WO2020063627A1 - 一种逐液滴离心雾化法专用转盘结构 - Google Patents

一种逐液滴离心雾化法专用转盘结构 Download PDF

Info

Publication number
WO2020063627A1
WO2020063627A1 PCT/CN2019/107705 CN2019107705W WO2020063627A1 WO 2020063627 A1 WO2020063627 A1 WO 2020063627A1 CN 2019107705 W CN2019107705 W CN 2019107705W WO 2020063627 A1 WO2020063627 A1 WO 2020063627A1
Authority
WO
WIPO (PCT)
Prior art keywords
drop
atomization
plane
end surface
circular groove
Prior art date
Application number
PCT/CN2019/107705
Other languages
English (en)
French (fr)
Inventor
王晓明
朱胜
赵阳
王思捷
韩国峰
石晶
常青
任智强
滕涛
孙瑜
董伟
孟瑶
许富民
白兆丰
王延洋
韩阳
李国斌
Original Assignee
大连理工大学
王晓明
朱胜
赵阳
王思捷
韩国峰
石晶
常青
任智强
滕涛
孙瑜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学, 王晓明, 朱胜, 赵阳, 王思捷, 韩国峰, 石晶, 常青, 任智强, 滕涛, 孙瑜 filed Critical 大连理工大学
Priority to CA3113748A priority Critical patent/CA3113748C/en
Publication of WO2020063627A1 publication Critical patent/WO2020063627A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention belongs to the technical field of preparation of ultrafine spherical microparticles, and in particular, relates to a turntable structure dedicated to the droplet-by-drop centrifugal atomization method.
  • the traditional centrifugal atomizing receiving device mainly uses an integrated turntable structure, and the turntable usually uses a material that has poor wettability with the atomized alloy. At this time, the adhesion between the molten alloy and the surface of the turntable is small, which leads to The kinetic energy of the turntable conducting the molten liquid film is very limited, and when the melt temperature and rotation speed are too high, the melt is prone to slip, which seriously affects the atomization efficiency.
  • a dedicated turntable structure for the droplet-by-drop centrifugal atomization method is provided.
  • the invention mainly adopts a split-type turntable structure, and the atomizing plane and the substrate are respectively selected from different material structural forms.
  • a material having better wettability with the atomized melt is used as the atomizing plane of the turntable, and a material with poor thermal conductivity is used.
  • As the base of the turntable a vent hole is added between the lower end surface of the atomizing plane and the support portion of the turntable, so that it can better accept metal droplets in the process of atomizing powder, which is conducive to the full spread of the droplets.
  • a special turntable structure for the droplet-by-drop centrifugal atomization method includes:
  • a base body which is composed of an upper receiving portion and a lower supporting portion in a vertical section of a "T-shaped" main structure.
  • the upper surface of the receiving portion is provided with a circular groove with a certain radius coaxial with the center of the circle.
  • the base body is made of a material having a thermal conductivity of less than 20W / m / k;
  • the atomizing plane is a disc structure.
  • the disc matches the circular groove and interference fits with the circular groove.
  • the atomizing plane adopts a wetting angle with the atomized melt of ⁇ 90. ° made of material;
  • a vent hole is provided through the receiving portion and the support portion, an upper end surface of the vent hole is in contact with a lower end surface of the atomizing plane, and a lower end of the vent hole is in communication with the outside.
  • the height of the base body is 10-20 mm, and the height of the support portion should not be too high, and it should be smaller than the height of the receiving portion.
  • the upper end surface of the atomizing plane is protruded from the upper end surface of the receiving portion, and the protruding range is 0.1-0.5 mm.
  • the protruding height only needs to meet the requirement that the discrete metal droplets fly directly into the chamber without contacting the substrate.
  • the diameter of the receiving portion ranges from 10 to 100 mm, and the diameter of the circular groove ranges from 5 to 90 mm.
  • the rotation speed of the turntable is 10,000 rpm to 50,000 rpm.
  • the substrate is made of zirconium dioxide ceramic, silica glass, or stainless steel, and is not limited to the above-mentioned materials, as long as it meets a material with a thermal conductivity of less than 20 W / m / k.
  • the upper end face of the vent hole is less than or equal to the lower end face of the atomizing plane.
  • the purpose of the vent hole setting is to make the gas in the gap inside the turntable cleaner when vacuuming, and it is safer when the turntable rotates at high speed. Therefore, the larger the contact area between the upper end surface of the vent hole and the lower end surface of the atomizing plane, the better the stability of the atomizing plane when the vacuum is evacuated.
