WO2020054688A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2020054688A1
WO2020054688A1 PCT/JP2019/035459 JP2019035459W WO2020054688A1 WO 2020054688 A1 WO2020054688 A1 WO 2020054688A1 JP 2019035459 W JP2019035459 W JP 2019035459W WO 2020054688 A1 WO2020054688 A1 WO 2020054688A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor device
detection
conductor
conductive layer
Prior art date
Application number
PCT/JP2019/035459
Other languages
English (en)
French (fr)
Inventor
吉原 克彦
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to DE112019004559.8T priority Critical patent/DE112019004559T5/de
Priority to US17/273,532 priority patent/US11955440B2/en
Priority to JP2020546018A priority patent/JP7280278B2/ja
Publication of WO2020054688A1 publication Critical patent/WO2020054688A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/562Protection against mechanical damage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04034Bonding areas specifically adapted for strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • H01L2224/37012Cross-sectional shape
    • H01L2224/37013Cross-sectional shape being non uniform along the connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37025Plural core members
    • H01L2224/3703Stacked arrangements
    • H01L2224/37033Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/3754Coating
    • H01L2224/37599Material
    • H01L2224/376Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • H01L2224/40499Material of the auxiliary connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • H01L2224/411Disposition
    • H01L2224/4112Layout
    • H01L2224/41174Stacked arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48475Connecting portions connected to auxiliary connecting means on the bonding areas, e.g. pre-ball, wedge-on-ball, ball-on-ball
    • H01L2224/48499Material of the auxiliary connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • H01L2224/49433Connecting portions the connecting portions being staggered outside the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/8438Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/84399Material
    • H01L2224/844Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/84401Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/84411Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the present disclosure relates to a semiconductor device including a semiconductor element, and particularly to a semiconductor device in which the semiconductor element is a switching element.
  • Patent Literature 1 discloses an example of a semiconductor device using a MOSFET.
  • a semiconductor element is joined to a lead constituting a drain terminal.
  • the semiconductor device includes a metal piece connected to a source pad of a semiconductor element and a lead forming a source terminal.
  • the metal piece is made of aluminum, which allows a large amount of current to flow through the semiconductor element.
  • the heat dissipation of the semiconductor element is improved by the metal piece, the on-resistance is reduced.
  • the inventor performed a ⁇ T j power cycle test on a device having the same configuration as the semiconductor device disclosed in Patent Document 1, and found that a bonding layer (solder) interposed between the source pad and the metal piece was used. Etc.) can be cracked. This is due to the effect of thermal stress generated by a large linear expansion coefficient of the metal piece on the semiconductor element. For this reason, by replacing the constituent material of the metal piece with copper (having a smaller linear expansion coefficient than aluminum), it is possible to suppress cracks in the bonding layer.
  • a ⁇ T j power cycle test was performed on this configuration using copper, the gate wire connected to the gate pad of the semiconductor device and the sense wire connected to the source pad of the semiconductor device were concentrated on the semiconductor device due to concentration of thermal stress. It was found that the film could be peeled off.
  • the present disclosure has an object to provide a semiconductor device having excellent reliability by suppressing or eliminating the above-described problems (crack of a bonding layer and peeling of a wire).
  • a semiconductor device provided according to an aspect of the present disclosure includes an insulating support member having a main surface, a first conductive layer and a second conductive layer disposed on the main surface, a first side facing the main surface, A first semiconductor element having a second side opposite to the first side in a thickness direction of the insulating support member, wherein a first electrode and a second electrode provided on the second side; A first semiconductor element having a third electrode provided on the first side, wherein the third electrode is electrically connected to the first conductive layer; and a first semiconductor element connected to the first electrode and the second conductive layer.
  • At least one of the first gate conductors is Has an end portion connected to the first semiconductor element, the linear expansion coefficient of the end portion is smaller than the linear expansion coefficient of the first conductive layer.
  • each of the first detection conductor and the first gate conductor has a pillow portion connected to the first semiconductor element, and a wire portion connected to the pillow portion,
  • the linear expansion coefficient of the portion is smaller than the linear expansion coefficient of the first conductive layer.
  • the pillow portion has a first layer made of an alloy containing iron and nickel, and a pair of second layers made of a metal different from the first layer, wherein the first layer Is sandwiched between the pair of second layers in the thickness direction.
  • the pillow portion has a first layer made of a semiconductor material and a pair of second layers made of a metal, and the first layer is formed of the pair of second layers in the thickness direction. It is sandwiched between two layers.
  • the first detection conductor includes a metal piece
  • the first gate conductor includes a pillow portion connected to the first semiconductor element and a wire portion connected to the pillow portion.
  • a linear expansion coefficient of each of the first detection conductor and the pillow portion is smaller than a linear expansion coefficient of the first conductive layer.
  • the first detection conductor has a first layer made of an alloy containing iron and nickel, and a pair of second layers made of a metal different from the first layer, The first layer is sandwiched between the pair of second layers in the thickness direction.
  • each of the first detection conductor and the first gate conductor is made of a metal piece, and each of the first detection conductor and the first gate conductor has a linear expansion coefficient of the first detection conductor and the first gate conductor. It is smaller than the linear expansion coefficient of the conductive layer.
  • the semiconductor device further includes a first detection wiring layer to which the first detection conductor is connected, and a first gate wiring layer to which the first gate conductor is connected.
  • the first detection wiring layer and the first gate wiring layer overlap with the main surface when viewed along the vertical direction.
  • the first detection wiring layer and the first gate wiring layer are arranged on the main surface.
  • the semiconductor device further includes an insulating layer disposed on the first conductive layer, and the first detection wiring layer and the first gate wiring layer are disposed on the insulating layer ing.
  • the semiconductor device is a second semiconductor element having a first electrode, a second electrode, and a third electrode, wherein the third electrode is electrically connected to the second conductive layer.
  • a second lead connected to the first electrode of the second semiconductor element, a second detection conductor connected to the first electrode of the second semiconductor element, and a second detection conductor of the second semiconductor element.
  • a second gate conductor connected to the two electrodes, and at least one of the second detection conductor and the second gate conductor has an end connected to the second semiconductor element. And the coefficient of linear expansion at this end is smaller than the coefficient of linear expansion of the second conductive layer.
  • each of the second detection conductor and the second gate conductor has a pillow portion connected to the second semiconductor element, and a wire portion connected to the pillow portion,
  • the linear expansion coefficient of the portion is smaller than the linear expansion coefficient of the second conductive layer.
  • the second detection conductor is formed of a metal piece
  • the second gate conductor includes a pillow portion connected to the second semiconductor element and a wire portion connected to the pillow portion.
  • a linear expansion coefficient of each of the second detection conductor and the pillow portion is smaller than a linear expansion coefficient of the second conductive layer.
  • each of the second detection conductor and the second gate conductor is made of a metal piece, and each of the second detection conductor and the second gate conductor has a linear expansion coefficient of the second detection conductor and the second gate conductor. It is smaller than the linear expansion coefficient of the conductive layer.
  • the semiconductor device further includes a second detection wiring layer to which the second detection conductor is connected, and a second gate wiring layer to which the second gate conductor is connected.
  • the second detection wiring layer and the second gate wiring layer overlap with the main surface when viewed along the vertical direction.
  • the semiconductor device further includes a first input terminal connected to the first conductive layer, a second input terminal connected to the second lead, and an output terminal connected to the second conductive layer.
  • the first input terminal and the second input terminal are spaced apart from the output terminal in one direction orthogonal to the thickness direction, and the second lead is connected to the second input terminal. Connected to input terminal.
  • the first input terminal and the second input terminal are separated from each other in the thickness direction, and when viewed along the thickness direction, a part of the second input terminal is the first input terminal. Overlaps.
  • FIG. 2 is a perspective view of the semiconductor device according to the first embodiment.
  • FIG. 2 is a plan view of the semiconductor device shown in FIG. 1.
  • FIG. 2 is a plan view (through a sealing resin) of the semiconductor device shown in FIG. 1.
  • FIG. 4 is a plan view of the semiconductor device shown in FIG. 3, further penetrating a second input terminal, a plurality of first leads, and a plurality of second leads.
  • FIG. 2 is a bottom view of the semiconductor device shown in FIG. 1.
  • FIG. 2 is a right side view of the semiconductor device shown in FIG. 1.
  • FIG. 2 is a left side view of the semiconductor device shown in FIG. 1.
  • FIG. 2 is a front view of the semiconductor device shown in FIG. 1.
  • FIG. 1 is a perspective view of the semiconductor device shown in FIG. 1.
  • FIG. 2 is a plan view of the semiconductor device shown in FIG. 1.
  • FIG. 2 is a plan view (through a sealing resin) of the semiconductor device shown in FIG. 1.
  • FIG. 14 is a sectional view taken along the line IX-IX of FIG. 3.
  • FIG. 4 is a sectional view taken along line XX of FIG. 3.
  • FIG. 4 is a diagram showing a part of FIG. 3 (around a first semiconductor element);
  • FIG. 12 is a sectional view taken along the line XII-XII of FIG. 11.
  • FIG. 13 is a sectional view taken along the line XIII-XIII of FIG. 11.
  • FIG. 4 is a diagram showing a part of FIG. 3 (around a second semiconductor element);
  • FIG. 15 is a sectional view taken along the line XV-XV in FIG. 14.
  • FIG. 15 is a sectional view taken along the line XVI-XVI in FIG. 14.
  • FIG. 4 is a partial cross-sectional view (around a first semiconductor element) of a semiconductor device according to a first modification of the first embodiment
  • FIG. 18 is a partial cross-sectional view (around a first semiconductor element) of the semiconductor device shown in FIG. 17
  • FIG. 10 is a partial plan view (around the first semiconductor element and penetrating a sealing resin) of a semiconductor device according to a second modification of the first embodiment.
  • FIG. 20 is a sectional view taken along the line XX-XX in FIG. 20 is a partial plan view of the semiconductor device shown in FIG. 19 (around the second semiconductor element and penetrates a sealing resin).
  • FIG. 22 is a sectional view taken along the line XXII-XXII in FIG. 21.
  • FIG. 11 is a partial plan view (around the first semiconductor element and through a sealing resin) of a semiconductor device according to a third modified example of the first embodiment.
  • FIG. 24 is a cross-sectional view of FIG. 23 taken along the line XXIV-XXIV.
  • FIG. 24 is a partial plan view of the semiconductor device shown in FIG. 23 (around the second semiconductor element and penetrates a sealing resin).
  • FIG. 26 is a cross-sectional view of FIG. 25 taken along the line XXVI-XXVI.
  • FIG. 9 is a plan view (transmitting through a sealing resin) of a semiconductor device according to a second embodiment.
  • FIG. 28 is a bottom view of the semiconductor device shown in FIG. 27.
  • FIG. 28 is a cross-sectional view of FIG.
  • FIG. 28 is a cross-sectional view of FIG. 27 taken along the line XXIX-XXIX.
  • FIG. 28 is a diagram showing a part of FIG. 27 (around the first semiconductor element).
  • FIG. 28 is a diagram showing a part of FIG. 27 (around the second semiconductor element).
  • FIG. 14 is a partial plan view (around the first semiconductor element and through a sealing resin) of a semiconductor device according to a first modification of the second embodiment.
  • FIG. 34 is a partial plan view of the semiconductor device shown in FIG. 33 (around the second semiconductor element and penetrates the sealing resin).
  • FIG. 14 is a partial plan view (around the first semiconductor element and through a sealing resin) of a semiconductor device according to a second modification of the second embodiment.
  • FIG. 36 is a partial plan view of the semiconductor device shown in FIG. 35 (around the second semiconductor element and penetrates the sealing resin).
  • the semiconductor device A10 includes an insulating support member (insulating substrate) 10.
  • the insulating support member 10 includes two substrates, that is, a first substrate 10A and a second substrate 10B, but the present disclosure is not limited thereto.
  • the semiconductor device A10 includes a first conductive layer 20A, a second conductive layer 20B, a first detection wiring layer 21A, a first gate wiring layer 22A, a plurality of first semiconductor elements 40A, a plurality of first leads 51A, a plurality of first leads 51A.
  • a first detection conductor 52A and a plurality of first gate conductors 53A are provided.
  • the semiconductor device A10 includes a second detection wiring layer 21B, a second gate wiring layer 22B, a first input terminal 31 (see FIGS. 4 and 10), a second input terminal 32 (see FIGS. 3 and 10), and an output.
  • Terminals 33 see FIGS. 3, 4, and 10
  • a pair of detection terminals 34 see FIGS. 3 and 4
  • a pair of gate terminals 35 a plurality of dummy terminals 36, a plurality of second semiconductor elements 40B, and a plurality of second leads.
  • the metal substrate 69 includes two regions respectively corresponding to the first substrate 10A and the second substrate 10B, but the present disclosure is not limited thereto.
  • the semiconductor device A10 is a power converter (power module) in which the plurality of first semiconductor elements 40A and the plurality of second semiconductor elements 40B are, for example, MOSFETs.
  • the semiconductor device A10 is used for a drive source of a motor, an inverter device of various electric products, a DC / DC converter, and the like.
  • FIG. 3 is transparent through the sealing resin 60 for convenience of understanding.
  • FIG. 4 further shows the second input terminal 32, the plurality of first leads 51A, and the plurality of second leads 51B in FIG. 3 for convenience of understanding.
  • the sealing resin 60, the second input terminal 32, the plurality of first leads 51A and the plurality of second leads 51B are indicated by imaginary lines (two-dot chain lines).
  • the thickness direction of the insulating support member 10 is referred to as "thickness direction z".
  • a direction orthogonal to the thickness direction z is referred to as a “first direction x”.
  • a direction orthogonal to both the thickness direction z and the first direction x is referred to as a “second direction y”.
  • the semiconductor device A10 has a rectangular shape when viewed in the thickness direction z, that is, in a plan view.
  • the first direction x corresponds to the longitudinal direction of the semiconductor device A10.
  • the second direction y corresponds to the lateral direction of the semiconductor device A10.
  • the side of the first direction x where the first input terminal 31 and the second input terminal 32 are located is referred to as "one side in the first direction x".
  • the side where the output terminal 33 is located in the first direction x is referred to as “the other side in the first direction x”.
  • the “thickness direction z”, “first direction x”, “second direction y”, “one side of first direction x”, and “the other side of first direction x” are the semiconductor device A20 described later. The same applies in the description.
  • a first conductive layer 20A, a second conductive layer 20B, and a metal substrate 69 are arranged on the insulating support member 10, as shown in FIGS.
  • the insulating support member 10 has electric insulation.
  • the constituent material of the insulating support member 10 is ceramics having excellent thermal conductivity. Examples of the ceramic include aluminum nitride (AlN).
  • the insulating support member 10 includes a first substrate 10A and a second substrate 10B.
  • the first substrate 10A and the second substrate 10B are separated from each other in the first direction x.
  • the first substrate 10A is located on one side in the first direction x.
  • the second substrate 10B is located on the other side in the first direction x.
  • the first substrate 10A and the second substrate 10B have a rectangular shape with the long side in the second direction y.
  • the configuration of the insulating support member 10 is not limited to this configuration, and may be a single configuration including one sheet.
  • each of the first substrate 10A and the second substrate 10B has a main surface 101 and a back surface 102.
  • the main surface 101 faces the side where the first conductive layer 20A and the second conductive layer 20B are arranged in the thickness direction z.
  • the back surface 102 faces the side opposite to the main surface 101 in the thickness direction z.
  • the first conductive layer 20A is disposed on the main surface 101 of the first substrate 10A (insulating support member 10) as shown in FIGS.
  • the first conductive layer 20A includes the second conductive layer 20B, the first input terminal 31, the second input terminal 32, and the output terminal 33, the outside of the semiconductor device A10, the plurality of first semiconductor elements 40A, and the plurality of second semiconductors. It forms a conductive path with the element 40B.
  • 20 A of 1st conductive layers are comprised by the metal foil which consists of copper (Cu) or a copper alloy, for example. Viewed along the thickness direction z, the first conductive layer 20A has a rectangular shape with the second direction y as a long side.
  • the first conductive layer 20A is configured by a single region, but may be configured to be divided into a plurality of regions. The number and shape of the regions of the first conductive layer 20A can be freely set.
  • the surface of first conductive layer 20A may be plated with, for example, silver (Ag).
  • the first detection wiring layer 21A is disposed on the main surface 101 of the first substrate 10A as shown in FIGS. 3, 9, and 10. For this reason, the first detection wiring layer 21 ⁇ / b> A overlaps the main surface 101 when viewed along the thickness direction z.
  • the first detection wiring layer 21A is located on the other side in the first direction x with respect to the first conductive layer 20A.
  • the first detection wiring layer 21A has a band shape extending in the second direction y.
  • the first detection wiring layer 21A is made of, for example, the same metal foil as the first conductive layer 20A.
  • the surface of the first detection wiring layer 21A may be plated with, for example, silver.
  • the first gate wiring layer 22A is disposed on the main surface 101 of the first substrate 10A as shown in FIG. 3, FIG. 9 and FIG. For this reason, the first gate wiring layer 22 ⁇ / b> A overlaps the main surface 101 when viewed in the thickness direction z.
  • the first gate wiring layer 22A is located between the first conductive layer 20A and the first detection wiring layer 21A in the first direction x.
  • the first gate wiring layer 22A has a band shape extending in the second direction y.
  • the first gate wiring layer 22A is made of, for example, the same metal foil as the first conductive layer 20A.
  • the surface of the first gate wiring layer 22A may be plated with, for example, silver.
  • the second conductive layer 20B is disposed on the main surface 101 of the second substrate 10B (insulating support member 10) as shown in FIG. 3, FIG. 9 and FIG.
  • the second conductive layer 20B is made of, for example, a metal foil made of copper or a copper alloy. Viewed in the thickness direction z, the second conductive layer 20B has a rectangular shape with the long side in the second direction y.
  • the second conductive layer 20B is configured by a single region, but may be configured to be divided into a plurality of regions. The number and shape of the regions of the second conductive layer 20B can be freely set.
  • the surface of second conductive layer 20B may be plated with, for example, silver.
  • the second detection wiring layer 21B is disposed on the main surface 101 of the second substrate 10B as shown in FIGS. 3, 9, and 10. Therefore, as viewed in the thickness direction z, the second detection wiring layer 21B overlaps the main surface 101.
  • the second detection wiring layer 21B is located on one side in the first direction x with respect to the second conductive layer 20B.
  • the second detection wiring layer 21B has a band shape extending in the second direction y.
  • the second detection wiring layer 21B is made of, for example, the same metal foil as the second conductive layer 20B.
  • the surface of the second detection wiring layer 21B may be plated with, for example, silver.
  • the second gate wiring layer 22B is disposed on the main surface 101 of the second substrate 10B as shown in FIG. 3, FIG. 9 and FIG. Therefore, as viewed in the thickness direction z, the second gate wiring layer 22B overlaps the main surface 101.
  • the second gate wiring layer 22B is located between the second conductive layer 20B and the second detection wiring layer 21B in the first direction x.
  • the second gate wiring layer 22B has a band shape extending in the second direction y.
  • the second gate wiring layer 22B is made of, for example, the same metal foil as the second conductive layer 20B.
  • the surface of the second gate wiring layer 22B may be plated with, for example, silver.
  • the first input terminal 31 and the second input terminal 32 are located on one side in the first direction x as shown in FIGS.
  • DC power (voltage) to be converted is input to the first input terminal 31 and the second input terminal 32.
  • the first input terminal 31 is a positive electrode (P terminal).
  • the second input terminal 32 is a negative electrode (N terminal).
  • the second input terminal 32 is spaced apart from any of the first input terminal 31, the first conductive layer 20A, and the second conductive layer 20B in the thickness direction z.
  • the first input terminal 31 and the second input terminal 32 are metal plates.
  • the constituent material of the metal plate is copper or a copper alloy.
  • the first input terminal 31 has a first connection portion 311 and a first terminal portion 312 as shown in FIG.
  • a boundary between the first connection portion 311 and the first terminal portion 312 is a surface along the second direction y and the thickness direction z, and is located on one side in the first direction x. This is a surface including a first side surface 63A (details will be described later) of the sealing resin 60 to be formed.
  • the first connection portion 311 is entirely covered with the sealing resin 60.
  • the other side of the first connection portion 311 in the first direction x has a comb shape. This comb-shaped portion is electrically connected to the surface of the first conductive layer 20A.
  • the bonding is performed by solder bonding, ultrasonic bonding, or the like. Thereby, the first input terminal 31 is electrically connected to the first conductive layer 20A.
  • the first terminal portion 312 extends from the sealing resin 60 to one side in the first direction x. When viewed along the thickness direction z, the first terminal portion 312 has a rectangular shape. Both sides of the first terminal 312 in the second direction y are covered with the sealing resin 60. Other portions of the first terminal portion 312 are exposed from the sealing resin 60. Thus, the first input terminal 31 is supported by both the first conductive layer 20A and the sealing resin 60.
  • the second input terminal 32 has a second connection part 321 and a second terminal part 322 as shown in FIG.
  • the boundary between the second connection portion 321 and the second terminal portion 322 in the second input terminal 32 is defined by the first connection portion 311 and the first terminal portion 312 in the first input terminal 31.
  • Match the boundaries of The second connection portion 321 has a band shape extending in the second direction y.
  • the second terminal portion 322 extends from the sealing resin 60 to one side in the first direction x.
  • the second terminal portion 322 When viewed along the thickness direction z, the second terminal portion 322 has a rectangular shape. Both sides of the second terminal portion 322 in the second direction y are covered with the sealing resin 60. The other portion of the second terminal portion 322 is exposed from the sealing resin 60.
  • the second terminal portion 322 overlaps the first terminal portion 312 of the first input terminal 31 when viewed along the thickness direction z.
  • the second terminal portion 322 is separated from the first terminal portion 312 in the thickness direction z on the side where the main surface 101 of the insulating support member 10 faces. Note that, in the example shown by the semiconductor device A10, the shape of the second terminal portion 322 is the same as the shape of the first terminal portion 312.
  • the insulating material 39 is sandwiched between the first terminal portion 312 of the first input terminal 31 and the second terminal portion 322 of the second input terminal 32 in the thickness direction z, as shown in FIGS. ing.
  • the insulating material 39 is a flat plate.
  • the insulating material 39 has electrical insulation properties, and its constituent material is, for example, insulating paper.
  • the entire first input terminal 31 overlaps the insulating material 39.
