WO2020049991A1 - エポキシ化合物の製造方法 - Google Patents

エポキシ化合物の製造方法 Download PDF

Info

Publication number
WO2020049991A1
WO2020049991A1 PCT/JP2019/032325 JP2019032325W WO2020049991A1 WO 2020049991 A1 WO2020049991 A1 WO 2020049991A1 JP 2019032325 W JP2019032325 W JP 2019032325W WO 2020049991 A1 WO2020049991 A1 WO 2020049991A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
reaction
compound
formula
epoxy compound
Prior art date
Application number
PCT/JP2019/032325
Other languages
English (en)
French (fr)
Inventor
翔平 高田
健太 上
剛 小池
敦史 亀山
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to EP19857674.6A priority Critical patent/EP3848358A4/en
Priority to KR1020217010020A priority patent/KR20210055739A/ko
Priority to CN201980057552.7A priority patent/CN112638887A/zh
Priority to US17/274,123 priority patent/US11485717B2/en
Publication of WO2020049991A1 publication Critical patent/WO2020049991A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • B01J27/055Sulfates with alkali metals, copper, gold or silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • B01J31/0259Phosphorus acids or phosphorus acid esters comprising phosphorous acid (-ester) groups ((RO)P(OR')2) or the isomeric phosphonic acid (-ester) groups (R(R'O)2P=O), i.e. R= C, R'= C, H
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0267Phosphines or phosphonium compounds, i.e. phosphorus bonded to at least one carbon atom, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, the other atoms bonded to phosphorus being either carbon or hydrogen
    • B01J31/0268Phosphonium compounds, i.e. phosphine with an additional hydrogen or carbon atom bonded to phosphorous so as to result in a formal positive charge on phosphorous
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • C07D303/06Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms in which the oxirane rings are condensed with a carbocyclic ring system having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/22Ethers with hydroxy compounds containing no oxirane rings with monohydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/08Bridged systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/72Epoxidation

