WO2020057554A1 - 一种单层聚酯薄膜及覆膜金属板 - Google Patents

一种单层聚酯薄膜及覆膜金属板 Download PDF

Info

Publication number
WO2020057554A1
WO2020057554A1 PCT/CN2019/106468 CN2019106468W WO2020057554A1 WO 2020057554 A1 WO2020057554 A1 WO 2020057554A1 CN 2019106468 W CN2019106468 W CN 2019106468W WO 2020057554 A1 WO2020057554 A1 WO 2020057554A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolyester
polyester film
specific
metal plate
polyester
Prior art date
Application number
PCT/CN2019/106468
Other languages
English (en)
French (fr)
Inventor
谢龙
陈红星
戴竞舸
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to US17/277,175 priority Critical patent/US20210371580A1/en
Priority to ES19862151T priority patent/ES2968746T3/es
Priority to EP19862151.8A priority patent/EP3854851B1/en
Publication of WO2020057554A1 publication Critical patent/WO2020057554A1/zh
Priority to PH12021550587A priority patent/PH12021550587A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/752Corrosion inhibitor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to the field of coated metal plates for food metal packaging, and more particularly to a single-layer polyester film and a coated metal plate.
  • Bisphenol A-containing coatings are widely used in the metal can industry. In recent years, due to environmental protection, energy consumption, and food safety issues, they have gradually attracted worldwide attention. The industry has been committed to finding qualified new materials to overcome the above problems.
  • Film-coated iron is a new material that directly bonds flexible polyester films and metal plates by hot-melt, bringing downstream users the following advantages: 1. Eliminating the coating process of the coating and achieving environmental protection in the process; 2. Food safety level is significantly improved on the basis of paint iron; 3. Comprehensive performance is greatly improved on the basis of paint iron; 4. Continuous can / cap forming process can be realized.
  • coated iron As an environmentally friendly and high-performance new material has become more and more important in the can-making industry.
  • some companies have applied coated iron products to the market.
  • the raw materials and film structure of the polyester film need to be optimized to meet the different requirements of each downstream process.
  • CN102463725A discloses a polyester film and a preparation method thereof.
  • the polyester film of the patent application has a three-layer (ABA) structure and is used in the field of electronic tags.
  • the film structure is characterized in that the two surface layers are resins of the same material, so it is difficult to meet various performance requirements such as adhesion to metal plates, contact with molds to meet molding processing, and contact with the contents of the tank, which easily leads to difficulties in balancing performance.
  • it is not suitable for the can manufacturing industry.
  • CN 106142782 B discloses an iron-clad heat-sealable polyester film and a preparation method thereof.
  • the patent is characterized in that a polyester film with a three-layer structure is laminated with a metal sheet, because the performance of the film is limited by its high crystallinity. It is not suitable for deep drawing and complex deformation methods due to insufficient processing performance.
  • CN 1839036 discloses a film-coated metal plate and a drawing can used for the same.
  • the patent covers a double-layer film and a metal thin plate, which easily causes defects such as delamination and peeling during the can-making process.
  • Ionomers serve as an intermediate bonding layer, and perform poorly during high temperature sterilization during filling.
  • CN102432984A discloses a cast polyester film and a metal plate and a metal can used for the same.
  • the patent uses a single layer of polyester film and a metal thin plate to cover, because the polyester has a relatively single modified monomer, which is not beneficial. Improve the overall performance of polyester film, and the raw material synthesis and film preparation process in this patent are not conducive to improving the food safety level of the film.
  • Film-coated metal plates need to have sufficient food safety protection. At the same time, they also need to meet the needs of deep-drawing, filling and acid-resistant high-temperature sterilization. In the prior art, only one or two performance requirements can be met. However, as the high-end requirements of the food and beverage packaging industry, the above three characteristics need to be met at the same time.
  • the purpose of the present invention is to provide a single-layer polyester film and a coated metal plate using the single-layer polyester film.
  • the coated metal plate has high-grade food safety characteristics, excellent resistance to deep-drawing and complex deformation. , Excellent corrosion resistance and many other advantages, can be widely used in the high-end food and beverage packaging container industry.
  • the present invention adopts the following technical solutions.
  • a copolyester which is a PET polyester modified by copolymerization of isophthalic acid, 1,4-cyclohexanedimethanol and neopentyl glycol, and contains a mass fraction of 800-2000 ppm of SiO 2 .
  • the SiO 2 is added in an in-situ polymerization manner.
  • the copolyester according to one aspect of the invention has a melting point between 200-240 ° C, preferably between 210-230 ° C.
  • the copolyester according to one aspect of the present invention has an intrinsic viscosity of 0.68-0.72 dL / g.
  • the intrinsic viscosity after solid-phase thickening is 0.75-0.78 dL / g.
  • a polyester film comprising the copolyester according to any of the embodiments herein.
  • the polyester film contains a single layer structure of the copolyester according to any of the embodiments herein.
  • the single-layer structure is prepared by a biaxial stretching method or a casting method.
  • the polyester film is a single-layer structure prepared by using a specific copolyester chip by a biaxial stretching method or a casting method, and the specific copolyester includes The mass fraction of SiO 2 added in the polymerization mode is 1200 ppm, and the specific copolyester is a PET polyester copolymerized by isophthalic acid, 1,4-cyclohexanedimethanol, and neopentyl glycol.
  • the melting point of the specific copolyester is between 200 and 240 ° C.
  • the melting point of the specific copolyester is between 210-230 ° C.
  • the intrinsic viscosity of the specific copolyester is 0.68-0.72 dL / g, and the intrinsic viscosity after solid-phase thickening is 0.75-0.78 dL / g.
  • a coated metal plate including a metal substrate and a polyester film according to any embodiment herein.
  • the polyester film is directly laminated on the surface of the metal substrate by a hot-melt method.
  • the metal substrate is selected from the group consisting of a chrome-plated steel plate, a tin-plated steel plate, a low-tin steel plate, a galvanized steel plate, a cold-rolled steel plate, a stainless steel plate, and an aluminum plate.
  • a metal container for packaging of high-end food and beverages is provided.
  • the metal container is made of a coated metal plate according to any embodiment herein.
  • the polyester film and the coated metal plate according to the present invention have the following three characteristics at the same time:
  • the polyester film has high food safety characteristics, has deep drawing resistance and Complex deformation processing performance, excellent corrosion resistance, can be widely used in high-end metal packaging industry.
  • Adding SiO 2 to the polymer through in situ polymerization uniformly improves the crystallization properties of the polyester film as a whole; and by improving the traditional method of adding SiO 2 in the form of master batches, high-melting resin is avoided from being added to the film.
  • the two points mentioned above significantly improve the overall performance of the polyester film, and significantly improve the complex processability and corrosion resistance of the coated iron including the film of the present invention.
