料先经过高温加热气化,再将气态物质转变为液态后固化成形。因为制备的超细粉粒子为微观材料,多为纳米级、亚微米级或微米级粉末,成形的粒子尺寸较小,形成速度非常快,温度非常高,蒸气排出与成核的技术原理虽然简单,但是实际运用却非常困难。在将蒸气排出坩埚内腔后,极易出现遇冷凝聚为液体或固体的情况,液体易流出坩埚外,导致物料损失,固体易造成出口堵塞,影响连续生产的持续进行。
现有气相法在制备超细金属粉时,虽然都需要经过蒸发、成核、生长、固化、冷却及收集的过程,但因蒸发、成核、生长与固化的过程速度快,设备结构的限制会导致很难单独控制金属蒸气的成核过程,有时会将蒸发、成核、生长及固化集中在一个结构中一次性的完成。虽然最终能制备出超细颗粒,但得到的超细颗粒基本上是大小不均、形态混乱的不良品,甚至出现联体现象。也有将成核、生长及固化分布在一个管道中的操作,但是这种操作并未对各个阶段进行特别控制,导致成核过程中伴有大量生长,生长阶段仍会发生成核,同时固化也伴随其中,最终的产品中将会出现大小不均匀现象,以及坩埚盖出口保温不良引起出口堵塞所导致的无法继续生产的问题。
发明内容
本实用新型针对背景技术中的问题,提供了一种导电材料制细粉体制备装置,通过壳体、保温材料的配合控制蒸发腔、成核腔、生长腔及固化腔内的温度区间;内部坩埚、坩埚盖及各个通道的配合设计,及坩埚盖出口的缩口设计,以及生长腔与固化腔的内径的变化设计,较好地控制了微 粒的碰撞。以上设计方便而准确地控制各个区间内功能的实现,为批量制备颗粒球状好、颗粒均匀、分散性好的粉体提供了条件。
为实现上述目的,本实用新型通过以下技术方案实现:
一种导电材料超细粉体制备装置,包括高温蒸发与成核炉体、生长与固化控温管、流体混合冷却器及粉体收集器;所述高温蒸发与成核炉体包括外部的壳体一,壳体一的内部安装有坩埚和坩埚盖,穿过壳体一并伸入坩埚盖的内腔的等离子弧枪,穿过壳体一并连通于内部的坩埚与坩埚盖组成的内腔的加料装置及载流气预热输入管,所述坩埚与坩埚盖组成的内腔分为下部的蒸发腔与上部的成核腔;所述生长与固化控温管包括外部的壳体二以及内部的用于载流气、液相或/和固相微粒通过的内通道,内通道与壳体二之间设置有用于控制生长与固化过程的温度的保温材料,生长与固化控温管的内通道的前端与坩埚盖的侧面出口连通,坩埚盖侧面出口的内径小于坩埚盖的安装下口的内径;所述流体混合冷却器包括壳体三以及穿过壳体三的流体输入通道及喷口。
进一步的,所述坩埚及坩埚盖与壳体一之间设置保温材料,所述保温材料用于控制坩埚与坩埚盖组成的内腔的内部温度,以使得坩埚内熔融状态且可导电的原材料的液面中心区域处于沸点或沸点以上的温度,从而形成蒸发区,并使得坩埚盖内及坩埚内的液面边缘区域的成核腔的温度处于沸点以下,从而形成成核区。
进一步的,所述坩埚与坩埚盖组成的内腔的下部的蒸发区主要位于坩埚的内腔中(例如蒸发区的至少50%的体积位于坩埚的内腔中),上部的成核区主要位于坩埚盖的内腔中(例如成核区的至少50%的体积位于坩埚盖的内腔中)。
进一步的,蒸发区与成核区的分界为一变化的曲面层,曲面层的位置由内腔的温度及原材料的沸点决定,生产过程中曲面层随着等离子弧枪的枪头的上下移动而跟随移动,曲面层的下口径随着等离子弧枪功率的增减而跟随变化。
进一步的,所述坩埚盖具有上小下大的锥台或弧状台形状,坩埚盖的侧面设置有载流气及微粒的出口,出口的内径小于坩埚盖与坩埚安装连接 处的下口径,出口的缩口结构设计提高了成核后的微粒碰撞结合的机率,从而便于微粒在生长与固化控温管内快速生长。