  • a concentric circular groove is provided on the atomizing plane.
  • the present invention has the following advantages:
  • the present invention uses a material with poor thermal conductivity, that is, less than 20W / m / k as a substrate, which can effectively reduce the heat transferred from the turntable to the high-speed motor and prevent it from affecting the normal operation of the high-speed motor;
  • the present invention adopts a material having good wettability with the atomized melt material, that is, a wetting angle of ⁇ 90 °, as the atomization plane, which is beneficial to the spread of the droplets on the atomization plane, so that the metal liquid can be fully atomized;
  • the atomizing plane and the inner wall of the substrate are fixed in an interference fit manner to ensure that the atomizing plane does not fly out when the turntable is rotated at high speed, thereby ensuring its safety;
  • applying the technical solution of the present invention can effectively improve the efficiency and quality of atomizing and pulverizing. Based on the above reasons, the present invention can be widely promoted in the field of drop-by-drop centrifugal atomization.
  • Fig. 1 is a structural schematic diagram I of the present invention.
  • FIG. 2 is a structural schematic diagram II of the present invention.
  • FIG. 3 is a schematic structural diagram of the present invention applied to a device for preparing ultrafine low melting point spherical metal powder by the atomization method.
  • FIG. 4 is a physical view of the fibrous split surface obtained during the milling process of the turntable of the present invention.
  • FIG. 5 is a scanning electron microscope image of a spherical metal powder prepared by a device for preparing an ultrafine low melting point spherical metal powder by an atomization method, in which a rotary disk adopts a structural form of the rotary disk of the present invention.
  • FIG. 6 is a structural diagram of a turntable provided with concentric circular grooves.
  • orientation words such as “front, back, up, down, left, right", “horizontal, vertical, vertical, horizontal”, “top, bottom” and the like indicate the orientation Or the positional relationship is usually based on the orientation or positional relationship shown in the drawings, only for the convenience of describing the present invention and simplifying the description. Unless otherwise stated, these orientation words do not indicate and imply the device or element referred to. It must have a specific orientation or be constructed and operated in a specific orientation, so it cannot be understood as a limitation on the scope of protection of the present invention: the orientation words “inside and outside” refer to the inside and outside relative to the outline of each component itself.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure Shows the spatial position relationship between one device or feature and other devices or features. It should be understood that spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device as described in the figures. For example, if a device in the figure is turned over, devices described as “above” or “above” other devices or constructions will be positioned “below the other devices or constructions” or “below” Under its device or structure. " Thus, the exemplary term “above” may include both directions “above” and “below”. The device can also be positioned in other different ways (rotated 90 degrees or at other orientations), and the relative description of space used here is explained accordingly.
  • a dedicated turntable structure for a droplet-by-drop centrifugal atomization method includes:
  • a base body which is composed of an upper receiving portion 1 and a lower supporting portion 2 in a longitudinal section of a "T-shaped" main structure.
  • the upper surface of the receiving portion 1 is provided with a circle having a certain radius coaxial with the center of the circle.
  • Shaped groove wherein, the base body is made of a material having a thermal conductivity of less than 20 W / m / k; for example, made of zirconia ceramic, silica glass, or stainless steel.
  • the height of the base body is 10-20 mm, and the height of the support portion 2 should not be too high, and it should be smaller than the height of the receiving portion 1.
  • the diameter of the receiving portion ranges from 10 to 100 mm, and the diameter of the circular groove ranges from 5 to 90 mm.
  • the rotation speed of the turntable is 10000rpm-50000rpm. If the diameter of the receiving part is 100mm, the rotation speed of the turntable can reach 10000rpm when driven by the motor.
  • the atomizing plane 3 is a disc structure.
  • the disc matches the circular groove and interference fits with the circular groove.