  • the invention provides a copolyester, which is a PET polyester modified by copolymerization of isophthalic acid, 1,4-cyclohexanedimethanol and neopentyl glycol, and contains 800-2000ppm of SiO by mass. 2 .
  • the SiO 2 is added in an in-situ polymerization manner.
  • the mass fraction of SiO 2 in the copolyester is 1000-1500 ppm, and more preferably 1200 ppm.
  • in-situ polymerization addition refers to the addition of SiO 2 to the monomers of the synthetic copolyester (ie, terephthalic acid, ethylene glycol, isophthalic acid, 1,4-cyclohexanedimethanol, and neopentyl). Diols) are mixed together and then polymerized to produce the copolyester according to the present invention.
  • the copolyester of the present invention can be prepared by a conventional method for preparing a PET polyester.
  • the melting point of the copolyester of the present invention is between 200-240 ° C, preferably between 210-230 ° C.
  • the intrinsic viscosity of the copolymerized polyester of the present invention is 0.68-0.72 dL / g.
  • the intrinsic viscosity of the copolymerized polyester of the present invention after solid-phase thickening is 0.75-0.78 dL / g.
  • the intrinsic viscosity is measured using techniques commonly used in the art.
  • the copolyester of the present invention can be used for manufacturing a polyester film.
  • the polyester film of the present invention has a single-layer structure containing the copolyester described in any of the embodiments herein.
  • the copolyester contains 1200 ppm by weight of SiO 2 .
  • the polyester film of the present invention is prepared by using the copolyester chip by a biaxial stretching method or a casting method.
  • the invention also provides a coated metal plate, which comprises a metal substrate and a polyester film according to any of the embodiments herein.
  • the polyester film is directly laminated on the surface of the metal substrate by a hot-melt method.
  • the metal substrate of the present invention is selected from the group consisting of chrome-plated steel sheet, tin-plated steel sheet, low-tin steel sheet (tin plating amount ⁇ 1.1 g / m 2 ), galvanized steel sheet, cold-rolled steel sheet, stainless steel sheet, and aluminum sheet.
  • the present invention also provides a metal container used for high-end food and beverage packaging, the metal container is made of a coated metal plate according to any of the embodiments herein.
  • the specific copolymerized polyester chip isophthalic acid, 1,4-cyclohexanedimethanol, and neopentyl glycol are introduced into the system using terephthalic acid and ethylene glycol as raw materials to perform a copolymerization reaction.
  • in-situ polymerization was used to add SiO 2 to obtain a copolyester resin containing 1200 ppm of SiO 2 and an intrinsic viscosity of 0.72 dL / g.
  • the specific viscosity with an intrinsic viscosity of 0.78 dL / g was obtained by a solid-phase thickening method.
  • a single-layer polyester film is prepared by the biaxial stretching method by using the specific copolyester chip, and the manufacturing temperature is 260-270 ° C.
  • Preparation of coated metal sheet The prepared biaxially stretched polyester film is thermally bonded to a thin metal sheet surface of 0.10 to 0.50 mm under a pressure of 2 to 10 Kg and a temperature of 180 to 260 ° C to obtain a coated metal sheet.
  • a polyester film is provided.
  • the polyester film is a single-layer structure prepared by a biaxial stretching method using a specific copolyester chip.
  • the specific copolyester includes an in-situ polymerization method.
  • the mass fraction is 1200 ppm of SiO 2
  • the specific copolyester is a PET polyester copolymerized by isophthalic acid, 1,4-cyclohexanedimethanol, and neopentyl glycol.
  • the melting point of the specific copolyester is 220 ° C.
  • the specific viscosity of the specific copolyester is 0.78 dL / g.
  • the specific copolymerized polyester chip isophthalic acid, 1,4-cyclohexanedimethanol, neopentyl glycol are introduced into the system using terephthalic acid and ethylene glycol as raw materials for copolymerization reaction, and In the reaction, in-situ polymerization was used to add SiO 2 to obtain a copolyester resin containing 1200 ppm of SiO 2 and an intrinsic viscosity of 0.68 dL / g. Then, the specific viscosity with an intrinsic viscosity of 0.75 dL / g was obtained by a solid-phase thickening method. Copolyester with a melting point of 200 ° C.
  • a single-layer polyester film is prepared by a biaxial stretching method using the specific copolyester chip, and the manufacturing temperature is 250-270 ° C.
  • the prepared biaxially stretched polyester film is thermally bonded to a thin metal plate surface of 0.10 to 0.50 mm under a pressure of 2 to 10 Kg and a temperature of 180 to 260 ° C to obtain a coated metal plate.
  • a polyester film is provided.
  • the polyester film is a single-layer structure prepared by a biaxial stretching method using a specific copolyester chip.
  • the specific copolyester includes an in-situ polymerization method.
  • the mass fraction is 1200 ppm of SiO 2
  • the specific copolyester is a PET polyester copolymerized by isophthalic acid, 1,4-cyclohexanedimethanol, and neopentyl glycol.
  • the melting point of the specific copolyester is 200 ° C.
  • the specific viscosity of the specific copolyester is 0.75 dL / g.
  • the specific copolymerized polyester chip isophthalic acid, 1,4-cyclohexanedimethanol, neopentyl glycol are introduced into the system using terephthalic acid and ethylene glycol as raw materials for copolymerization reaction, and In the reaction, in-situ polymerization was used to add SiO 2 to obtain a copolyester resin containing 1200 ppm of SiO 2 and an intrinsic viscosity of 0.72 dL / g. Further, the specific viscosity with an intrinsic viscosity of 0.78 dL / g was obtained by a solid-phase thickening method. Copolyester with a melting point of 230 ° C.
  • a single-layer polyester film is prepared by the biaxial stretching method using the specific copolyester chip, and the manufacturing temperature is 260-280 ° C.
  • the method for preparing coated iron is the same as in Example 1.
  • a polyester film is provided.
  • the polyester film is a single-layer structure prepared by a biaxial stretching method using a specific copolyester chip.
  • the specific copolyester includes an in-situ polymerization method.
  • the mass fraction is 1200 ppm of SiO 2
  • the specific copolyester is a PET polyester copolymerized by isophthalic acid, 1,4-cyclohexanedimethanol, and neopentyl glycol.
  • the melting point of the specific copolyester is 230 ° C.
  • the specific viscosity of the specific copolyester is 0.78 dL / g.
  • the specific copolymerized polyester chip isophthalic acid, 1,4-cyclohexanedimethanol, neopentyl glycol are introduced into the system using terephthalic acid and ethylene glycol as raw materials for copolymerization reaction, and In the reaction, in-situ polymerization was used to add SiO 2 to obtain a copolyester resin containing 1200 ppm of SiO 2 and an intrinsic viscosity of 0.72 dL / g. Further, the specific viscosity with an intrinsic viscosity of 0.78 dL / g was obtained by a solid-phase thickening method. Copolyester with a melting point of 230 ° C.
  • a single-layer polyester film is prepared by the casting method by using the specific copolyester chip, and the manufacturing temperature is 260-280 ° C.
  • the method for preparing coated iron is the same as in Example 1.
  • a polyester film is provided.
  • the polyester film is a single-layer structure prepared by a casting method using specific copolyester chips, and the specific copolyester includes mass added by in-situ polymerization.
  • the number of parts is 1200 ppm of SiO 2
  • the specific copolyester is a PET polyester copolymerized by isophthalic acid, 1,4-cyclohexanedimethanol, and neopentyl glycol.
  • the melting point of the specific copolyester is 230 ° C.
  • the specific viscosity of the specific copolyester is 0.78 dL / g.