进一步的,所述生长与固化控温管内设有生长腔和固化腔,生长腔位于靠近坩埚盖的出口的一端,固化腔靠近流体混合冷却器。载流气在管道内流动时将形成温度场及速度场,温度场的等温线与速度场的等速线均为子弹头状的曲形面,所以生长腔为微粒碰撞结合的主要场所,仅在生长腔的边缘处存在少量的固化,固化腔为已生长完成的颗粒固化的主要场所,仅在固化腔的中心处存在少量的生长。
进一步的,所述生长与固化控温管的生长腔内腔的内径小于或等于固化腔内腔的内径,并且生长腔内腔与固化腔内腔均呈圆管状、或喇叭管状或台阶管状等管状。
进一步的,所述流体混合冷却器为管状或罐状,内径大于或等于固化管内管的内径。
进一步的,所述流体混合冷却器内用于冷却的流体为气体或液体或液体与气体的混合物。
进一步的,所述粉体收集器为固化成形后的超细粉体汇集的容器,当用于冷却的流体为气体时,粉体收集器内设置有过滤式气固分离器或磁力分离器或旋风分离器;当用于冷却的流体为液体或液体与气体的混合物时,粉体收集器内设置有离心分离器或磁力分离器或气固液分离器。
进一步的,所述粉体收集器的底部设置有用于排出超细粉体的出粉口,粉体收集器的上部设置有用于载流气的排出的出气口,载流气经出气口排出后可以经增压再循环使用。
进一步的,所述高温蒸发与成核炉体、生长与固化控温管及流体混合冷却器均设置有壳体,各个壳体为一体式结构,或为分段式结构,或为具有交叉共用段的结构,各个壳体可根据需要设置有冷却结构。
相对于现有技术,本实用新型的有益效果是:
本实用新型通过将成核与蒸发过程设计在同一炉体内的坩埚与坩埚盖组成的内腔中,更好地解决了高温下高沸点材料蒸气的温度难以长时间控制在沸点以上的问题,无需将成核过程控制为远离蒸发区;坩埚盖连接生 长腔的出口的缩口设计,将成核后的微粒经由载流气携带通过出口,实现快速生长;固化腔内的温度比生长腔内的温度低的设计,使得温度下降后,载流气体体积收缩而流速变慢,以及固化腔内腔的内径大于或等于生长腔的设计,也使得载流气流速变慢,两种设计共同的作用为固化提供充分的时间与空间;流体混合冷却可以更快的使超细粉体颗粒冷却,便于后续的收集。
附图说明
图1为本实用新型的结构示意图。
图2为本实用新型的高温蒸发与成核炉体的结构示意图。
图3为本实用新型的生长与固化控温管的结构示意图。
图中:1、高温蒸发与成核炉体,2、生长与固化控温管,3、流体混合冷却器,4、粉体收集器,10、蒸发与成核炉体壳体,11、坩埚,12、坩埚盖,13、等离子弧枪,14、加料装置,15、载流气预热输入管,16、坩埚盖侧面出口,17、保温材料,18、熔融状态且可导电的原材料,19、蒸发区与成核区分界曲面层,191、蒸发区,192、成核区,20、生长与固化控温管壳体,21、生长腔,22、固化腔,23、保温材料,30、流体混合冷却器壳体,31、流体混合冷却器流体输入通道,41、出粉口,42、出气口。
具体实施方式
结合附图和实施例对本实用新型做进一步描述,虽然进行清楚完整地描述,显然所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属本实用新型保护的范围。
如图1所示,本实用新型提供了一种导电材料超细粉体制备装置,包括高温蒸发与成核炉体1、生长与固化控温管2、流体混合冷却器3及粉体收集器4。如图1和图2所示,高温蒸发与成核炉体1包括外部的蒸发与成核炉体壳体10,蒸发与成核炉体壳体10的内部安装有坩埚11与坩埚盖12,穿过蒸发与成核炉体壳体10并伸入坩埚盖12的内腔的等离子弧枪13, 穿过蒸发与成核炉体壳体10并连通于内部的坩埚11与坩埚盖12组成的内腔的加料装置14及载流气预热输入管15。