  • the atomizing plane 3 adopts a wetting angle with the atomizing melt. Made of materials less than 90 °.
  • stainless steel is selected as the base of the turntable and copper sheet is used as the atomizing plane.
  • the upper end surface of the atomizing plane 3 protrudes from the upper end surface of the receiving portion 1, and the protruding range is 0.1-0.5 mm.
  • the protruding height only needs to meet the requirement that the discrete metal droplets fly directly into the chamber without contacting the substrate.
  • Concentric circular grooves can also be provided on the atomizing plane 3, as shown in FIG.
  • a vent hole 4 is penetrated and provided in the receiving portion 1 and the support portion 2. An upper end surface of the vent hole 4 is in contact with a lower end surface of the atomizing plane 3. A lower end of the vent hole 4 is in communication with the outside. .
  • the upper end face of the vent hole 4 is less than or equal to the lower end face of the atomizing plane 3.
  • the purpose of the vent hole 4 is to clean the gas in the gap in the turntable when vacuuming, and to make the turntable safer when rotating at high speed Therefore, the larger the contact area between the upper end surface of the vent hole 4 and the lower end surface of the atomizing plane 3 is, the better the stability of the atomizing plane is when the vacuum is applied.
  • the structure of the turntable of the present invention is applied to a low-melt pressure bar pulse micro-hole spray device to prepare Sn63Pb37 composite metal powder.
  • the experimental device includes a casing 12, a crucible 24 disposed in the casing 12, and a powder collection area.
  • the powder collection area is disposed at the bottom of the casing 12, and the crucible 24 is disposed in the powder collection area.
  • the crucible 24 is provided with a transmission rod 22 connected to a piezoelectric ceramic 21 provided outside the casing 12.
  • the lower end of the transmission rod 22 faces a central hole at the bottom of the crucible 24.
  • the bottom of the hole is provided with a gasket 6 with a small hole, a crucible cavity 19 contains a metal melt, and the shell 12 is further provided with a crucible gas inlet pipe 20 that extends into the crucible 24.
  • the shell 12 The side wall is also provided with a mechanical pump 16 and a diffusion pump 17 in communication with the crucible 24.
  • the housing is also provided with a cavity inlet 15 and a cavity exhaust for the intake and exhaust of the cavity 7 ⁇ 18 ⁇ Air valve 18.
  • a thermocouple is provided inside the crucible 24, and a ring-shaped resistance heater 5 is provided outside the crucible 24.
  • the powder collection area includes a collection tray 11 provided at the bottom of the housing, a turntable 8 for atomizing metal droplets 14 connected to the motor 9 provided above the collection tray 11, and the turntable 8 Peripheral induction heating coil 13.
  • the melt material used in the experiment was Sn63Pb37 alloy, the atomizing plane 3 material was pure copper, and the base material was stainless steel.
  • the fibrous splitting of the metal liquid was achieved. Radial metal liquid lines were observed on the atomization plane, and the resulting metal powder had a fine particle size, a narrow particle size distribution, and a spherical shape. High degree, no satellite drops and hollow drops, good fluidity and spreadability, very high yield of fine powder (as shown in Figure 5).
  • the atomizing plane 3 is provided with a concentric groove 25 matching the gasket 6.
  • the gasket 6 is provided with a plurality of small holes
  • the liquid droplets formed through the plurality of small holes will not be aggregated under the action of the electric field during the drop process, and will drop into the concentric grooves in the center of the turntable and gradually diffuse Through the groove, because the centrifugal force is small at this time, the droplets will not be dispersed immediately, but will spread on the turntable in a circular shape.
  • the centrifugal force is spread to a certain range, the spread metal will be under the action of centrifugal force.
  • On the turntable they are dispersed in a fiber line to the edge of the turntable, and finally split into tiny droplets that fly out.
  • the microdroplets solidify without a container during the falling process, forming a metal powder, and land on the collection tray.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种逐液滴离心雾化法专用转盘结构,包括:基体,基体由上部的承接部(1)和下部的支撑部(2)构成的纵截面呈类"T型"的主体结构,承接部(1)上表面设有与其圆心同轴的具有一定半径的圆形凹槽;雾化平面(3),为圆盘结构,圆盘与圆形凹槽相匹配且与圆形凹槽过盈配合,雾化平面(3)采用与雾化熔体润湿角<90°的材料制成;通气孔(4),贯通设置在承接部(1)及支撑部(2)内,通气孔(4)的上端面与雾化平面(3)的下端面接触,通气孔(4)的下端与外界连通。由于采用分体式转盘结构,使用与雾化熔体有较好润湿性的材料作为转盘的雾化平面,使用导热性较差的材质作为转盘的基体,从而起到在雾化制粉过程中能较好的承接金属液滴,利于液滴的铺展雾化充分。