  • the specific copolymerized polyester chip isophthalic acid, 1,4-cyclohexanedimethanol, neopentyl glycol are introduced into the system using terephthalic acid and ethylene glycol as raw materials for copolymerization reaction, and In the reaction, in-situ polymerization was used to add SiO 2 to obtain a copolyester resin containing 1200 ppm of SiO 2 and an intrinsic viscosity of 0.68 dL / g. Then, the specific viscosity with an intrinsic viscosity of 0.75 dL / g was obtained by a solid-phase thickening method. Copolyester with a melting point of 200 ° C.
  • a single-layer polyester film is prepared by the casting method by using the specific copolyester chip, and the manufacturing temperature is 250-270 ° C.
  • the method for preparing coated iron is the same as in Example 1.
  • a polyester film is provided.
  • the polyester film is a single-layer structure prepared by a casting method using specific copolyester chips, and the specific copolyester includes mass added by in-situ polymerization.
  • the number of parts is 1200 ppm of SiO 2
  • the specific copolyester is a PET polyester copolymerized by isophthalic acid, 1,4-cyclohexanedimethanol, and neopentyl glycol.
  • the melting point of the specific copolyester is 200 ° C.
  • the specific viscosity of the specific copolyester is 0.75 dL / g.
  • the specific copolymerized polyester chip isophthalic acid, 1,4-cyclohexanedimethanol, neopentyl glycol are introduced into the system using terephthalic acid and ethylene glycol as raw materials for copolymerization reaction, and In the reaction, in-situ polymerization was used to add SiO 2 to obtain a copolyester resin containing 1200 ppm of SiO 2 and an intrinsic viscosity of 0.72 dL / g. Further, the specific viscosity with an intrinsic viscosity of 0.78 dL / g was obtained by a solid-phase thickening method. Copolyester with a melting point of 240 ° C.
  • the method for preparing coated iron is the same as in Example 1.
  • a single-layer polyester film is prepared by the casting method using the specific copolyester chip, and the manufacturing temperature is 260-270 ° C.
  • the method for preparing coated iron is the same as in Example 1.
  • a polyester film is provided.
  • the polyester film is a single-layer structure prepared by a casting method using specific copolyester chips, and the specific copolyester includes mass added by in-situ polymerization.
  • the number of parts is 1200 ppm of SiO 2
  • the specific copolyester is a PET polyester copolymerized by isophthalic acid, 1,4-cyclohexanedimethanol, and neopentyl glycol.
  • the melting point of the specific copolyester is 240 ° C.
  • the specific viscosity of the specific copolyester is 0.78 dL / g.
  • the specific copolymerized polyester chip isophthalic acid, 1,4-cyclohexanedimethanol, neopentyl glycol are introduced into the system using terephthalic acid and ethylene glycol as raw materials for copolymerization reaction, and In the reaction, in-situ polymerization was used to add SiO 2 to obtain a copolymerized polyester resin containing 800 ppm of SiO 2 and an intrinsic viscosity of 0.70 dL / g. Then, the specific viscosity with an intrinsic viscosity of 0.76 dL / g was obtained by a solid-phase thickening method. Copolyester with a melting point of 230 ° C.
  • a single-layer polyester film is prepared by the casting method using the specific copolyester chip, and the manufacturing temperature is 260-270 ° C.
  • the method for preparing coated iron is the same as in Example 1.
  • the specific copolymerized polyester chip isophthalic acid, 1,4-cyclohexanedimethanol, neopentyl glycol are introduced into the system using terephthalic acid and ethylene glycol as raw materials for copolymerization reaction, and In the reaction, in-situ polymerization was used to add SiO 2 to obtain a copolyester resin containing 2,000 ppm of SiO 2 and an intrinsic viscosity of 0.72 dL / g. Further, the specific viscosity with an intrinsic viscosity of 0.76 dL / g was obtained by a solid-phase thickening method. Copolyester with a melting point of 220 ° C.
  • a single-layer polyester film is prepared by the casting method using the specific copolyester chip, and the manufacturing temperature is 260-270 ° C.
  • the method for preparing coated iron is the same as in Example 1.
  • the polyester film prepared by the casting method is thermally bonded to the surface of a 0.19 mm chrome-plated steel plate under a pressure of 2 to 10 Kg and a temperature of 180 to 260 ° C to obtain a coated iron.
  • a composite three-layer film the upper resin is 3 ⁇ m PET resin, the middle layer is 14 ⁇ m of 265 ° C PET and 210 ° C PET blended resin (blending ratio is 7: 3), and the lower layer is 3 ⁇ m and the melting point is 210 ° C. Modified PET resin.
  • the prepared biaxially stretched polyester film is thermally laminated with a steel layer using a lower layer, and heat-laminated on a surface of a chrome-plated steel plate of 0.19 mm under a pressure of 2 to 10 Kg and a temperature of 180 to 260 ° C. iron.
  • the upper layer is a modified PET resin with a melting point of 210 ° C
  • the middle layer is a PET resin with a melting point of 265 ° C
  • the lower layer is a modified PET resin with a melting point of 210 ° C.
  • the prepared biaxially stretched polyester film is thermally bonded to the surface of a chrome-plated steel plate of 0.19 mm under a pressure of 2 to 10 Kg and a temperature of 180 to 260 ° C to obtain coated iron.
  • a composite two-layer film prepared by using a vinyl ionomer as an intermediate adhesive layer.
  • the prepared biaxially stretched polyester film is thermally bonded to the surface of a chrome-plated steel plate of 0.19 mm under a pressure of 2 to 10 Kg and a temperature of 180 to 260 ° C to obtain coated iron.
  • the coated metal plates obtained in Examples 1-8 and Comparative Examples 1-4 were respectively subjected to a drawing and drawing method (DRD: Draw and Redraw) according to the processing conditions shown below, and formed into a can body after three times of stamping.
  • the prepared 20 ⁇ m functional film is located inside and outside the tank at the same time.
  • Blanking diameter 172mm.
  • Blank holding force 4000kg
  • Mold component temperature before molding 55 ° C.
  • Blank holding force 3000kg
  • Mold component temperature before molding 55 ° C.
  • Mold component temperature before molding 55 ° C.
  • necking and flanging are carried out by the conventional method of can making.
  • Acid resistance performance The performance of corrosion resistance was evaluated by evaluating the acid resistance after the coated iron was washed in a can (type 691). Fill the coated tank with a 20g / L citric acid solution, cook it at 121 ° C for 60min after capping, and take out the sample after cooling to observe the occurrence of acid spots on the surface to evaluate the resistance of the coated iron. Acid performance.
  • Anti-sulfur performance After the coated iron is washed into a can (type 691), the anti-sulfur performance evaluation is used to represent the corrosion resistance evaluation.
  • the coated can was filled with a 1% Na 2 S solution, and after being capped, it was cooked at 121 ° C for 60 minutes. After cooling, the sample was taken out to observe the occurrence of sulfide spots on the surface to evaluate the resistance of the coated iron. Sulfur properties.
  • the single-layer polyester film prepared by using specific copolyester chips has good moldability in both film casting and biaxial stretching, and can produce thin polyester iron-clad films.
  • the polyester film has high food safety characteristics, at the same time, it has many advantages such as deep drawing resistance and complex deformation processing, excellent corrosion resistance, etc., and can be widely used in the high-end metal packaging industry.
  • Adding SiO 2 to the polymer through in situ polymerization uniformly improves the crystallization properties of the polyester film as a whole; and by improving the traditional method of adding SiO 2 in the form of master batches, high-melting resin is avoided from being added to the film.
  • the two points mentioned above significantly improve the overall performance of the polyester film, and significantly improve the complex processability and corrosion resistance of the coated iron including the film of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