坩埚11及坩埚盖12和蒸发与成核炉体壳体10之间设置有保温材料17,保温材料17用于控制坩埚11与坩埚盖12组成的内腔的内部温度,以使得坩埚11内熔融状态且可导电的原材料18的液面中心区域处于沸点或沸点以上的温度,从而形成蒸发区191;使得坩埚盖12内及坩埚11内的液面边缘区域的成核腔的温度处于沸点以下,从而形成成核区192。蒸发区191与成核区192的分界为一变化的蒸发区与成核区分界曲面层19,曲面层的位置由内腔温度及熔融状态且可导电的原材料18的沸点决定,生产过程中曲面层随着等离子弧枪13的枪头的上下移动而跟随移动,曲面层的下口径随着等离子弧枪13功率的增减而跟随变化。
坩埚盖12具有上小下大的锥台或弧状台形状,坩埚盖12的侧面设置有载流气及微粒的坩埚盖侧面出口16,出口的内径小于坩埚盖12与坩埚11安装连接处的下口径。出口的缩口结构设计提高了成核后的微粒碰撞结合的机率,从而便于微粒在生长与固化控温管2内快速生长。
如图1和图3所示,生长与固化控温管2包括外部的生长与固化控温管壳体20以及内部的用于载流气、液相或/和固相微粒通过的内通道,内通道和生长与固化控温管壳体20之间设置有用于控制生长与固化过程的温度的保温材料23,生长与固化控温管2的内通道的前端与坩埚盖侧面出口16连通。所述内通道内设有生长腔21与固化腔22,生长腔21位于靠近坩埚盖12出口的一端,固化腔22靠近流体混合冷却器3。生长腔21的内径小于或等于固化腔22的内径。因载流气在管道内流动时将形成温度场及速度场,温度场的等温线与速度场的等速线均为子弹头状的曲形面,所以生长腔21为微粒碰撞结合的主要场所,仅在生长腔21的边缘处存在少量的固化,固化腔22为已生长完成的颗粒固化的主要场所,仅在固化腔22的中心处存在少量的生长。
如图1和图3所示,流体混合冷却器3包括流体混合冷却器壳体30及穿过混合冷却器壳体30的流体混合冷却器流体输入通道31。流体混合冷却器3为管状或罐状,内径大于或等于固化腔22的内径。
如图1所示,粉体收集器4为固化成形后的超细粉体汇集的容器,当用于冷却的流体为气体时,粉体收集器4内设置有过滤式气固分离器或磁力分离器或旋风分离器;当用于冷却的流体为液体或液体与气体的混合物时,粉体收集器4内设置有离心分离器或磁力分离器或气固液分离器。粉体收集器4的底部设置有用于超细粉体的排出的出粉口41,粉体收集器4的上部设置有用于载流气的排出的出气口42,载流气经排气口排出后可以经增压再循环使用。
具体工作过程:
导电原材料由加料装置14通过加料管道输送进入坩埚11内,启动等离子弧枪13,等离子弧枪13与导电原材料之间通过等离子电弧实现电连通,进而产生能量对导电原材料进行加热。导电原材料受热后,融化并在蒸发区191范围内蒸发为蒸气,蒸气扩散至成核区192中,温度由沸点以上降至沸点以下,蒸气开始凝结为液核。通过载流气预热输入管15,将惰性载流气先在坩埚11或坩埚盖12和蒸发与成核炉体壳体10之间的保温材料17中进行预加热,再由载流气预热输入管15输送至坩埚11与坩埚盖12组成的内腔中,携带成核的微粒通过缩口设计的坩埚盖侧面出口16,进入生长与固化控温管2中。坩埚盖侧面出口16的缩口设计使得在生长腔21中增加了成核微粒的碰撞机率,从而提高了生长效率。在完成生长后,微粒进入固化腔22,固化腔22内的温度降至熔点以下,生长完成的微粒固化为固体颗粒。固化后的颗粒再由载流气携带进入流体混合冷却器3内,使用冷却流体(液体或气体或气液混合雾)对高温的固体颗粒进行快速冷却。最后将冷却完成的超细粉末送入粉体收集器4中进行粉末收集,并通过出气口42排出载流气与/和冷却气,以及通过出粉口41排出粉体。