Description

一种逐液滴离心雾化法专用转盘结构 技术领域
本发明属于超细球形微粒子制备技术领域,具体而言,尤其涉及一种逐液滴离心雾化法专用转盘结构。
背景技术
传统离心雾化的接收装置主要使用一体式转盘结构,且转盘通常采用与雾化合金具有较差润湿性的材料,此时熔融合金与转盘表面之间的粘附性较小,这就导致转盘传导熔融液膜的动能十分有限,且当熔体温度及转速过高时,熔体易发生侧滑,严重影响雾化效率。
针对传统离心雾化中由于转盘结构的不适带来的雾化效果不佳,有必要重新设计一种转盘结构以解决上述问题。
发明内容
根据上述提出的转盘结构带来的雾化效果不佳的技术问题,而提供一种逐液滴离心雾化法专用转盘结构。本发明主要采用分体式转盘结构,雾化平面与基体分别选取不同材料的结构形式,使用与雾化熔体有较好润湿性的材料作为转盘的雾化平面,使用导热性较差的材质作为转盘的基体,在雾化平面下端面与转盘支撑部之间增设通气孔,从而起到在雾化制粉过程中能较好的承接金属液滴,利于液滴的铺展雾化充分。
本发明采用的技术手段如下:
一种逐液滴离心雾化法专用转盘结构,包括:
基体,所述基体由上部的承接部和下部的支撑部构成的纵截面呈类“T型”的主体结构,所述承接部上表面设有与其圆心同轴的具有一定半径的圆形凹槽;其中,所述基体采用导热性小于20W/m/k的材料制成;
雾化平面,为圆盘结构,所述圆盘与所述圆形凹槽相匹配且与所述圆形凹槽过盈配合,所述雾化平面采用与雾化熔体润湿角<90°的材料制成;
通气孔,贯通设置在所述承接部及所述支撑部内,所述通气孔的上端面与所述雾化平面的下端面接触,所述通气孔的下端与外界连通。
优选地,基体的高度为10-20mm,支撑部的高度不宜太高,小于承接部的高度为宜。
进一步地,所述雾化平面的上端面凸出于所述承接部上端面,凸出范围为0.1-0.5mm。凸出高度只要满足利于离散的金属液滴不接触基体,直接飞到腔室内即可。
进一步地,所述承接部的直径范围在10-100mm,所述圆形凹槽的直径范围在5-90mm。
进一步地,所述转盘的转速为10000rpm-50000rpm。
进一步地,所述基体采用二氧化锆陶瓷、二氧化硅玻璃或不锈钢制成,不局限于上述几种材质,只要满足导热性小于20W/m/k的材料均可。
进一步地,所述通气孔的上端面小于等于所述雾化平面的下端面,通气孔设置的目的是为了在抽真空时可以将转盘内间隙的气体抽的更干净,转盘高速旋转时更加安全,因此通气孔的上端面与雾化平面的下端面的接触面积越大抽真空时雾化平面的稳定性越好。
进一步地,所述雾化平面上还设有一个同心圆凹槽。
较现有技术相比,本发明具有以下优点:
1、本发明采用导热性较差即导热性小于20W/m/k的材料作为基体,可有效减少由转盘传递到高速电机上的热量,防止其影响高速电机正常工作;
2、本发明采用与雾化熔体材料具有良好润湿性即润湿角<90°的材料作为雾化平面,有利于液滴在雾化平面的铺展,从而可以使金属液雾化充分;
3、本发明的雾化平面与基体内壁采用过盈配合的方式固定,保证转盘在高速旋转时雾化平面不会飞出,确保其安全性;
4、本发明的雾化平面在安装到转盘上时,雾化平面与基体之间会存在气孔,当对腔体抽高真空时,就会使雾化平面两端产生极大的压力差,影响雾化平面的稳定性,因此在转盘基体的承接部和支撑部之间设置一通气孔将雾 化平面下端面与外界连通,使雾化平面两端压力保持一致,进一步保证高速离心雾化时转盘的稳定性和安全性。
综上,应用本发明的技术方案可有效提高雾化制粉效率及质量。基于上述理由本发明可在逐液滴离心雾化领域广泛推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的结构示意图Ⅰ。
图2为本发明的结构示意图Ⅱ。
图3为本发明应用到雾化法制备超细低熔点球形金属粉末的装置中的结构示意图。
图4为本发明的转盘在制粉过程中得到的纤维状分裂表面的实物图。
图5为雾化法制备超细低熔点球形金属粉末的装置制备的球形金属粉末的扫描电镜图,其中,转盘采用本发明转盘的结构形式。
图6为设有同心圆凹槽的转盘结构示意图。