一种聚酯薄膜以及覆膜金属板。聚酯薄膜为采用特定共聚聚酯切片通过双向拉伸法或流延法制备而成的单层结构,所述特定共聚聚酯包括通过原位聚合方式加入的质量份数为800-2000ppm的SiO 2,所述特定共聚聚酯为间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚改性的PET聚酯。覆膜金属板包括金属基板和如上所述的聚酯薄膜。该聚酯薄膜具有高度的食品安全特性,同时具有与金属板热粘合性优、耐深冲加工和复杂变形加工性优、耐腐蚀性优等诸多优点,可广泛用于中高端金属包装行业。

Description

一种单层聚酯薄膜及覆膜金属板 技术领域
本发明涉及食品金属包装用的覆膜金属板领域,更具体地涉及一种单层聚酯薄膜及覆膜金属板。
背景技术
含双酚A的涂料广泛用于金属制罐行业,近年来由于环保、能耗和食品安全问题逐渐受到全球的广泛关注,行业内一直致力于寻找合格的新材料以克服上述难题。
覆膜铁是一种通过热熔方式将柔性聚酯薄膜与金属板直接粘合在一起的新材料,为下游用户带来以下诸多优势:1、省去涂料的涂装环节,实现过程环保;2、食品安全级别在涂料铁基础上明显提升;3、综合性能在涂料铁基础上实现较大提高;4、可实现连续制罐/盖的成型加工。
随着环保政策日益趋严以及人们对食品安全的关注度提升,由于覆膜铁的上述诸多优点,覆膜铁作为一种环保高性能新材料在制罐行业的关注度也越来越高。近年来已经有一部分企业的覆膜铁产品进入市场应用。为满足不同用途的差异化需求,需要对聚酯薄膜的原料和膜层结构进行优化设计,以达到下游各工序的不同要求。
CN 102463725 A公开了一种聚酯薄膜及其制备方法,该专利申请的聚酯薄膜为三层(ABA)结构,用在电子标签领域。该薄膜结构的特点在于两个表层为相同材料的树脂,因此很难同时满足与金属板粘合、与模具接触满足成型加工、与罐内内容物接触等多种性能需求,容易导致性能兼顾困难而顾此失彼,不适合用于制罐行业。
CN 106142782 B公开了一种用于覆铁热封聚酯薄膜及其制备方法,该专利特点在于以三层结构的聚酯薄膜与金属薄板覆合,因该薄膜的性能 受限于其高结晶的下表层而导致加工成型性能不足,不适合用于深冲和复杂变形方式用途。
CN 1839036公开了一种覆膜金属板及其使用的拉拔罐,该专利以双层膜薄膜与金属薄板覆合,容易在制罐成型过程中产生分层、脱落等缺陷,其采用的乙烯基离聚物作为中间粘接层,在灌装高温杀菌时性能不良。
CN 102432984 A公开了一种流延聚酯薄膜及其使用的金属板合金属罐,该专利采用单层聚酯薄膜与金属薄板覆合,因其聚酯的改性单体相对单一而不利于提升聚酯薄膜的综合性能,而且该专利中原料合成和薄膜制备工艺不利于提升薄膜的食品安全等级。
覆膜金属板需要有充分的食品安全保障,同时,还需满足深冲加工、灌装耐酸碱盐高温杀菌等需求。在现有技术中,只能满足其中一项或两项性能需求,然而,作为食品饮料包装行业的高端需求需要以上三项特性同时满足。
发明内容
本发明的目的是提供一种单层聚酯薄膜以及采用单层聚酯薄膜的覆膜金属板,该覆膜金属板具有高等级食品安全特性、优异的耐深冲加工和复杂变形加工性优、优异的耐腐蚀性等诸多优点,可广泛用于中高端食品饮料包装容器行业。
为了实现上述目的,本发明采用以下技术方案。
根据本发明的一个方面,提供一种共聚聚酯,其为经间苯二甲酸、1,4-环己烷二甲醇与新戊二醇共聚改性的PET聚酯,并含有质量份数为800-2000ppm的SiO 2。优选地,所述SiO 2以原位聚合方式加入。
根据本发明的一个方面的共聚聚酯,所述共聚聚酯的熔点在200-240℃之间,优选在210-230℃之间。
根据本发明的一个方面的共聚聚酯,所述共聚聚酯的特性黏度为0.68-0.72dL/g。
根据本发明的一个方面的共聚聚酯,固相增黏后的特性黏度为0.75-0.78dL/g。
根据本发明的一个方面,提供一种聚酯薄膜,含有本文任一实施方案所述的共聚聚酯。优选地,所述聚酯薄膜含有单层结构的本文任一实施方案所述的共聚聚酯。优选地,所述单层结构采用双向拉伸法或流延法制备而成。
根据本发明的一个方面的聚酯薄膜,所述聚酯薄膜为采用特定共聚聚酯切片通过双向拉伸法或流延法制备而成的单层结构,所述特定共聚聚酯包括通过原位聚合方式加入的质量份数为1200ppm的SiO 2,所述特定共聚聚酯为间苯二甲酸、1,4-环己烷二甲醇与新戊二醇进行共聚改性的PET聚酯。
根据本发明的一个方面的聚酯薄膜中,所述特定共聚聚酯的熔点在200-240℃之间。
较佳地,所述特定共聚聚酯的熔点在210-230℃之间。
根据本发明的一个方面的聚酯薄膜,所述特定共聚聚酯的特性黏度为0.68-0.72dL/g,固相增黏后的特性黏度为0.75-0.78dL/g。
根据本发明的另一个方面,提供一种覆膜金属板,所述覆膜金属板包括金属基板和本文任一实施方案所述的聚酯薄膜。
根据本发明的另一个方面的覆膜金属板中,所述聚酯薄膜采用热熔方式直接覆合到金属基板表面上。
根据本发明的另一个方面的覆膜金属板中,所述金属基板选自镀铬钢板、镀锡钢板、低锡钢板、镀锌钢板、冷轧钢板、不锈钢板、铝板。
根据本发明的又一个方面,提供一种应用于中高端食品饮料包装用金属容器,所述金属容器采用本文任一实施方案所述的覆膜金属板制成。
现有技术相比,本发明具有如下有益技术效果:根据本发明的聚酯薄膜以及覆膜金属板同时具备如下三种特性:该聚酯薄膜具有高度的食品安全特性,具有耐深冲加工和复杂变形加工性能,具有耐腐蚀性优的特性,可广泛用于中高端金属包装行业。
聚合物中通过原位聚合加入SiO 2,从整体上均匀地改善聚酯薄膜的结晶性能;并且通过改善传统以母粒形式加入SiO 2的方式,避免了高熔点树脂加入薄膜中。上述两点使聚酯薄膜的综合性能得到明显提升,包含本发明薄膜的覆膜铁的耐复杂加工性、覆膜铁的耐腐蚀性能等得到显著提高。
具体实施方式
本发明提供一种共聚聚酯,其为经间苯二甲酸、1,4-环己烷二甲醇与新戊二醇共聚改性的PET聚酯,并含有质量份数为800-2000ppm的SiO 2。优选地,所述SiO 2以原位聚合方式加入。优选地,SiO 2在共聚聚酯中的质量份数为1000-1500ppm,更优选为1200ppm。本文所述的“原位聚合加入”指将SiO 2与合成共聚聚酯的单体(即对苯二甲酸、乙二醇、间苯二甲酸、1,4-环己烷二甲醇以及新戊二醇)一起混合,然后进行聚合,制造得到本发明所述的共聚聚酯。可采用常规的制备PET聚酯的方法制备本发明的共聚聚酯。优选地,本发明共聚聚酯的熔点在200-240℃之间,优选在210-230℃之间。优选地,本发明共聚聚酯的特性黏度为0.68-0.72dL/g。优选地,本发明共聚聚酯固相增黏后的特性黏度为0.75-0.78dL/g。
本发明中,特性黏度采用本领域通用的技术进行测量。
本发明的共聚聚酯可用于制造聚酯薄膜。在本发明的一个实施方案中,本发明的聚酯薄膜为单层结构,其含有本文任一实施方案所述的共聚聚酯。在特别优选的实施方案中,该共聚聚酯中含有质量份数为1200ppm的SiO 2。优选地,本发明的聚酯薄膜采用所述共聚聚酯切片通过双向拉伸法或流延法制备而成。