Claims (11)

  1. 一种导电材料超细粉体制备装置,其特征在于:包括高温蒸发与成核炉体、生长与固化控温管、流体混合冷却器及粉体收集器;所述高温蒸发与成核炉体包括外部的壳体一,壳体一的内部安装有坩埚和坩埚盖,穿过壳体一并伸入坩埚盖的内腔的等离子弧枪,穿过壳体一并连通于内部的坩埚与坩埚盖组成的内腔的加料装置及载流气预热输入管,所述坩埚与坩埚盖组成的内腔分为下部的蒸发腔与上部的成核腔;所述生长与固化控温管包括外部的壳体二以及内部的用于载流气、液相或/和固相微粒通过的内通道,内通道与壳体二之间设置有用于控制生长与固化过程的温度的保温材料,生长与固化控温管的内通道的前端与坩埚盖的侧面出口连通;所述流体混合冷却器包括壳体三以及穿过壳体三的流体输入通道及喷口。
  2. 如权利要求1所述的导电材料超细粉体制备装置,其特征在于:所述坩埚及坩埚盖与壳体一之间设置保温材料,所述保温材料用于控制坩埚与坩埚盖组成的内腔的内部温度,以使得坩埚内熔融状态且可导电的原材料的液面中心区域处于沸点或沸点以上的温度,从而形成蒸发区;并使得坩埚盖内及坩埚内的液面边缘区域的成核腔的温度处于沸点以下,从而形成成核区。
  3. 如权利要求1或2所述的导电材料超细粉体制备装置,其特征在于:所述炉体内坩埚与坩埚盖组成的内腔的下部的蒸发区主要位于坩埚的内腔中,上部的成核区主要位于坩埚盖的内腔中。
  4. 如权利要求1至3中任一项所述的导电材料超细粉体制备装置,其特征在于:蒸发区与成核区的分界为一变化的曲面层,曲面层的位置由内腔的温度及原材料的沸点决定,生产过程中曲面层随着等离子弧枪的枪头的上下移动而跟随移动,曲面层的下口径随着等离子弧枪功率的增减而跟随变化。
  5. 如权利要求1至4中任一项所述的导电材料超细粉体制备装置,其特征在于:所述坩埚盖具有上小下大的锥台或弧状台形状,坩埚盖的侧面设置有载流气及微粒的出口,出口的内径小于坩埚盖与坩埚安装连接处的下口径,且所述出口具有缩口结构设计。
  6. 如权利要求1至5中任一项所述的导电材料超细粉体制备装置,其特征在于:所述生长与固化控温管的内管道内设有生长腔和固化腔,生长腔位于靠近坩埚盖的出口的一端,固化腔靠近流体混合冷却器,生长腔的内径小于或等于固化腔的内径,并且生长腔与固化腔均呈圆管状或喇叭管状或台阶管状。
  7. 如权利要求1至6中任一项所述的导电材料超细粉体制备装置,其特征在于:所述流体混合冷却器为管状或罐状,内径大于或等于固化腔的内径。
  8. 如权利要求1至7中任一项所述的导电材料超细粉体制备装置,其特征在于:所述流体混合冷却器内用于冷却的流体为气体或液体或液体与气体的混合物。
  9. 如权利要求1至8中任一项所述的导电材料超细粉体制备装置,其特征在于:所述粉体收集器为固化成形后的超细粉体汇集的容器,当用于冷却的流体为气体时,粉体收集器内设置有过滤式气固分离器或磁力分离器或旋风分离器;当用于冷却的流体为液体或液体与气体的混合物时,粉体收集器内设置有离心分离器或磁力分离器或气固液分离器。
  10. 如权利要求1至9中任一项所述的导电材料超细粉体制备装置,其特征在于:所述粉底收集器的底部设置有用于排出超细粉体的出粉口,粉体收集器的上部设置有用于排出载流气的出气口,载流气经出气口排出后可以经增压再循环使用。
  11. 如权利要求1至10中任一项所述的导电材料超细粉体制备装置,其特征在于:所述壳体一、壳体二和壳体三的各个壳体为一体式结构,或为分段式结构,或为具有交叉共用段的结构。
PCT/CN2022/077816 2021-11-12 2022-02-25 一种导电材料超细粉体制备装置 WO2023082494A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023600037U JP3244493U (ja) 2021-11-12 2022-02-25 導電材料超微粉体の製造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122770104.9 2021-11-12
CN202122770104.9U CN216632597U (zh) 2021-11-12 2021-11-12 一种导电材料超细粉体制备装置