  • the second input terminal 32 a part of the second connection part 321 and the whole of the second terminal part 322 are in contact with the insulating material 39 when viewed in the thickness direction z.
  • Those portions which overlap the insulating material 39 when viewed along the thickness direction z are in contact with the insulating material 39.
  • the first input terminal 31 and the second input terminal 32 are insulated from each other by the insulating material 39.
  • Part of the insulating material 39 (the other side in the first direction x and both sides in the second direction y) is covered with the sealing resin 60
  • the insulating material 39 has an interposed portion 391 and an extended portion 392 as shown in FIGS.
  • the interposition part 391 is located between the first terminal part 312 of the first input terminal 31 and the second terminal part 322 of the second input terminal 32 in the thickness direction z.
  • the interposition part 391 is entirely sandwiched between the first terminal part 312 and the second terminal part 322.
  • the extension portion 392 extends from the interposition portion 391 to one side in the first direction x further than the first terminal portion 312 and the second terminal portion 322. For this reason, the extension 392 is located on one side in the first direction x with respect to the first terminal 312 and the second terminal 322. Both sides of the extension 392 in the second direction y are covered with the sealing resin 60.
  • the output terminal 33 is located on the other side in the first direction x as shown in FIGS. 2 to 7 (excluding FIG. 6). From the output terminal 33, AC power (voltage) that is power-converted by the plurality of first semiconductor elements 40A and the plurality of second semiconductor elements 40B is output.
  • the output terminal 33 is a metal plate.
  • the constituent material of the metal plate is copper or a copper alloy.
  • the output terminal 33 has a connection part 331 and a terminal part 332.
  • the boundary between the connection portion 331 and the terminal portion 332 is a surface along the second direction y and the thickness direction z, and the first side surface 63A of the sealing resin 60 located on the other side in the first direction x ( The details are described later).
  • the connection portion 331 is entirely covered with the sealing resin 60.
  • a comb tooth part 331A is provided on one side of the connection part 331 in the first direction x.
  • Comb part 331A is electrically joined to the surface of second conductive layer 20B.
  • the bonding is performed by solder bonding, ultrasonic bonding, or the like.
  • the output terminal 33 is electrically connected to the second conductive layer 20B.
  • the terminal portion 332 extends from the sealing resin 60 to the other side in the first direction x.
  • the terminal portion 332 When viewed along the thickness direction z, the terminal portion 332 has a rectangular shape. Both sides of the terminal portion 332 in the second direction y are covered with the sealing resin 60. The other terminal portions 332 are exposed from the sealing resin 60.
  • the output terminal 33 is supported by both the second conductive layer 20B and the sealing resin 60.
  • the plurality of first semiconductor elements 40A are electrically connected to the first conductive layer 20A as shown in FIGS. 3, 9, and 10.
  • the plurality of first semiconductor elements 40A are arranged at predetermined intervals along the second direction y.
  • the plurality of first semiconductor elements 40A constitute an upper arm circuit of the semiconductor device A10.
  • the plurality of second semiconductor elements 40B are electrically connected to the second conductive layer 20B as shown in FIGS. 3, 9, and 10.
  • the plurality of second semiconductor elements 40B are arranged at predetermined intervals along the second direction y.
  • the plurality of second semiconductor elements 40B constitute a lower arm circuit of the semiconductor device A10.
  • the plurality of first semiconductor elements 40A and the plurality of second semiconductor elements 40B are staggered as a whole along the second direction y.
  • the semiconductor device A10 includes four first semiconductor elements 40A and four second semiconductor elements 40B.
  • the numbers of the plurality of first semiconductor elements 40A and the plurality of second semiconductor elements 40B are not limited to this configuration, and can be set freely according to the performance required of the semiconductor device A10.
  • the plurality of first semiconductor elements 40A and the plurality of second semiconductor elements 40B are all the same semiconductor element.
  • the semiconductor element is, for example, a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) formed using a semiconductor material mainly composed of silicon carbide (SiC).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the plurality of first semiconductor elements 40A and the plurality of second semiconductor elements 40B are not limited to MOSFETs, but may include field effect transistors including MISFETs (Metal-Insulator-Semiconductor Field-Effect Transistors), and IGBTs (Insulated Gate Bipolar Transistors). Such a bipolar transistor may be used.
  • MISFETs Metal-Insulator-Semiconductor Field-Effect Transistors
  • IGBTs Insulated Gate Bipolar Transistors
  • each of the plurality of first semiconductor elements 40A and the plurality of second semiconductor elements 40B is rectangular (square in the semiconductor device A10) when viewed along the thickness direction z. .
  • each of the plurality of first semiconductor elements 40A and the plurality of second semiconductor elements 40B includes an element main surface 401, an element back surface 402, a first electrode 41, a second electrode 42, It has an electrode 43 and an insulating film 44.
  • the element main surface 401 and the element back surface 402 face opposite sides in the thickness direction z. Among these, the element main surface 401 faces the side to which the main surface 101 of the insulating support member 10 faces.
  • the first electrode 41 is provided on the element main surface 401, that is, on the side of the thickness direction z on which the main surface 101 of the insulating support member 10 faces.
  • a source current flows through the first electrode 41 from inside the first semiconductor element 40A or the second semiconductor element 40B.
  • the second electrode 42 is provided on the element main surface 401, that is, on the side of the thickness direction z where the main surface 101 of the insulating support member 10 faces. I have.
  • a gate voltage for driving the first semiconductor element 40A or the second semiconductor element 40B is applied to the second electrode 42.
  • the size of the second electrode 42 is smaller than the size of the first electrode 41.
  • the second electrode 42 is located on one side (the side where the pair of detection terminals 34, the pair of gate terminals 35, and the plurality of dummy terminals 36 are located) in the second direction y.
  • the second electrode 42 is located on the other side in the second direction y.
  • the third electrode 43 is provided on the element back surface 402, that is, on the side of the thickness direction z that faces the main surface 101 of the insulating support member 10. I have.
  • the third electrode 43 is provided over the entire back surface 402 of the element.
  • a drain current flows through the third electrode 43 toward the inside of the first semiconductor element 40A or the second semiconductor element 40B.
  • the third electrode 43 of the first semiconductor element 40A is electrically connected to the first conductive layer 20A by the first bonding layer 29 having conductivity.
  • the constituent material of the first bonding layer 29 is, for example, lead-free solder containing tin (Sn) as a main component.
  • the third electrodes 43 of the plurality of first semiconductor elements 40A are electrically connected to the first conductive layer 20A.
  • the third electrode 43 of the second semiconductor element 40B is electrically connected to the second conductive layer 20B by the first bonding layer 29.
  • the third electrodes 43 of the plurality of second semiconductor elements 40B are electrically connected to the second conductive layer 20B.
  • the insulating film 44 is provided on the element main surface 401.
  • the insulating film 44 has an electrical insulating property.
  • the insulating film 44 surrounds each of the first electrode 41 and the second electrode 42 when viewed along the thickness direction z.
  • the insulating film 44 includes, for example, a silicon dioxide (SiO 2 ) layer, a silicon nitride (Si 3 N 4 ) layer, and a polybenzoxazole (PBO) layer laminated in this order from the element main surface 401.
  • a polyimide layer may be used instead of the polybenzoxazole layer.
  • the plurality of first leads 51A are connected to the first electrodes 41 of the plurality of first semiconductor elements 40A and the second conductive layer 20B.
  • the plurality of first leads 51A When viewed along the thickness direction z, the plurality of first leads 51A have a band shape extending in the first direction x.
  • the constituent material of the first lead 51A is copper or a copper alloy.
  • An end of the first lead 51A located on one side in the first direction x is connected to the first electrode 41 of the first semiconductor element 40A by a second bonding layer 49 having conductivity.
  • the constituent material of the second bonding layer 49 is, for example, lead-free solder containing tin as a main component or fired silver.
  • the end of the first lead 51A located on the other side in the first direction x is connected to the second conductive layer 20B by the first bonding layer 29. Thereby, the first electrodes 41 of the plurality of first semiconductor elements 40A are electrically connected to the second conductive layer 20B.
  • the plurality of second leads 51B are connected to the first electrodes 41 of the plurality of second semiconductor elements 40B and the second input terminals 32, as shown in FIGS.
  • the plurality of second leads 51B When viewed along the thickness direction z, the plurality of second leads 51B have a band shape extending in the first direction x.
  • the constituent material of the second lead 51B is copper or a copper alloy.
  • An end surface of the second lead 51B located on one side in the first direction x is directly connected to the second connection portion 321 of the second input terminal 32. Therefore, the plurality of second leads 51B are integrated with the second input terminal 32.
  • the end of the second lead 51B located on the other side in the first direction x is connected to the first electrode 41 of the second semiconductor element 40B by the second bonding layer 49.
  • the first electrodes 41 of the plurality of second semiconductor elements 40B are electrically connected to the second input terminal 32.
  • each of the plurality of first detection conductors 52A has a pillow portion 521 and a wire portion 522.
  • the pillow portion 521 of the first detection conductor 52A is connected to the first electrode 41 of the first semiconductor element 40A by the second bonding layer 49.
  • the pillow portion 521 has a rectangular shape when viewed along the thickness direction z.
  • the pillow portion 521 has a first layer 521A and a pair of second layers 521B.
  • the first layer 521A is made of an alloy containing iron (Fe) and nickel (Ni). Such alloys are, for example, Invar (Fe-36Ni), Super Invar (Fe-32Ni-5Co) and Kovar (Fe-29Ni).
  • the pair of second layers 521B is made of metal.
  • the metal is, for example, copper, copper alloy, aluminum and aluminum alloy.
  • the first layer 521A is sandwiched between a pair of second layers 521B in the thickness direction z.
  • the pillow portion 521 has a configuration in which a plurality of metal layers are stacked in the thickness direction z.
  • the linear expansion coefficient of the pillow portion 521 thus configured is 0 to 8 ⁇ 10 ⁇ 6 / ° C.
  • the linear expansion coefficient of the first conductive layer 20A is about 16 ⁇ 10 ⁇ 6 / ° C.
  • the coefficient of linear expansion of the pillow portion 521 is smaller than the coefficient of linear expansion of the first conductive layer 20A.
  • the first layer 521A may be made of a semiconductor material.
  • the semiconductor material is, for example, silicon (Si) having a relatively small electric resistivity.
  • the linear expansion coefficient of the pillow portion 521 is smaller than the linear expansion coefficient of the first conductive layer 20A.
  • the wire portion 522 of the first detection conductor 52A is connected to the pillow portion 521 of the first detection conductor 52A and the first detection wiring layer 21A.
  • the wire portion 522 is inclined at an inclination angle ⁇ 1a with respect to the first direction x.
  • the constituent material of the wire portion 522 is, for example, a clad material made of aluminum, an aluminum alloy, copper, a copper alloy, and a combination thereof.
  • each of the plurality of second detection conductors 52B has a pillow portion 521 and a wire portion 522.
  • the pillow portion 521 of the second detection conductor 52B is connected to the first electrode 41 of the second semiconductor element 40B by the second bonding layer 49.
  • the wire portion 522 of the second detection conductor 52B is connected to the pillow portion 521 of the second detection conductor 52B and the second detection wiring layer 21B.
  • the wire portion 522 of the second detection conductor 52B is inclined at an inclination angle ⁇ 1b with respect to the first direction x.
  • Other configurations of the pillow portion 521 and the wire portion 522 of the second detection conductor 52B are the same as the configurations of the pillow portion 521 and the wire portion 522 of the first detection conductor 52A, and thus description thereof will be omitted.
  • the coefficient of linear expansion of the second conductive layer 20B is substantially equal to the coefficient of linear expansion of the first conductive layer 20A. Therefore, the linear expansion coefficient of the pillow portion 521 is smaller than the linear expansion coefficient of the second conductive layer 20B.
  • each of the plurality of first gate conductors 53A has a pillow portion 531 and a wire portion 532.
  • the pillow portion 531 of the first gate conductor 53A is connected to the second electrode 42 of the first semiconductor element 40A by the second bonding layer 49.
  • the pillow portion 531 has a rectangular shape when viewed along the thickness direction z.
  • the pillow portion 531 has a first layer 531A and a pair of second layers 531B.
  • the first layer 531A is made of an alloy containing iron and nickel.
  • the example of the alloy is the same as the example of the first layer 521A of the pillow portion 521 of the first detection conductor 52A.
  • the pair of second layers 531B is made of metal.
  • the example of the metal is the same as the example of the pair of second layers 521B of the pillow portion 521 of the first detection conductor 52A.
  • the first layer 531A is sandwiched between a pair of second layers 531B in the thickness direction z.
  • the pillow portion 531 has a configuration in which a plurality of metal layers are stacked in the thickness direction z.
  • the linear expansion coefficient of the pillow portion 531 thus configured is 0 to 8 ⁇ 10 ⁇ 6 / ° C.
  • the coefficient of linear expansion of the second conductive layer 20B is about 16 ⁇ 10 ⁇ 6 / ° C.
  • the coefficient of linear expansion of the pillow portion 531 is smaller than the coefficient of linear expansion of the second conductive layer 20B.
  • the first layer 531A may be made of a semiconductor material.
  • the example of the semiconductor material is the same as the example of the first layer 521A of the pillow portion 521 of the first detection conductor 52A.
  • the linear expansion coefficient of the pillow portion 531 is smaller than the linear expansion coefficient of the second conductive layer 20B.
  • the wire portion 532 of the first gate conductor 53A is connected to the pillow portion 531 of the first gate conductor 53A and the first gate wiring layer 22A.
  • the wire portion 532 of the first gate conductor 53A is inclined at an inclination angle ⁇ 2a with respect to the first direction x.
  • the example of the constituent material of the wire portion 532 is the same as the example of the wire portion 522 of the first detection conductor 52A.
  • each of the plurality of second gate conductors 53B has a pillow portion 531 and a wire portion 532.
  • the pillow portion 531 of the second gate conductor 53B is connected to the second electrode 42 of the second semiconductor element 40B by the second bonding layer 49.
  • the wire portion 532 of the second gate conductor 53B is connected to the pillow portion 531 of the second gate conductor 53B and the second gate wiring layer 22B.
  • the wire portion 532 of the second gate conductor 53B is inclined at an inclination angle ⁇ 2b with respect to the first direction x.
  • Other configurations of the pillow portion 531 and the wire portion 532 of the second gate conductor 53B are the same as the configurations of the pillow portion 531 and the wire portion 532 of the first gate conductor 53A, and thus description thereof will be omitted.
  • the coefficient of linear expansion of the second conductive layer 20B is substantially equal to the coefficient of linear expansion of the first conductive layer 20A. Therefore, the coefficient of linear expansion of the pillow portion 531 is smaller than the coefficient of linear expansion of the second conductive layer 20B.
  • the pair of detection terminals 34, the pair of gate terminals 35, and the plurality of dummy terminals 36 are adjacent to the insulating support member 10 in the second direction y, as shown in FIG. These terminals are arranged along the first direction x.
  • the pair of detection terminals 34, the pair of gate terminals 35, and the plurality of dummy terminals 36 are all formed of the same lead frame.
  • one of the pair of detection terminals 34 is adjacent to the first substrate 10A, and the other is adjacent to the second substrate 10B. From each of the pair of detection terminals 34, a voltage (a voltage corresponding to a source current) applied to the plurality of first electrodes 41 corresponding to one of the plurality of first semiconductor elements 40A and the plurality of second semiconductor elements 40B is set. Is detected.
  • Each of the pair of detection terminals 34 has a connection part 341 and a terminal part 342.
  • the connection part 341 is covered with the sealing resin 60.
  • the pair of detection terminals 34 are supported by the sealing resin 60.
  • the surface of the connection portion 341 may be plated with, for example, silver.
  • the terminal portion 342 is connected to the connection portion 341 and is exposed from the sealing resin 60 (see FIG. 8).
  • the terminal portion 342 has an L-shape when viewed along the first direction x.
  • the pair of gate terminals 35 are adjacent to the pair of detection terminals 34 in the first direction x, as shown in FIG.
  • a gate voltage for driving any one of the plurality of first semiconductor elements 40A and the plurality of second semiconductor elements 40B is applied to each of the pair of gate terminals 35.
  • Each of the pair of gate terminals 35 has a connection portion 351 and a terminal portion 352.
  • the connection part 351 is covered with the sealing resin 60.
  • the pair of gate terminals 35 are supported by the sealing resin 60.
  • the surface of the connection portion 351 may be plated with, for example, silver.
  • the terminal portion 352 is connected to the connection portion 351 and is exposed from the sealing resin 60 (see FIG. 8).
  • the terminal portion 352 has an L shape when viewed along the first direction x.
  • the plurality of dummy terminals 36 are located on the opposite side of the pair of gate terminals 35 from the pair of detection terminals 34 in the first direction x, as shown in FIG.
  • the number of the dummy terminals 36 is six. Of these, three dummy terminals 36 are located on one side in the first direction x. The remaining three dummy terminals 36 are located on the other side in the first direction x. Note that the number of the plurality of dummy terminals 36 is not limited to this configuration. Further, the semiconductor device A10 may not include the plurality of dummy terminals 36.
  • Each of the plurality of dummy terminals 36 has a connection portion 361 and a terminal portion 362.
  • connection part 361 is covered with the sealing resin 60.
  • the surface of the connection portion 361 may be plated with, for example, silver.
  • the terminal portion 362 is connected to the connection portion 361 and is exposed from the sealing resin 60 (see FIG. 8). As shown in FIGS. 6 and 7, the terminal portion 362 has an L shape when viewed along the first direction x.
  • the shapes of the terminal portions 342 of the pair of detection terminals 34 and the terminal portions 352 of the pair of gate terminals 35 are the same as the shapes of the terminal portions 362.
  • the semiconductor device A10 further includes a pair of first wires 54A and a pair of second wires 54B.
  • the constituent material of the first wire 54A and the second wire 54B is, for example, aluminum.
  • the pair of first wires 54A are individually connected to the first detection wiring layer 21A and the second detection wiring layer 21B and the pair of detection terminals 34, as shown in FIG.
  • the pair of first wires 54A are connected to the surfaces of the pair of connection portions 341.
  • one detection terminal 34 adjacent to the first substrate 10A is electrically connected to the first electrodes 41 of the plurality of first semiconductor elements 40A.
  • the other detection terminal 34 adjacent to the second substrate 10B is electrically connected to the first electrodes 41 of the plurality of second semiconductor elements 40B.
  • the pair of second wires 54B are individually connected to the first gate wiring layer 22A and the second gate wiring layer 22B, and the pair of gate terminals 35, as shown in FIG. In the pair of gate terminals 35, the pair of second wires 54B are connected to the surfaces of the pair of connection portions 351. Thereby, one gate terminal 35 adjacent to the first substrate 10A is electrically connected to the second electrodes 42 of the plurality of first semiconductor elements 40A. The other gate terminal 35 adjacent to the second substrate 10B is electrically connected to the second electrodes 42 of the plurality of second semiconductor elements 40B.
  • the sealing resin 60 covers the insulating support member 10, the first conductive layer 20A, the second conductive layer 20B, the plurality of first semiconductor elements 40A, and the plurality of second semiconductor elements 40B. ing.
  • the sealing resin 60 includes a plurality of first leads 51A, a plurality of second leads 51B, a plurality of first detection conductors 52A, a plurality of second detection conductors 52B, a plurality of first gate conductors 53A, and a plurality of first detection conductors 52A. It further covers the two-gate conductor 53B, the pair of first wires 54A, and the pair of second wires 54B.
  • the constituent material of the sealing resin 60 is, for example, a black epoxy resin. As shown in FIG.
  • the sealing resin 60 includes a top surface 61, a bottom surface 62, a pair of first side surfaces 63A, a pair of second side surfaces 63B, a plurality of third side surfaces 63C, and a plurality of third side surfaces. It has four side surfaces 63D, a plurality of notches 63E, and a plurality of mounting holes 64.
  • the top surface 61 faces the side of the thickness direction z to which the main surface 101 of the insulating support member 10 faces.
  • the bottom surface 62 faces away from the top surface 61 in the thickness direction z.
  • the metal substrate 69 is exposed from the bottom surface 62.
  • the bottom surface 62 has a frame shape surrounding the metal substrate 69.
  • the pair of first side surfaces 63A are connected to both the top surface 61 and the bottom surface 62 and face the first direction x. From the first side surface 63A located on one side in the first direction x, the first terminal portion 312 of the first input terminal 31 and the second terminal portion 322 of the second input terminal 32 are located on one side in the first direction x. Extending towards. A terminal portion 332 of the output terminal 33 extends from the first side surface 63A located on the other side in the second direction y toward the other side in the first direction x. Thus, a part of each of the first input terminal 31 and the second input terminal 32 is exposed from the sealing resin 60 on one side in the first direction x. In addition, a part of the output terminal 33 is exposed from the sealing resin 60 on the other side in the first direction x.
  • the pair of second side surfaces 63B are connected to both the top surface 61 and the bottom surface 62 and face the second direction y.
  • the terminal portions 342 of the pair of detection terminals 34, the terminal portions 352 of the pair of gate terminals 35, and the terminal portions 362 of the plurality of dummy terminals 36 are exposed from either one of the pair of second side surfaces 63B.
  • the plurality of third side surfaces 63C are connected to both the top surface 61 and the bottom surface 62 and face the second direction y.
  • the plurality of third side surfaces 63C include a pair of third side surfaces 63C located on one side in the first direction x, and a pair of third side surfaces 63C located on the other side in the first direction x.
  • the pair of third side surfaces 63C face each other in the second direction y.
  • the pair of third side surfaces 63C is connected to both ends of the first side surface 63A in the second direction y.
  • the plurality of fourth side surfaces 63D are connected to both the top surface 61 and the bottom surface 62 and face the first direction x.
  • the plurality of fourth side surfaces 63D are located outside the semiconductor device A10 in the first direction x than the pair of first side surfaces 63A.
  • the plurality of fourth side surfaces 63D include a pair of fourth side surfaces 63D located on one side in the first direction x and a pair of fourth side surfaces 63D located on the other side in the first direction x. In each of the one side and the other side in the first direction x, both ends in the second direction y of the pair of fourth side surfaces 63D are connected to a pair of second side surfaces 63B and a pair of third side surfaces 63C.
  • each of the plurality of cutouts 63E is located at the boundary between the first side surface 63A and the third side surface 63C. When viewed along the thickness direction z, each of the plurality of cutouts 63E is inclined with respect to both the first direction x and the second direction y.
  • the plurality of mounting holes 64 pass through the sealing resin 60 from the top surface 61 to the bottom surface 62 in the thickness direction z.
  • the plurality of attachment holes 64 are used when attaching the semiconductor device A10 to a heat sink (not shown).
  • the edges of the plurality of mounting holes 64 are circular.
  • the plurality of mounting holes 64 are located at four corners of the sealing resin 60 when viewed along the thickness direction z.
  • the metal substrate 69 is disposed over the entire back surface 102 of the insulating support member 10 (the first substrate 10A and the second substrate 10B), as shown in FIGS. For this reason, the metal substrate 69 includes two regions separated in the first direction x. As shown in FIG. 5, the metal substrate 69 is exposed from the bottom surface 62 of the sealing resin 60.