Definitions

  • the present invention relates to a method for producing an epoxy compound.
  • Patent Document 1 a method of oxidizing olefins with a peracid such as peracetic acid is known (Patent Document 1).
  • peracid must be handled with care, and
  • the resulting epoxy compound reacts with the carboxylic acid present in the reaction system to form an ester compound and the like, resulting in a decrease in the selectivity of the epoxy compound.
  • a coexisting organic acid easily reacts with an epoxy group generated in the presence of water to open the epoxy group.
  • the selectivity of the epoxy compound is lowered and (iv) post-treatment after the reaction is troublesome.
  • An object of the present invention is to provide a method for producing an epoxy compound from hydrogen peroxide using an organic compound having a carbon-carbon double bond as a raw material, while suppressing the generation of by-products and producing the epoxy compound in high yield. It is to provide a method.
  • the present inventors have intensively studied a method for producing an epoxy compound with a high yield, and as a result, have found that an epoxy compound can be efficiently produced by using an onium salt with a specific anion as a phase transfer catalyst.
  • the present invention is based on these findings.
  • the present invention includes the following inventions.
  • a method for producing an epoxy compound comprising a step of oxidizing an organic compound having a carbon-carbon double bond with hydrogen peroxide in the presence of a catalyst, wherein the catalyst comprises the catalyst Is a tungsten compound; phosphoric acids, phosphonic acids or salts thereof; and formula (I):
  • R 1 is a linear or branched aliphatic hydrocarbon group having 1 to 18 carbon atoms which may be substituted by 1 to 3 phenyl groups.
  • a production method comprising an onium salt having an alkyl sulfate ion represented by the formula (1) as an anion.
  • an epoxy compound can be efficiently produced. Further, according to the present invention, it is advantageous in that an epoxy compound can be produced safely and easily.
  • the method for producing an epoxy compound of the present invention comprises the step of oxidizing an organic compound having a carbon-carbon double bond with hydrogen peroxide in the presence of a catalyst to form the carbon-carbon double bond.
  • R 1 is a linear or branched aliphatic hydrocarbon group having 1 to 18 carbon atoms which may be substituted by 1 to 3 phenyl groups.
  • an onium salt having an alkyl sulfate ion as an anion that is, in the method for producing an epoxy compound of the present invention, an organic compound having a carbon-carbon double bond is used as a raw material, and the epoxy compound is produced by hydrogen peroxide. Characterized in that an onium salt having an alkyl sulfate ion as an anion is used. With such a feature, an epoxy compound can be efficiently produced while suppressing generation of by-products.
  • the method for producing an epoxy compound of the present invention is a method for producing a product in which at least one double bond in an organic compound having a carbon-carbon double bond is epoxidized. Therefore, when the number of double bonds in the organic compound having a carbon-carbon double bond is n, 2 n ⁇ 1 kinds of products can be obtained in the method for producing an epoxy compound of the present invention. Becomes
  • the by-product in the method for producing an epoxy compound of the present invention is a compound having a structure in which an epoxy ring is opened during a double bond epoxidation reaction.
  • the compound having the ring-opened structure most of the compounds have a diol structure, but instead of one or both hydroxyl groups of the diol structure, those having another structure generated by an epoxidation reaction may also be used. included. Therefore, even if a compound in which at least one double bond in an organic compound having a carbon-carbon double bond is epoxidized by the method for producing an epoxy compound of the present invention, the epoxy ring is opened in the same molecule.
  • the compound having the above structure does not correspond to an epoxy compound but corresponds to a by-product.
  • a tungsten compound; a phosphoric acid, a phosphonic acid or a salt thereof; and an onium salt having an alkyl sulfate ion represented by the formula (I) as an anion are used as a catalyst for the epoxidation reaction.
  • a catalyst other than the onium salt used in the present invention that is, a tungsten compound and a phosphoric acid, a phosphonic acid or a salt thereof
  • hydrogen peroxide and a neutral inorganic material added as necessary
  • the salt is water-soluble, it shifts to the aqueous phase, while the substrate and the onium salt are hardly soluble in water and form an organic phase. Therefore, the onium salt having an alkyl sulfate ion represented by the formula (I) as an anion functions as a phase transfer catalyst.
  • an organic solvent may be added to the reaction system as needed to improve the dissolution / dispersibility of the substrate, adjust the reaction rate, and suppress the generation of reaction by-products.
  • Organic compound having a carbon-carbon double bond used as a raw material in the method for producing an epoxy compound of the present invention has at least a carbon-carbon double bond in the molecule.
  • various organic compounds such as a chain aliphatic organic compound, an alicyclic aliphatic organic compound, and an aromatic compound can be used.
  • any material having at least one carbon-carbon double bond can be used as a raw material.
  • the chain aliphatic compound having a carbon-carbon double bond used as a raw material in the method for producing an epoxy compound of the present invention may be a linear one. It may be branched.
  • Examples of the chain aliphatic organic compound include ethylene, propene, 1-butene, 2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, 2,3-dimethyl-2-butene, 3-hexene, 1-heptene, 2-heptene, 1-octene, 2-octene, 3-octene, 2-methyl-2-butene, 1-nonene, 2-nonene, decene, undecene, dodecene, tetradecene, hexadecene, Alkenes having 2 to 40 carbon atoms such as octadecene (preferably alkenes having 2 to 30 carbon atoms, more preferably alkenes having 2
  • a diene preferably an alkadiene having 4 to 30 carbon atoms, more preferably an alkadiene having 4 to 20 carbon atoms; an alkatriene having 6 to 30 carbon atoms such as undecatriene and dodecatriene (preferably having 6 to 30 carbon atoms) 20 alkatrienes) and the like.
  • the linear or branched chain aliphatic organic compounds having a double bond may be used alone or in combination of two or more.
  • chain aliphatic organic compound having a substituent examples include, for example, chain aliphatic organic compounds having an aryl group (eg, a phenyl group) as a substituent (eg, phenylethylene (or styrene), 1-phenylpropene, 2-phenyl-1-butene, 1-phenyl-1,3-butadiene, 1-phenyl-1,3-pentadiene, etc.).
  • aryl group eg, a phenyl group
  • substituent eg, phenylethylene (or styrene)
  • 1-phenylpropene 2-phenyl-1-butene
  • 1-phenyl-1,3-butadiene 1-phenyl-1,3-pentadiene, etc.
  • a chain aliphatic organic compound having an aryl group (eg, a phenyl group) as a substituent is an alkenyl group (eg, an alkenyl group having 2 to 10 carbon atoms such as vinyl, allyl, propenyl, isopropenyl, and butenyl).
  • An aromatic compound substituted with an alkenyl group having preferably 2 to 6 carbon atoms can also be referred to.
  • Such an aromatic compound further has a substituent (for example, in the alkenyl group portion and / or the aromatic ring portion) as long as the chain aliphatic organic compound as a substituent has at least one double bond.
  • the linking group is a group consisting of carbonyl, ester, ether, amine, amide, silyl, sulfide, substituted or unsubstituted alkylene having 1 to 20 carbon atoms and substituted or unsubstituted arylene having 6 to 40 carbon atoms. More selected ones may be used.
  • (1-2) Alicyclic Aliphatic Compound The alicyclic aliphatic organic compound having a carbon-carbon double bond, which is used as a raw material in the method for producing an epoxy compound of the present invention, is not particularly limited and may be a known one. Things can be used.
  • the alicyclic aliphatic organic compound having a carbon-carbon double bond used as a raw material in the method for producing an epoxy compound of the present invention includes the following formulas (II) to (V):
  • a compound having two carbon-carbon double bonds represented by the following formula (1) can be preferably used.
  • a and b are each independently an integer of 0 to 5, more preferably an integer of 0 to 3, and even more preferably 0 or 1.
  • c is an integer of 0 to 10, more preferably an integer of 0 to 5, and further preferably an integer of 1 to 3.
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen or a linear group having 1 to 30 carbon atoms, preferably 1 to 10 carbon atoms. Or, it represents a branched alkyl group, but R 1 or R 2 and R 3 or R 4 may form a crosslinked structure represented by — (CH 2 ) e —.
  • e is an integer of 1 to 5, more preferably an integer of 1 to 3.
  • R 3 and R 4 are each independently selected.
  • R 3 and R 4 when a is 2 or more, R 3 and R 4 exist 2 or more, and a crosslinked structure is formed with any one of R 1 and R 2. Only one of R 3 or R 4 can be performed, and the other R 1 , R 2 , R 3 and R 4 can be hydrogen or a compound having 1 to 30 carbon atoms, preferably 1 carbon atom. Up to 10 linear or branched alkyl groups.
  • R 5 , R 6 , R 7 and R 8 are each independently hydrogen or a linear group having 1 to 30 carbon atoms, preferably 1 to 10 carbon atoms. Or a branched alkyl group, wherein R 5 or R 6 and R 7 or R 8 may form a crosslinked structure represented by — (CH 2 ) f —.
  • f is an integer of 1 to 5, more preferably 1 to 3.
  • c is 1 or more, and b when is 2 or more, R 7 and R 8 is will be present two or more, R 5 and R 6 Only one of R 7 or R 8 at any one position can form a crosslinked structure with any one of them, and the other R 5 , R 6 , R 7 and R 8 are hydrogen or a group having 1 to 5 carbon atoms.
  • R 9 and R 10 each independently represent hydrogen or a linear or branched alkyl group having 1 to 30 carbon atoms, preferably 1 to 10 carbon atoms. Represent.
  • g is an integer of 0 to 8, preferably 0 to 3.
  • g is 0, there is no methylene group and a single bond is formed.
  • R 11 , R 12 , R 13 and R 14 each independently represent hydrogen or a linear or branched alkyl group having 1 to 30 carbon atoms, preferably 1 to 10 carbon atoms. Represents
  • Examples of the alicyclic aliphatic organic compound having a carbon-carbon double bond satisfying the formula (II) include, for example, cyclopentadiene, cyclohexadiene, norbornadiene, dicyclopentadiene, tetrahydroindene, and a compound represented by the formula: A compound represented by the formula: And a compound represented by the formula: And the like.
  • those having two or more alicyclic rings are preferable from the viewpoint of the stability of the epoxy compound, and include norbornadiene, dicyclopentadiene, tetrahydroindene, and a compound represented by the formula: A compound represented by the formula: And a compound represented by the formula: The compound represented by is preferred.
  • Examples of the alicyclic aliphatic organic compound having a carbon-carbon double bond satisfying the formula (III) include vinylcyclopentene, vinylcyclohexene, vinylnorbornene, and a compound represented by the formula: And a compound represented by the formula: And the like.
  • Examples of the alicyclic aliphatic organic compound having a carbon-carbon double bond satisfying the formula (IV) include 5-ethylidene-2-norbornene, methylenecyclohexene, and a compound represented by the formula: And a compound represented by the formula: And the like.
  • Examples of the alicyclic aliphatic organic compound having a carbon-carbon double bond satisfying the formula (V) include a compound represented by the formula: A compound represented by the formula: And a compound represented by the formula: And the like.
  • the alicyclic aliphatic organic compound having a carbon-carbon double bond used as a raw material in the method for producing an epoxy compound of the present invention may be a carbon-carbon compound represented by any of the above formulas (II) to (V).
  • Other than the compound having two carbon double bonds for example, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclodecene, cyclododecatriene, methylmethylenecyclopropane, methylenecyclopentane, tetracyclododecene, norbornene, vinylcyclohexane , Cyclooctadiene, methylenecyclopropane, methyldicyclopentadiene and the like can be suitably used.
  • Aromatic Compound The aromatic compound having a carbon-carbon double bond used as a raw material in the method for producing an epoxy compound of the present invention is an aromatic compound having an ethylenically unsaturated double bond.
  • aromatic compound having an ethylenically unsaturated double bond include an indene-based aromatic compound.
  • Hydrogen peroxide used in the method for producing an epoxy compound of the present invention is not particularly limited, and a known one can be used. Hydrogen peroxide is preferably used as an aqueous solution, that is, aqueous hydrogen peroxide from the viewpoint of handling and the like.
  • the concentration of the aqueous solution of hydrogen peroxide used for the reaction is not limited, and is usually used at about 1 to 70% by weight, preferably about 10 to 60% by weight.
  • the amount of hydrogen peroxide to be used is not limited, but is usually 0 to carbon-carbon double bond contained in an organic compound having a carbon-carbon double bond as a substrate. It is about 0.5 to 4 equivalents, preferably about 1 to 2.5 equivalents.
  • Tungsten compound As the tungsten compound used in the method for producing an epoxy compound of the present invention, a tungsten compound capable of generating a tungstate anion in water and catalyzing an epoxidation reaction of a carbon-carbon double bond with hydrogen peroxide. It is not particularly limited as long as it is a compound.
  • tungstic acid, tungsten trioxide, tungsten trisulfide, tungsten hexachloride, phosphotungstic acid, silicotungstic acid and the like tungstates such as ammonium tungstate, potassium tungstate, sodium tungstate, calcium tungstate and the like can be mentioned. .
  • tungstic acid, tungsten trioxide, phosphotungstic acid and sodium tungstate are preferred, and sodium tungstate dihydrate is particularly preferred.
  • These tungsten compounds may be used alone or in combination of two or more.
  • the amount of the tungsten compound used in the method for producing an epoxy compound of the present invention is about 0.0001 to 20 mol%, preferably 0.01 to 10 mol%, based on the organic compound having a carbon-carbon double bond in the molecule. %.
  • Phosphoric acids, phosphonic acids, or salts thereof include a carbon-carbon double bond epoxidation reaction with hydrogen peroxide.
  • the phosphoric acids, phosphonic acids or salts thereof that can catalyze the reaction.
  • the phosphoric acids used in the method for producing an epoxy compound of the present invention include phosphoric acid, polyphosphoric acid, pyrophosphoric acid, hexametaphosphoric acid, hypophosphorous acid, phosphorous acid, dodecylphosphoric acid, 2-ethylhexyl phosphoric acid and the like. No.
  • Examples of the salts of phosphoric acids used in the method for producing an epoxy compound of the present invention include sodium phosphate, potassium phosphate, ammonium phosphate, sodium dihydrogen phosphate, disodium hydrogen phosphate, potassium hydrogen phosphate, Examples include ammonium hydrogen phosphate, sodium polyphosphate, sodium hexametaphosphate, sodium acid hexametaphosphate, sodium polyphosphate, sodium pyrophosphate, disodium dihydrogen pyrophosphate, sodium hypophosphite, and sodium phosphite.
  • Examples of the phosphonic acids used in the method for producing an epoxy compound of the present invention include methylphosphonic acid, ethylphosphonic acid, n-propylphosphonic acid, isopropylphosphonic acid, n-butylphosphonic acid, t-butylphosphonic acid, and phenylphosphonic acid. Acid, 4-methoxyphenylphosphonic acid, 4-aminophenylphosphonic acid, 1-hydroxyethane-1,1-bis (phosphonic acid), nitrilotris (methylenephosphonic acid) and the like.
  • Examples of the salts of phosphonic acids used in the method for producing an epoxy compound of the present invention include sodium phenylphosphonate.
  • phosphoric acid phenylphosphonic acid, phosphorous acid, hypophosphorous acid, 2-ethylhexyl phosphoric acid, lauryl phosphoric acid, sodium dihydrogen phosphate, and the like are preferable from the viewpoint of availability and reaction activity.
  • Phenylphosphonic acid is particularly preferred.
  • one kind selected from the group consisting of the above-mentioned phosphoric acids, phosphonic acids and salts thereof can be used alone or in combination of two or more kinds.
  • the amount of phosphoric acids, phosphonic acids or salts thereof used in the method for producing an epoxy compound of the present invention is preferably about 0.0001 to 10 mol%, based on the organic compound having a carbon-carbon double bond in the molecule. Is selected from the range of about 0.01 to 10 mol%.