Publications (1)

Publication Number Publication Date
WO2023082494A1 true WO2023082494A1 (zh) 2023-05-19

Family

ID=81735928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077816 WO2023082494A1 (zh) 2021-11-12 2022-02-25 一种导电材料超细粉体制备装置

Country Status (4)

Country Link
JP (1) JP3244493U (zh)
CN (1) CN216632597U (zh)
TW (1) TWM631818U (zh)
WO (1) WO2023082494A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115351286B (zh) * 2022-08-08 2023-07-14 杭州新川新材料有限公司 一种金属粉末生产用高温蒸发炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120031234A1 (en) * 2008-08-07 2012-02-09 Zinchem, A Division Of Zimco Group (Pty) Ltd. Method and plant for the production of zinc dust
CN103537703A (zh) * 2013-09-12 2014-01-29 江苏博迁新材料有限公司 一种内回流式除垃圾方法
CN204545422U (zh) * 2015-03-11 2015-08-12 江永斌 循环冷却的金属粉体蒸发制取装置
CN206588345U (zh) * 2016-11-30 2017-10-27 江永斌 循环冷却连续量产高纯纳米级金属粒子的装置
CN112915919A (zh) * 2021-01-25 2021-06-08 钟笔 一种超微粉粒子聚集冷却罐式结构及超微粉粒子成形方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120031234A1 (en) * 2008-08-07 2012-02-09 Zinchem, A Division Of Zimco Group (Pty) Ltd. Method and plant for the production of zinc dust
CN103537703A (zh) * 2013-09-12 2014-01-29 江苏博迁新材料有限公司 一种内回流式除垃圾方法
CN204545422U (zh) * 2015-03-11 2015-08-12 江永斌 循环冷却的金属粉体蒸发制取装置
CN206588345U (zh) * 2016-11-30 2017-10-27 江永斌 循环冷却连续量产高纯纳米级金属粒子的装置
CN112915919A (zh) * 2021-01-25 2021-06-08 钟笔 一种超微粉粒子聚集冷却罐式结构及超微粉粒子成形方法

Also Published As

Publication number Publication date
CN216632597U (zh) 2022-05-31
TWM631818U (zh) 2022-09-11
JP3244493U (ja) 2023-11-09

Similar Documents

Publication Publication Date Title
CN107262730B (zh) 一种微细球形金属粉末的气体雾化制备方法及其设备
CN110480024A (zh) 一种基于VIGA工艺制备CuCrZr球形粉的方法
CN105252009B (zh) 一种微细球形钛粉末的制造方法
JP7386839B2 (ja) プラズマアーク噴霧法超微細粉末製造装置
CN109455728A (zh) 一种燃气加热生产高纯超细球形硅微粉的装置及方法
CN112517918A (zh) 高球形度气雾化粉末的制备方法及生产设备
WO2023082494A1 (zh) 一种导电材料超细粉体制备装置
EP0127795B1 (en) Device and method for making and collecting fine metallic powder
CN110893468A (zh) 一种组合式雾化制备球形金属粉末的方法及装置
CN108393499A (zh) 一种高能高速等离子制备球形金属粉末的装置和方法
CN107661983A (zh) 一种卫星球含量低的金属雾化制粉设备
CN108620597A (zh) 一种高能等离子焰流制备球形粉末的装置和方法
CN108714697A (zh) 一种用于制备金属粉末的气雾化喷嘴
CN109665533A (zh) 一种电加热生产高纯超细球形硅微粉的装置和方法
CN113145853B (zh) 一种球状金属粉的气雾化制备装置及方法
CN109592691A (zh) 一种燃气加热逆流喷雾法生产高纯超细球形硅微粉的装置及方法
CN207119805U (zh) 一种多级冷却制备金属粉末的等离子体雾化装置
WO2023065581A1 (zh) 一种物理气相法制备超细粉体材料用的金属蒸气成核装置
CN107020386A (zh) 一种球化粉末高频感应等离子加热器的进气组件
CN1172762C (zh) 电磁振荡雾化制粉工艺及装置
WO2022156224A1 (zh) 一种超微粉粒子聚集冷却罐式结构及超微粉粒子成形方法
CN103658667B (zh) 一种制备微细金属粉体用雾化器
CN113618071B (zh) 用于制备增材制造用高球形度金属粉末的雾化室、装置及方法
CN111496262B (zh) 一种铝钴合金及其粉末冶金成型方法
CN108608002A (zh) 一种利用高能高速等离子焰流球化粉末的装置及方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023600037

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22891306

Country of ref document: EP

Kind code of ref document: A1