图中:1、承接部;2、支撑部;3、雾化平面;4、通气孔;5、环形电阻加热器;6、带小孔的垫片;7、腔体;8、转盘;9、电机;10、金属粉末;11、收集盘;12、壳体;13、感应加热线圈;14、液滴;15、腔体进气管;16、扩散泵;17、机械泵;18、腔体排气阀;19、坩埚腔;20、坩埚进气管;21、压电陶瓷;22、传动杆;23、熔体;24、坩埚;25、同心圆凹槽。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当清楚,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员己知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任向具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制:方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、 “在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其位器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
如图1所示,一种逐液滴离心雾化法专用转盘结构,包括:
基体,所述基体由上部的承接部1和下部的支撑部2构成的纵截面呈类“T型”的主体结构,所述承接部1上表面设有与其圆心同轴的具有一定半径的圆形凹槽;其中,所述基体采用导热性小于20W/m/k的材料制成;如二氧化锆陶瓷、二氧化硅玻璃或不锈钢等等制成。优选地,基体的高度为10-20mm,支撑部2的高度不宜太高,小于承接部1的高度为宜。所述承接部的直径范围在10-100mm,所述圆形凹槽的直径范围在5-90mm。所述转盘的转速为10000rpm-50000rpm,如承接部直径在100mm,转盘转速在电机带动下可达到10000rpm。
雾化平面3,为圆盘结构,所述圆盘与所述圆形凹槽相匹配且与所述圆形凹槽过盈配合,所述雾化平面3采用与雾化熔体润湿角<90°的材料制成,如制备Sn-Pb合金时,选取不锈钢为转盘基体、铜片作为雾化平面。所述雾化平面3的上端面凸出于所述承接部1上端面,凸出范围为0.1-0.5mm。凸出高度只要满足利于离散的金属液滴不接触基体,直接飞到腔室内即可。还可以在所述雾化平面3上设置同心圆凹槽,如图6所示。
通气孔4,贯通设置在所述承接部1及所述支撑部2内,所述通气孔4的上端面与所述雾化平面3的下端面接触,所述通气孔4的下端与外界连通。
所述通气孔4的上端面小于等于所述雾化平面3的下端面,通气孔4设置的目的是为了在抽真空时可以将转盘内间隙的气体抽的更干净,转盘高速旋转时更加安全,因此通气孔4的上端面与雾化平面3的下端面的接触面积越大抽真空时雾化平面的稳定性越好。
如图2所示,在实际加工过程中,如选用承接部直径为20mm的转盘,在加工通气孔4时,通常使用45°钻头加工,因此在图中所示,会存在加工凸角。
实施例1
如图3所示,将本发明的转盘结构应用到低熔点压杆脉冲微孔喷射装置中,制备Sn63Pb37合金属粉末,
实验装置包括壳体12、设置于所述壳体12内的坩埚24和粉末收集区,所述粉末收集区置于所述壳体12的底部,所述坩埚24置于所述粉末收集区的上部,所述坩埚24上设有与设置在所述壳体12外部的压电陶瓷21相连的传动杆22,所述传动杆22的下端对着所述坩埚24底部的中心孔,所述中心孔底部装有带小孔的垫片6,坩埚腔19内盛有金属熔体,所述壳体12上还设有伸入于所述坩埚24内的坩埚进气管20,所述壳体12的侧壁上还设有与所述坩埚24相连通的机械泵16和扩散泵17,所述壳体上还设有用于腔体7进气排气的腔体进气口15和腔体排气阀18。所述坩埚24内部设有热电偶,所述坩埚24外部设有环形式电阻加热器5。
所述粉末收集区包括设置在所述壳体底部的收集盘11、设置于所述收集盘11上方的与电机9相连的用于雾化金属液滴14的转盘8和设置于所述转盘8外围的感应加热线圈13。
实验中所用熔体材料为Sn63Pb37合金,雾化平面3材料是纯铜,基体材料是不锈钢。通过该结构进行实验,如图4所示,实现了金属液的纤维状分裂,在雾化平面上可观察到呈放射状的金属液线,且得到的金属粉末粒径微细,粒度分布窄,球形度高,无卫星滴及空心滴,有良好流动性和铺展性,细粉收得率非常高(如图5所示)。
本申请的另一个结构中,雾化平面3上设有与垫片6匹配的同心圆凹槽25。当垫片6上设有多个小孔时,通过多个小孔形成的液滴在下落过程中, 在电场的作用下不会聚合,滴落在转盘中心的同心圆凹槽中并逐渐漫过凹槽,由于此时离心力较小,液滴不会被马上离散出去,而是会呈圆形铺展在转盘上,当铺展到一定范围离心力足够大时,铺展的金属会在离心力的作用下,在转盘上呈纤维线状离散至转盘边缘,最后分裂成微小的液滴飞出,微液滴在下落过程中无容器凝固,形成金属粉末,降落至收集盘上。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (7)