  • Onium salt having an alkyl sulfate ion represented by the formula (I) as an anion As an onium salt having an alkyl sulfate ion represented by the formula (I) used in the method for producing an epoxy compound of the present invention, Any onium salt can be used as long as it functions as a phase transfer catalyst in the epoxidation reaction of a carbon-carbon double bond with hydrogen peroxide.
  • Examples of such onium salts include quaternary ammonium salts, quaternary ammonium salts containing a nitrogen ring, quaternary phosphonium salts, quaternary sulfonium salts, macrocyclic polyethers, and the like. Of these, quaternary ammonium salts and quaternary phosphonium salts are preferred.
  • Examples of the cation of the quaternary ammonium salt include those having an aryl group and those having an alkyl group. Those having an aryl group include, for example, benzyltrimethylammonium, benzyltriethylammonium, benzyltributylammonium, phenyltrimethylammonium, lauryldimethylbenzylammonium and the like.
  • alkyl group examples include, for example, tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, tetrahexylammonium, tetraoctylammonium, trioctylmethylammonium, trioctylethylammonium, dilauryldimethylammonium, didecyl Dimethyl ammonium, didecyl diethyl ammonium, didecyl dipropyl ammonium, dioleyl dimethyl ammonium, lauryl trimethyl ammonium, distearyl dimethyl ammonium, stearyl trimethyl ammonium, dioctadecyl dimethyl ammonium, octadecyl trimethyl ammonium, dicetyl dimethyl ammonium, cetyl trimethyl ammonium, Tricapril Chill ammonium, palmityl dimethylammoni
  • those composed of an alkyl group are preferred from the viewpoint of solubility in organic solvents, and those having a total number of carbon atoms of 16 or more are more preferred.
  • those having a long-chain alkyl group having 8 or more carbon atoms are preferable, and the number of carbon atoms of the long-chain alkyl group having the largest number of carbon atoms and the number of carbon atoms of the alkyl group having the smallest carbon atom are preferred. More preferably, the difference from the number of atoms is 7 or more.
  • trioctylmethyl ammonium dilauryl dimethyl ammonium, didecyl dimethyl ammonium, didecyl diethyl ammonium, didecyl dipropyl ammonium, dioleyl dimethyl Ammonium, lauryltrimethylammonium, distearyldimethylammonium, stearyltrimethylammonium, dioctadecyldimethylammonium, octadecyltrimethylammonium, dicetyldimethylammonium, cetyltrimethylammonium, tricaprilme Le ammonium, palmityl dimethyl ethyl ammonium, lauryl dimethyl ethyl ammonium preferable.
  • Examples of the cation of the nitrogen ring-containing quaternary ammonium salt include quaternary ammoniums in which the nitrogen ring is a nitrogen-containing heterocycle such as a pyridine ring, a picoline ring, a quinoline ring, an imidazoline ring or a morpholine ring. Of these, quaternary ammonium comprising a pyridine ring is preferred.
  • alkyl linear or branched alkyl having 8 to 20 carbon atoms, the same as described below for the cation of a nitrogen-containing quaternary ammonium salt
  • pyridinium eg, N-laurylpyridinium, N-cetylpyridinium and the like
  • Alkylpicolium eg, N-laurylpicolinium
  • alkylquinolium alkylisoquinolium, alkylhydroxyethylimidazoline, alkylhydroxymorpholine and the like.
  • Examples of the cation of the quaternary phosphonium salt include tetramethylphosphonium, tetrabutylphosphonium, tributyl (hexadecyl) phosphonium, and triethylphenylphosphonium.
  • Examples of the cation of the quaternary sulfonium salt include triethylsulfonium iodide and ethyldiphenylsulfonium iodide.
  • R 1 is a linear or branched aliphatic hydrocarbon group having 1 to 18 carbon atoms, preferably a linear or branched aliphatic hydrocarbon group having 1 to 12 carbon atoms.
  • such a linear or branched aliphatic hydrocarbon group may be substituted with 1 to 3 phenyl groups, preferably 1 to 2 phenyl groups. Preferably it may be substituted by one phenyl group.
  • R 1 in the above formula (I) includes a benzyl group, an isopropyl group, a normal propyl group, an ethyl group, a methyl group and the like.
  • the anion of the onium salt used in the method for producing an epoxy compound of the present invention is preferably an alkyl having 1 to 3 carbon atoms such as methyl sulfate ion, ethyl sulfate ion and propyl sulfate ion.
  • Sulfate ions are preferred, and methyl sulfate ions or ethyl sulfate ions are particularly preferred.
  • onium salt used in the method for producing an epoxy compound of the present invention any of the above-mentioned cations of onium salts and anions of onium salts can be used in appropriate combination.
  • the onium salts selected as described above can be used alone or in combination of two or more.
  • the onium salt used in the method for producing an epoxy compound of the present invention can be synthesized by a known method. For example, it can be synthesized by reacting a tertiary amine with a dialkyl sulfate using a nonionic surfactant as a reaction solvent as disclosed in JP-A-9-67320.
  • the amount of the onium salt used in the method for producing an epoxy compound of the present invention is about 0.0001 to 20 mol%, preferably 0.01 to 10 mol%, based on the organic compound having a carbon-carbon double bond in the molecule. %.
  • an organic solvent may be added to the reaction system, if necessary, to improve the dissolution / dispersibility of the substrate, adjust the reaction rate, and suppress the generation of reaction by-products.
  • a solvent may be added.
  • a reaction solution containing an organic solvent is preferably used because operability is improved.
  • the organic compound having a carbon-carbon double bond in the molecule may be dissolved in the organic solvent or in a suspended state. Preferably, it is dissolved in an organic solvent under the reaction temperature conditions.
  • the organic solvent used in the present invention is not particularly limited as long as it is inert to the organic compound to be used and the active catalyst.
  • aromatic hydrocarbons such as benzene, toluene and xylene; hexane (Including cyclohexane and n-hexane), aliphatic hydrocarbons such as heptane, octane and dodecane; alcohols such as methanol, ethanol, isopropanol, butanol, hexanol and cyclohexanol; halogen solvents such as chloroform, dichloromethane and dichloroethane Ethers such as tetrahydrofuran and dioxane; ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone and cyclohexanone; nitriles such as acetonitrile and butyronitrile; ethyl
  • amides such as N, N-dimethylformamide, N, N-dimethylacetamide; ureas such as N, N'-dimethylimidazolidinone; and mixtures of these solvents, including aromatic hydrocarbons, Aliphatic hydrocarbons, or mixtures thereof, are preferred. Further, aromatic hydrocarbons which are stable to the reaction are preferable, and toluene having a boiling point higher than the reaction temperature is more preferable. In particular, when using the active catalyst having high reaction activity, it is preferable to perform the reaction in a two-phase system using an organic solvent that forms a two-phase system with water in terms of reaction efficiency and operation.
  • the amount of the organic solvent used in the present invention can be appropriately adjusted and used depending on the solubility and various physical properties of the organic compound, and is not particularly limited.However, from the viewpoint of productivity and safety, carbon is contained in the molecule. -About 1 to 500 mol%, preferably about 10 to 300 mol%, or 5 times or less, and preferably 3 times or less, of the organic compound having a carbon double bond.
  • the epoxidation reaction of a carbon-carbon double bond may be carried out in the presence of a neutral inorganic salt, if necessary.
  • neutral inorganic salts include sulfates, nitrates, carbonates, phosphates and the like. From the viewpoint of availability, sulfates are preferred, lithium sulfate, sodium sulfate, potassium sulfate, calcium sulfate, magnesium sulfate and the like are more preferred, and sodium sulfate, lithium sulfate and the like are particularly preferred.
  • the neutral inorganic salt may be an anhydride or a hydrate, or may be a mixture thereof.
  • Neutral inorganic salts can be used alone or in combination of two or more.
  • the amount of the neutral inorganic salt used is selected from the range of about 0.1 to 500 mol%, preferably about 1 to 50 mol%, based on the organic compound having a carbon-carbon double bond in the molecule.
  • Epoxidation reaction (8-1) pH in reaction system The pH value of the aqueous phase in the reaction system in the method for producing an epoxy compound of the present invention is preferably 3.0 to 7.0 from the viewpoint of improving the speed of the epoxidation reaction and suppressing the generation of by-products. It is more preferably set to 4.0 to 7.0, particularly preferably 4.5 to 7.0 or 4.0 to 6.5.
  • an acid such as sulfuric acid, an acid salt such as a phosphate, an alkali metal hydroxide such as sodium hydroxide, or the like.
  • the epoxidation reaction can be carried out by adjusting the pH in the reaction system within the above range.
  • reaction temperature is usually about 0 to 80 ° C, preferably about 20 to 50 ° C, more preferably about 30 to 40 ° C. It is.
  • the reaction time in the method for producing an epoxy compound of the present invention may be appropriately determined depending on the amount of the catalyst used, the reaction temperature and the like, but is usually about 1 to 50 hours, preferably about 5 to 30 hours.
  • the product is separated by a known method, and if necessary, purified to obtain the desired epoxy compound.
  • the desired epoxy compound can be obtained from the product by distillation.
  • the product when the product is a solid, the desired product can be obtained by crystallization from a solvent containing the product.
  • the remaining hydrogen peroxide may be decomposed with an aqueous solution of sodium thiosulfate or the like.
  • an epoxy compound can be converted from a compound having a carbon-carbon double bond into a compound having a high conversion rate and high selectivity. It can be obtained in rate and yield.
  • Epoxy compounds can be quantitatively analyzed by gas chromatography using an internal standard method using nonane as an internal standard substance.
  • Yield of epoxy compound (mol number of epoxy compound obtained after reaction) / (mol number of charged olefin) ⁇ 100 Can be calculated by
  • the ratio of the selectivity of the by-product to the selectivity of the epoxy compound is 0.25 or less, and in a more preferred embodiment it is 0.1 or less. .
  • Example 1 In a reaction vessel equipped with a thermometer, a stirrer, a reflux pipe, and a dropping device, 25.9 g of the diolefin compound represented by the formula (1), 6.58 g of toluene, 1.42 g of sodium tungstate dihydrate, and trioctyl 2.12 g of methyl ammonium methyl sulfate, 0.694 g of phenylphosphonic acid, and 2.81 g of anhydrous sodium sulfate were added, and then 32.7 g of 45% hydrogen peroxide solution was added thereto over 4 hours while stirring at 25 ° C. After the dropwise addition, the reaction was carried out at 30 ° C. for 7 hours.
  • the diolefin compound represented by the formula (1) In a reaction vessel equipped with a thermometer, a stirrer, a reflux pipe, and a dropping device, 25.9 g of the diolefin compound represented by the formula (1), 6.58 g of toluene, 1.42
  • Example 2 In a reaction vessel equipped with a thermometer, a stirrer, a reflux tube, and a dropping device, 25.9 g of the diolefin compound represented by the formula (1), 6.6 g of toluene, 1.43 g of sodium tungstate dihydrate, and didecyl 1.88 g of dimethylammonium methyl sulfate, 0.69 g of phenylphosphonic acid, and 2.76 g of anhydrous sodium sulfate were added, and then 32.7 g of 45% hydrogen peroxide solution was added over 4 hours while stirring at 25 ° C. After the dropwise addition, the reaction was carried out at 30 ° C. for 7 hours.
  • the diolefin compound represented by the formula (1) 25.9 g of the diolefin compound represented by the formula (1), 6.6 g of toluene, 1.43 g of sodium tungstate dihydrate, and didecyl 1.88 g of dimethylammonium methyl sulf
  • Example 3 In a reaction vessel equipped with a thermometer, a stirrer, a reflux tube, and a dropping device, 25.8 g of the diolefin compound represented by the formula (1), 6.6 g of toluene, 1.43 g of sodium tungstate dihydrate, and didecyl 1.93 g of dimethylammonium methyl sulfate and 0.72 g of phenylphosphonic acid were added, and then 32.8 g of 45% hydrogen peroxide solution was added dropwise with stirring at 25 ° C over 4 hours, and then at 30 ° C. The reaction was performed for 7 hours. The pH of the reaction solution during the reaction was 4.1 to 5.3.
  • Example 4 In a reaction vessel equipped with a thermometer, a stirrer, a reflux tube, and a dropping device, 25.9 g of the diolefin compound represented by the formula (1), 6.59 g of toluene, 1.44 g of sodium tungstate dihydrate, and palmityl 1.88 g of dimethylethylammonium ethyl sulfate, 0.679 g of phenylphosphonic acid and 2.76 g of anhydrous sodium sulfate were added, and then 32.7 g of a 45% hydrogen peroxide solution was added thereto with stirring at 25 ° C. for 4 hours. Then, the reaction was carried out at 30 ° C. for 7 hours.
  • the diolefin compound represented by the formula (1) In a reaction vessel equipped with a thermometer, a stirrer, a reflux tube, and a dropping device, 25.9 g of the diolefin compound represented by the formula (1), 6.59 g of toluen
  • Example 5 In a reaction vessel equipped with a thermometer, a stirrer, a reflux tube, and a dropping device, 2.00 g of the diolefin compound represented by the formula (5), 0.510 g of toluene, 69.2 mg of sodium tungstate dihydrate, and hexadecyl 99.0 mg of trimethylammonium methyl sulfate, 32.3 mg of phenylphosphonic acid, 139.3 mg of anhydrous sodium sulfate, and 1.60 g of 45% hydrogen peroxide solution were added, and then the reaction was performed at 30 ° C. for 11 hours. During the reaction, the pH of the reaction solution was 3.8 to 4.1.
  • Example 6 In a reaction vessel equipped with a thermometer, a stirrer, a reflux tube, and a dropping device, 2.01 g of the diolefin compound represented by the formula (5), 0.505 g of toluene, 72.3 mg of sodium tungstate dihydrate, and lauryl dimethyl 116 mg of ethylammonium ethyl sulfate, 33.9 g of phenylphosphonic acid, 136.8 g of anhydrous sodium sulfate, and 1.60 g of 45% hydrogen peroxide solution were added, and the reaction was performed at 30 ° C. for 11 hours. During the reaction, the pH of the reaction solution was 3.8 to 4.1.
  • Example 7 In a reaction vessel equipped with a thermometer, a stirrer, a reflux tube, and a dropping device, 2.01 g of the diolefin compound represented by the formula (5), 0.502 g of toluene, 70.5 g of sodium tungstate dihydrate, and palmityl 63.9 mg of dimethylethylammonium ethyl sulfate, 35.9 mg of phenylphosphonic acid, 139.8 mg of anhydrous sodium sulfate, and 1.60 g of 45% hydrogen peroxide solution were added thereto, and the reaction was performed at 30 ° C. for 11 hours. . During the reaction, the pH of the reaction solution was 3.8 to 4.1.
  • Example 8> In a reaction vessel equipped with a thermometer, a stirrer, a reflux tube, and a dropping device, 2.05 g of the diolefin compound represented by the formula (9), 0.604 g of toluene, 117 mg of sodium tungstate dihydrate, and lauryl dimethylethylammonium -240 mg of ethyl sulfate, 60.0 mg of phenylphosphonic acid, 241 mg of anhydrous sodium sulfate, and 1.40 g of 45% hydrogen peroxide solution were added, and then the mixture was reacted at 30 ° C for 11 hours. During the reaction, the pH of the reaction solution was 3.8 to 4.1.
  • Example 9 1.99 g of the diolefin compound represented by the formula (9), 0.513 g of toluene, 126 mg of sodium tungstate dihydrate, 126 mg of palmityl dimethylethyl were placed in a reaction vessel equipped with a thermometer, a stirrer, a reflux tube, and a dropping device. 192 mg of ammonium ethyl sulfate, 60.0 mg of phenylphosphonic acid, 21 mg of anhydrous sodium sulfate, and 1.40 g of 45% hydrogen peroxide were added, and the reaction was performed at 30 ° C. for 11 hours. During the reaction, the pH of the reaction solution was 3.8 to 4.1.
  • Example 10 In a reaction vessel equipped with a thermometer, a stirrer, a reflux tube, and a dropping device, 2.02 g of the diolefin compound represented by the formula (9), 0.503 g of toluene, 136 mg of sodium tungstate dihydrate, and hexadecyltrimethylammonium -159 mg of methyl sulfate, 56.0 mg of phenylphosphonic acid, 230 mg of anhydrous sodium sulfate, and 1.40 g of 45% hydrogen peroxide solution were added, and then the reaction was performed at 30 ° C for 11 hours. During the reaction, the pH of the reaction solution was 3.8 to 4.1.
  • Example 1 using methyl sulfate ion as the anion of the onium salt has a lower yield of by-products as compared with Comparative Example 1 using hydrogen sulfate. There was a trend. This suggests that the use of methyl sulfate ion as the anion of the onium salt enables an efficient epoxidation reaction with few by-products.
  • Example 2 using methyl sulfate ion as the anion of the onium salt has a higher epoxy selectivity than Comparative Examples 2 and 3 using chloride. There was a trend. This suggests that the use of methyl sulfate ion as the anion of the onium salt enables an efficient epoxidation reaction with high epoxy selectivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