本发明还提供一种覆膜金属板,所述覆膜金属板包括金属基板和本文任一实施方案所述的聚酯薄膜。在优选的实施方案中,所述聚酯薄膜采用热熔方式直接覆合到金属基板表面上。本发明的金属基板选自镀铬钢板、镀锡钢板、低锡钢板(镀锡量≤1.1g/m 2)、镀锌钢板、冷轧钢板、不锈钢板和铝板。
本发明还提供一种应用于中高端食品饮料包装用金属容器,所述金属容器采用本文任一实施方案所述的覆膜金属板制成。
以下在具体实施方式中通过对非限制性实施例所作的详细描述,本发明的目的、特征、和优点将变得更清楚明显。其内容足以使本领域技术人员了解和实施本发明。
实施例1
一种采用单层聚酯薄膜的覆膜铁生产方法,采用特定的共聚聚酯切片进行聚酯薄膜的制备。
所述特定的共聚聚酯切片:以对苯二甲酸和乙二醇为主原料的体系中引入间苯二甲酸、1,4-环己烷二甲醇和新戊二醇进行共聚反应,在共聚反应中采用原位聚合方式加入SiO 2,得到含有1200ppm的SiO 2、特性黏度为0.72dL/g的共聚聚酯树脂,进而通过固相增粘方式得到特性黏度为0.78dL/g的所述特定的共聚聚酯,熔点为220℃。
采用所述特定的共聚聚酯切片通过双向拉伸方法制备单层聚酯薄膜,制造温度为260-270℃。
覆膜金属板的制备:将制备好的双向拉伸聚酯薄膜在压力2~10Kg温度180~260℃下热贴合在0.10~0.50mm的薄金属板表面制得覆膜金属板。
根据本实施例,提供一种聚酯薄膜,该聚酯薄膜为采用特定共聚聚酯切片通过双向拉伸法制备而成的单层结构,所述特定共聚聚酯包括通过原位聚合方式加入的质量份数为1200ppm的SiO 2,所述特定共聚聚酯为间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚改性的PET聚酯。
所述特定共聚聚酯的熔点在220℃。
所述特定共聚聚酯的特性黏度为0.78dL/g。
实施例2
一种单层共聚聚酯覆铁膜的生产方法,采用特定的共聚聚酯切片进行聚酯薄膜的制备。
所述特定的共聚聚酯切片:以对苯二甲酸和乙二醇为主原料的体系中引入间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚反应,在共聚反应中采用原位聚合方式加入SiO 2,得到含有1200ppm的SiO 2、特性黏度为0.68dL/g的共聚聚酯树脂,进而通过固相增粘方式得到特性黏度为0.75dL/g的所述特定的共聚聚酯,熔点为200℃。
采用所述特定的共聚聚酯切片通过双向拉伸方法制备单层聚酯薄膜, 制造温度为250-270℃。
覆膜金属板的制备:将制备好的双向拉伸聚酯薄膜在压力2~10Kg、温度180~260℃下热贴合在0.10~0.50mm的薄金属板表面制得覆膜金属板。
根据本实施例,提供一种聚酯薄膜,该聚酯薄膜为采用特定共聚聚酯切片通过双向拉伸法制备而成的单层结构,所述特定共聚聚酯包括通过原位聚合方式加入的质量份数为1200ppm的SiO 2,所述特定共聚聚酯为间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚改性的PET聚酯。
所述特定共聚聚酯的熔点在200℃。
所述特定共聚聚酯的特性黏度为0.75dL/g。
实施例3
一种单层共聚聚酯覆铁膜的生产方法,采用特定的共聚聚酯切片进行聚酯薄膜的制备。
所述特定的共聚聚酯切片:以对苯二甲酸和乙二醇为主原料的体系中引入间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚反应,在共聚反应中采用原位聚合方式加入SiO 2,得到含有1200ppm的SiO 2、特性黏度为0.72dL/g的共聚聚酯树脂,进而通过固相增粘方式得到特性黏度为0.78dL/g的所述特定的共聚聚酯,熔点为230℃。
采用所述特定的共聚聚酯切片通过双向拉伸方法制备单层聚酯薄膜,制造温度为260-280℃。
覆膜铁的制备方法同实施例1。
根据本实施例,提供一种聚酯薄膜,该聚酯薄膜为采用特定共聚聚酯切片通过双向拉伸法制备而成的单层结构,所述特定共聚聚酯包括通过原位聚合方式加入的质量份数为1200ppm的SiO 2,所述特定共聚聚酯为间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚改性的PET聚酯。
所述特定共聚聚酯的熔点在230℃。
所述特定共聚聚酯的特性黏度为0.78dL/g。
实施例4
一种单层共聚聚酯覆铁膜的生产方法,采用特定的共聚聚酯切片进行聚酯薄膜的制备。
所述特定的共聚聚酯切片:以对苯二甲酸和乙二醇为主原料的体系中引入间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚反应,在共聚反应中采用原位聚合方式加入SiO 2,得到含有1200ppm的SiO 2、特性黏度为0.72dL/g的共聚聚酯树脂,进而通过固相增粘方式得到特性黏度为0.78dL/g的所述特定的共聚聚酯,熔点为230℃。
采用所述特定的共聚聚酯切片通过流延法制备单层聚酯薄膜,制造温度为260-280℃。
覆膜铁的制备方法同实施例1。
根据本实施例,提供一种聚酯薄膜,该聚酯薄膜为采用特定共聚聚酯切片通过流延法制备而成的单层结构,所述特定共聚聚酯包括通过原位聚合方式加入的质量份数为1200ppm的SiO 2,所述特定共聚聚酯为间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚改性的PET聚酯。
所述特定共聚聚酯的熔点在230℃。
所述特定共聚聚酯的特性黏度为0.78dL/g。
实施例5
一种单层共聚聚酯覆铁膜的生产方法,采用特定的共聚聚酯切片进行聚酯薄膜的制备。
所述特定的共聚聚酯切片:以对苯二甲酸和乙二醇为主原料的体系中引入间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚反应,在共聚反应中采用原位聚合方式加入SiO 2,得到含有1200ppm的SiO 2、特性黏度为0.68dL/g的共聚聚酯树脂,进而通过固相增粘方式得到特性黏度为0.75dL/g的所述特定的共聚聚酯,熔点为200℃。
采用所述特定的共聚聚酯切片通过流延法制备单层聚酯薄膜,制造温度为250-270℃。
覆膜铁的制备方法同实施例1。
根据本实施例,提供一种聚酯薄膜,该聚酯薄膜为采用特定共聚聚酯 切片通过流延法制备而成的单层结构,所述特定共聚聚酯包括通过原位聚合方式加入的质量份数为1200ppm的SiO 2,所述特定共聚聚酯为间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚改性的PET聚酯。
所述特定共聚聚酯的熔点在200℃。
所述特定共聚聚酯的特性黏度为0.75dL/g。
实施例6
一种单层共聚聚酯覆铁膜的生产方法,采用特定的共聚聚酯切片进行聚酯薄膜的制备。
所述特定的共聚聚酯切片:以对苯二甲酸和乙二醇为主原料的体系中引入间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚反应,在共聚反应中采用原位聚合方式加入SiO 2,得到含有1200ppm的SiO 2、特性黏度为0.72dL/g的共聚聚酯树脂,进而通过固相增粘方式得到特性黏度为0.78dL/g的所述特定的共聚聚酯,熔点为240℃。