  1. 一种逐液滴离心雾化法专用转盘结构,其特征在于,包括:
    基体,所述基体由上部的承接部和下部的支撑部构成的纵截面呈类“T型”的主体结构,所述承接部上表面设有与其圆心同轴的具有一定半径的圆形凹槽;其中,所述基体采用导热性小于20W/m/k的材料制成;
    雾化平面,为圆盘结构,所述圆盘与所述圆形凹槽相匹配且与所述圆形凹槽过盈配合,所述雾化平面采用与雾化熔体润湿角<90°的材料制成;
    通气孔,贯通设置在所述承接部及所述支撑部内,所述通气孔的上端面与所述雾化平面的下端面接触,所述通气孔的下端与外界连通。
  2. 根据权利要求1所述的逐液滴离心雾化法专用转盘结构,其特征在于,所述雾化平面的上端面凸出于所述承接部上端面,凸出范围为0.1-0.5mm。
  3. 根据权利要求1所述的逐液滴离心雾化法专用转盘结构,其特征在于,所述承接部的直径范围在10-100mm,所述圆形凹槽的直径范围在5-90mm。
  4. 根据权利要求1所述的逐液滴离心雾化法专用转盘结构,其特征在于,所述转盘的转速为10000rpm-50000rpm。
  5. 根据权利要求1所述的逐液滴离心雾化法专用转盘结构,其特征在于,所述基体采用二氧化锆陶瓷、二氧化硅玻璃或不锈钢制成。
  6. 根据权利要求1所述的逐液滴离心雾化法专用转盘结构,其特征在于,所述通气孔的上端面小于等于所述雾化平面的下端面。
  7. 根据权利要求1所述的逐液滴离心雾化法专用转盘结构,其特征在于,所述雾化平面上还设有一个同心圆凹槽。
PCT/CN2019/107705 2018-09-25 2019-09-25 一种逐液滴离心雾化法专用转盘结构 WO2020063627A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3113748A CA3113748C (en) 2018-09-25 2019-09-25 Rotary disc structure special for drop-by-drop centrifugal atomization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811116502.5 2018-09-25
CN201811116502.5A CN109175392A (zh) 2018-09-25 2018-09-25 一种逐液滴离心雾化法专用转盘结构