  • Metal substrate 69 is made of, for example, a metal foil made of copper (Cu) or a copper alloy. The metal substrate 69 is used together with the plurality of mounting holes 64 of the sealing resin 60 when mounting the semiconductor device A10 on a heat sink.
  • the semiconductor device A11 which is a first modification example of the semiconductor device A10 will be described with reference to FIGS.
  • the semiconductor device A11 includes the pillow portions 521 of the plurality of first detection conductors 52A and the plurality of second detection conductors 52B, and the pillow portions 521 of each of the plurality of first gate conductors 53A and the plurality of second gate conductors 53B.
  • the configuration with the pillow portion 531 is different from the configuration of the semiconductor device A10 described above.
  • the first layer 521A of the pillow 521 of the first detection conductor 52A has a lower layer 521C, an upper layer 521D, and a frame surface 521E.
  • the lower layer part 521C is located below the first layer 521A.
  • the second layer 521B located at the lower end of the pillow portion 521 contacts the lower layer portion 521C.
  • the upper layer part 521D is connected to the upper end of the lower layer part 521C.
  • the area of the upper layer portion 521D is larger than the area of the lower layer portion 521C.
  • the second layer 521B located at the upper end of the pillow portion 521 contacts the upper layer portion 521D.
  • the first layer 521A of the pillow portion 521 of the second detection conductor 52B also has a lower layer portion 521C, an upper layer portion 521D, and a frame surface 521E. These configurations are the same as the configurations of the lower layer portion 521C, the upper layer portion 521D, and the frame surface 521E of the pillow portion 521 of the first detection conductor 52A, and a description thereof will be omitted.
  • the first layer 531A of the pillow portion 531 of the first gate conductor 53A has a lower layer 531C, an upper layer 531D, and a frame surface 531E.
  • the lower layer portion 531C is located below the first layer 531A.
  • the second layer 531B located at the lower end of the pillow portion 531 contacts the lower layer portion 531C.
  • the upper portion 531D is connected to the upper end of the lower portion 531C.
  • the area of the upper layer 531D is larger than the area of the lower layer 531C.
  • the second layer 531B located at the upper end of the pillow portion 531 contacts the upper layer portion 531D.
  • the area of the second layer 531B in contact with the upper layer 531D is larger than the area of the second layer 531B in contact with the lower layer 531C.
  • the frame surface 531E faces the second electrode 42 of the first semiconductor element 40A. When viewed along the thickness direction z, the frame surface 531E surrounds the entire lower layer portion 531C.
  • the first layer 531A of the pillow portion 531 of the second gate conductor 53B also has a lower layer portion 531C, an upper layer portion 531D, and a frame surface 531E. These configurations are the same as the configurations of the lower layer portion 531C, the upper layer portion 531D, and the frame surface 531E of the pillow portion 531 of the first gate conductor 53A, and a description thereof will be omitted.
  • the semiconductor device A12 differs from the semiconductor device A10 in the configuration of the plurality of first detection conductors 52A and the plurality of second detection conductors 52B.
  • the plurality of first detection conductors 52A when viewed along the thickness direction z, the plurality of first detection conductors 52A have a band shape extending in the first direction x.
  • the width B1a of the first detection conductor 52A is smaller than the width Ba of the first lead 51A.
  • the first detection conductor 52A is composed of a long metal piece (metal strip).
  • the end of the first detection conductor 52A located on one side in the first direction x is connected to the first electrode 41 of the first semiconductor element 40A by the second bonding layer 49.
  • An end of the first detection conductor 52A located on the other side in the first direction x is connected to the first detection wiring layer 21A by the first bonding layer 29.
  • each of the plurality of first detection conductors 52A has a first layer 523 and a pair of second layers 524.
  • the first layer 523 is made of an alloy containing iron and nickel.
  • the example of the alloy is the same as the example of the first layer 521A of the pillow portion 521 of the first detection conductor 52A.
  • the pair of second layers 524 are made of metal.
  • the example of the metal is the same as the example of the pair of second layers 521B of the pillow portion 521 of the first detection conductor 52A.
  • the first layer 523 is sandwiched between a pair of second layers 524 in the thickness direction z. For this reason, the first detection conductor 52A has a configuration in which a plurality of metal layers are stacked in the thickness direction z.
  • the linear expansion coefficient of the first detection conductor 52A thus configured is 0 to 8 ⁇ 10 ⁇ 6 / ° C.
  • the linear expansion coefficient of the first conductive layer 20A is about 16 ⁇ 10 ⁇ 6 / ° C. Therefore, the linear expansion coefficient of the first detection conductor 52A is smaller than the linear expansion coefficient of the first conductive layer 20A.
  • the first layer 523 of the first detection conductor 52A has a transition surface 523A.
  • the transition surface 523A is a curved surface located in a section where the first layer 523 changes from the thickness t3a to the thickness t4a.
  • the plurality of second detection conductors 52B when viewed along the thickness direction z, have a band shape extending in the first direction x.
  • the width B1b of the second detection conductor 52B is smaller than the width Bb of the second lead 51B.
  • the second detection conductor 52B is made of a metal piece.
  • an end of the second detection conductor 52B located on one side in the first direction x is connected to the second detection wiring layer 21B by the first bonding layer 29.
  • the end of the second detection conductor 52B located on the other side in the first direction x is connected to the first electrode 41 of the second semiconductor element 40B by the second bonding layer 49.
  • each of the plurality of second detection conductors 52B has a first layer 523 and a pair of second layers 524.
  • Other configurations of the first layer 523 and the pair of second layers 524 of the second detection conductor 52B are similar to the configurations of the first layer 523 and the pair of second layers 524 of the first detection conductor 52A. The description is omitted.
  • the coefficient of linear expansion of the second conductive layer 20B is substantially equal to the coefficient of linear expansion of the first conductive layer 20A. Therefore, the linear expansion coefficient of the second detection conductor 52B is smaller than the linear expansion coefficient of the second conductive layer 20B.
  • the first layer 523 of the second detection conductor 52B has a transition surface 523A.
  • the transition surface 523A is a curved surface located in a section where the first layer 523 changes from the thickness t3b to the thickness t4b.
  • a semiconductor device A13 which is a third modification of the semiconductor device A10 will be described with reference to FIGS.
  • the configuration of the plurality of first detection conductors 52A, the plurality of second detection conductors 52B, the plurality of first gate conductors 53A, and the plurality of second gate conductors 53B is the same as that of the semiconductor device A10 described above. Different from configuration. Among them, the configuration of the plurality of first detection conductors 52A and the configuration of the plurality of second detection conductors 52B are the same as the configuration of the semiconductor device A12 described above, and thus the description thereof will be omitted.
  • the plurality of first gate conductors 53A are band-shaped extending in the first direction x.
  • the width B2a of the first gate conductor 53A is smaller than the width Ba of the first lead 51A.
  • the first gate conductor 53A is made of a metal piece.
  • the end of the first gate conductor 53A located on one side in the first direction x is connected to the second electrode 42 of the first semiconductor element 40A by the second bonding layer 49.
  • An end of the first detection conductor 52A located on the other side in the first direction x is connected to the first gate wiring layer 22A by the first bonding layer 29.
  • each of the plurality of first gate conductors 53A has a first layer 533 and a pair of second layers 534.
  • the first layer 533 is made of an alloy containing iron and nickel.
  • the example of the alloy is the same as the example of the first layer 521A of the pillow portion 521 of the first detection conductor 52A.
  • the pair of second layers 534 are made of metal.
  • the example of the metal is the same as the example of the pair of second layers 521B of the pillow portion 521 of the first detection conductor 52A.
  • the first layer 533 is sandwiched between a pair of second layers 534 in the thickness direction z. For this reason, the first gate conductor 53A has a configuration in which a plurality of metal layers are stacked in the thickness direction z.
  • the linear expansion coefficient of the first gate conductor 53A thus configured is 0 to 8 ⁇ 10 ⁇ 6 / ° C.
  • the linear expansion coefficient of the first conductive layer 20A is about 16 ⁇ 10 ⁇ 6 / ° C. Therefore, the linear expansion coefficient of the first gate conductor 53A is smaller than the linear expansion coefficient of the first conductive layer 20A.
  • the first layer 533 of the first gate conductor 53A has a transition surface 533A.
  • the transition surface 533A is a curved surface located in a section where the first layer 533 changes from the thickness t5a to the thickness t6a.
  • the plurality of second gate conductors 53B have a band shape extending in the first direction x when viewed along the thickness direction z.
  • the width B2b of the second gate conductor 53B is smaller than the width Bb of the second lead 51B.
  • the second gate conductor 53B is made of a metal piece.
  • the end of the second gate conductor 53B located on one side in the first direction x is connected to the second gate wiring layer 22B by the first bonding layer 29.
  • An end of the second gate conductor 53B located on the other side in the first direction x is connected to the second electrode 42 of the second semiconductor element 40B by the second bonding layer 49.
  • each of the plurality of second gate conductors 53B has a first layer 533 and a pair of second layers 534.
  • Other configurations of the first layer 533 and the pair of second layers 534 of the second gate conductor 53B are similar to the configurations of the first layer 533 and the pair of second layers 534 of the first gate conductor 53A. The description is omitted.
  • the coefficient of linear expansion of the second conductive layer 20B is substantially equal to the coefficient of linear expansion of the first conductive layer 20A. Therefore, the linear expansion coefficient of the second gate conductor 53B is smaller than the linear expansion coefficient of the second conductive layer 20B.
  • the first layer 533 of the second gate conductor 53B has a transition surface 533A.
  • the transition surface 533A is a curved surface located in a section where the first layer 533 changes from the thickness t5b to the thickness t6b.
  • the semiconductor device A10 has a first electrode 41 and a second electrode 42, and is connected to a first semiconductor element 40A electrically connected to the first conductive layer 20A, and to the first electrode 41 and the second conductive layer 20B.
  • a first lead 51A a first detection conductor 52A, and a second detection conductor 52B.
  • the first detection conductor 52A is connected to the first electrode 41.
  • the first gate conductor 53A is connected to the second electrode 42.
  • the linear expansion coefficient of the end connected to the first semiconductor element 40A is smaller than the linear expansion coefficient of the first conductive layer 20A. .
  • At least one of the thermal stress generated between the first electrode 41 and the first detection conductor 52A and the thermal stress generated between the second electrode 42 and the first gate conductor 53A. Can be reduced. Therefore, at least one of the first detection conductor 52A and the first gate conductor 53A does not easily peel off from the first semiconductor element 40A. Therefore, according to the semiconductor device A10, it is possible to prevent a decrease in the reliability.
  • each of the first detection conductor 52A and the first gate conductor 53A includes a pillow portion 521, 531 connected to the first semiconductor element 40A and a wire portion connected to the pillow portion 521, 531. 522 and 532.
  • the linear expansion coefficients of the pillow portions 521 and 531 are smaller than the linear expansion coefficient of the first conductive layer 20A.
  • the linear expansion coefficient of the end connected to the first semiconductor element 40A is made smaller than the linear expansion coefficient of the first conductive layer 20A. Can be.
  • Each of the pillow portions 521 and 531 includes first layers 521A and 531A made of an alloy containing iron and nickel, and a pair of second layers 521B made of a metal different from the first layer 521A and the first layer 531A. , 531B.
  • the first layers 521A and 531A are sandwiched between a pair of second layers 521B and 531B in the thickness direction z.
  • the linear expansion coefficients of the pillow portions 521 and 531 can be made smaller than the linear expansion coefficient of the first conductive layer 20A.
  • the connection state of the pillow portions 521 and 531 to both the first semiconductor element 40A and the wire portions 522 and 532 becomes better.
  • the first layers 521A and 531A of the pillow portions 521 and 531 can be made of a semiconductor material instead of an alloy containing iron and nickel. Thereby, the linear expansion coefficients of the pillow portions 521 and 531 are closer to the linear expansion coefficient of the first semiconductor element 40A. Accordingly, at least one of the thermal stress generated between the first electrode 41 and the first detection conductor 52A and the thermal stress generated between the second electrode 42 and the first gate conductor 53A is reduced. It can be reduced more effectively.
  • each of the first layers 521A and 531A of the pillow portions 521 and 531 has lower layers 521C and 531C and upper layers 521D and 531D.
  • the area of the upper layers 521D and 531D is larger than the area of the lower layers 521C and 531C.
  • the first detection conductor 52A is made of a metal piece.
  • the linear expansion coefficient of the first detection conductor 52A is smaller than the linear expansion coefficient of the first conductive layer 20A. Thereby, in the first detection conductor 52A, the linear expansion coefficient of the end connected to the first semiconductor element 40A can be made smaller than the linear expansion coefficient of the first conductive layer 20A.
  • the first detection conductor 52A of the semiconductor device A12 has a first layer 523 made of an alloy containing iron and nickel, and a pair of second layers 524 made of a metal different from the first layer 523.
  • the first layer 523 is sandwiched between a pair of second layers 524 in the thickness direction z.
  • the linear expansion coefficient of the first detection conductor 52A can be made smaller than the linear expansion coefficient of the first conductive layer 20A.
  • the connection state of the first detection conductor 52A to both the first semiconductor element 40A and the first detection wiring layer 21A becomes better.
  • the first detection wiring layer 21A and the first gate wiring layer 22A are arranged on the main surface 101 of the insulating support member 10.
  • the insulating support member 10 and the first conductive layer 20A, the first detection wiring layer 21A, and the first gate wiring layer 22A arranged on the main surface 101 can be connected to each other. It can be easily formed.
  • the semiconductor device A10 has a first electrode 41 and a second electrode 42, and is connected to the second semiconductor element 40B electrically connected to the second conductive layer 20B and the first electrode 41 of the second semiconductor element 40B. Further provided with a second lead 51B, a second detection conductor 52B, and a second gate conductor 53B.
  • the second detection conductor 52B is connected to the first electrode 41 of the second semiconductor element 40B.
  • the second gate conductor 53B is connected to the second electrode 42 of the second semiconductor device 40B.
  • a linear expansion coefficient of an end connected to the second semiconductor element 40B is smaller than a linear expansion coefficient of the second conductive layer 20B. .
  • the thermal stress generated between the first electrode 41 of the second semiconductor element 40B and the second detection conductor 52B, and the thermal stress between the second electrode 42 of the second semiconductor element 40B and the second gate conductor 53B are of at least one of the thermal stresses generated in the above. Therefore, at least one of the second detection conductor 52B and the second gate conductor 53B does not easily peel off from the second semiconductor element 40B.
  • the semiconductor device A10 further includes a first input terminal 31 and a second input terminal 32.
  • the first input terminal 31 is electrically connected to the first conductive layer 20A.
  • the second input terminal 32 is electrically connected to the second lead 51B.
  • the second lead 51B is connected to the second input terminal 32.
  • the second input terminal 32 and the second lead 51B can be formed as an integral member, so that the number of components of the semiconductor device A10 can be reduced.
  • the first input terminal 31 and the second input terminal 32 are located on one side in the first direction x.
  • the first input terminal 31 and the second input terminal 32 are separated from each other in the thickness direction z.
  • a part of the second input terminal 32 overlaps the first input terminal 31.
  • FIG. 27 is transparent through the sealing resin 60 for convenience of understanding.
  • the penetrating sealing resin 60 is indicated by an imaginary line (two-dot chain line).
  • the semiconductor device A20 differs from the semiconductor device A10 in that the semiconductor device A20 includes the pair of insulating layers 23 and does not include the metal substrate 69. Further, the semiconductor device A20 includes a first detection wiring layer 21A, a second detection wiring layer 21B, a first gate wiring layer 22A, a second gate wiring layer 22B, a plurality of first semiconductor elements 40A, a plurality of second semiconductor elements 40B, The configuration of the plurality of first leads 51A and the plurality of second leads 51B is different from the semiconductor device A10 described above.
  • the pair of insulating layers 23 is disposed on the first conductive layer 20A and the second conductive layer 20B.
  • the pair of insulating layers 23 are separated from each other in the first direction x.
  • the pair of insulating layers 23 has a band shape extending in the second direction y.
  • the insulating layer 23 located on one side in the first direction x is disposed on the first conductive layer 20A.
  • the insulating layer 23 located on the other side in the first direction x is disposed on the second conductive layer 20B.
  • the constituent material of the pair of insulating layers 23 is, for example, glass epoxy resin.
  • the first detection wiring layer 21A and the first gate wiring layer 22A are disposed on one insulating layer 23 disposed on the first conductive layer 20A. I have.
  • the second detection wiring layer 21B and the second gate wiring layer 22B are disposed on the other insulating layer 23 disposed on the second conductive layer 20B. Therefore, also in the semiconductor device A20, the first detection wiring layer 21A, the second detection wiring layer 21B, the first gate wiring layer 22A, and the second gate wiring layer 22B are viewed from the thickness direction z. 10 are superimposed on the main surface 101.
  • the plurality of first semiconductor elements 40A are located on the other side in the first direction x with respect to one insulating layer 23 disposed on the first conductive layer 20A.
  • the second electrode 42 is located on one side in the first direction x.
  • the plurality of second semiconductor elements 40B are located on one side in the first direction x with respect to the other insulating layer 23 disposed on the second conductive layer 20B.
  • the second electrode 42 is located on the other side in the first direction x.
  • the dimension of the plurality of first leads 51A in the first direction x is smaller than the dimension of the semiconductor device A10 described above.
  • the dimension of the plurality of second leads 51B in the first direction x is smaller than the dimension of the semiconductor device A10 described above.
  • the pair of detection terminals 34 are replaced with the pair of gate terminals 35 of the semiconductor device A10 described above.
  • the pair of gate terminals 35 are replaced with the pair of detection terminals 34 of the semiconductor device A10 described above.
  • the back surface 102 of the insulating support member 10 is exposed from the bottom surface 62 of the sealing resin 60.
  • the plurality of first detection conductors 52A and the plurality of second gate conductors 53B are located on one side in the first direction x from the first semiconductor element 40A. Extending. As shown in FIG. 32, when viewed along the thickness direction z, the plurality of second detection conductors 52B and the plurality of second gate conductors 53B are located on the other side in the first direction x from the second semiconductor element 40B. Extending. Other configurations of the first detection conductor 52A, the second detection conductor 52B, the first gate conductor 53A, and the second gate conductor 53B are the same as those of the semiconductor device A10. Is omitted.
  • the semiconductor device A21 which is a first modification example of the semiconductor device A20 will be described with reference to FIGS.
  • the semiconductor device A21 differs from the semiconductor device A20 in the configuration of the plurality of first detection conductors 52A and the plurality of second detection conductors 52B.
  • the plurality of first detection conductors 52A when viewed along the thickness direction z, the plurality of first detection conductors 52A have a band shape extending from the first semiconductor element 40A to one side in the first direction x.
  • the width B1a of the first detection conductor 52A is smaller than the width Ba of the first lead 51A.
  • the first detection conductor 52A is made of a metal piece.
  • the other configuration of the first detection conductor 52A is the same as the configuration of the first detection conductor 52A in the semiconductor device A12 described above, and a description thereof will be omitted.
  • the plurality of second detection conductors 52B when viewed along the thickness direction z, the plurality of second detection conductors 52B have a band shape extending from the second semiconductor element 40B to the other side in the first direction x.
  • the width B1b of the second detection conductor 52B is smaller than the width Bb of the second lead 51B.
  • the second detection conductor 52B is made of a metal piece.
  • the other configuration of the second detection conductor 52B is the same as the configuration of the second detection conductor 52B in the semiconductor device A12 described above, and a description thereof will be omitted.
  • a semiconductor device A22 which is a second modification example of the semiconductor device A20 will be described with reference to FIGS.
  • the configuration of the plurality of first detection conductors 52A, the plurality of second detection conductors 52B, the plurality of first gate conductors 53A, and the plurality of second gate conductors 53B is the same as that of the semiconductor device A20 described above. Different from configuration. Among them, the configuration of the plurality of first detection conductors 52A and the configuration of the plurality of second detection conductors 52B are the same as the configuration of the semiconductor device A21 described above, and thus description thereof will be omitted.
  • the plurality of first gate conductors 53A when viewed along the thickness direction z, the plurality of first gate conductors 53A have a band shape extending from the first semiconductor element 40A to one side in the first direction x.
  • the width B2a of the first gate conductor 53A is smaller than the width Ba of the first lead 51A.
  • the length L2a of the first gate conductor 53A is smaller than the length L1a of the first detection conductor 52A.
  • the first gate conductor 53A is made of a metal piece.
  • the other configuration of the first gate conductor 53A is the same as the configuration of the first gate conductor 53A in the semiconductor device A13 described above, and a description thereof will be omitted.
  • the plurality of second gate conductors 53B when viewed along the thickness direction z, the plurality of second gate conductors 53B have a band shape extending from the second semiconductor element 40B to the other side in the first direction x.
  • the width B2b of the second gate conductor 53B is smaller than the width Bb of the second lead 51B.
  • the length L2b of the second gate conductor 53B is smaller than the length L1b of the second detection conductor 52B.
  • the second gate conductor 53B is made of a metal piece.
  • the other configuration of the second gate conductor 53B is the same as the configuration of the second gate conductor 53B in the semiconductor device A13 described above, and a description thereof will be omitted.
  • the semiconductor device A20 includes a first semiconductor element 40A having a first electrode 41 and a second electrode 42 and electrically connected to the first conductive layer 20A, similarly to the semiconductor device A10 described above.
  • a first lead 51A connected to the first conductive layer 41 and the second conductive layer 20B, a first detecting conductor 52A, and a second detecting conductor 52B are provided.
  • the first detection conductor 52A is connected to the first electrode 41.
  • the first gate conductor 53A is connected to the second electrode 42.
  • the linear expansion coefficient of the end connected to the first semiconductor element 40A is smaller than the linear expansion coefficient of the first conductive layer 20A. . Therefore, the semiconductor device A20 can also prevent a decrease in the reliability.
  • the semiconductor device A20 includes the insulating layer 23 disposed on the first conductive layer 20A.
  • the first detection wiring layer 21A and the first gate wiring layer 22A are arranged on the insulating layer 23.
  • the area of the first conductive layer 20A can be made larger when viewed along the thickness direction z. Therefore, the heat dissipation of the semiconductor device A20 can be improved.
  • the size of the first lead 51A in the first direction x can be reduced. Thereby, the parasitic resistance of the semiconductor device A20 can be reduced.
  • the semiconductor device of the present disclosure is not limited to the embodiments described above.
  • the specific configuration of each part of the semiconductor device can be freely changed in various ways.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