覆膜铁的制备方法同实施例1。
采用所述特定的共聚聚酯切片通过流延法制备单层聚酯薄膜,制造温度为260-270℃。
覆膜铁的制备方法同实施例1。
根据本实施例,提供一种聚酯薄膜,该聚酯薄膜为采用特定共聚聚酯切片通过流延法制备而成的单层结构,所述特定共聚聚酯包括通过原位聚合方式加入的质量份数为1200ppm的SiO 2,所述特定共聚聚酯为间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚改性的PET聚酯。
所述特定共聚聚酯的熔点在240℃。
所述特定共聚聚酯的特性黏度为0.78dL/g。
实施例7
一种单层共聚聚酯覆铁膜的生产方法,采用特定的共聚聚酯切片进行聚酯薄膜的制备。
所述特定的共聚聚酯切片:以对苯二甲酸和乙二醇为主原料的体系中 引入间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚反应,在共聚反应中采用原位聚合方式加入SiO 2,得到含有800ppm的SiO 2、特性黏度为0.70dL/g的共聚聚酯树脂,进而通过固相增粘方式得到特性黏度为0.76dL/g的所述特定的共聚聚酯,熔点为230℃。
采用所述特定的共聚聚酯切片通过流延法制备单层聚酯薄膜,制造温度为260-270℃。
覆膜铁的制备方法同实施例1。
实施例8
一种单层共聚聚酯覆铁膜的生产方法,采用特定的共聚聚酯切片进行聚酯薄膜的制备。
所述特定的共聚聚酯切片:以对苯二甲酸和乙二醇为主原料的体系中引入间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚反应,在共聚反应中采用原位聚合方式加入SiO 2,得到含有2000ppm的SiO 2、特性黏度为0.72dL/g的共聚聚酯树脂,进而通过固相增粘方式得到特性黏度为0.76dL/g的所述特定的共聚聚酯,熔点为220℃。
采用所述特定的共聚聚酯切片通过流延法制备单层聚酯薄膜,制造温度为260-270℃。
覆膜铁的制备方法同实施例1。
比较例1
一种采用IPA改性的熔点为210℃的PET树脂,粘度为0.65dL/g,采用流延法制备而成的单层聚酯薄膜,在薄膜的其中一个侧面通过加入SiO 2含量为30000ppm含硅切片,使得所述单层聚酯薄膜的单侧面含有1800ppm的SiO 2,以达到开口剂的效果。
覆膜铁的制备:将流延法制备好的聚酯薄膜在压力2~10Kg温度180~260℃下热贴合在0.19mm的镀铬钢板表面制得覆膜铁。
比较例2
一种复合三层薄膜,上层树脂为3μm的PET树脂,中间层为14μm的265℃的PET与210℃的PET共混的树脂(共混比例为7:3),下层为3μm熔点为210℃的改性PET树脂。
覆膜铁的制备:将制备好的双向拉伸聚酯薄膜,采用下层与钢板热覆合,在压力2~10Kg温度180~260℃下热贴合在0.19mm的镀铬钢板表面制得覆膜铁。
比较例3
一种ABA结构的复合三层薄膜,上层树脂为熔点为210℃的改性PET树脂,中间层为熔点为265℃的PET树脂,下层为熔点为210℃的改性PET树脂,三层厚度比例为1:8:1。
覆膜铁的制备:将制备好的双向拉伸聚酯薄膜在压力2~10Kg温度180~260℃下热贴合在0.19mm的镀铬钢板表面制得覆膜铁。
比较例4
一种乙烯基离聚体作为中间粘接层制备的复合两层薄膜。
覆膜铁的制备:将制备好的双向拉伸聚酯薄膜在压力2~10Kg温度180~260℃下热贴合在0.19mm的镀铬钢板表面制得覆膜铁。
测试例
分别采用实施例1-8和比较例1-4获得的覆膜金属板,根据以下所示的加工条件进行冲拔拉深法(DRD:Draw and Redraw)加工,经过三次冲压成型为罐体。所制备得到的20μm功能膜同时处于罐内、罐外两侧。
成型加工条件(冲拔拉深法)
1.落料直径:172mm。
2.第一道加工条件
冲头直径:114.5mm;
模具间隙:0.36mm;
压边力:4000kg;
成型前模具组件温度:55℃。
3.第二道加工条件
冲头直径:88mm;
模具间隙:0.4mm;
压边力:3000kg;
成型前模具组件温度:55℃。
4.第三道加工条件
冲头直径:65.3mm;
模具间隙:0.43mm;
压边力:2000kg;
成型前模具组件温度:55℃。
成型后采用制罐的常规方法进行缩颈翻边加工。
采用以下所示方法评价上述方法所制备的罐子。其结果见表1和2。
(1)耐深冲制罐性能
用肉眼评价上述成形加工条件下所制备的冲拔拉伸罐的加工工序中所覆合与钢板表面的树脂膜层是否发生剥离,直到最终工序尚未发生剥离的状态为优。
(2)抗酸性能:将覆膜铁冲罐(罐型691)后以抗酸性能评价来代表耐蚀性能评价。将覆膜罐灌装20g/L的柠檬酸溶液,封盖后在121℃温度条件下蒸煮60min,待冷却后将试样取出观察表面产生酸化斑的情况,以此来评价覆膜铁的抗酸性能。
(3)抗硫性能:将覆膜铁冲罐(罐型691)后以抗硫性能评价来代表耐蚀性能评价。将覆膜罐灌装1%的Na 2S溶液,封盖后在121℃温度条件下蒸煮60min,待冷却后将试样取出观察表面产生硫化斑的情况,以此来评价覆膜铁的抗硫性能。
(4)食品安全性:根据欧盟法规EU No 10/2011,参考EN 1186:Part2、Part3、Part14,测试覆膜铁产品的总迁移量。取覆膜铁样板10cm*10cm,在相关模拟溶液中进行总迁移量测试,根据各覆膜铁样板在测试结果的总迁移量来评价食品安全性,总迁移量越少,食品安全性越高。
表1:食品安全性评价结果
Figure PCTCN2019106468-appb-000001
表2:耐深冲成型性、耐腐蚀性评价结果
Figure PCTCN2019106468-appb-000002
Figure PCTCN2019106468-appb-000003
注:表1中╳表示较差;△表示一般;○表示较好;◎表示很好;-表示不具备评价的条件。
上述八个实施例中,采用特定共聚聚酯切片制备的单层聚酯薄膜,在流延法制膜和双向拉伸法制膜的成型性都良好,能制备出厚度较薄的聚酯覆铁膜。该聚酯薄膜具有高度的食品安全特性,同时,具有耐深冲加工和复杂变形加工性优、耐腐蚀性优等诸多优点,可广泛用于中高端金属包装行业。
聚合物中通过原位聚合加入SiO 2,从整体上均匀地改善聚酯薄膜的结晶性能;并且通过改善传统以母粒形式加入SiO 2的方式,避免了高熔点树脂加入薄膜中。上述两点使聚酯薄膜的综合性能得到明显提升,包含本发明薄膜的覆膜铁的耐复杂加工性、覆膜铁的耐腐蚀性能等得到显著提高。
最后,需要指出的是,虽然本发明已参照的具体实施例来描述,但是本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,而并非用作为对本发明的限定,在不脱离本发明构思的前提下还可以作出各种等效的变化或替换,因此,只要在本发明的实质精神范围内对上述实施例的变化、变型都将落在本发明的权利要求书范围内。