Publications (1)

Publication Number Publication Date
WO2020063627A1 true WO2020063627A1 (zh) 2020-04-02

Family

ID=64909935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107705 WO2020063627A1 (zh) 2018-09-25 2019-09-25 一种逐液滴离心雾化法专用转盘结构

Country Status (3)

Country Link
CN (1) CN109175392A (zh)
CA (1) CA3113748C (zh)
WO (1) WO2020063627A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109175392A (zh) * 2018-09-25 2019-01-11 大连理工大学 一种逐液滴离心雾化法专用转盘结构
CN114713825A (zh) * 2022-04-12 2022-07-08 江苏天工科技股份有限公司 一种高效率的钛合金电极制备设备

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646175A (en) * 1970-09-21 1972-02-29 Rmi Co Method and apparatus for converting miscellaneous pieces of reactive metals to a usable form
US3963812A (en) * 1975-01-30 1976-06-15 Schlienger, Inc. Method and apparatus for making high purity metallic powder
JP2009062573A (ja) * 2007-09-05 2009-03-26 National Institute For Materials Science 遠心噴霧法に用いる回転ディスクとこれを用いた遠心噴霧法
CN104525961A (zh) * 2015-01-28 2015-04-22 大连理工大学 一种高效制备超细高熔点球形金属粉末的方法与装置
CN107116226A (zh) * 2017-03-30 2017-09-01 华南理工大学 一种组合雾化用离心旋转盘
CN109014227A (zh) * 2018-09-25 2018-12-18 大连理工大学 一种逐液滴离心雾化法制备超细球形金属粉末的装置及方法
CN109014226A (zh) * 2018-09-25 2018-12-18 大连理工大学 一种制备3d打印用球形金属粉末的装置及方法
CN109047786A (zh) * 2018-09-25 2018-12-21 大连理工大学 一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法
CN109047785A (zh) * 2018-09-25 2018-12-21 大连理工大学 一种逐液滴离心雾化法高效制备低熔点球形金属粉末的装置及方法
CN109093128A (zh) * 2018-09-25 2018-12-28 大连理工大学 一种逐液滴雾化法制备超细低熔点球形金属粉末的装置及方法
CN109093127A (zh) * 2018-09-25 2018-12-28 中国人民解放军陆军装甲兵学院 基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法
CN109128206A (zh) * 2018-09-25 2019-01-04 中国人民解放军陆军装甲兵学院 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法
CN109175392A (zh) * 2018-09-25 2019-01-11 大连理工大学 一种逐液滴离心雾化法专用转盘结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178335A (en) * 1977-12-21 1979-12-11 United Technologies Corporation Method of producing solid particles of metal
JPS5940054B2 (ja) * 1978-08-29 1984-09-27 株式会社佐藤技術研究所 融体から特定サイズの球形粒子を製造する方法
CN1676249A (zh) * 2005-04-25 2005-10-05 北京科技大学 一种雾化液滴变形制备片状金属粉末的方法及设备
CN105728738B (zh) * 2016-03-21 2018-03-06 孙颖 无极变速机械离心雾化装置
CN107350477A (zh) * 2017-08-30 2017-11-17 湖南顶立科技有限公司 一种粉末制备装置
CN107552803A (zh) * 2017-09-04 2018-01-09 泰州市启航石油分析仪器有限公司 机械离心雾化装置离心盘