半導体装置は、絶縁支持部材と、第1および第2導電層と、第1半導体素子と、第1リードと、第1検出導電体と、第1ゲート導電体と、を備える。前記第1および第2導電層は、前記絶縁支持部材の主面に配置されている。前記第1半導体素子は、その同一サイドに設けられた第1電極および第2電極と、その反対側に設けられた第3電極とを備えており、前記第3電極が前記第1導電層に電気的に接合されている。前記第1リードは、前記第1電極および前記第2導電層に接続されている。前記第1検出導電体は、前記第1電極に接続されている。前記第1ゲート導電体は、前記第2電極に接続されている。前記第1検出導電体および前記第1ゲート導電体の少なくともいずれかは、前記第1半導体素子に接続された端部を有している。この端部の線膨張係数は、前記第1導電層の線膨張係数よりも小である。

Description

半導体装置
 本開示は、半導体素子を備える半導体装置に関し、特に半導体素子がスイッチング素子である半導体装置に関する。
 従来、MOSFETやIGBTなどのスイッチング素子を備える半導体装置が広く知られている。特許文献1には、MOSFETを利用した半導体装置の一例が開示されている。当該半導体装置では、ドレイン端子を構成するリードに半導体素子が接合されている。当該半導体装置は、半導体素子のソースパッドと、ソース端子を構成するリードとに接続された金属片を備える。当該金属片はアルミニウムからなり、これにより、半導体素子に多くの電流を流すことが可能となる。あわせて、当該金属片により半導体素子の放熱性が向上するため、オン抵抗が低減される。
 発明者が、特許文献1に開示されている半導体装置と同様な構成を有する装置に対して、ΔTjパワーサイクル試験を行ったところ、ソースパッドと金属片との間に介在する接合層(ハンダなど)に亀裂が生じうることが分かった。これは、半導体素子に対する金属片の線膨張係数が大であることにより発生する熱応力の影響である。このため、金属片の構成材料を銅(アルミニウムよりも線膨張係数が小である)に置き換えることにより、接合層の亀裂を抑制することが可能となる。銅を用いたこの構成に対して、ΔTjパワーサイクル試験を行ったところ、半導体素子のゲートパッドに接続されたゲートワイヤ、およびソースパッドに接続されたセンスワイヤが、熱応力の集中により半導体素子から剥離しうることが分かった。
特開2008-294384号公報
 本開示は、上述した不具合(接合層の亀裂、ワイヤの剥離)を抑制あるいは解消し、優れた信頼性を有する半導体装置を提供することをその課題とする。
 本開示のある側面によって提供される半導体装置は、主面を有する絶縁支持部材と、前記主面に配置された第1導電層および第2導電層と、前記主面に対向する第1サイド、および、前記絶縁支持部材の厚さ方向において前記第1サイドとは反対側の第2サイドを有する第1半導体素子であって、前記第2サイドに設けられた第1電極および第2電極、ならびに前記第1サイドに設けられた第3電極を備え、前記第3電極が前記第1導電層に電気的に接合されている第1半導体素子と、前記第1電極および前記第2導電層に接続された第1リードと、前記第1電極に接続された第1検出導電体と、前記第2電極に接続された第1ゲート導電体と、を備えており、前記第1検出導電体および前記第1ゲート導電体の少なくともいずれかは、前記第1半導体素子に接続された端部を有しており、この端部の線膨張係数が、前記第1導電層の線膨張係数よりも小である。
 好ましくは、前記第1検出導電体および前記第1ゲート導電体の各々は、前記第1半導体素子に接続された枕部と、前記枕部に接続されたワイヤ部と、を有し、前記枕部の線膨張係数が、前記第1導電層の線膨張係数よりも小である。
 好ましくは、前記枕部は、鉄およびニッケルを含む合金から構成される第1層と、前記第1層とは異なる金属から構成される一対の第2層と、を有し、前記第1層は、前記厚さ方向において前記一対の第2層に挟まれている。
 好ましくは、前記枕部は、半導体材料から構成される第1層と、金属から構成される一対の第2層と、を有し、前記第1層は、前記厚さ方向において前記一対の第2層に挟まれている。
 好ましくは、前記第1検出導電体は、金属片から構成され、前記第1ゲート導電体は、前記第1半導体素子に接続された枕部と、前記枕部に接続されたワイヤ部と、を有し、前記第1検出導電体および前記枕部の各々の線膨張係数が、前記第1導電層の線膨張係数よりも小である。
 好ましくは、前記第1検出導電体は、鉄およびニッケルを含む合金から構成される第1層と、前記第1層とは異なる金属から構成される一対の第2層と、を有し、前記第1層は、前記厚さ方向において前記一対の第2層に挟まれている。
 好ましくは、前記第1検出導電体および前記第1ゲート導電体の各々は、金属片から構成され、前記第1検出導電体および前記第1ゲート導電体の各々の線膨張係数が、前記第1導電層の線膨張係数よりも小である。
 好ましくは、前記半導体装置は、前記第1検出導電体が接続された第1検出配線層と、前記第1ゲート導電体が接続された第1ゲート配線層と、をさらに備えており、前記厚さ方向に沿って視て、前記第1検出配線層および第1ゲート配線層は、前記主面に重なっている。
 好ましくは、前記第1検出配線層および前記第1ゲート配線層は、前記主面に配置されている。
 好ましくは、前記半導体装置は、前記第1導電層の上に配置された絶縁層をさらに備えており、前記第1検出配線層および前記第1ゲート配線層は、前記絶縁層の上に配置されている。
 好ましくは、前記半導体装置は、第1電極、第2電極および第3電極を有する第2半導体素子であって、前記第3電極が前記第2導電層に電気的に接合された第2半導体素子と、前記第2半導体素子の前記第1電極に接続された第2リードと、前記第2半導体素子の前記第1電極に接続された第2検出導電体と、前記第2半導体素子の前記第2電極に接続された第2ゲート導電体と、をさらに備えており、前記第2検出導電体および前記第2ゲート導電体の少なくともいずれかは、前記第2半導体素子に接続された端部を有しており、この端部の線膨張係数が、前記第2導電層の線膨張係数よりも小である。
 好ましくは、前記第2検出導電体および前記第2ゲート導電体の各々は、前記第2半導体素子に接続された枕部と、前記枕部に接続されたワイヤ部と、を有し、前記枕部の線膨張係数が、前記第2導電層の線膨張係数よりも小である。
 好ましくは、前記第2検出導電体は、金属片から構成され、前記第2ゲート導電体は、前記第2半導体素子に接続された枕部と、前記枕部に接続されたワイヤ部と、を有し、前記第2検出導電体および前記枕部の各々の線膨張係数が、前記第2導電層の線膨張係数よりも小である。
 好ましくは、前記第2検出導電体および前記第2ゲート導電体の各々は、金属片から構成され、前記第2検出導電体および前記第2ゲート導電体の各々の線膨張係数が、前記第2導電層の線膨張係数よりも小である。
 好ましくは、前記半導体装置は、前記第2検出導電体が接続された第2検出配線層と、前記第2ゲート導電体が接続された第2ゲート配線層と、をさらに備えており、前記厚さ方向に沿って視て、前記第2検出配線層および第2ゲート配線層は、前記主面に重なっている。
 好ましくは、前記半導体装置は、前記第1導電層に導通する第1入力端子と、前記第2リードに導通する第2入力端子と、前記第2導電層に導通する出力端子と、をさらに備えており、前記第1入力端子および前記第2入力端子の各々は、前記厚さ方向に対して直交する一方向において、前記出力端子から離間配置されており、前記第2リードは、前記第2入力端子につながっている。
 好ましくは、前記第1入力端子および前記第2入力端子は、前記厚さ方向において互いに離間し、前記厚さ方向に沿って視て、前記第2入力端子の一部は、前記第1入力端子に重なっている。
 本開示にかかる半導体装置のその他の特徴および利点は、添付図面に基づき以下に行う詳細な説明によって、より明らかとなろう。
第1実施形態にかかる半導体装置の斜視図である。 図1に示す半導体装置の平面図である。 図1に示す半導体装置の平面図(封止樹脂を透過)である。 図3に示す半導体装置に対して、第2入力端子、複数の第1リードおよび複数の第2リードをさらに透過した平面図である。 図1に示す半導体装置の底面図である。 図1に示す半導体装置の右側面図である。 図1に示す半導体装置の左側面図である。 図1に示す半導体装置の正面図である。 図3のIX-IX線に沿う断面図である。 図3のX-X線に沿う断面図である。 図3の一部を示す図(第1半導体素子周辺)である。 図11のXII-XII線に沿う断面図である。 図11のXIII-XIII線に沿う断面図である。 図3の一部を示す図(第2半導体素子周辺)である。 図14のXV-XV線に沿う断面図である。 図14のXVI-XVI線に沿う断面図である。 第1実施形態の第1変形例にかかる半導体装置の部分断面図(第1半導体素子周辺)である。 図17に示す半導体装置の部分断面図(第1半導体素子周辺)である。 第1実施形態の第2変形例にかかる半導体装置の部分平面図(第1半導体素子周辺、かつ封止樹脂を透過)である。 図19のXX-XX線に沿う断面図である。 図19に示す半導体装置の部分平面図(第2半導体素子周辺、かつ封止樹脂を透過)である。 図21のXXII-XXII線に沿う断面図である。 第1実施形態の第3変形例にかかる半導体装置の部分平面図(第1半導体素子周辺、かつ封止樹脂を透過)である。 図23のXXIV-XXIV線に沿う断面図である。 図23に示す半導体装置の部分平面図(第2半導体素子周辺、かつ封止樹脂を透過)である。 図25のXXVI-XXVI線に沿う断面図である。 第2実施形態にかかる半導体装置の平面図(封止樹脂を透過)である。 図27に示す半導体装置の底面図である。 図27のXXIX-XXIX線に沿う断面図である。 図27のXXX-XXX線に沿う断面図である。 図27の一部を示す図(第1半導体素子周辺)である。 図27の一部を示す図(第2半導体素子周辺)である。 第2実施形態の第1変形例にかかる半導体装置の部分平面図(第1半導体素子周辺、かつ封止樹脂を透過)である。 図33に示す半導体装置の部分平面図(第2半導体素子周辺、かつ封止樹脂を透過)である。 第2実施形態の第2変形例にかかる半導体装置の部分平面図(第1半導体素子周辺、かつ封止樹脂を透過)である。 図35に示す半導体装置の部分平面図(第2半導体素子周辺、かつ封止樹脂を透過)である。
 本開示に係る種々の実施形態および変形例について、添付図面に基づいて説明する。
 〔第1実施形態〕
 図1~図16に基づき、第1実施形態にかかる半導体装置A10について説明する。
 図3、4、9および10に示すように、半導体装置A10は、絶縁支持部材(絶縁基板)10を備えている。図示した例では、絶縁支持部材10は、第1基板10Aおよび第2基板10Bの2つの基板からなるが、本開示がこれに限定されるわけではない。また、半導体装置A10は、第1導電層20A、第2導電層20B、第1検出配線層21A、第1ゲート配線層22A、複数の第1半導体素子40A、複数の第1リード51A、複数の第1検出導電体52Aおよび複数の第1ゲート導電体53Aを備える。これらに加え、半導体装置A10は、第2検出配線層21B、第2ゲート配線層22B、第1入力端子31(図4、10参照)、第2入力端子32(図3、10参照)、出力端子33(図3、4、10参照)、一対の検出端子34(図3、4参照)、一対のゲート端子35、複数のダミー端子36、複数の第2半導体素子40B、複数の第2リード51B、複数の第2検出導電体52B、複数の第2ゲート導電体53B、封止樹脂60および金属基板69(図9、10参照)を備える。図示の例では、金属基板69は、第1基板10Aおよび第2基板10Bそれぞれに対応する2つの領域を含むが、本開示がこれに限定されるわけではない。半導体装置A10は、複数の第1半導体素子40Aおよび複数の第2半導体素子40BがたとえばMOSFETである電力変換装置(パワーモジュール)である。半導体装置A10は、モータの駆動源、様々な電気製品のインバータ装置、およびDC/DCコンバータなどに用いられる。図3は、理解の便宜上、封止樹脂60を透過している。図4は、理解の便宜上、図3に対して第2入力端子32、複数の第1リード51Aおよび複数の第2リード51Bをさらに透過している。これらの図において封止樹脂60、第2入力端子32、複数の第1リード51Aおよび複数の第2リード51Bは、想像線(二点鎖線)で示されている。
 半導体装置A10の説明においては、絶縁支持部材10の厚さ方向を「厚さ方向z」と呼ぶ。厚さ方向zに対して直交する方向を「第1方向x」と呼ぶ。厚さ方向zおよび第1方向xの双方に対して直交する方向を「第2方向y」と呼ぶ。図1および図2に示すように、半導体装置A10は、厚さ方向zに沿って視て、すなわち平面視において、矩形状である。第1方向xは、半導体装置A10の長手方向に対応する。第2方向yは、半導体装置A10の短手方向に対応する。また、半導体装置A10の説明においては、便宜上、第1方向xのうち第1入力端子31および第2入力端子32が位置する側を「第1方向xの一方側」と呼ぶ。第1方向xのうち出力端子33が位置する側を「第1方向xの他方側」と呼ぶ。なお、「厚さ方向z」、「第1方向x」、「第2方向y」、「第1方向xの一方側」および「第1方向xの他方側」は、後述する半導体装置A20の説明においても適用する。
 絶縁支持部材10には、図3、図9および図10に示すように、第1導電層20A、第2導電層20Bおよび金属基板69が配置されている。絶縁支持部材10は、電気絶縁性を有する。絶縁支持部材10の構成材料は、熱伝導性に優れたセラミックスである。当該セラミックスとして、たとえば窒化アルミニウム(AlN)が挙げられる。
 図3、図9および図10に示すように、半導体装置A10において、絶縁支持部材10は、第1基板10Aおよび第2基板10Bの2つを含む。第1基板10Aおよび第2基板10Bは、第1方向xにおいて互いに離間している。第1基板10Aは、第1方向xの一方側に位置する。第2基板10Bは、第1方向xの他方側に位置する。厚さ方向zに沿って視て、第1基板10Aおよび第2基板10Bは、第2方向yを長辺とする矩形状である。なお、絶縁支持部材10の構成は、本構成に限定されず、1枚からなる単一構成でもよい。
 図9および図10に示すように、第1基板10Aおよび第2基板10Bの各々は、主面101および裏面102を有する。主面101は、厚さ方向zのうち第1導電層20Aおよび第2導電層20Bが配置される側を向く。裏面102は、厚さ方向zにおいて主面101とは反対側を向く。
 第1導電層20Aは、図3、図9および図10に示すように、第1基板10A(絶縁支持部材10)の主面101に配置されている。第1導電層20Aは、第2導電層20B、第1入力端子31、第2入力端子32および出力端子33とともに、半導体装置A10の外部と、複数の第1半導体素子40Aおよび複数の第2半導体素子40Bとの導電経路を構成している。第1導電層20Aは、たとえば、銅(Cu)または銅合金からなる金属箔により構成される。厚さ方向zに沿って視て、第1導電層20Aは、第2方向yを長辺とする矩形状である。半導体装置A10が示す例においては、第1導電層20Aは、単一領域により構成されるが、これが複数領域に分割された構成でもよい。第1導電層20Aの領域数および形状は、自在に設定可能である。なお、第1導電層20Aの表面には、たとえば銀(Ag)めっきを施してもよい。
 第1検出配線層21Aは、図3、図9および図10に示すように、第1基板10Aの主面101に配置されている。このため、厚さ方向zに沿って視て、第1検出配線層21Aは、主面101に重なっている。第1検出配線層21Aは、第1導電層20Aに対して第1方向xの他方側に位置する。第1検出配線層21Aは、第2方向yに延びる帯状である。第1検出配線層21Aは、たとえば、第1導電層20Aと同一の金属箔により構成される。なお、第1検出配線層21Aの表面には、たとえば銀めっきを施してもよい。
 第1ゲート配線層22Aは、図3、図9および図10に示すように、第1基板10Aの主面101に配置されている。このため、厚さ方向zに沿って視て、第1ゲート配線層22Aは、主面101に重なっている。第1ゲート配線層22Aは、第1方向xにおいて第1導電層20Aと第1検出配線層21Aとの間に位置する。第1ゲート配線層22Aは、第2方向yに延びる帯状である。第1ゲート配線層22Aは、たとえば、第1導電層20Aと同一の金属箔により構成される。なお、第1ゲート配線層22Aの表面には、たとえば銀めっきを施してもよい。
 第2導電層20Bは、図3、図9および図10に示すように、第2基板10B(絶縁支持部材10)の主面101に配置されている。第2導電層20Bは、たとえば、銅または銅合金からなる金属箔により構成される。厚さ方向zに沿って視て、第2導電層20Bは、第2方向yを長辺とする矩形状である。半導体装置A10が示す例においては、第2導電層20Bは、単一領域により構成されるが、これが複数領域に分割された構成でもよい。第2導電層20Bの領域数および形状は、自在に設定可能である。なお、第2導電層20Bの表面には、たとえば銀めっきを施してもよい。
 第2検出配線層21Bは、図3、図9および図10に示すように、第2基板10Bの主面101に配置されている。このため、厚さ方向zに沿って視て、第2検出配線層21Bは、主面101に重なっている。第2検出配線層21Bは、第2導電層20Bに対して第1方向xの一方側に位置する。第2検出配線層21Bは、第2方向yに延びる帯状である。第2検出配線層21Bは、たとえば、第2導電層20Bと同一の金属箔により構成される。なお、第2検出配線層21Bの表面には、たとえば銀めっきを施してもよい。