Claims (15)

  1. 一种共聚聚酯,其特征在于,所述共聚聚酯为经间苯二甲酸、1,4-环己烷二甲醇与新戊二醇共聚改性的PET聚酯,且含有通过原位聚合方式加入的质量份数为800-2000ppm的SiO 2
  2. 如权利要求1所述的共聚聚酯,其特征在于,所述共聚聚酯的熔点在200-240℃之间。
  3. 如权利要求2所述的共聚聚酯,其特征在于,所述共聚聚酯的熔点在210-230℃之间。
  4. 如权利要求1所述的共聚聚酯,所述共聚聚酯的特性黏度为0.68-0.72dL/g,和/或固相增黏后的特性黏度为0.75-0.78dL/g。
  5. 一种聚酯薄膜,其特征在于,其特征在于,所述聚酯薄膜含有权利要求1所述的共聚聚酯。
  6. 如权利要求5所述的聚酯薄膜,其特征在于,所述聚酯薄膜为由特定共聚聚酯切片形成的单层结构,所述特定共聚聚酯包括通过原位聚合方式加入的质量份数为1200ppm的SiO 2
    所述特定共聚聚酯为间苯二甲酸、1,4-环己烷二甲醇、新戊二醇进行共聚改性的PET聚酯。
  7. 如权利要求6所述的聚酯薄膜,其特征在于,所述特定共聚聚酯的熔点在200-240℃之间。
  8. 如权利要求7所述的聚酯薄膜,其特征在于,所述特定共聚聚酯的 熔点在210-230℃之间。
  9. 如权利要求6所述的聚酯薄膜,其特征在于,所述特定共聚聚酯的特性黏度为0.68-0.72dL/g,和/或固相增黏后的特性黏度为0.75-0.78dL/g。
  10. 权利要求5所述的聚酯薄膜的制备方法,其特征在于,所述方法包括由所述共聚聚酯通过双向拉伸法或流延法制备而成,其中,所述聚酯薄膜的制备温度为250-280℃。
  11. 一种覆膜金属板,其特征在于:所述覆膜金属板包括金属基板和如权利要求5-9中任一项所述的聚酯薄膜。
  12. 如权利要求11所述的覆膜金属板,其特征在于:所述金属基板选自镀铬钢板、镀锡钢板、低锡钢板、镀锌钢板、冷轧钢板、不锈钢板和铝板。
  13. 如权利要求11所述的覆膜金属板,其特征在于:所述金属基板厚0.10~0.50mm。
  14. 权利要求11所述的覆膜金属板的制造方法,其特征在于,所述方法包括,采用热熔方式在压力2~10Kg、温度180~260℃下将所述聚酯薄膜直接热覆合到金属基板表面上。
  15. 一种应用于中高端食品饮料包装用金属容器,其特征在于,所述金属容器采用如权利要求11-13中任一项所述的覆膜金属板制成。
PCT/CN2019/106468 2018-09-19 2019-09-18 一种单层聚酯薄膜及覆膜金属板 WO2020057554A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/277,175 US20210371580A1 (en) 2018-09-19 2019-09-18 Single-layer polyester thin film and coated metal plate
ES19862151T ES2968746T3 (es) 2018-09-19 2019-09-18 Película delgada de poliéster de una sola capa y placa metálica revestida
EP19862151.8A EP3854851B1 (en) 2018-09-19 2019-09-18 Single-layer polyester thin film and coated metal plate
PH12021550587A PH12021550587A1 (en) 2018-09-19 2021-03-17 Single-layer polyester thin film and coated metal plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811090612.9A CN110920170A (zh) 2018-09-19 2018-09-19 一种单层聚酯薄膜及覆膜金属板
CN201811090612.9 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020057554A1 true WO2020057554A1 (zh) 2020-03-26