[課題]炭素-炭素二重結合を有する有機化合物を原料として過酸化水素によりエポキシ化合物を製造する方法において、副生成物の生成を抑制しつつ、高収率でエポキシ化合物を製造する方法の提供。 [手段]炭素-炭素二重結合を有する有機化合物を触媒の存在下で過酸化水素により前記炭素-炭素二重結合を酸化させる工程を含んでなる、エポキシ化合物の製造方法であって、前記触媒が、タングステン化合物;リン酸類、ホスホン酸類若しくはこれらの塩;並びに式(I): [式中、Rは、1~3個のフェニル基により置換されていてもよい、炭素数1~18の直鎖状または分枝状の脂肪族炭化水素基である。] で表されるアルキル硫酸イオンをアニオンとするオニウム塩を含んでなる、製造方法。

Description

エポキシ化合物の製造方法
 本発明は、エポキシ化合物の製造方法に関する。
 従来のエポキシ化合物の製造方法としては、例えばオレフィン類を過酢酸等の過酸で酸化する方法が知られている(特許文献1)。しかしながら、(i)過酸は取扱いに注意を要し、(ii)生成したエポキシ体が反応系内に存在するカルボン酸と反応することによりエステル体等が生成してエポキシ体の選択率が低下する、(iii)酸との反応性が高いとされる脂環式エポキシ化合物の製造においては、共存する有機酸が水の存在下で生成したエポキシ基と容易に反応し、エポキシ基が開環してエポキシ体の選択率が低下する、(iv)反応後の後処理が面倒である等の問題がある。
 以上の通り、炭素-炭素二重結合を有する有機化合物をエポキシ化する従来の方法は、いずれも安全性や効率性の観点から、工業的に有利な方法とはいえない。
特開昭49-126658号公報
 本発明の目的は、炭素-炭素二重結合を有する有機化合物を原料として過酸化水素によりエポキシ化合物を製造する方法において、副生成物の生成を抑制しつつ、高収率でエポキシ化合物を製造する方法を提供することにある。
 本発明者らは、高収率でエポキシ化合物を製造する方法を鋭意検討した結果、相間移動触媒として、特定のアニオンによるオニウム塩を用いることにより、エポキシ化合物を効率的に製造しうることを見出した。本発明は、これらの知見に基づくものである。
 すなわち、本発明は以下の発明を包含する。
[1]炭素-炭素二重結合を有する有機化合物を触媒の存在下で過酸化水素により前記炭素-炭素二重結合を酸化させる工程を含んでなる、エポキシ化合物の製造方法であって、前記触媒が、タングステン化合物;リン酸類、ホスホン酸類若しくはこれらの塩;並びに式(I):
Figure JPOXMLDOC01-appb-C000002
[式中、Rは、1~3個のフェニル基により置換されていてもよい、炭素数1~18の直鎖状または分枝状の脂肪族炭化水素基である。]
で表されるアルキル硫酸イオンをアニオンとするオニウム塩を含んでなる、製造方法。
[2]前記オニウム塩が、第4級アンモニウム塩または第4級ホスホニウム塩である、[1]に記載の製造方法。
[3]前記オニウム塩が第4級アンモニウム塩である、[1]または[2]に記載の製造方法。
[4]Rが炭素数1~3の直鎖状または分枝状の脂肪族炭化水素基である、[1]~[3]のいずれかに記載の製造方法。
[5]Rがメチル基またはエチル基である、[1]~[4]のいずれかに記載の製造方法。
[6]前記炭素-炭素二重結合を酸化させる工程の反応系内のpH値が3.0~7.0である、[1]~[5]のいずれかに記載の製造方法。
[7]前記炭素-炭素二重結合を酸化させる工程の反応系内にさらに中性無機塩を含む、[1]~[6]のいずれかに記載の製造方法。
[8]前記エポキシ化合物の選択率に対する副生成物の選択率の比が、0.25以下である、[1]~[7]のいずれかに記載の製造方法。
 本発明によれば、エポキシ化合物を効率的に製造できる点で有利である。また、本発明によれば、エポキシ化合物を安全かつ簡便に製造できる点で有利である。
 本発明のエポキシ化合物の製造方法は、炭素-炭素二重結合を有する有機化合物を触媒の存在下で過酸化水素により前記炭素-炭素二重結合を酸化させる工程を含んでなり、前記触媒が、タングステン化合物;リン酸類、ホスホン酸類若しくはこれらの塩;並びに式(I):
Figure JPOXMLDOC01-appb-C000003
[式中、Rは、1~3個のフェニル基により置換されていてもよい、炭素数1~18の直鎖状または分枝状の脂肪族炭化水素基である。]
で表されるアルキル硫酸イオンをアニオンとするオニウム塩を含んでなるものである。つまり、本発明のエポキシ化合物の製造方法は、炭素-炭素二重結合を有する有機化合物を原料とし、過酸化水素によってエポキシ化合物を製造する方法において、相間移動触媒として、式(I)で表されるアルキル硫酸イオンをアニオンとするオニウム塩を用いることを特徴とするものである。かかる特徴により、副生成物の生成を抑制しつつ、エポキシ化合物を効率的に製造することができる。
 本明細書において、本発明のエポキシ化合物の製造方法とは、炭素-炭素二重結合を有する有機化合物中の少なくとも1つの二重結合をエポキシ化した生成物を製造する方法とされる。したがって、炭素-炭素二重結合を有する有機化合物中の二重結合の数がn個である場合、本発明のエポキシ化合物の製造方法においては、2-1種の生成物が得られうることとなる。
 本明細書において、本発明のエポキシ化合物の製造方法における副生成物とは、二重結合のエポキシ化反応中にエポキシ環が開環した構造を有する化合物である。当該開環した構造を有する化合物の態様としては、大半がジオール構造をとるものであるが、当該ジオール構造の一方または両方の水酸基のかわりに、エポキシ化反応によって生じた他の構造を有するものも含まれる。したがって、本発明のエポキシ化合物の製造方法により、炭素-炭素二重結合を有する有機化合物中の少なくとも1つの二重結合がエポキシ化された化合物であっても、同一分子中でエポキシ環が開環した構造を有する化合物は、エポキシ化合物には該当せず、副生成物に該当する。
 本発明のエポキシ化合物の製造方法においては、好ましくは、有機相と水相からなる二相液の反応系で、基質である炭素-炭素二重結合を有する有機化合物の過酸化水素によるエポキシ化反応を行う。本発明のエポキシ化合物の製造方法において、タングステン化合物;リン酸類、ホスホン酸類若しくはこれらの塩;並びに式(I)で表されるアルキル硫酸イオンをアニオンとするオニウム塩は、当該エポキシ化反応の触媒として作用する。当該二相液の反応系において、本発明で用いるオニウム塩以外の触媒(即ち、タングステン化合物及びリン酸類、ホスホン酸類若しくはこれらの塩)、過酸化水素、並びに必要に応じて添加される中性無機塩は水溶性であるので水相に移行し、一方基質やオニウム塩は水に溶け難く有機相を形成する。したがって、式(I)で表されるアルキル硫酸イオンをアニオンとするオニウム塩は相間移動触媒として機能する。なお、基質の溶解・分散性向上、反応速度の調整、および反応副生成物の生成抑制のために、必要に応じて、当該反応系内に有機溶媒を加えてもよい。
(1)炭素-炭素二重結合を有する有機化合物
 本発明のエポキシ化合物の製造方法における原料として使用される炭素-炭素二重結合を有する有機化合物は、分子中に炭素-炭素二重結合を少なくとも1つ有する有機化合物であれば、特に限定されない。例えば、鎖式脂肪族有機化合物、脂環式脂肪族有機化合物、または芳香族化合物等の各種有機化合物を用いることができる。なお、これらの鎖式脂肪族有機化合物、脂環式脂肪族有機化合物、または芳香族化合物等の各種有機化合物にあっては、既に分子中にエポキシ基を少なくとも1つ有するものであっても、さらに炭素-炭素二重結合を少なくとも1つ有するものであれば原料として使用することができる。
(1-1)鎖式脂肪族有機化合物
 本発明のエポキシ化合物の製造方法において原料として使用される、炭素-炭素二重結合を有する鎖式脂肪族化合物は、直鎖状のものであっても分枝状のものであってもよい。
当該鎖式脂肪族有機化合物としては、例えば、エチレン、プロペン、1-ブテン、2-ブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、2,3-ジメチル-2-ブテン、3-ヘキセン、1-ヘプテン、2-ヘプテン、1-オクテン、2-オクテン、3-オクテン、2-メチル-2-ブテン、1-ノネン、2-ノネン、デセン、ウンデセン、ドデセン、テトラデセン、ヘキサデセン、オクタデセン等の炭素数2~40のアルケン(好ましくは、炭素数2~30のアルケン、さらに好ましくは、炭素数2~20のアルケン);ブタジエン、イソプレン、1,5-ヘキサンジエン、1,6-ヘプタジエン、1,7-オクタジエン、2,6-オクタジエン、デカジエン、ウンデカジエン、ドデカジエン等の炭素数4~40のアルカジエン(好ましくは、炭素数4~30のアルカジエン、さらに好ましくは、炭素数4~20のアルカジエン);ウンデカトリエン、ドデカトリエン等の炭素数6~30のアルカトリエン(好ましくは、炭素数6~20のアルカトリエン)等が挙げられる。二重結合を有する直鎖状または分枝状の鎖状脂肪族有機化合物は、単独で又は二種以上組み合わせて使用してもよい。
 置換基を有する鎖式脂肪族有機化合物としては、例えば、置換基としてアリール基(例えば、フェニル基など)を有する鎖式脂肪族有機化合物(例えば、フェニルエチレン(又はスチレン)、1-フェニルプロペン、2-フェニル-1-ブテン、1-フェニル-1,3-ブタジエン、1-フェニル-1,3-ペンタジエンなど)などが挙げられる。なお、置換基としてアリール基(例えば、フェニル基など)を有する鎖式脂肪族有機化合物は、アルケニル基(例えば、ビニル、アリル、プロペニル、イソプロペニル、ブテニルなどの炭素数2~10のアルケニル基(好ましくは炭素数2~6のアルケニル基)など)で置換されている芳香族化合物と称することもできる。このような芳香族化合物は、置換基である鎖式脂肪族有機化合物に少なくとも1つの二重結合を有している限り、当該アルケニル基部分及び/又は芳香環部分において、さらに置換基(例えば、前記例示の置換基など)で置換されていてもよく、前記アルケニル基部分と芳香環部分との間に、連結基を有していてもよい。なお、前記連結基としては、カルボニル、エステル、エーテル、アミン、アミド、シリル、スルフィド、置換もしくは非置換の炭素数1~20のアルキレンおよび置換もしくは非置換の炭素数6~40のアリーレンからなる群より選択されるものを使用してよい。
(1-2)脂環式脂肪族化合物
 本発明のエポキシ化合物の製造方法において原料として使用される、炭素-炭素二重結合を有する脂環式脂肪族有機化合物は、特に限定されず、公知のものを使用することができる。
 本発明のエポキシ化合物の製造方法において原料として使用される、炭素-炭素二重結合を有する脂環式脂肪族有機化合物として、以下の式(II)~式(V):
Figure JPOXMLDOC01-appb-C000004
で表される炭素-炭素二重結合を2つ有する化合物を好適に使用することができる。
 上記式(II)~式(V)中、aおよびbは、それぞれ独立して0~5の整数であり、より好ましくは0~3の整数であり、さらに好ましくは0または1である。
 上記式(II)~式(IV)中、cは0~10の整数であり、より好ましくは0~5の整数であり、さらに好ましくは1~3の整数である。
 なお、上記式(II)~(IV)中、cが2以上である場合、bはそれぞれ独立して選択される。
 上記式(II)~式(V)中、R、R、R3およびR4は、それぞれ独立して、水素若しくは炭素数1~30の、好ましくは炭素数1~10の直鎖状または分枝状アルキル基を表すが、R若しくはRおよびR若しくはRは-(CH-で表される架橋構造を形成してもよい。式中、eは、1~5の整数であり、より好ましくは1~3の整数である。なお、式(II)~式(V)において、aが2以上である場合、RおよびRはそれぞれ独立して選択される。また、式(II)~式(V)において、aが2以上である場合、RおよびRは2以上存在することとなるが、RおよびRのいずれか一つと架橋構造を形成することができるのは、任意の一箇所のRまたはRのみであり、その他のR、R、RおよびRは、水素また炭素数1~30の、好ましくは炭素数1~10の直鎖状または分枝状アルキル基である。
 上記式(II)~式(V)中、R、R、RおよびRは、それぞれ独立して、水素若しくは炭素数1~30の、好ましくは炭素数1~10の直鎖状または分枝状アルキル基を表すが、R若しくはRおよびR若しくはRは-(CH-で表される架橋構造を形成してもよい。式中、fは1~5の整数であり、より好ましくは1~3の整数である。
 なお、式(II)~式(IV)において、cが2以上である場合、R、R、RおよびRはそれぞれ独立して選択される。また、bが2以上である場合、RおよびRはそれぞれ独立して選択される。
 なお、式(II)~式(IV)において、cが1以上であり、かつbが2以上である場合、RおよびRは2以上存在することとなるが、RおよびRのいずれか一つと架橋構造を形成することができるのは、任意の一箇所のRまたはRのみであり、その他のR、R、RおよびRは、水素または炭素数1~30の、好ましくは炭素数1~10の直鎖状または分枝状アルキル基である。
 上記式(III)および式(IV)中、RおよびR10は、それぞれ独立して水素または炭素数1~30の、好ましくは炭素数1~10の直鎖状または分枝状アルキル基を表す。
 上記式(III)中、gは0~8の整数であり、好ましくは0~3の整数である。ここでgが0の場合は、メチレン基は存在せず、単結合となる。
 上記式(V)中、R11、R12、R13およびR14は、それぞれ独立して水素または炭素数1~30の、好ましくは炭素数1~10の直鎖状または分枝状アルキル基を表す。
 式(II)を満たす炭素-炭素二重結合を有する脂環式脂肪族有機化合物としては、例えば、シクロペンタジエン、シクロヘキサジエン、ノルボルナジエン、ジシクロペンタジエン、テトラヒドロインデン、式:
Figure JPOXMLDOC01-appb-C000005
で表される化合物、式:
Figure JPOXMLDOC01-appb-C000006
で表される化合物、および式:
Figure JPOXMLDOC01-appb-C000007
で表される化合物等が挙げられる。これらの中では、エポキシ化合物の安定性の観点から、脂環を2以上有するものが好ましく、ノルボルナジエン、ジシクロペンタジエン、テトラヒドロインデン、式:
Figure JPOXMLDOC01-appb-C000008
で表される化合物、式:
Figure JPOXMLDOC01-appb-C000009
で表される化合物、および式:
Figure JPOXMLDOC01-appb-C000010
で表される化合物が好ましい。
 式(III)を満たす炭素-炭素二重結合を有する脂環式脂肪族有機化合物としては、例えば、ビニルシクロペンテン、ビニルシクロヘキセン、ビニルノルボルネン、式:
Figure JPOXMLDOC01-appb-C000011
で表される化合物、および式:
Figure JPOXMLDOC01-appb-C000012
で表される化合物等が挙げられる。
 式(IV)を満たす炭素-炭素二重結合を有する脂環式脂肪族有機化合物としては、例えば、5-エチリデン-2-ノルボルネン、メチレンシクロヘキセン、式:
Figure JPOXMLDOC01-appb-C000013
で表される化合物、および式:
Figure JPOXMLDOC01-appb-C000014
で表される化合物等が挙げられる。
 式(V)を満たす炭素-炭素二重結合を有する脂環式脂肪族有機化合物としては、例えば、式:
Figure JPOXMLDOC01-appb-C000015
で表される化合物、式:
Figure JPOXMLDOC01-appb-C000016
で表される化合物、および式:

Figure JPOXMLDOC01-appb-C000017
で表される化合物等が挙げられる。
 また、本発明のエポキシ化合物の製造方法において原料として使用される、炭素-炭素二重結合を有する脂環式脂肪族有機化合物として、上記の式(II)~(V)で表される炭素-炭素二重結合を2つ有する化合物以外であっても、例えば、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロデセン、シクロドデカトリエン、メチルメチレンシクロプロパン、メチレンシクロペンタン、テトラシクロドデセン、ノルボルネン、ビニルシクロヘキサン、シクロオクタジエン、メチレンシクロプロパン、メチルジシクロペンタジエン等を好適に使用することができる。
(1-3)芳香族化合物
 本発明のエポキシ化合物の製造方法において原料として使用される、炭素-炭素二重結合を有する芳香族化合物は、エチレン性不飽和二重結合を有する芳香族化合物であれば、特に限定されず、公知のものを使用することができる。当該エチレン性不飽和二重結合を有する芳香族化合物としては、例えば、インデン系芳香族化合物等を挙げることができる。
(2)過酸化水素
 本発明のエポキシ化合物の製造方法において使用される過酸化水素としては、特に限定されず公知のものを用いることができる。過酸化水素は、水溶液、即ち過酸化水素水として用いることが取り扱い等の点から好ましい。反応に使用する過酸化水素の水溶液の濃度に制限はなく、通常、1~70重量%程度で用いられ、10~60重量%程度で用いることが好ましい。
 本発明のエポキシ化合物の製造方法において過酸化水素の使用量に制限はないが、通常は、基質である炭素-炭素二重結合を有する有機化合物中に含まれる炭素-炭素二重結合に対し0.5~4当量程度であり、好ましくは1~2.5当量程度である。
(3)タングステン化合物
 本発明のエポキシ化合物の製造方法において使用されるタングステン化合物としては、水中でタングステン酸アニオンを生成し、過酸化水素による炭素-炭素二重結合のエポキシ化反応を触媒し得るタングステン化合物であれば、特に限定されない。例えば、タングステン酸、三酸化タングステン、三硫化タングステン、六塩化タングステン、リンタングステン酸、ケイタングステン酸等;タングステン酸アンモニウム、タングステン酸カリウム、タングステン酸ナトリウム、タングステン酸カルシウム等のタングステン酸塩等が挙げられる。これらの中では、タングステン酸、三酸化タングステン、リンタングステン酸およびタングステン酸ナトリウムが好ましく、さらに、タングステン酸ナトリウム2水和物が特に好ましい。これらタングステン化合物は単独で使用しても、2種以上を混合使用してもよい。
 本発明のエポキシ化合物の製造方法におけるタングステン化合物の使用量は、分子中に炭素-炭素二重結合を有する有機化合物に対して、0.0001~20モル%程度、好ましくは0.01~10モル%程度の範囲から選ばれる。
(4)リン酸類、ホスホン酸類若しくはこれらの塩
 本発明のエポキシ化合物の製造方法において使用されるリン酸類、ホスホン酸類若しくはこれらの塩としては、過酸化水素による炭素-炭素二重結合のエポキシ化反応を触媒し得るリン酸類、ホスホン酸類若しくはこれらの塩であれば、特に限定されない。本発明のエポキシ化合物の製造方法において使用されるリン酸類としては、例えば、リン酸、ポリリン酸、ピロリン酸、ヘキサメタリン酸、次亜リン酸、亜リン酸、ドデシルリン酸、2-エチルヘキシルリン酸等が挙げられる。本発明のエポキシ化合物の製造方法において使用されるリン酸類の塩としては、例えば、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸水素カリウム、リン酸水素アンモニウム、ポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、酸性ヘキサメタリン酸ナトリウム、ポリリン酸ナトリウム、ピロリン酸ナトリウム、ピロリン酸二水素二ナトリウム、次亜リン酸ナトリウム、亜リン酸ナトリウム等が挙げられる。本発明のエポキシ化合物の製造方法において使用されるホスホン酸類としては、例えば、メチルホスホン酸、エチルホスホン酸、n-プロピルホスホン酸、イソプロピルホスホン酸、n-ブチルホスホン酸、t-ブチルホスホン酸、フェニルホスホン酸、4-メトキシフェニルホスホン酸、4-アミノフェニルホスホン酸、1-ヒドロキシエタン-1,1-ビス(ホスホン酸)、ニトリロトリス(メチレンホスホン酸)等が挙げられる。本発明のエポキシ化合物の製造方法において使用されるホスホン酸類の塩としては、例えば、フェニルホスホン酸ナトリウム等が挙げられる。これらの中では、入手性や反応活性の観点から、リン酸、フェニルホスホン酸、亜リン酸、次亜リン酸、2-エチルヘキシルリン酸、ラウリルリン酸、リン酸二水素ナトリウム等が好ましく、中でもフェニルホスホン酸が特に好ましい。本発明においては、上記のリン酸類、ホスホン酸類若しくはこれらの塩からなる群より選ばれる1種を単独で、または2種以上を組み合わせて使用することができる。
 本発明のエポキシ化合物の製造方法におけるリン酸類、ホスホン酸類若しくはこれらの塩の使用量は、分子中に炭素-炭素二重結合を有する有機化合物に対して、0.0001~10モル%程度、好ましくは0.01~10モル%程度の範囲から選ばれる。
(5)式(I)で表されるアルキル硫酸イオンをアニオンとするオニウム塩
 本発明のエポキシ化合物の製造方法において使用される式(I)で表されるアルキル硫酸イオンをアニオンとするオニウム塩としては、過酸化水素による炭素-炭素二重結合のエポキシ化反応において相間移動触媒として作用するものであれば、いずれのオニウム塩を使用することができる。そのようなオニウム塩としては、例えば、第4級アンモニウム塩、窒素環含有第4級アンモニウム塩、第4級ホスホニウム塩、第4級スルホニウム塩、大環状ポリエーテル類等が挙げられる。これらの内、第4級アンモニウム塩および第4級ホスホニウム塩が好ましい。
(5-1)オニウム塩のカチオン
 第4級アンモニウム塩のカチオンとしては、アリール基を有するものやアルキル基からなるものが挙げられる。アリール基を有するものとしては、例えば、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ベンジルトリブチルアンモニウム、フェニルトリメチルアンモニウム、ラウリルジメチルベンジルアンモニウム等が挙げられる。アルキル基からなるものとしては、例えば、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、テトラヘキシルアンモニウム、テトラオクチルアンモニウム、トリオクチルメチルアンモニウム、トリオクチルエチルアンモニウム、ジラウリルジメチルアンモニウム、ジデシルジメチルアンモニウム、ジデシルジエチルアンモニウム、ジデシルジプロピルアンモニウム、ジオレイルジメチルアンモニウム、ラウリルトリメチルアンモニウム、ジステアリルジメチルアンモニウム、ステアリルトリメチルアンモニウム、ジオクタデシルジメチルアンモニウム、オクタデシルトリメチルアンモニウム、ジセチルジメチルアンモニウム、セチルトリメチルアンモニウム、トリカプリルメチルアンモニウム、パルミチルジメチルエチルアンモニウム、ヘキサデシルトリメチルアンモニウム、ラウリルジメチルエチルアンモニウム等が挙げられる。これらの中で、有機溶媒への可溶性の観点から、アルキル基からなるものが好ましく、アルキル基に含まれる炭素原子の総数が16以上であるものがより好ましい。
さらに、触媒活性の観点から、炭素原子数が8以上の長鎖アルキル基を有するものが好ましく、最も炭素原子数の多い長鎖アルキル基の炭素原子数と最も炭素原子数の少ないアルキル基の炭素原子数のとの差が7以上であるものがより好ましく、具体的には、トリオクチルメチルアンモニウム、ジラウリルジメチルアンモニウム、ジデシルジメチルアンモニウム、ジデシルジエチルアンモニウム、ジデシルジプロピルアンモニウム、ジオレイルジメチルアンモニウム、ラウリルトリメチルアンモニウム、ジステアリルジメチルアンモニウム、ステアリルトリメチルアンモニウム、ジオクタデシルジメチルアンモニウム、オクタデシルトリメチルアンモニウム、ジセチルジメチルアンモニウム、セチルトリメチルアンモニウム、トリカプリルメチルアンモニウム、パルミチルジメチルエチルアンモニウム、ラウリルジメチルエチルアンモニウムが好ましい。
 窒素環含有第4級アンモニウム塩のカチオンとしては、窒素環がピリジン環、ピコリン環、キノリン環、イミダゾリン環またはモルホリン環等の窒素含有複素環からなる第4級アンモニウムが挙げられる。これらの内、ピリジン環からなる第4級アンモニウムが好ましい。具体例として、アルキル(炭素数8~20の直鎖または分岐のアルキル、以下の窒素環含有第4級アンモニウム塩のカチオンの説明において同様)ピリジニウム(例えば、N-ラウリルピリジニウム、N-セチルピリジニウム等)、アルキルピコリウム(例えば、N-ラウリルピコリニウム)、アルキルキノリウム、アルキルイソキノリウム、アルキルヒドロキシエチルイミダゾリン、アルキルヒドロキシモルホリン等が挙げられる。
 第4級ホスホニウム塩のカチオンとしては、テトラメチルホスホニウム、テトラブチルホスホニウム、トリブチル(ヘキサデシル)ホスホニウム、トリエチルフェニルホスホニウム等が挙げられる。
 第4級スルホニウム塩のカチオンとしては、トリエチルスルホニウムイオジド、エチルジフェニルスルホニウムイオジド等が挙げられる。
(5-2)オニウム塩のアニオン
 本発明のエポキシ化合物の製造方法において使用されるオニウム塩のアニオンは、式(I):
Figure JPOXMLDOC01-appb-C000018
[式中、Rは1~3個のフェニル基により置換されていてもよい、炭素数1~18の直鎖状または分枝状の脂肪族炭化水素基である]
で表されるアルキル硫酸イオンである。
 上記式(I)中、Rは炭素数1~18の直鎖状または分枝状の脂肪族炭化水素基、好ましくは炭素数1~12の直鎖状または分枝状の脂肪族炭化水素基、より好ましくは炭素数1~6の直鎖状または分枝状の脂肪族炭化水素基、より特に好ましくは炭素数1~3の直鎖状または分枝状の脂肪族炭化水素基、さらにより特に好ましくはメチル基またはエチル基である。また、かかる直鎖状または分枝状の脂肪族炭化水素基は1~3個のフェニル基により置換されていてもよく、好ましくは1~2個のフェニル基により置換されていてもよく、より好ましくは1個のフェニル基により置換されていてもよい。
 したがって、上記式(I)におけるRとしては、ベンジル基、イソプロピル基、ノルマルプロピル基、エチル基、メチル基等が挙げられる。
 これらの中で、本発明のエポキシ化合物の製造方法において使用されるオニウム塩のアニオンは、入手性の観点から、メチル硫酸イオン、エチル硫酸イオン、プロピル硫酸イオン等の、炭素数1~3のアルキル硫酸イオンが好ましく、特にメチル硫酸イオンまたはエチル硫酸イオンが好ましい。
(5-3)オニウム塩
 本発明のエポキシ化合物の製造方法において使用されるオニウム塩としては、上記のオニウム塩のカチオンおよびオニウム塩のアニオンの中から適宜組み合わせて使用することができる。以上のようにして選択されたオニウム塩は、それらの内の1種を単独でまたは2種以上を組み合わせて使用することができる。
 本発明のエポキシ化合物の製造方法において使用されるオニウム塩は、公知の方法で合成することができる。例えば、特開平9-67320号公報のように非イオン界面活性剤を反応溶媒として3級アミンとジアルキル硫酸とを反応させることで合成することができる。
 本発明のエポキシ化合物の製造方法におけるオニウム塩の使用量は、分子中に炭素-炭素二重結合を有する有機化合物に対して、0.0001~20モル%程度、好ましくは0.01~10モル%程度の範囲から選ばれる。
(6)有機溶媒
 本発明のエポキシ化合物の製造方法においては、基質の溶解・分散性向上、反応速度の調整や反応副生成物の生成抑制のために、必要に応じて、反応系内に有機溶媒を加えてもよい。特に、オレフィン化合物が固体である場合など、有機溶媒を含む反応液は操作性が向上する点で用いることが好ましい。
 本発明のエポキシ化合物の製造方法において、有機溶媒を使用する際、分子中に炭素-炭素二重結合を有する有機化合物は、有機溶媒中に溶解していても、懸濁状態でもよいが、通常、反応温度条件下で有機溶媒に溶解していることが好ましい。
 本発明において用いられる有機溶媒は、使用する有機化合物や、前記活性触媒に対して不活性であれば特に限定はされないが、具体的にはベンゼン、トルエン、キシレン等の芳香族炭化水素類;ヘキサン(シクロヘキサン、n-ヘキサンを含む)、ヘプタン、オクタン、ドデカン等の脂肪族炭化水素類;メタノール、エタノール、イソプロパノール、ブタノール、ヘキサノール、シクロヘキサノール等のアルコール類;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン系溶媒;テトラヒドロフラン、ジオキサン等のエーテル類;メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン類;アセトニトリル、ブチロニトリル等のニトリル類、酢酸エチル、酢酸ブチル、蟻酸メチルなどのエステル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類;N,N’-ジメチルイミダゾリジノン等のウレア類;及びこれら溶媒の混合物が挙げられ、芳香族炭化水素類、脂肪族炭化水素類、またはこれらの混合物が好ましい。さらに反応に対して安定である芳香族炭化水素類が好ましく、より好ましくは反応温度より高い沸点を有するトルエンが挙げられる。特に反応活性の高い前記活性触媒を使用する際に、水と二相系を形成する有機溶媒を用いて、二相系反応で行うことが反応の効率や操作上好ましいためである。
 本発明における有機溶媒の使用量は、有機化合物の溶解度や各種物性により適宜調整して使用することができ、特に限定されるものではないが、生産性と安全性の観点から、分子中に炭素-炭素二重結合を有する有機化合物の、1~500モル%程度、好ましくは10~300モル%程度、あるいは5倍量以下であり、好ましくは3倍量以下である。
(7)中性無機塩
 本発明のエポキシ化合物の製造方法においては、必要に応じて、中性無機塩の存在下に、炭素-炭素二重結合のエポキシ化反応を行ってもよい。そのような中性無機塩としては、例えば、硫酸塩、硝酸塩、炭酸塩、リン酸塩等があげられる。入手性の観点からは、硫酸塩が好ましく、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸カルシウム、硫酸マグネシウム等がより好ましく、硫酸ナトリウム、硫酸リチウム等が特により好ましい。
当該中性無機塩は、無水物でも水和物でもよく、またはそれらの混合物であってもよい。
中性無機塩は、1種を単独で、または2種以上を組み合わせて使用することができる。中性無機塩の使用量は、分子中に炭素-炭素二重結合を有する有機化合物に対して、0.1~500モル%程度、好ましくは1~50モル%程度の範囲から選ばれる。
(8)エポキシ化反応
(8-1)反応系中のpH
 本発明のエポキシ化合物の製造方法における反応系内の水相のpH値は、エポキシ化反応の速度の向上や副生成物の生成を抑制する観点から、3.0~7.0とすることが好ましく、4.0~7.0とすることがより好ましく、4.5~7.0あるいは4.0~6.5とすることが特により好ましい。なお、触媒組成に応じて、反応系内のpHが上記の範囲内でない場合には、硫酸などの酸、リン酸塩などの酸性塩、水酸化ナトリウム等のアルカリ金属水酸化物等を用いて、反応系内のpHを上記範囲内に調製して、エポキシ化反応を実施することができる。
(8-2)反応温度および反応時間
 本発明のエポキシ化合物の製造方法において、反応温度は、通常、0~80℃程度であり、好ましくは20~50℃程度、より好ましくは30~40℃程度である。