 第2ゲート配線層22Bは、図3、図9および図10に示すように、第2基板10Bの主面101に配置されている。このため、厚さ方向zに沿って視て、第2ゲート配線層22Bは、主面101に重なっている。第2ゲート配線層22Bは、第1方向xにおいて第2導電層20Bと第2検出配線層21Bとの間に位置する。第2ゲート配線層22Bは、第2方向yに延びる帯状である。第2ゲート配線層22Bは、たとえば、第2導電層20Bと同一の金属箔により構成される。なお、第2ゲート配線層22Bの表面には、たとえば銀めっきを施してもよい。
 第1入力端子31および第2入力端子32は、図2~図6に示すように、第1方向xの一方側に位置する。第1入力端子31および第2入力端子32には、電力変換対象となる直流電力(電圧)が入力される。第1入力端子31は、正極(P端子)である。第2入力端子32は、負極(N端子)である。図10に示すように、第2入力端子32は、厚さ方向zにおいて第1入力端子31、第1導電層20Aおよび第2導電層20Bのいずれにも対して離間して配置されている。第1入力端子31および第2入力端子32は、金属板である。当該金属板の構成材料は、銅または銅合金である。
 第1入力端子31は、図4に示すように、第1接続部311および第1端子部312を有する。第1入力端子31において、第1接続部311および第1端子部312との境界は、第2方向yおよび厚さ方向zに沿った面であって、かつ第1方向xの一方側に位置する封止樹脂60の第1側面63A(詳細は後述)を含む面である。第1接続部311は、その全てが封止樹脂60に覆われている。第1接続部311の第1方向xの他方側は、櫛歯状となっている。この櫛歯状の部分が、第1導電層20Aの表面に電気的に接合されている。当該接合は、ハンダ接合、または超音波接合などにより行われる。これにより、第1入力端子31は、第1導電層20Aに導通している。
 図4および図5に示すように、第1端子部312は、封止樹脂60から第1方向xの一方側に延びている。厚さ方向zに沿って視て、第1端子部312は矩形状である。第1端子部312の第2方向yの両側は、封止樹脂60に覆われている。それ以外の第1端子部312の部分は、封止樹脂60から露出している。これにより、第1入力端子31は、第1導電層20Aおよび封止樹脂60の双方に支持されている。
 第2入力端子32は、図3に示すように、第2接続部321および第2端子部322を有する。厚さ方向zに沿って視て、第2入力端子32における第2接続部321と第2端子部322との境界は、第1入力端子31における第1接続部311と第1端子部312との境界に一致している。第2接続部321は、第2方向yに延びる帯状である。
 図2および図3に示すように、第2端子部322は、封止樹脂60から第1方向xの一方側に延びている。厚さ方向zに沿って視て、第2端子部322は矩形状である。第2端子部322の第2方向yの両側は、封止樹脂60に覆われている。それ以外の第2端子部322の部分は、封止樹脂60から露出している。図3および図4に示すように、厚さ方向zに沿って視て、第2端子部322は、第1入力端子31の第1端子部312に重なっている。図10に示すように、第2端子部322は、第1端子部312に対して厚さ方向zのうち絶縁支持部材10の主面101が向く側に離間している。なお、半導体装置A10が示す例においては、第2端子部322の形状は、第1端子部312の形状と同一である。
 絶縁材39は、図6および図10に示すように、厚さ方向zにおいて第1入力端子31の第1端子部312と、第2入力端子32の第2端子部322との間に挟まれている。絶縁材39は平板である。絶縁材39は、電気絶縁性を有しており、その構成材料は、たとえば絶縁紙などである。厚さ方向zに沿って視て、第1入力端子31の全部が絶縁材39に重なっている。第2入力端子32においては、厚さ方向zに沿って視て、第2接続部321の一部と、第2端子部322の全部とが絶縁材39に接している。厚さ方向zに沿って視て絶縁材39に重なるこれらの部分は、絶縁材39に接している。絶縁材39により、第1入力端子31および第2入力端子32が互いに絶縁されている。絶縁材39の一部(第1方向xの他方側、および第2方向yの両側)は、封止樹脂60に覆われている。
 絶縁材39は、図3、図4および図10に示すように、介在部391および延出部392を有する。介在部391は、厚さ方向zにおいて第1入力端子31の第1端子部312と、第2入力端子32の第2端子部322との間に位置する。介在部391は、その全部が第1端子部312と第2端子部322との間に挟まれている。延出部392は、介在部391から第1端子部312および第2端子部322よりもさらに第1方向xの一方側に向けて延びている。このため、延出部392は、第1端子部312および第2端子部322よりも第1方向xの一方側に位置する。延出部392の第2方向yの両側は、封止樹脂60に覆われている。
 出力端子33は、図2~図7(図6を除く)に示すように、第1方向xの他方側に位置する。出力端子33から、複数の第1半導体素子40Aおよび複数の第2半導体素子40Bにより電力変換された交流電力(電圧)が出力される。出力端子33は、金属板である。当該金属板の構成材料は、銅または銅合金である。出力端子33は、接続部331および端子部332を有する。接続部331と端子部332との境界は、第2方向yおよび厚さ方向zに沿った面であって、かつ第1方向xの他方側に位置する封止樹脂60の第1側面63A(詳細は後述)を含む面である。接続部331は、その全てが封止樹脂60に覆われている。接続部331の第1方向xの一方側には、櫛歯部331Aが設けられている。櫛歯部331Aが、第2導電層20Bの表面に電気的に接合されている。当該接合は、ハンダ接合、または超音波接合などにより行われる。これにより、出力端子33は、第2導電層20Bに導通している。図2~図5に示すように、端子部332は、封止樹脂60から第1方向xの他方側に延びている。厚さ方向zに沿って視て、端子部332は矩形状である。端子部332の第2方向yの両側は、封止樹脂60に覆われている。それ以外の端子部332の部分は、封止樹脂60から露出している。これにより、出力端子33は、第2導電層20Bおよび封止樹脂60の双方に支持されている。
 複数の第1半導体素子40Aは、図3、図9および図10に示すように、第1導電層20Aに電気的に接合されている。複数の第1半導体素子40Aは、第2方向yに沿って所定の間隔で配列されている。複数の第1半導体素子40Aは、半導体装置A10の上アーム回路を構成している。また、複数の第2半導体素子40Bは、図3、図9および図10に示すように、第2導電層20Bに電気的に接合されている。複数の第2半導体素子40Bは、第2方向yに沿って所定の間隔で配列されている。複数の第2半導体素子40Bは、半導体装置A10の下アーム回路を構成している。なお、複数の第1半導体素子40Aおよび複数の第2半導体素子40Bは、これら全体して第2方向yに沿って千鳥配置されている。半導体装置A10が示す例においては、4つの第1半導体素子40Aと、4つの第2半導体素子40Bとを半導体装置A10が備える構成である。複数の第1半導体素子40Aおよび複数の第2半導体素子40Bの個数は、本構成に限定されず、半導体装置A10に要求される性能に応じて自在に設定可能である。
 複数の第1半導体素子40Aおよび複数の第2半導体素子40Bは、いずれも同一の半導体素子である。当該半導体素子は、たとえば、炭化ケイ素(SiC)を主とする半導体材料を用いて構成されたMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。なお、複数の第1半導体素子40Aおよび複数の第2半導体素子40Bは、MOSFETに限らずMISFET(Metal-Insulator-Semiconductor Field-Effect Transistor)を含む電界効果トランジスタや、IGBT(Insulated Gate Bipolar Transistor)のようなバイポーラトランジスタでもよい。半導体装置A10の説明においては、複数の第1半導体素子40Aおよび複数の第2半導体素子40Bは、nチャンネル型のMOSFETである場合を対象とする。
 図11および図14に示すように、複数の第1半導体素子40Aおよび複数の第2半導体素子40Bの各々は、厚さ方向zに沿って視て矩形状(半導体装置A10では正方形状)である。図11~図16に示すように、複数の第1半導体素子40Aおよび複数の第2半導体素子40Bの各々は、素子主面401、素子裏面402、第1電極41、第2電極42、第3電極43および絶縁膜44を有する。素子主面401および素子裏面402は、厚さ方向zにおいて互いに反対側を向く。これらのうち、素子主面401は、絶縁支持部材10の主面101が向く側を向く。
 図11~図16に示すように、第1電極41は、素子主面401に、すなわち厚さ方向zのうち絶縁支持部材10の主面101が向く側に設けられている。第1電極41には、第1半導体素子40Aまたは第2半導体素子40Bの内部からソース電流が流れる。
 図11、図13、図14および図16に示すように、第2電極42は、素子主面401に、すなわち厚さ方向zのうち絶縁支持部材10の主面101が向く側に設けられている。第2電極42には、第1半導体素子40Aまたは第2半導体素子40Bを駆動させるためのゲート電圧が印加される。第2電極42の大きさは、第1電極41の大きさよりも小とされている。複数の第1半導体素子40Aの各々において、第2電極42は、第2方向yの一方側(一対の検出端子34、一対のゲート端子35および複数のダミー端子36が位置する側)に位置する。また、複数の第2半導体素子40Bの各々において、第2電極42は、第2方向yの他方側に位置する。
 図12、図13、図15および図16に示すように、第3電極43は、素子裏面402に、すなわち厚さ方向zのうち絶縁支持部材10の主面101に対向する側に設けられている。第3電極43は、素子裏面402の全体にわたって設けられている。第3電極43には、第1半導体素子40Aまたは第2半導体素子40Bの内部に向けてドレイン電流が流れる。第1半導体素子40Aの第3電極43は、導電性を有する第1接合層29により第1導電層20Aに電気的に接合されている。第1接合層29の構成材料は、たとえば、錫(Sn)を主成分とする鉛フリーハンダである。これにより、複数の第1半導体素子40Aの第3電極43は、第1導電層20Aに導通している。また、第2半導体素子40Bの第3電極43は、第1接合層29により第2導電層20Bに電気的に接合されている。これにより、複数の第2半導体素子40Bの第3電極43は、第2導電層20Bに導通している。
 図11~図16に示すように、絶縁膜44は、素子主面401に設けられている。絶縁膜44は、電気絶縁性を有する。絶縁膜44は、厚さ方向zに沿って視て第1電極41および第2電極42をそれぞれ囲んでいる。絶縁膜44は、たとえば二酸化ケイ素(SiO2)層、窒化ケイ素(Si34)層、ポリベンゾオキサゾール(PBO)層が素子主面401からこの順番で積層されたものである。なお、絶縁膜44においては、当該ポリベンゾオキサゾール層に代えてポリイミド層でもよい。
 複数の第1リード51Aは、図3および図9に示すように、複数の第1半導体素子40Aの第1電極41と、第2導電層20Bとに接続されている。厚さ方向zに沿って視て、複数の第1リード51Aは、第1方向xに延びる帯状である。第1リード51Aの構成材料は、銅または銅合金である。第1リード51Aの第1方向xの一方側に位置する端部は、導電性を有する第2接合層49により第1半導体素子40Aの第1電極41に接続されている。第2接合層49の構成材料は、たとえば、錫を主成分とする鉛フリーハンダや焼成銀である。第1リード51Aの第1方向xの他方側に位置する端部は、第1接合層29により第2導電層20Bに接続されている。これにより、複数の第1半導体素子40Aの第1電極41は、第2導電層20Bに導通している。
 複数の第2リード51Bは、図3および図10に示すように、複数の第2半導体素子40Bの第1電極41と、第2入力端子32とに接続されている。厚さ方向zに沿って視て、複数の第2リード51Bは、第1方向xに延びる帯状である。第2リード51Bの構成材料は、銅または銅合金である。第2リード51Bの第1方向xの一方側に位置する端面は、第2入力端子32の第2接続部321に直接つながっている。このため、複数の第2リード51Bは、第2入力端子32と一体となっている。第2リード51Bの第1方向xの他方側に位置する端部は、第2接合層49により第2半導体素子40Bの第1電極41に接続されている。これにより、複数の第2半導体素子40Bの第1電極41は、第2入力端子32に導通している。
 複数の第1検出導電体52Aは、図3および図11に示すように、複数の第1半導体素子40Aの第1電極41と、第1検出配線層21Aとに接続されている。これにより、複数の第1半導体素子40Aの第1電極41は、第1検出配線層21Aに導通している。図11および図12に示すように、複数の第1検出導電体52Aの各々は、枕部521およびワイヤ部522を有する。
 図12に示すように、第1検出導電体52Aの枕部521は、第2接合層49により第1半導体素子40Aの第1電極41に接続されている。図11に示すように、厚さ方向zに沿って視て、枕部521は矩形状である。枕部521は、第1層521Aおよび一対の第2層521Bを有する。第1層521Aは、鉄(Fe)およびニッケル(Ni)を含む合金から構成される。当該合金は、たとえば、インバー(Fe-36Ni)、スーパーインバー(Fe-32Ni-5Co)およびコバール(Fe-29Ni)である。一対の第2層521Bは、金属から構成される。当該金属は、たとえば、銅、銅合金、アルミニウムおよびアルミニウム合金である。第1層521Aは、厚さ方向zにおいて一対の第2層521Bに挟まれている。このため、枕部521は、複数の金属層が厚さ方向zに積層された構成となっている。第1層521Aの厚さt1と、第2層521Bの厚さt2との比率は、たとえばt1:t2=8:1である。このように構成された枕部521の線膨張係数は、0~8×10-6/℃である。一方、第1導電層20Aの線膨張係数は、約16×10-6/℃である。したがって、枕部521の線膨張係数は、第1導電層20Aの線膨張係数よりも小である。なお、第1層521Aは、半導体材料から構成される場合でもよい。当該半導体材料は、たとえば、電気抵抗率が比較的小であるケイ素(Si)である。この場合においても、枕部521の線膨張係数は、第1導電層20Aの線膨張係数よりも小である。
 図11に示すように、第1検出導電体52Aのワイヤ部522は、第1検出導電体52Aの枕部521と、第1検出配線層21Aとに接続されている。ワイヤ部522は、第1方向xに対して傾斜角α1aで傾斜している。ワイヤ部522の構成材料は、たとえば、アルミニウム、アルミニウム合金、銅、銅合金およびこれらの組合せによるクラッド材である。
 複数の第2検出導電体52Bは、図3および図14に示すように、複数の第2半導体素子40Bの第1電極41と、第2検出配線層21Bとに接続されている。これにより、複数の第2半導体素子40Bの第1電極41は、第2検出配線層21Bに導通している。図14および図15に示すように、複数の第2検出導電体52Bの各々は、枕部521およびワイヤ部522を有する。第2検出導電体52Bの枕部521は、第2接合層49により第2半導体素子40Bの第1電極41に接続されている。第2検出導電体52Bのワイヤ部522は、第2検出導電体52Bの枕部521と、第2検出配線層21Bとに接続されている。第2検出導電体52Bのワイヤ部522は、第1方向xに対して傾斜角α1bで傾斜している。第2検出導電体52Bの枕部521およびワイヤ部522のその他の構成は、第1検出導電体52Aの枕部521およびワイヤ部522の構成と同様であるため、その説明を省略する。なお、第2導電層20Bの線膨張係数は、第1導電層20Aの線膨張係数と略等しい。したがって、枕部521の線膨張係数は、第2導電層20Bの線膨張係数よりも小である。
 複数の第1ゲート導電体53Aは、図3および図11に示すように、複数の第1半導体素子40Aの第2電極42と、第1ゲート配線層22Aとに接続されている。これにより、複数の第1半導体素子40Aの第2電極42は、第1ゲート配線層22Aに導通している。図11および図13に示すように、複数の第1ゲート導電体53Aの各々は、枕部531およびワイヤ部532を有する。
 図13に示すように、第1ゲート導電体53Aの枕部531は、第2接合層49により第1半導体素子40Aの第2電極42に接続されている。図11に示すように、厚さ方向zに沿って視て、枕部531は矩形状である。枕部531は、第1層531Aおよび一対の第2層531Bを有する。第1層531Aは、鉄およびニッケルを含む合金から構成される。当該合金の例は、第1検出導電体52Aの枕部521の第1層521Aの例と同一である。一対の第2層531Bは、金属から構成される。当該金属の例は、第1検出導電体52Aの枕部521の一対の第2層521Bの例と同一である。第1層531Aは、厚さ方向zにおいて一対の第2層531Bに挟まれている。このため、枕部531は、複数の金属層が厚さ方向zに積層された構成となっている。第1層531Aの厚さt1と、第2層531Bの厚さt2との比率は、たとえばt1:t2=8:1である。このように構成された枕部531の線膨張係数は、0~8×10-6/℃である。一方、第2導電層20Bの線膨張係数は、約16×10-6/℃である。したがって、枕部531の線膨張係数は、第2導電層20Bの線膨張係数よりも小である。なお、第1層531Aは、半導体材料から構成される場合でもよい。当該半導体材料の例は、第1検出導電体52Aの枕部521の第1層521Aの例と同一である。この場合においても、枕部531の線膨張係数は、第2導電層20Bの線膨張係数よりも小である。