Family

ID=69855872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106468 WO2020057554A1 (zh) 2018-09-19 2019-09-18 一种单层聚酯薄膜及覆膜金属板

Country Status (6)

Country Link
US (1) US20210371580A1 (zh)
EP (1) EP3854851B1 (zh)
CN (1) CN110920170A (zh)
ES (1) ES2968746T3 (zh)
PH (1) PH12021550587A1 (zh)
WO (1) WO2020057554A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1616518A (zh) * 2004-09-23 2005-05-18 上海交通大学 利用纳米二氧化硅原位制备快速结晶型聚酯的方法
CN1839036A (zh) 2003-09-08 2006-09-27 东洋制罐株式会社 覆盖树脂的金属板及其使用的拉拔罐
US20110008635A1 (en) * 2009-07-13 2011-01-13 Holger Kliesch Single- or multilayer, stabilized polyester film
CN102070882A (zh) * 2009-11-24 2011-05-25 北京奥瑞金新美制罐有限公司 用于贴合在金属薄板表面的聚酯薄膜及其制造方法
CN102432984A (zh) 2011-09-02 2012-05-02 奥瑞金包装股份有限公司 聚酯薄膜、其制备方法及用途
CN102463725A (zh) 2010-11-16 2012-05-23 上海邦凯塑胶科技有限公司 一种聚酯薄膜及其制造方法
CN103387660A (zh) * 2012-05-11 2013-11-13 天津华新盈聚酯材料科技有限公司 一种收缩膜用聚酯切片的制备方法
CN105985612A (zh) * 2015-01-29 2016-10-05 宝山钢铁股份有限公司 用于与金属表面直接进行热复合的聚酯薄膜及其制备方法
CN106142782A (zh) 2015-04-13 2016-11-23 树业环保科技股份有限公司 一种覆铁热封聚酯薄膜及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0513975B1 (en) * 1991-03-15 1996-01-17 Mizusawa Industrial Chemicals, Ltd. Amorphous silica-type filler
US6323271B1 (en) * 1998-11-03 2001-11-27 Arteva North America S.A.R.L. Polyester resins containing silica and having reduced stickiness
US6765070B2 (en) * 2001-05-18 2004-07-20 Mitsubishi Chemical Corporation Copolymerized polyester resin composition and stretched film
KR100600638B1 (ko) * 2002-04-11 2006-07-13 토요 보세키 가부시기가이샤 비결정성 폴리에스테르 칩과 그의 제조방법 및 비결정성폴리에스테르 칩의 보존방법
JP5334431B2 (ja) * 2008-03-17 2013-11-06 三菱樹脂株式会社 易接着性ポリエステルフィルム
CN102964574B (zh) * 2012-12-07 2015-06-17 富维薄膜(山东)有限公司 改性聚酯及其制备方法
CN103665352B (zh) * 2013-12-27 2015-10-28 天津万华股份有限公司 环保型覆铁专用改性聚酯切片的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1839036A (zh) 2003-09-08 2006-09-27 东洋制罐株式会社 覆盖树脂的金属板及其使用的拉拔罐
CN1616518A (zh) * 2004-09-23 2005-05-18 上海交通大学 利用纳米二氧化硅原位制备快速结晶型聚酯的方法
US20110008635A1 (en) * 2009-07-13 2011-01-13 Holger Kliesch Single- or multilayer, stabilized polyester film
CN102070882A (zh) * 2009-11-24 2011-05-25 北京奥瑞金新美制罐有限公司 用于贴合在金属薄板表面的聚酯薄膜及其制造方法
CN102463725A (zh) 2010-11-16 2012-05-23 上海邦凯塑胶科技有限公司 一种聚酯薄膜及其制造方法
CN102432984A (zh) 2011-09-02 2012-05-02 奥瑞金包装股份有限公司 聚酯薄膜、其制备方法及用途
CN103387660A (zh) * 2012-05-11 2013-11-13 天津华新盈聚酯材料科技有限公司 一种收缩膜用聚酯切片的制备方法
CN105985612A (zh) * 2015-01-29 2016-10-05 宝山钢铁股份有限公司 用于与金属表面直接进行热复合的聚酯薄膜及其制备方法
CN106142782A (zh) 2015-04-13 2016-11-23 树业环保科技股份有限公司 一种覆铁热封聚酯薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3854851A4

Also Published As

Publication number Publication date
ES2968746T3 (es) 2024-05-13
EP3854851B1 (en) 2024-01-03
EP3854851A4 (en) 2021-09-29
EP3854851A1 (en) 2021-07-28
CN110920170A (zh) 2020-03-27
US20210371580A1 (en) 2021-12-02
PH12021550587A1 (en) 2021-11-29

Similar Documents

Publication Publication Date Title
CN110920169A (zh) 一种单层共聚聚酯覆铁膜的制备方法及其覆膜金属板
JPS60170532A (ja) 絞りしごき罐の製造方法
WO2020057554A1 (zh) 一种单层聚酯薄膜及覆膜金属板
WO2020057557A1 (zh) 一种双层聚酯薄膜及覆膜金属板
JPH0332835A (ja) 絞りしごき罐
CN112654665A (zh) 聚酯膜及其制造方法
WO2020057553A1 (zh) 一种聚酯覆铁膜以及覆膜金属板
CN110920171A (zh) 一种聚酯覆铁膜的制备方法以及覆膜金属容器
JPH0631362A (ja) 密着性の優れたラミネート鋼板製多段絞り缶の製造方法
JP3849826B2 (ja) 成形加工用フィルム被覆金属板
JP5605012B2 (ja) 容器用樹脂被覆金属板
JP3601165B2 (ja) ポリエステル系フィルム、ラミネート金属板および金属容器
WO2020057586A1 (zh) 一种耐蒸煮变色覆铁膜及其覆膜金属板
CN110920166B (zh) 一种双层聚酯薄膜的制备方法以及覆膜金属板
JPH1044354A (ja) ポリエステル系フィルム、ラミネート金属板、その製造方法および金属容器
JP3826450B2 (ja) 製缶加工用フィルム被覆金属板の製造方法及び印刷缶の製造方法
CN110920184A (zh) 一种共混聚酯覆铁膜的制备方法及其覆膜金属板
JP5811122B2 (ja) 2ピース缶用ラミネート金属板および2ピースラミネート缶体
JP3796110B2 (ja) ポリエステル系フィルムラミネート金属板および金属容器
JP3858139B2 (ja) 金属板ラミネート用樹脂フィルムおよびラミネート金属板並びにその製造方法
JP2005280301A (ja) 耐デント性に優れたポリエステルフィルム被覆金属板及びポリエステルフィルム被覆金属缶
JPH06255022A (ja) 樹脂被覆金属板およびその製造方法
JP4278273B2 (ja) フィルム被覆シームレス缶
JPH1149873A (ja) 共重合ポリエステルフィルム並びに該フィルムによるラミネート金属板及びその製造法
JP2016190343A (ja) 金属板へのラミネート用フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019862151

Country of ref document: EP

Effective date: 20210419