 本発明のエポキシ化合物の製造方法における反応時間は、用いる触媒の量や反応温度等により適宜決定すればよいが、通常は1~50時間程度、好ましくは5~30時間程度である。
(8-3)エポキシ化反応の手順
 本発明のエポキシ化合物の製造方法を実施するにあたっては、例えば、反応系内に、炭素-炭素二重結合を有する有機化合物;タングステン化合物;リン酸類、ホスホン酸類若しくはこれらの塩;式(I)で表されるアルキル硫酸イオンをアニオンとするオニウム塩;並びに必要に応じて有機溶媒および/または中性無機塩を投入して混合し、これに過酸化水素を滴下し、所定の温度で攪拌してエポキシ化反応を行うことができる。この添加順は、必要に応じて変更してもよい。
(8-4)エポキシ化反応後の処理
 反応終了後は、生成物を公知の方法で分離し、必要に応じて精製して、目的物のエポキシ化合物を得ることができる。例えば、生成物から蒸留によって、目的物のエポキシ化合物を得ることができる。あるいは生成物が固体の場合は生成物を含む溶媒中から晶析によって目的物を得ることもできる。また、必要に応じて、チオ硫酸ナトリウム水溶液等で残留する過酸化水素を分解してもよい。
(8-5)エポキシ化反応の効率性の指標
 このようにして、本発明のエポキシ化合物の製造方法によれば、炭素-炭素二重結合を有する化合物から、エポキシ化合物を、高い転化率、選択率および収率で得ることができる。エポキシ化合物はガスクロマトグラフィーを用い、ノナンを内部標準物質とした内部標準法によって定量分析することができる。
 ここで、「エポキシ化合物の収率」は、
  [数1]
エポキシ化合物の収率=(反応後得られたエポキシ化合物のモル数)/(仕込んだオレフィンのモル数)×100
により算出することができる。
 また、「副生成物の収率」は、
  [数2]
副生成物の収率=((仕込んだオレフィンのモル数)-(反応後得られたエポキシ化合物のモル数))/(仕込んだオレフィンのモル数)×100
により算出することができる。
 従って、「エポキシ化合物の選択率」は、
  [数3]
エポキシ化合物の選択率=(エポキシ化合物の収率)/(仕込んだオレフィンの転化率)×100
により算出することができる。
 また、「副生成物の選択率」は、
  [数4]
副生成物の選択率=(副生成物の収率)/(仕込んだオレフィンの転化率)×100
により算出することができる。
 本発明のエポキシ化合物の製造方法の好ましい実施態様によれば、エポキシ化合物の選択率に対する副生成物の選択率の比が0.25以下になり、さらに好ましい実施態様では、0.1以下となる。
 以下、実施例により、本発明をさらに詳細に説明するが、本発明がこれら実施例に限定されるものではない。
<実施例1>
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、式(1)で表されるジオレフィン化合物25.9g、トルエン6.58g、タングステン酸ナトリウム2水和物1.42g、トリオクチルメチルアンモニウム・メチル硫酸塩2.12g、フェニルホスホン酸0.694g、および無水硫酸ナトリウム2.81gを投入し、その後、25℃で攪拌しながら45%過酸化水素水32.7gを4時間かけて滴下した後、30℃で7時間反応を行なった。反応中の反応溶液のpHは、4.0~6.5であった。反応後、ガスクロマトグラフィーで分析したところ、式(1)で表される化合物の転化率は96%、式(2)~式(4)で表されるエポキシ化合物の選択率は91%(収率86%)、副生成物の選択率は9%(収率8%)であった。
Figure JPOXMLDOC01-appb-C000019
<実施例2>
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、式(1)で表されるジオレフィン化合物25.9g、トルエン6.6g、タングステン酸ナトリウム2水和物1.43g、ジデシルジメチルアンモニウム・メチル硫酸塩1.88g、フェニルホスホン酸0.69g、および無水硫酸ナトリウム2.76gを投入し、その後、25℃で攪拌しながら45%過酸化水素水32.7gを4時間かけて滴下した後、30℃で7時間反応を行なった。反応中の反応溶液のpHは、4.7~6.5であった。反応後、ガスクロマトグラフィーで分析したところ、式(1)で表される化合物の転化率は97%、式(2)~式(4)で表されるエポキシ化合物の選択率は92%(収率90%)、副生成物の選択率は8%(収率8%)であった。
Figure JPOXMLDOC01-appb-C000020
<実施例3>
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、式(1)で表されるジオレフィン化合物25.8g、トルエン6.6g、タングステン酸ナトリウム2水和物1.43g、ジデシルジメチルアンモニウム・メチル硫酸塩1.93g、およびフェニルホスホン酸0.72gを投入し、その後、25℃で攪拌しながら45%過酸化水素水32.8gを4時間かけて滴下した後、30℃で7時間反応を行なった。反応中の反応溶液のpHは、4.1~5.3であった。反応後、ガスクロマトグラフィーで分析したところ、式(1)で表される化合物の転化率は99%、式(2)~式(4)で表されるエポキシ化合物の選択率は84%(収率83%)、副生成物の選択率は16%(収率16%)であった。
Figure JPOXMLDOC01-appb-C000021
<実施例4>
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、式(1)で表されるジオレフィン化合物25.9g、トルエン6.59g、タングステン酸ナトリウム2水和物1.44g、パルミチルジメチルエチルアンモニウム・エチル硫酸塩1.88g、フェニルホスホン酸0.679g、および無水硫酸ナトリウム2.76gを投入し、その後、25℃で攪拌しながら45%過酸化水素水32.7gを4時間かけて滴下した後、30℃で7時間反応を行なった。反応中の反応溶液のpHは、3.8~5.6であった。反応後、ガスクロマトグラフィーで分析したところ、式(1)で表される化合物の転化率は86%、式(2)~式(4)で表されるエポキシ化合物の選択率は81%(収率69%)、副生成物の選択率は19%(収率16%)であった。
Figure JPOXMLDOC01-appb-C000022
<実施例5>
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、式(5)で表されるジオレフィン化合物2.00g、トルエン0.510g、タングステン酸ナトリウム2水和物69.2mg、ヘキサデシルトリメチルアンモニウム・メチル硫酸塩99.0mg、フェニルホスホン酸32.3mg、および無水硫酸ナトリウム139.3mg、45%過酸化水素水1.60gを投入し、その後、30℃で11時間反応を行なった。反応中の反応溶液のpHは、3.8~4.1であった。反応後、ガスクロマトグラフィーで分析したところ、式(5)で表される化合物の転化率は83%、式(6)~式(8)で表されるエポキシ化合物の選択率は99%(収率81%)、副生成物の選択率は1%(収率1%)であった。
Figure JPOXMLDOC01-appb-C000023
<実施例6>
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、式(5)で表されるジオレフィン化合物2.01g、トルエン0.505g、タングステン酸ナトリウム2水和物72.3mg、ラウリルジメチルエチルアンモニウム・エチル硫酸塩116mg、フェニルホスホン酸33.9g、および無水硫酸ナトリウム136.8g、45%過酸化水素水1.60gを投入し、その後、30℃で11時間反応を行なった。反応中の反応溶液のpHは、3.8~4.1であった。反応後、ガスクロマトグラフィーで分析したところ、式(5)で表される化合物の転化率は87%、式(6)~式(8)で表されるエポキシ化合物の選択率は91%(収率79%)、副生成物の選択率は9%(収率8%)であった。
Figure JPOXMLDOC01-appb-C000024
<実施例7>
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、式(5)で表されるジオレフィン化合物2.01g、トルエン0.502g、タングステン酸ナトリウム2水和物70.5g、パルミチルジメチルエチルアンモニウム・エチル硫酸塩63.9mg、フェニルホスホン酸35.9mg、および無水硫酸ナトリウム139.8mg、45%過酸化水素水1.60gを投入し、その後、30℃で11時間反応を行なった。反応中の反応溶液のpHは、3.8~4.1であった。反応後、ガスクロマトグラフィーで分析したところ、式(5)で表される化合物の転化率は87%、式(6)~式(8)で表されるエポキシ化合物の選択率は88%(収率76%)、副生成物の選択率は13%(収率11%)であった。
Figure JPOXMLDOC01-appb-C000025
<実施例8>
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、式(9)で表されるジオレフィン化合物2.05g、トルエン0.604g、タングステン酸ナトリウム2水和物117mg、ラウリルジメチルエチルアンモニウム・エチル硫酸塩240mg、フェニルホスホン酸60.0mg、および無水硫酸ナトリウム241mg、45%過酸化水素水1.40gを投入し、その後、30℃で11時間反応を行なった。反応中の反応溶液のpHは、3.8~4.1であった。反応後、ガスクロマトグラフィーで分析したところ、式(9)で表される化合物の転化率は79%、式(10)~式(12)で表されるエポキシ化合物の選択率は93%(収率74%)、副生成物の選択率は7%(収率6%)であった。
Figure JPOXMLDOC01-appb-C000026
<実施例9>
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、式(9)で表されるジオレフィン化合物1.99g、トルエン0.513g、タングステン酸ナトリウム2水和物126mg、パルミチルジメチルエチルアンモニウム・エチル硫酸塩192mg、フェニルホスホン酸60.0mg、および無水硫酸ナトリウム21mg、45%過酸化水素水1.40gを投入し、その後、30℃で11時間反応を行なった。反応中の反応溶液のpHは、3.8~4.1であった。反応後、ガスクロマトグラフィーで分析したところ、式(9)で表される化合物の転化率は79%、式(10)~式(12)で表されるエポキシ化合物の選択率は97%(収率76%)、副生成物の選択率は3%(収率3%)であった。
Figure JPOXMLDOC01-appb-C000027
<実施例10>
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、式(9)で表されるジオレフィン化合物2.02g、トルエン0.503g、タングステン酸ナトリウム2水和物136mg、ヘキサデシルトリメチルアンモニウム・メチル硫酸塩159mg、フェニルホスホン酸56.0mg、および無水硫酸ナトリウム230mg、45%過酸化水素水1.40gを投入し、その後、30℃で11時間反応を行なった。反応中の反応溶液のpHは、3.8~4.1であった。反応後、ガスクロマトグラフィーで分析したところ、式(9)で表される化合物の転化率は72%、式(10)~式(12)で表されるエポキシ化合物の選択率は98%(収率71%)、副生成物の選択率は2%(収率1%)であった。
Figure JPOXMLDOC01-appb-C000028
<比較例1>
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、式(1)で表されるジオレフィン化合物25.9g、トルエン6.51g、タングステン酸ナトリウム2水和物1.41g、トリオクチルメチルアンモニウム・硫酸水素塩1.99g、フェニルホスホン酸0.344g、および無水硫酸ナトリウム2.75gを投入し、その後、25℃で攪拌しながら45%過酸化水素水32.67gを4時間かけて滴下した後、30℃で7時間反応を行なった。反応中の反応溶液のpHは、1.3~2.7あった。反応後、ガスクロマトグラフィーで分析したところ、式(1)で表される化合物の転化率は96%、式(2)~式(4)で表されるエポキシ化合物の選択率は74%(収率72%)、副生成物の選択率は26%(収率25%)であった。
Figure JPOXMLDOC01-appb-C000029
<比較例2>
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、式(1)で表されるジオレフィン化合物25.8g、トルエン6.6g、タングステン酸ナトリウム2水和物1.43g、ジデシルジメチルアンモニウム・クロリド1.55g、フェニルホスホン酸0.72g、および無水硫酸ナトリウム2.76gを投入し、その後、25℃で攪拌しながら45%過酸化水素水32.7gを4時間かけて滴下した後、30℃で7時間反応を行なった。
反応中の反応溶液のpHは、3.8~5.6であった。反応後、ガスクロマトグラフィーで分析したところ、式(1)で表される化合物の転化率は74%、式(2)~式(4)で表されるエポキシ化合物の選択率は86%(収率64%)、副生成物の選択率は14%(収率10%)であった。
Figure JPOXMLDOC01-appb-C000030
<比較例3>
 温度計、攪拌機、還流管、滴下装置を備えた反応容器に、式(1)で表されるジオレフィン化合物25.8g、トルエン6.46g、タングステン酸ナトリウム2水和物1.42g、ジデシルジメチルアンモニウム・クロリド1.55g、フェニルホスホン酸0.648g、および無水硫酸ナトリウム2.80gを投入し、その後、25℃で攪拌しながら45%過酸化水素水32.7gを4時間かけて滴下した後、30℃で7時間反応を行なった。反応中の反応溶液のpHは、2.8~3.8であった。反応後、ガスクロマトグラフィーで分析したところ、式(1)で表される化合物の転化率は95%、式(2)~式(4)で表されるエポキシ化合物の選択率は29%(収率28%)、副生成物の選択率は71%(収率67%)であった。
Figure JPOXMLDOC01-appb-C000031
 実施例1~10および比較例1~3の結果は以下の表1および表2の通りであった。エポキシ収率が65%以上かつ副生成物収率が20%以下を合格とした。
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 以上の表1および表2に示された結果によると、以下のことが考察できる。
 実施例1および比較例1の結果を対比すると、オニウム塩のアニオンとしてメチル硫酸イオンを用いた実施例1は、硫酸水素を用いた比較例1と比較して副生成物の収率が低くなる傾向が見受けられた。このことより、オニウム塩のアニオンとしてメチル硫酸イオンを用いると副生成物の少ない、効率的なエポキシ化反応が可能であることが示唆された。
 実施例2並びに比較例2および3の結果を対比すると、オニウム塩のアニオンとしてメチル硫酸イオンを用いた実施例2は、クロリドを用いた比較例2および3と比較してエポキシ選択率が高くなる傾向が見受けられた。このことより、オニウム塩のアニオンとしてメチル硫酸イオンを用いるとエポキシ選択率の高い、効率的なエポキシ化反応が可能であることが示唆された。
 実施例1~10の結果によれば、オニウム塩のアニオンとして、メチル硫酸またはエチル硫酸を用いる限り、炭素-炭素二重結合を有する有機化合物の化学構造に関わらず、また、オニウム塩のカチオン(4級アンモニウム)のアルキル基の炭素数や炭素数8以上の長鎖アルキルの本数に関わらず、さらに、中性無機塩として無水硫酸ナトリウムを含有するか否かに関わらず、エポキシ収率が65%以上、かつ副生成物収率が20%以下の、効率的なエポキシ化反応が可能であることが示唆された。