 図11に示すように、第1ゲート導電体53Aのワイヤ部532は、第1ゲート導電体53Aの枕部531と、第1ゲート配線層22Aとに接続されている。第1ゲート導電体53Aのワイヤ部532は、第1方向xに対して傾斜角α2aで傾斜している。ワイヤ部532の構成材料の例は、第1検出導電体52Aのワイヤ部522の例と同一である。
 複数の第2ゲート導電体53Bは、図3および図14に示すように、複数の第2半導体素子40Bの第2電極42と、第2ゲート配線層22Bとに接続されている。これにより、複数の第2半導体素子40Bの第2電極42は、第2ゲート配線層22Bに導通している。図14および図16に示すように、複数の第2ゲート導電体53Bの各々は、枕部531およびワイヤ部532を有する。第2ゲート導電体53Bの枕部531は、第2接合層49により第2半導体素子40Bの第2電極42に接続されている。第2ゲート導電体53Bのワイヤ部532は、第2ゲート導電体53Bの枕部531と、第2ゲート配線層22Bとに接続されている。第2ゲート導電体53Bのワイヤ部532は、第1方向xに対して傾斜角α2bで傾斜している。第2ゲート導電体53Bの枕部531およびワイヤ部532のその他の構成は、第1ゲート導電体53Aの枕部531およびワイヤ部532の構成と同様であるため、その説明を省略する。なお、第2導電層20Bの線膨張係数は、第1導電層20Aの線膨張係数と略等しい。したがって、枕部531の線膨張係数は、第2導電層20Bの線膨張係数よりも小である。
 一対の検出端子34、一対のゲート端子35および複数のダミー端子36は、図3に示すように、第2方向yにおいて絶縁支持部材10に隣接している。これらの端子は、第1方向xに沿って配列されている。半導体装置A10においては、一対の検出端子34、一対のゲート端子35および複数のダミー端子36は、いずれも同一のリードフレームから構成される。
 一対の検出端子34は、図3に示すように、その一方が第1基板10Aに隣接し、その他方が第2基板10Bに隣接している。一対の検出端子34の各々から、複数の第1半導体素子40Aおよび複数の第2半導体素子40Bのどちらかに該当する複数の第1電極41に印加される電圧(ソース電流に対応した電圧)が検出される。一対の検出端子34の各々は、接続部341および端子部342を有する。接続部341は、封止樹脂60に覆われている。これにより、一対の検出端子34は、封止樹脂60に支持されている。なお、接続部341の表面には、たとえば銀めっきを施してもよい。端子部342は、接続部341につながり、かつ封止樹脂60から露出している(図8参照)。第1方向xに沿って視て、端子部342はL字状をなしている。
 一対のゲート端子35は、図3に示すように、第1方向xにおいて一対の検出端子34に隣接している。一対のゲート端子35の各々には、複数の第1半導体素子40Aおよび複数の第2半導体素子40Bのどちらかを駆動させるためのゲート電圧が印加される。一対のゲート端子35の各々は、接続部351および端子部352を有する。接続部351は、封止樹脂60に覆われている。これにより、一対のゲート端子35は、封止樹脂60に支持されている。なお、接続部351の表面には、たとえば銀めっきを施してもよい。端子部352は、接続部351につながり、かつ封止樹脂60から露出している(図8参照)。第1方向xに沿って視て、端子部352はL字状をなしている。
 複数のダミー端子36は、図3に示すように、第1方向xにおいて一対のゲート端子35に対して一対の検出端子34とは反対側に位置する。半導体装置A10が示す例においては、ダミー端子36の数は6つである。このうち3つのダミー端子36は、第1方向xの一方側に位置する。残り3つのダミー端子36は、第1方向xの他方側に位置する。なお、複数のダミー端子36の数は、本構成に限定されない。さらに、半導体装置A10において、複数のダミー端子36を備えない構成としてもよい。複数のダミー端子36の各々は、接続部361および端子部362を有する。接続部361は、封止樹脂60に覆われている。これにより、複数のダミー端子36は、封止樹脂60に支持されている。なお、接続部361の表面には、たとえば銀めっきを施してもよい。端子部362は、接続部361につながり、かつ封止樹脂60から露出している(図8参照)。図6および図7に示すように、第1方向xに沿って視て、端子部362はL字状をなしている。なお、一対の検出端子34の端子部342、および一対のゲート端子35の端子部352の各々の形状は、端子部362の形状と同一である。
 半導体装置A10は、図3に示すように、一対の第1ワイヤ54Aおよび一対の第2ワイヤ54Bをさらに備える。第1ワイヤ54Aおよび第2ワイヤ54Bの構成材料は、たとえばアルミニウムである。
 一対の第1ワイヤ54Aは、図3に示すように、第1検出配線層21Aおよび第2検出配線層21Bと、一対の検出端子34とに個別に接続されている。一対の検出端子34においては、一対の第1ワイヤ54Aは、一対の接続部341の表面に接続されている。これにより、第1基板10Aに隣接する一方の検出端子34は、複数の第1半導体素子40Aの第1電極41に導通している。第2基板10Bに隣接する他方の検出端子34は、複数の第2半導体素子40Bの第1電極41に導通している。
 一対の第2ワイヤ54Bは、図3に示すように、第1ゲート配線層22Aおよび第2ゲート配線層22Bと、一対のゲート端子35とに個別に接続されている。一対のゲート端子35においては、一対の第2ワイヤ54Bは、一対の接続部351の表面に接続されている。これにより、第1基板10Aに隣接する一方のゲート端子35は、複数の第1半導体素子40Aの第2電極42に導通している。第2基板10Bに隣接する他方のゲート端子35は、複数の第2半導体素子40Bの第2電極42に導通している。
 封止樹脂60は、図9および図10に示すように、絶縁支持部材10、第1導電層20A、第2導電層20B、複数の第1半導体素子40Aおよび複数の第2半導体素子40Bを覆っている。封止樹脂60は、複数の第1リード51A、複数の第2リード51B、複数の第1検出導電体52A、複数の第2検出導電体52B、複数の第1ゲート導電体53A、複数の第2ゲート導電体53B、一対の第1ワイヤ54Aおよび一対の第2ワイヤ54Bをさらに覆っている。封止樹脂60の構成材料は、たとえば黒色のエポキシ樹脂である。図2および図5~図8に示すように、封止樹脂60は、頂面61、底面62、一対の第1側面63A、一対の第2側面63B、複数の第3側面63C、複数の第4側面63D、複数の切欠部63Eおよび複数の取付け孔64を有する。
 図9および図10に示すように、頂面61は、厚さ方向zのうち絶縁支持部材10の主面101が向く側を向く。底面62は、厚さ方向zにおいて頂面61とは反対側を向く。図5に示すように、底面62から金属基板69が露出している。底面62は、金属基板69を囲む枠状である。
 図2および図5~図7に示すように、一対の第1側面63Aは、頂面61および底面62の双方につながり、かつ第1方向xを向く。第1方向xの一方側に位置する第1側面63Aからは、第1入力端子31の第1端子部312、および第2入力端子32の第2端子部322が、第1方向xの一方側に向けて延びている。第2方向yの他方側に位置する第1側面63Aからは、出力端子33の端子部332が、第1方向xの他方側に向けて延びている。このように、第1入力端子31および第2入力端子32のそれぞれ一部は、第1方向xの一方側において封止樹脂60から露出している。あわせて、出力端子33の一部は、第1方向xの他方側において封止樹脂60から露出している。
 図2および図5~図8に示すように、一対の第2側面63Bは、頂面61および底面62の双方につながり、かつ第2方向yを向く。一対の第2側面63Bのいずれか一方からは、一対の検出端子34の端子部342、一対のゲート端子35の端子部352、および複数のダミー端子36の端子部362が露出している。
 図2および図5~図7に示すように、複数の第3側面63Cは、頂面61および底面62の双方につながり、かつ第2方向yを向く。複数の第3側面63Cは、第1方向xの一方側に位置する一対の第3側面63Cと、第1方向xの他方側に位置する一対の第3側面63Cとを含む。第1方向xの一方側および他方側の各々において、一対の第3側面63Cは、第2方向yにおいて対向している。また、第1方向xの一方側および他方側の各々において、一対の第3側面63Cは、第1側面63Aの第2方向yの両端につながっている。
 図2および図5~図8に示すように、複数の第4側面63Dは、頂面61および底面62の双方につながり、かつ第1方向xを向く。複数の第4側面63Dは、第1方向xにおいて一対の第1側面63Aよりも半導体装置A10の外側に位置する。複数の第4側面63Dは、第1方向xの一方側に位置する一対の第4側面63Dと、第1方向xの他方側に位置する一対の第4側面63Dとを含む。第1方向xの一方側および他方側の各々において、一対の第4側面63Dの第2方向yの両端は、一対の第2側面63Bと、一対の第3側面63Cとにつながっている。
 図2および図5に示すように、複数の切欠部63Eの各々は、第1側面63Aと第3側面63Cとの境界に位置する。厚さ方向zに沿って視て、複数の切欠部63Eは、いずれも第1方向xおよび第2方向yの双方に対して傾斜している。
 図9に示すように、複数の取付け孔64は、厚さ方向zにおいて頂面61から底面62に至って封止樹脂60を貫通している。複数の取付け孔64は、半導体装置A10をヒートシンク(図示略)に取り付ける際に利用される。図2および図5に示すように、厚さ方向zに沿って視て、複数の取付け孔64の孔縁は円形状である。複数の取付け孔64は、厚さ方向zに沿って視て封止樹脂60の四隅に位置する。
 金属基板69は、図9および図10に示すように、絶縁支持部材10(第1基板10Aおよび第2基板10B)の裏面102の全体にわたって配置されている。このため、金属基板69は、第1方向xに離間した2つの領域を含む。図5に示すように、金属基板69は、封止樹脂60の底面62から露出している。金属基板69は、たとえば、銅(Cu)または銅合金からなる金属箔により構成される。金属基板69は、封止樹脂60の複数の取付け孔64とともに、半導体装置A10をヒートシンクに取り付ける際に利用される。
 <第1実施形態の第1変形例>
 次に、図17および図18に基づき、半導体装置A10の第1変形例である半導体装置A11について説明する。半導体装置A11は、複数の第1検出導電体52Aおよび複数の第2検出導電体52Bの各々の枕部521と、複数の第1ゲート導電体53Aおよび複数の第2ゲート導電体53Bの各々の枕部531との構成が、先述した半導体装置A10における構成と異なる。
 図17に示すように、第1検出導電体52Aの枕部521の第1層521Aは、下層部521C、上層部521Dおよび枠面521Eを有する。下層部521Cは、第1層521Aの下方に位置する。枕部521の下端に位置する第2層521Bが、下層部521Cに接する。上層部521Dは、下層部521Cの上端につながっている。厚さ方向zに沿って視て、上層部521Dの面積は、下層部521Cの面積よりも大である。枕部521の上端に位置する第2層521Bが、上層部521Dに接する。したがって、厚さ方向zに沿って視て、上層部521Dに接する第2層521Bの面積は、下層部521Cに接する第2層521Bの面積よりも大である。枠面521Eは、第1半導体素子40Aの第1電極41に対向している。厚さ方向zに沿って視て、枠面521Eは、下層部521Cの全周を囲んでいる。なお、図示は省略するが、第2検出導電体52Bの枕部521の第1層521Aも、下層部521C、上層部521Dおよび枠面521Eを有する。これらの構成は、第1検出導電体52Aの枕部521の下層部521C、上層部521Dおよび枠面521Eの構成と同様であるため、その説明は省略する。
 図18に示すように、第1ゲート導電体53Aの枕部531の第1層531Aは、下層部531C、上層部531Dおよび枠面531Eを有する。下層部531Cは、第1層531Aの下方に位置する。枕部531の下端に位置する第2層531Bが、下層部531Cに接する。上層部531Dは、下層部531Cの上端につながっている。厚さ方向zに沿って視て、上層部531Dの面積は、下層部531Cの面積よりも大である。枕部531の上端に位置する第2層531Bが、上層部531Dに接する。したがって、厚さ方向zに沿って視て、上層部531Dに接する第2層531Bの面積は、下層部531Cに接する第2層531Bの面積よりも大である。枠面531Eは、第1半導体素子40Aの第2電極42に対向している。厚さ方向zに沿って視て、枠面531Eは、下層部531Cの全周を囲んでいる。なお、図示は省略するが、第2ゲート導電体53Bの枕部531の第1層531Aも、下層部531C、上層部531Dおよび枠面531Eを有する。これらの構成は、第1ゲート導電体53Aの枕部531の下層部531C、上層部531Dおよび枠面531Eの構成と同様であるため、その説明は省略する。
 <第1実施形態の第2変形例>
 次に、図19~図22に基づき、半導体装置A10の第2変形例である半導体装置A12について説明する。半導体装置A12は、複数の第1検出導電体52Aおよび複数の第2検出導電体52Bの構成が、先述した半導体装置A10における構成と異なる。
 図19に示すように、厚さ方向zに沿って視て、複数の第1検出導電体52Aは、第1方向xに延びる帯状である。第1検出導電体52Aの幅B1aは、第1リード51Aの幅Baよりも小である。第1検出導電体52Aは、長状の金属片(金属ストリップ)から構成される。図20に示すように、第1検出導電体52Aの第1方向xの一方側に位置する端部は、第2接合層49により第1半導体素子40Aの第1電極41に接続されている。第1検出導電体52Aの第1方向xの他方側に位置する端部は、第1接合層29により第1検出配線層21Aに接続されている。
 図20に示すように、複数の第1検出導電体52Aの各々は、第1層523および一対の第2層524を有する。第1層523は、鉄およびニッケルを含む合金から構成される。当該合金の例は、第1検出導電体52Aの枕部521の第1層521Aの例と同一である。一対の第2層524は、金属から構成される。当該金属の例は、第1検出導電体52Aの枕部521の一対の第2層521Bの例と同一である。第1層523は、厚さ方向zにおいて一対の第2層524に挟まれている。このため、第1検出導電体52Aは、複数の金属層が厚さ方向zに積層された構成となっている。第1層523の第1方向xの一方側に位置する端部の厚さt3aと、第1層523の第1方向xの他方側に位置する端部の厚さt4aとの比率は、たとえばt3a:t4a=1:2である。このように構成された第1検出導電体52Aの線膨張係数は、0~8×10-6/℃である。一方、第1導電層20Aの線膨張係数は、約16×10-6/℃である。したがって、第1検出導電体52Aの線膨張係数は、第1導電層20Aの線膨張係数よりも小である。第1検出導電体52Aの第1層523は、遷移面523Aを有する。遷移面523Aは、第1層523が厚さt3aから厚さt4aに変化する区間に位置する湾曲面である。
 図21に示すように、厚さ方向zに沿って視て、複数の第2検出導電体52Bは、第1方向xに延びる帯状である。第2検出導電体52Bの幅B1bは、第2リード51Bの幅Bbよりも小である。第2検出導電体52Bは、金属片から構成される。図22に示すように、第2検出導電体52Bの第1方向xの一方側に位置する端部は、第1接合層29により第2検出配線層21Bに接続されている。第2検出導電体52Bの第1方向xの他方側に位置する端部は、第2接合層49により第2半導体素子40Bの第1電極41に接続されている。
 図22に示すように、複数の第2検出導電体52Bの各々は、第1層523および一対の第2層524を有する。第1層523の第1方向xの一方側に位置する端部の厚さt3bと、第1層523の第1方向xの他方側に位置する端部の厚さt4bとの比率は、たとえばt3b:t4b=2:1である。第2検出導電体52Bの第1層523および一対の第2層524のその他の構成は、第1検出導電体52Aの第1層523および一対の第2層524の構成と同様であるため、その説明を省略する。なお、第2導電層20Bの線膨張係数は、第1導電層20Aの線膨張係数と略等しい。したがって、第2検出導電体52Bの線膨張係数は、第2導電層20Bの線膨張係数よりも小である。第2検出導電体52Bの第1層523は、遷移面523Aを有する。遷移面523Aは、第1層523が厚さt3bから厚さt4bに変化する区間に位置する湾曲面である。
 <第1実施形態の第3変形例>
 次に、図23~図26に基づき、半導体装置A10の第3変形例である半導体装置A13について説明する。半導体装置A13は、複数の第1検出導電体52A、複数の第2検出導電体52B、複数の第1ゲート導電体53Aおよび複数の第2ゲート導電体53Bの構成が、先述した半導体装置A10における構成と異なる。これらのうち、複数の第1検出導電体52Aおよび複数の第2検出導電体52B構成は、先述した半導体装置A12における構成と同様であるため、その説明は省略する。