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3646175A (en) * 1970-09-21 1972-02-29 Rmi Co Method and apparatus for converting miscellaneous pieces of reactive metals to a usable form
US3963812A (en) * 1975-01-30 1976-06-15 Schlienger, Inc. Method and apparatus for making high purity metallic powder
JP2009062573A (ja) * 2007-09-05 2009-03-26 National Institute For Materials Science 遠心噴霧法に用いる回転ディスクとこれを用いた遠心噴霧法
CN104525961A (zh) * 2015-01-28 2015-04-22 大连理工大学 一种高效制备超细高熔点球形金属粉末的方法与装置
CN107116226A (zh) * 2017-03-30 2017-09-01 华南理工大学 一种组合雾化用离心旋转盘
CN109014227A (zh) * 2018-09-25 2018-12-18 大连理工大学 一种逐液滴离心雾化法制备超细球形金属粉末的装置及方法
CN109014226A (zh) * 2018-09-25 2018-12-18 大连理工大学 一种制备3d打印用球形金属粉末的装置及方法
CN109047786A (zh) * 2018-09-25 2018-12-21 大连理工大学 一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法
CN109047785A (zh) * 2018-09-25 2018-12-21 大连理工大学 一种逐液滴离心雾化法高效制备低熔点球形金属粉末的装置及方法
CN109093128A (zh) * 2018-09-25 2018-12-28 大连理工大学 一种逐液滴雾化法制备超细低熔点球形金属粉末的装置及方法
CN109093127A (zh) * 2018-09-25 2018-12-28 中国人民解放军陆军装甲兵学院 基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法
CN109128206A (zh) * 2018-09-25 2019-01-04 中国人民解放军陆军装甲兵学院 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法
CN109175392A (zh) * 2018-09-25 2019-01-11 大连理工大学 一种逐液滴离心雾化法专用转盘结构

Also Published As

Publication number Publication date
CA3113748C (en) 2023-06-13
CA3113748A1 (en) 2020-04-02
CN109175392A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
WO2020063626A1 (zh) 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法
WO2020063623A1 (zh) 基于均匀液滴逐一雾化法制备球形金属粉末的装置及方法
WO2020063620A1 (zh) 一种逐液滴离心雾化法高效制备低熔点球形金属粉末的装置及方法
WO2020063625A1 (zh) 一种逐液滴离心雾化法制备超细球形金属粉末的装置及方法
WO2020063619A1 (zh) 一种逐液滴雾化法制备超细低熔点球形金属粉末的装置及方法
WO2020063622A1 (zh) 一种制备3d打印用球形金属粉末的装置及方法
WO2020063627A1 (zh) 一种逐液滴离心雾化法专用转盘结构
CN205414417U (zh) 一种等离子雾化制备增材制造用高性能粉末的装置
CN106378461A (zh) 一种制备3d打印球形金属粉末的双喷嘴雾化装置及方法
WO2020063624A1 (zh) 一种纤维状分裂模式下高效制备3d打印用球形金属粉末的装置及方法
WO2018201531A1 (zh) 一种带可旋涡流叶轮的阶梯腔式低频超声雾化喷头
US4207040A (en) Rotary atomization means for the production of metal powder
CN113059171A (zh) 一种用于高温金属离心雾化制粉的降温转盘
CN109382522A (zh) 一种无坩埚连续熔化离心雾化制球形钛粉的设备及方法
WO2010010627A1 (ja) 回転ルツボを使用した微粉末製造方法及びその装置
CN207479612U (zh) 一种真空电极感应熔化气雾化技术用棒料夹持装置
WO2022156229A1 (zh) 一种用于控制超微粉粒子成型的控制器
CN204256551U (zh) 用于颗粒相变过程高温辐射特性测量的气动悬浮加热装置
CN210280681U (zh) 一种制备金属粉末的装置
CN111975007B (zh) 气雾化喷嘴和雾化装置
CN219541703U (zh) 雾化工具头及超声雾化设备
CN113368517A (zh) 雾化喷盘、球形硼化硅陶瓷粉末及其制备方法、应用
CN107522206A (zh) 团聚球形二硅化钼粉末的制备方法
JP2019122925A (ja) 噴霧熱分解による微粒子製造装置
JPH0650505Y2 (ja) 遠心噴霧装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3113748

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865290

Country of ref document: EP

Kind code of ref document: A1