Claims (8)

  1.  炭素-炭素二重結合を有する有機化合物を触媒の存在下で過酸化水素により前記炭素-炭素二重結合を酸化させる工程を含んでなる、エポキシ化合物の製造方法であって、前記触媒が、タングステン化合物;リン酸類、ホスホン酸類若しくはこれらの塩;並びに式(I):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは、1~3個のフェニル基により置換されていてもよい、炭素数1~18の直鎖状または分枝状の脂肪族炭化水素基である。]
    で表されるアルキル硫酸イオンをアニオンとするオニウム塩を含んでなる、製造方法。
  2.  前記オニウム塩が、第4級アンモニウム塩または第4級ホスホニウム塩である、請求項1に記載の製造方法。
  3.  前記オニウム塩が第4級アンモニウム塩である、請求項1または2に記載の製造方法。
  4.  Rが炭素数1~3の直鎖状または分枝状の脂肪族炭化水素基である、請求項1~3のいずれか一項に記載の製造方法。
  5.  Rがメチル基またはエチル基である、請求項1~4のいずれか一項に記載の製造方法。
  6.  前記炭素-炭素二重結合を酸化させる工程の反応系内のpH値が3.0~7.0である、請求項1~5のいずれか一項に記載の製造方法。
  7.  前記炭素-炭素二重結合を酸化させる工程の反応系内にさらに中性無機塩を含む、請求項1~6のいずれか一項に記載の製造方法。
  8.  前記エポキシ化合物の選択率に対する副生成物の選択率の比が、0.25以下である、請求項1~7のいずれか一項に記載の製造方法。
PCT/JP2019/032325 2018-09-07 2019-08-19 エポキシ化合物の製造方法 WO2020049991A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19857674.6A EP3848358A4 (en) 2018-09-07 2019-08-19 METHOD OF MAKING AN EPOXY COMPOUND
KR1020217010020A KR20210055739A (ko) 2018-09-07 2019-08-19 에폭시 화합물의 제조 방법
CN201980057552.7A CN112638887A (zh) 2018-09-07 2019-08-19 环氧化合物的制造方法
US17/274,123 US11485717B2 (en) 2018-09-07 2019-08-19 Method for producing epoxy compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-168149 2018-09-07
JP2018168149A JP2020040897A (ja) 2018-09-07 2018-09-07 エポキシ化合物の製造方法