 図23に示すように、厚さ方向zに沿って視て、複数の第1ゲート導電体53Aは、第1方向xに延びる帯状である。第1ゲート導電体53Aの幅B2aは、第1リード51Aの幅Baよりも小である。第1ゲート導電体53Aは、金属片から構成される。図24に示すように、第1ゲート導電体53Aの第1方向xの一方側に位置する端部は、第2接合層49により第1半導体素子40Aの第2電極42に接続されている。第1検出導電体52Aの第1方向xの他方側に位置する端部は、第1接合層29により第1ゲート配線層22Aに接続されている。
 図24に示すように、複数の第1ゲート導電体53Aの各々は、第1層533および一対の第2層534を有する。第1層533は、鉄およびニッケルを含む合金から構成される。当該合金の例は、第1検出導電体52Aの枕部521の第1層521Aの例と同一である。一対の第2層534は、金属から構成される。当該金属の例は、第1検出導電体52Aの枕部521の一対の第2層521Bの例と同一である。第1層533は、厚さ方向zにおいて一対の第2層534に挟まれている。このため、第1ゲート導電体53Aは、複数の金属層が厚さ方向zに積層された構成となっている。第1層533の第1方向xの一方側に位置する端部の厚さt5aと、第1層533の第1方向xの他方側に位置する端部の厚さt6aとの比率は、たとえばt5a:t6a=1:2である。このように構成された第1ゲート導電体53Aの線膨張係数は、0~8×10-6/℃である。一方、第1導電層20Aの線膨張係数は、約16×10-6/℃である。したがって、第1ゲート導電体53Aの線膨張係数は、第1導電層20Aの線膨張係数よりも小である。第1ゲート導電体53Aの第1層533は、遷移面533Aを有する。遷移面533Aは、第1層533が厚さt5aから厚さt6aに変化する区間に位置する湾曲面である。
 図25に示すように、厚さ方向zに沿って視て、複数の第2ゲート導電体53Bは、第1方向xに延びる帯状である。第2ゲート導電体53Bの幅B2bは、第2リード51Bの幅Bbよりも小である。第2ゲート導電体53Bは、金属片から構成される。図26に示すように、第2ゲート導電体53Bの第1方向xの一方側に位置する端部は、第1接合層29により第2ゲート配線層22Bに接続されている。第2ゲート導電体53Bの第1方向xの他方側に位置する端部は、第2接合層49により第2半導体素子40Bの第2電極42に接続されている。
 図26に示すように、複数の第2ゲート導電体53Bの各々は、第1層533および一対の第2層534を有する。第1層533の第1方向xの一方側に位置する端部の厚さt5bと、第1層533の第1方向xの他方側に位置する端部の厚さt6bとの比率は、たとえばt5b:t6b=2:1である。第2ゲート導電体53Bの第1層533および一対の第2層534のその他の構成は、第1ゲート導電体53Aの第1層533および一対の第2層534の構成と同様であるため、その説明を省略する。なお、第2導電層20Bの線膨張係数は、第1導電層20Aの線膨張係数と略等しい。したがって、第2ゲート導電体53Bの線膨張係数は、第2導電層20Bの線膨張係数よりも小である。第2ゲート導電体53Bの第1層533は、遷移面533Aを有する。遷移面533Aは、第1層533が厚さt5bから厚さt6bに変化する区間に位置する湾曲面である。
 次に、半導体装置A10の作用効果について説明する。
 半導体装置A10は、第1電極41および第2電極42を有し、かつ第1導電層20Aに電気的に接合された第1半導体素子40Aと、第1電極41および第2導電層20Bに接続された第1リード51Aと、第1検出導電体52Aと、第2検出導電体52Bとを備える。第1検出導電体52Aは、第1電極41に接続されている。第1ゲート導電体53Aは、第2電極42に接続されている。第1検出導電体52Aおよび第1ゲート導電体53Aの少なくともいずれかにおいて、第1半導体素子40Aに接続された端部の線膨張係数が、第1導電層20Aの線膨張係数よりも小である。これにより、第1電極41と第1検出導電体52Aとの間に発生する熱応力、および第2電極42と第1ゲート導電体53Aとの間に発生する熱応力の少なくともいずれかの熱応力を低減させることができる。よって、第1検出導電体52Aおよび第1ゲート導電体53Aの少なくともいずれかが、第1半導体素子40Aから剥離しにくくなる。したがって、半導体装置A10によれば、その信頼性の低下を防ぐことができる。
 半導体装置A10においては、第1検出導電体52Aおよび第1ゲート導電体53Aの各々は、第1半導体素子40Aに接続された枕部521,531と、枕部521,531に接続されたワイヤ部522,532を有する。枕部521,531の線膨張係数が、第1導電層20Aの線膨張係数よりも小である。これにより、第1検出導電体52Aおよび第1ゲート導電体53Aにおいて、第1半導体素子40Aに接続された端部の線膨張係数を、第1導電層20Aの線膨張係数よりも小とすることができる。
 枕部521,531の各々は、鉄およびニッケルを含む合金から構成される第1層521A,531Aと、第1層521A,第1層531Aとは異なる金属から構成される一対の第2層521B,531Bとを有する。第1層521A,531Aは、厚さ方向zにおいて一対の第2層521B,531Bに挟まれている。これにより、枕部521,531の線膨張係数を第1導電層20Aの線膨張係数よりも小とすることができる。また、第1半導体素子40Aと、ワイヤ部522,532との双方に対する枕部521,531の接続状態がより良好なものとなる。
 枕部521、531の第1層521A,531Aは、鉄およびニッケルを含む合金に替えて、半導体材料から構成することができる。これにより、枕部521,531の線膨張係数が、第1半導体素子40Aの線膨張係数により近い値となる。したがって、第1電極41と第1検出導電体52Aとの間に発生する熱応力、および第2電極42と第1ゲート導電体53Aとの間に発生する熱応力の少なくともいずれかの熱応力をより効果的に低減させることができる。
 半導体装置A11においては、枕部521,531の第1層521A,531Aの各々は、下層部521C,531Cおよび上層部521D,531Dを有する。厚さ方向zに沿って視て、上層部521D,531Dの面積は、下層部521C,531Cの面積よりも大である。これにより、枕部521,531におけるワイヤ部522,532の接続可能面積がより大となるため、枕部521,531に対するワイヤ部522,532の接続がより容易となる。
 半導体装置A12においては、第1検出導電体52Aは、金属片から構成される。第1検出導電体52Aの線膨張係数が、第1導電層20Aの線膨張係数よりも小である。これにより、第1検出導電体52Aにおいて、第1半導体素子40Aに接続された端部の線膨張係数を、第1導電層20Aの線膨張係数よりも小とすることができる。
 半導体装置A12の第1検出導電体52Aは、鉄およびニッケルを含む合金から構成される第1層523と、第1層523とは異なる金属から構成される一対の第2層524とを有する。第1層523は、厚さ方向zにおいて一対の第2層524に挟まれている。これにより、第1検出導電体52Aの線膨張係数を第1導電層20Aの線膨張係数よりも小とすることができる。また、第1半導体素子40Aと、第1検出配線層21Aとの双方に対する第1検出導電体52Aの接続状態がより良好なものとなる。
 半導体装置A10においては、第1検出配線層21Aおよび第1ゲート配線層22Aは、絶縁支持部材10の主面101に配置されている。これにより、たとえばDBC(登録商標)基板を用いることにより、絶縁支持部材10と、主面101に配置された第1導電層20A、第1検出配線層21Aおよび第1ゲート配線層22Aとを、容易に形成することができる。
 半導体装置A10は、第1電極41および第2電極42を有し、かつ第2導電層20Bに電気的に接合された第2半導体素子40Bと、第2半導体素子40Bの第1電極41に接続された第2リード51Bと、第2検出導電体52Bと、第2ゲート導電体53Bとをさらに備える。第2検出導電体52Bは、第2半導体素子40Bの第1電極41に接続されている。第2ゲート導電体53Bは、第2半導体素子40Bの第2電極42に接続されている。第2検出導電体52Bおよび第2ゲート導電体53Bの少なくともいずれかにおいて、第2半導体素子40Bに接続された端部の線膨張係数が、第2導電層20Bの線膨張係数よりも小である。これにより、第2半導体素子40Bの第1電極41と第2検出導電体52Bとの間に発生する熱応力、および第2半導体素子40Bの第2電極42と第2ゲート導電体53Bとの間に発生する熱応力の少なくともいずれかの熱応力を低減させることができる。よって、第2検出導電体52Bおよび第2ゲート導電体53Bの少なくともいずれかが、第2半導体素子40Bから剥離しにくくなる。
 半導体装置A10は、第1入力端子31および第2入力端子32をさらに備える。第1入力端子31は、第1導電層20Aに導通している。第2入力端子32は、第2リード51Bに導通している。第2リード51Bは、第2入力端子32につながっている。これにより、第2入力端子32と第2リード51Bとを、一体部材とすることができるため、半導体装置A10の部品点数の削減を図ることができる。
 第1入力端子31および第2入力端子32は、第1方向xの一方側に位置する。第1入力端子31および第2入力端子32は、厚さ方向zにおいて互いに離間している。厚さ方向zに沿って視て、第2入力端子32の一部(第2端子部322)が、第1入力端子31に重なっている。これにより、半導体装置A10の使用時に、第2入力端子32から発生する磁界により、第1入力端子31のインダクタンスを低減させることができる。
 〔第2実施形態〕
 図27~図32に基づき、第2実施形態にかかる半導体装置A20について説明する。これらの図において、先述した半導体装置A10の同一または類似の要素には同一の符号を付して、重複する説明を省略する。ここで、図27は、理解の便宜上、封止樹脂60を透過している。透過した封止樹脂60を想像線(二点鎖線)で示している。
 半導体装置A20は、一対の絶縁層23を備え、かつ金属基板69を備えないことが、先述した半導体装置A10と異なる。さらに半導体装置A20は、第1検出配線層21A、第2検出配線層21B、第1ゲート配線層22A、第2ゲート配線層22B、複数の第1半導体素子40A、複数の第2半導体素子40B、複数の第1リード51Aおよび複数の第2リード51Bの構成が、先述した半導体装置A10と異なる。
 図27、図29および図30に示すように、一対の絶縁層23は、第1導電層20Aおよび第2導電層20Bの上に配置されている。一対の絶縁層23は、第1方向xにおいて互いに離間している。一対の絶縁層23は、第2方向yに延びる帯状である。第1方向xの一方側に位置する絶縁層23は、第1導電層20Aの上に配置されている。第1方向xの他方側に位置する絶縁層23は、第2導電層20Bの上に配置されている。一対の絶縁層23の構成材料は、たとえばガラスエポキシ樹脂である。
 図27、図29および図30に示すように、第1検出配線層21Aおよび第1ゲート配線層22Aは、第1導電層20Aの上に配置された一方の絶縁層23の上に配置されている。第2検出配線層21Bおよび第2ゲート配線層22Bは、第2導電層20Bに配置された他方の絶縁層23の上に配置されている。したがって、半導体装置A20においても、厚さ方向zに沿って視て、第1検出配線層21A、第2検出配線層21B、第1ゲート配線層22Aおよび第2ゲート配線層22Bは、絶縁支持部材10の主面101に重なっている。
 図27および図29に示すように、複数の第1半導体素子40Aは、第1導電層20Aの上に配置された一方の絶縁層23に対して、第1方向xの他方側に位置する。複数の第1半導体素子40Aの各々において、第2電極42は、第1方向xの一方側に位置する。
 図27および図30に示すように、複数の第2半導体素子40Bは、第2導電層20Bの上に配置された他方の絶縁層23に対して、第1方向xの一方側に位置する。複数の第2半導体素子40Bの各々において、第2電極42は、第1方向xの他方側に位置する。
 図27に示すように、複数の第1リード51Aの第1方向xの寸法は、先述した半導体装置A10における当該寸法よりも小である。また、複数の第2リード51Bの第1方向xの寸法は、先述した半導体装置A10における当該寸法よりも小である。
 図27および図28に示すように、一対の検出端子34は、先述した半導体装置A10の一対のゲート端子35と入れ替わっている。一対のゲート端子35は、先述した半導体装置A10の一対の検出端子34と入れ替わっている。また、図28に示すように、封止樹脂60の底面62から、絶縁支持部材10の裏面102が露出している。
 図31に示すように、厚さ方向zに沿って視て、複数の第1検出導電体52Aおよび複数の第2ゲート導電体53Bは、第1半導体素子40Aから第1方向xの一方側に延びている。図32に示すように、厚さ方向zに沿って視て、複数の第2検出導電体52Bおよび複数の第2ゲート導電体53Bは、第2半導体素子40Bから第1方向xの他方側に延びている。第1検出導電体52A、第2検出導電体52B、第1ゲート導電体53Aおよび第2ゲート導電体53Bの各々のその他の構成は、半導体装置A10におけるこれらの構成と同様であるため、その説明を省略する。
 <第2実施形態の第1変形例>
 次に、図33および図34に基づき、半導体装置A20の第1変形例である半導体装置A21について説明する。半導体装置A21は、複数の第1検出導電体52Aおよび複数の第2検出導電体52Bの構成が、先述した半導体装置A20における構成と異なる。
 図33に示すように、厚さ方向zに沿って視て、複数の第1検出導電体52Aは、第1半導体素子40Aから第1方向xの一方側に延びる帯状である。第1検出導電体52Aの幅B1aは、第1リード51Aの幅Baよりも小である。第1検出導電体52Aは、金属片から構成される。第1検出導電体52Aのその他の構成は、先述した半導体装置A12における第1検出導電体52Aの構成と同様であるため、その説明を省略する。
 図34に示すように、厚さ方向zに沿って視て、複数の第2検出導電体52Bは、第2半導体素子40Bから第1方向xの他方側に延びる帯状である。第2検出導電体52Bの幅B1bは、第2リード51Bの幅Bbよりも小である。第2検出導電体52Bは、金属片から構成される。第2検出導電体52Bのその他の構成は、先述した半導体装置A12における第2検出導電体52Bの構成と同様であるため、その説明を省略する。
 <第2実施形態の第2変形例>
 次に、図35および図36に基づき、半導体装置A20の第2変形例である半導体装置A22について説明する。半導体装置A22は、複数の第1検出導電体52A、複数の第2検出導電体52B、複数の第1ゲート導電体53Aおよび複数の第2ゲート導電体53Bの構成が、先述した半導体装置A20における構成と異なる。これらのうち、複数の第1検出導電体52Aおよび複数の第2検出導電体52B構成は、先述した半導体装置A21における構成と同様であるため、その説明は省略する。
 図35に示すように、厚さ方向zに沿って視て、複数の第1ゲート導電体53Aは、第1半導体素子40Aから第1方向xの一方側に延びる帯状である。第1ゲート導電体53Aの幅B2aは、第1リード51Aの幅Baよりも小である。第1ゲート導電体53Aの長さL2aは、第1検出導電体52Aの長さL1aよりも小である。第1ゲート導電体53Aは、金属片から構成される。第1ゲート導電体53Aのその他の構成は、先述した半導体装置A13における第1ゲート導電体53Aの構成と同様であるため、その説明を省略する。
 図36に示すように、厚さ方向zに沿って視て、複数の第2ゲート導電体53Bは、第2半導体素子40Bから第1方向xの他方側に延びる帯状である。第2ゲート導電体53Bの幅B2bは、第2リード51Bの幅Bbよりも小である。第2ゲート導電体53Bの長さL2bは、第2検出導電体52Bの長さL1bよりも小である。第2ゲート導電体53Bは、金属片から構成される。第2ゲート導電体53Bのその他の構成は、先述した半導体装置A13における第2ゲート導電体53Bの構成と同様であるため、その説明を省略する。
 次に、半導体装置A20の作用効果について説明する。
 半導体装置A20は、先述した半導体装置A10と同様に、第1電極41および第2電極42を有し、かつ第1導電層20Aに電気的に接合された第1半導体素子40Aと、第1電極41および第2導電層20Bに接続された第1リード51Aと、第1検出導電体52Aと、第2検出導電体52Bとを備える。第1検出導電体52Aは、第1電極41に接続されている。第1ゲート導電体53Aは、第2電極42に接続されている。第1検出導電体52Aおよび第1ゲート導電体53Aの少なくともいずれかにおいて、第1半導体素子40Aに接続された端部の線膨張係数が、第1導電層20Aの線膨張係数よりも小である。したがって、半導体装置A20によっても、その信頼性の低下を防ぐことができる。
 半導体装置A20は、第1導電層20Aの上に配置された絶縁層23を備える。第1検出配線層21Aおよび第1ゲート配線層22Aは、絶縁層23の上に配置されている。これにより、厚さ方向zに沿って視て、第1導電層20Aの面積をより大とすることができる。よって、半導体装置A20の放熱性を向上させることができる。また、第1半導体素子40Aを、絶縁層23に対して第1方向xの他方側に配置させることにより、第1リード51Aの第1方向xにおける寸法を小とすることができる。これにより、半導体装置A20の寄生抵抗の低減を図ることができる。
 本開示の半導体装置は、上述した実施形態に限定されるものではない。半導体装置の各部の具体的な構成は、種々に設計変更自在である。

Claims (17)

  1.  主面を有する絶縁支持部材と、
     前記主面に配置された第1導電層および第2導電層と、
     前記主面に対向する第1サイド、および、前記絶縁支持部材の厚さ方向において前記第1サイドとは反対側の第2サイドを有する第1半導体素子であって、前記第2サイドに設けられた第1電極および第2電極、ならびに前記第1サイドに設けられた第3電極を備え、前記第3電極が前記第1導電層に電気的に接合されている第1半導体素子と、
     前記第1電極および前記第2導電層に接続された第1リードと、
     前記第1電極に接続された第1検出導電体と、
     前記第2電極に接続された第1ゲート導電体と、を備え、
     前記第1検出導電体および前記第1ゲート導電体の少なくともいずれかは、前記第1半導体素子に接続された端部を有しており、この端部の線膨張係数が、前記第1導電層の線膨張係数よりも小である、半導体装置。
  2.  前記第1検出導電体および前記第1ゲート導電体の各々は、前記第1半導体素子に接続された枕部と、前記枕部に接続されたワイヤ部と、を有し、
     前記枕部の線膨張係数が、前記第1導電層の線膨張係数よりも小である、請求項1に記載の半導体装置。
  3.  前記枕部は、鉄およびニッケルを含む合金から構成される第1層と、前記第1層とは異なる金属から構成される一対の第2層と、を有し、
     前記第1層は、前記厚さ方向において前記一対の第2層に挟まれている、請求項2に記載の半導体装置。
  4.  前記枕部は、半導体材料から構成される第1層と、金属から構成される一対の第2層と、を有し、
     前記第1層は、前記厚さ方向において前記一対の第2層に挟まれている、請求項2に記載の半導体装置。
  5.  前記第1検出導電体は、金属片から構成され、
     前記第1ゲート導電体は、前記第1半導体素子に接続された枕部と、前記枕部に接続されたワイヤ部と、を有し、
     前記第1検出導電体および前記枕部の各々の線膨張係数が、前記第1導電層の線膨張係数よりも小である、請求項1に記載の半導体装置。
  6.  前記第1検出導電体は、鉄およびニッケルを含む合金から構成される第1層と、前記第1層とは異なる金属から構成される一対の第2層と、を有し、
     前記第1層は、前記厚さ方向において前記一対の第2層に挟まれている、請求項5に記載の半導体装置。
  7.  前記第1検出導電体および前記第1ゲート導電体の各々は、金属片から構成され、
     前記第1検出導電体および前記第1ゲート導電体の各々の線膨張係数が、前記第1導電層の線膨張係数よりも小である、請求項1に記載の半導体装置。
  8.  前記第1検出導電体が接続された第1検出配線層と、前記第1ゲート導電体が接続された第1ゲート配線層と、をさらに備え、
     前記厚さ方向に沿って視て、前記第1検出配線層および前記第1ゲート配線層は、前記主面に重なっている、請求項2ないし7のいずれかに記載の半導体装置。
  9.  前記第1検出配線層および前記第1ゲート配線層は、前記主面に配置されている、請求項8に記載の半導体装置。
  10.  前記第1導電層の上に配置された絶縁層をさらに備え、
     前記第1検出配線層および前記第1ゲート配線層は、前記絶縁層の上に配置されている、請求項8に記載の半導体装置。
  11.  第1電極、第2電極および第3電極を有する第2半導体素子であって、前記第3電極が前記第2導電層に電気的に接合された第2半導体素子と、
     前記第2半導体素子の前記第1電極に接続された第2リードと、
     前記第2半導体素子の前記第1電極に接続された第2検出導電体と、
     前記第2半導体素子の前記第2電極に接続された第2ゲート導電体と、
    をさらに備える構成において、
     前記第2検出導電体および前記第2ゲート導電体の少なくともいずれかは、前記第2半導体素子に接続された端部を有しており、この端部の線膨張係数が、前記第2導電層の線膨張係数よりも小である、請求項1に記載の半導体装置。
  12.  前記第2検出導電体および前記第2ゲート導電体の各々は、前記第2半導体素子に接続された枕部と、前記枕部に接続されたワイヤ部と、を有し、
     前記枕部の線膨張係数が、前記第2導電層の線膨張係数よりも小である、請求項11に記載の半導体装置。
  13.  前記第2検出導電体は、金属片から構成され、
     前記第2ゲート導電体は、前記第2半導体素子に接続された枕部と、前記枕部に接続されたワイヤ部と、を有し、
     前記第2検出導電体および前記枕部の各々の線膨張係数が、前記第2導電層の線膨張係数よりも小である、請求項11に記載の半導体装置。
  14.  前記第2検出導電体および前記第2ゲート導電体の各々は、金属片から構成され、
     前記第2検出導電体および前記第2ゲート導電体の各々の線膨張係数が、前記第2導電層の線膨張係数よりも小である、請求項11に記載の半導体装置。
  15.  前記第2検出導電体が接続された第2検出配線層と、
     前記第2ゲート導電体が接続された第2ゲート配線層と、
    をさらに備える構成において、
     前記厚さ方向に沿って視て、前記第2検出配線層および前記第2ゲート配線層は、前記主面に重なっている、請求項12ないし14のいずれかに記載の半導体装置。
  16.  前記第1導電層に導通する第1入力端子と、
     前記第2リードに導通する第2入力端子と、
     前記第2導電層に導通する出力端子と、
    をさらに備える構成において、
     前記第1入力端子および前記第2入力端子の各々は、前記厚さ方向に対して直交する一方向において、前記出力端子から離間配置されており、
     前記第2リードは、前記第2入力端子につながっている、請求項11ないし15のいずれかに記載の半導体装置。
  17.  前記第1入力端子および前記第2入力端子は、前記厚さ方向において互いに離間し、
     前記厚さ方向に沿って視て、前記第2入力端子の一部が、前記第1入力端子に重なっている、請求項16に記載の半導体装置。
PCT/JP2019/035459 2018-09-12 2019-09-10 半導体装置 WO2020054688A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019004559.8T DE112019004559T5 (de) 2018-09-12 2019-09-10 Halbleiterbauteil
US17/273,532 US11955440B2 (en) 2018-09-12 2019-09-10 Semiconductor device with detection conductor
JP2020546018A JP7280278B2 (ja) 2018-09-12 2019-09-10 半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018170502 2018-09-12
JP2018-170502 2018-09-12

Publications (1)

Publication Number Publication Date
WO2020054688A1 true WO2020054688A1 (ja) 2020-03-19

Family

ID=69778106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035459 WO2020054688A1 (ja) 2018-09-12 2019-09-10 半導体装置

Country Status (4)

Country Link
US (1) US11955440B2 (ja)
JP (1) JP7280278B2 (ja)
DE (1) DE112019004559T5 (ja)
WO (1) WO2020054688A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021184406A (ja) * 2020-05-21 2021-12-02 三菱電機株式会社 電力用半導体モジュール

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024107791A1 (en) * 2022-11-16 2024-05-23 Semiconductor Components Industries, Llc Semiconductor power module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621323A (ja) * 1992-06-30 1994-01-28 Mitsubishi Electric Corp 半導体パワーモジュール
JP2011254387A (ja) * 2010-06-03 2011-12-15 Rohm Co Ltd 交流スイッチ
JP2017107937A (ja) * 2015-12-08 2017-06-15 三菱電機株式会社 電力用半導体装置
WO2017209191A1 (ja) * 2016-06-01 2017-12-07 ローム株式会社 半導体パワーモジュール
WO2018043535A1 (ja) * 2016-09-02 2018-03-08 ローム株式会社 パワーモジュール、駆動回路付パワーモジュール、および産業機器、電気自動車またはハイブリッドカー
WO2019098368A1 (ja) * 2017-11-20 2019-05-23 ローム株式会社 半導体装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294384A (ja) 2007-04-27 2008-12-04 Renesas Technology Corp 半導体装置
US9343388B2 (en) * 2012-01-25 2016-05-17 Mitsubishi Electric Corporation Power semiconductor device
US9821464B2 (en) * 2015-05-04 2017-11-21 Bby Solutions, Inc. Random-access robotic inventory dispensary: operation prioritization
DE102015013786A1 (de) * 2015-10-20 2017-04-20 Andreas Stihl Ag & Co. Kg Zweitaktmotor
EP3210550B1 (en) * 2016-01-27 2018-10-10 Biedermann Technologies GmbH & Co. KG Instrument guide assembly for a bone plate and kit of a bone plate with such an instrument guide assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621323A (ja) * 1992-06-30 1994-01-28 Mitsubishi Electric Corp 半導体パワーモジュール
JP2011254387A (ja) * 2010-06-03 2011-12-15 Rohm Co Ltd 交流スイッチ
JP2017107937A (ja) * 2015-12-08 2017-06-15 三菱電機株式会社 電力用半導体装置
WO2017209191A1 (ja) * 2016-06-01 2017-12-07 ローム株式会社 半導体パワーモジュール
WO2018043535A1 (ja) * 2016-09-02 2018-03-08 ローム株式会社 パワーモジュール、駆動回路付パワーモジュール、および産業機器、電気自動車またはハイブリッドカー
WO2019098368A1 (ja) * 2017-11-20 2019-05-23 ローム株式会社 半導体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021184406A (ja) * 2020-05-21 2021-12-02 三菱電機株式会社 電力用半導体モジュール
JP7019746B2 (ja) 2020-05-21 2022-02-15 三菱電機株式会社 電力用半導体モジュール

Also Published As

Publication number Publication date
US11955440B2 (en) 2024-04-09
DE112019004559T5 (de) 2021-05-27
JP7280278B2 (ja) 2023-05-23
JPWO2020054688A1 (ja) 2021-08-30
US20210193592A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP7267716B2 (ja) 半導体装置
CN112997298B (zh) 半导体装置
US20220319975A1 (en) Semiconductor device
US11923278B2 (en) Semiconductor module
WO2018168924A1 (ja) 半導体装置
JP2020092108A (ja) 半導体装置
JP7204779B2 (ja) 半導体装置
JP7280278B2 (ja) 半導体装置
US20160007500A1 (en) Power converter apparatus
US12002794B2 (en) Semiconductor device
WO2020149225A1 (ja) 半導体装置
WO2020044668A1 (ja) 半導体装置
WO2020218298A1 (ja) 半導体装置
JP2020077762A (ja) 半導体装置
WO2022074971A1 (ja) 半導体装置
WO2024111367A1 (ja) 半導体装置
US20220084900A1 (en) Semiconductor device
WO2021172015A1 (ja) 半導体装置
JP2021040065A (ja) 半導体装置の実装構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020546018

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19860275

Country of ref document: EP

Kind code of ref document: A1