Publications (1)

Publication Number Publication Date
WO2020049991A1 true WO2020049991A1 (ja) 2020-03-12

Family

ID=69721797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032325 WO2020049991A1 (ja) 2018-09-07 2019-08-19 エポキシ化合物の製造方法

Country Status (7)

Country Link
US (1) US11485717B2 (ja)
EP (1) EP3848358A4 (ja)
JP (1) JP2020040897A (ja)
KR (1) KR20210055739A (ja)
CN (1) CN112638887A (ja)
TW (1) TW202017909A (ja)
WO (1) WO2020049991A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126658A (ja) 1973-04-13 1974-12-04
JP2012025688A (ja) * 2010-07-22 2012-02-09 National Institute Of Advanced Industrial Science & Technology エポキシ化合物の製造方法
WO2013147092A1 (ja) * 2012-03-30 2013-10-03 三菱化学株式会社 エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物
JP2015091788A (ja) * 2013-10-02 2015-05-14 三菱化学株式会社 エポキシ化合物の製造方法
WO2015076222A1 (ja) * 2013-11-20 2015-05-28 Jx日鉱日石エネルギー株式会社 固体触媒を用いたエポキシ化合物の製造方法
JP2015166335A (ja) * 2013-10-02 2015-09-24 三菱化学株式会社 エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物
JP2016204364A (ja) * 2015-04-16 2016-12-08 三菱化学株式会社 エポキシ化合物の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126658A (ja) 1973-04-13 1974-12-04
JP2012025688A (ja) * 2010-07-22 2012-02-09 National Institute Of Advanced Industrial Science & Technology エポキシ化合物の製造方法
WO2013147092A1 (ja) * 2012-03-30 2013-10-03 三菱化学株式会社 エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物
JP2015091788A (ja) * 2013-10-02 2015-05-14 三菱化学株式会社 エポキシ化合物の製造方法
JP2015166335A (ja) * 2013-10-02 2015-09-24 三菱化学株式会社 エポキシ化合物の製造方法及びエポキシ化反応用触媒組成物
WO2015076222A1 (ja) * 2013-11-20 2015-05-28 Jx日鉱日石エネルギー株式会社 固体触媒を用いたエポキシ化合物の製造方法
JP2016204364A (ja) * 2015-04-16 2016-12-08 三菱化学株式会社 エポキシ化合物の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KANG, H. C. ET AL.: "Improvement of the phase- transfer catalysis method for synthesis of glycidyl ether", JOURNAL OF THE AMERICAN OIL CHEMISTS' SOCIETY, vol. 78, no. 4, 2001, pages 423 - 429, XP001074072, DOI: 10.1007/s11746-001-0279-y *
See also references of EP3848358A4
VASYLYEV, M. V. ET AL.: "New heterogeneous polyoxometalate based mesoporous catalysts for hydrogen peroxide mediated oxidation reactions", CHEMICA, vol. 126, no. 3, 2004, pages 884 - 890, XP055691843 *
ZHANG, Z. X. ET AL.: "The epoxidation of olefins catalyzed by a new heterogeneous polyoxometalate- based catalyst with hydrogen peroxide", CATALYSIS COMMUNICATIONS, vol. 12, no. 4, 2010, pages 318 - 322, XP027506575, DOI: 10.1016/j.catcom.2010.09.026 *

Also Published As

Publication number Publication date
US20210340118A1 (en) 2021-11-04
JP2020040897A (ja) 2020-03-19
EP3848358A1 (en) 2021-07-14
EP3848358A4 (en) 2022-05-11
CN112638887A (zh) 2021-04-09
US11485717B2 (en) 2022-11-01
TW202017909A (zh) 2020-05-16
KR20210055739A (ko) 2021-05-17

Similar Documents

Publication Publication Date Title
JP5858467B2 (ja) エポキシ化合物の製造方法及び炭素−炭素二重結合のエポキシ化方法
JP5606327B2 (ja) エポキシ化合物の製造方法
JPH0747128B2 (ja) 重合体樹脂に固定された酸化触媒の製造法
KR101236376B1 (ko) 에폭시 화합물의 제조 방법
JP2009256217A (ja) エポキシ化合物の製造方法
JPS62234550A (ja) 触媒およびその使用法
JP3662038B2 (ja) エポキシ化合物の製造方法
JPH05213919A (ja) 脂環式オレフィンのエポキシ化法
WO2020049991A1 (ja) エポキシ化合物の製造方法
JP4118642B2 (ja) 環状オレフィンのエポキシ化方法
US7074947B2 (en) Process for producing epoxide compound
JP4067823B2 (ja) 環状モノオレフィンのエポキシ化方法
JPH05237392A (ja) 酸化触媒およびエポキシ化法
EP2990110A1 (en) Recovery method and reuse method of oxo acid catalyst
JP2003300971A (ja) エポキシド類の製造方法
JP5103661B2 (ja) ジエポキシ化合物の製造方法
JPH04275281A (ja) ジオレフィンの接触モノエポキシ化方法
JP2004059575A (ja) エポキシド類の製造方法
US3631072A (en) Epoxidation of dicyclopentadiene
JP2003238544A (ja) エポキシド類の製造方法
WO2003101976A1 (fr) Procede de production d'epoxyde
Fletcher 3 Synthetic methods Part (iii) Heteroatom methods
JP2003231680A (ja) エポキシ化合物の製造方法
JPH01193258A (ja) ブチレンオキシド類の製造方法
JP2004137163A (ja) リン酸二水素メチルトリオクチルアンモニウムおよびそのアルカリ金属塩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010020

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019857674

Country of ref document: EP

Effective date: 20210407