WO2015076222A1 - 固体触媒を用いたエポキシ化合物の製造方法 - Google Patents

固体触媒を用いたエポキシ化合物の製造方法 Download PDF

Info

Publication number
WO2015076222A1
WO2015076222A1 PCT/JP2014/080375 JP2014080375W WO2015076222A1 WO 2015076222 A1 WO2015076222 A1 WO 2015076222A1 JP 2014080375 W JP2014080375 W JP 2014080375W WO 2015076222 A1 WO2015076222 A1 WO 2015076222A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
solid catalyst
carbon
salt
solid
Prior art date
Application number
PCT/JP2014/080375
Other languages
English (en)
French (fr)
Inventor
潤子 市原
俊郎 山口
敦史 亀山
鈴木 貴
孝志 森北
Original Assignee
Jx日鉱日石エネルギー株式会社
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社, 国立大学法人大阪大学 filed Critical Jx日鉱日石エネルギー株式会社
Priority to US15/038,107 priority Critical patent/US9783548B2/en
Publication of WO2015076222A1 publication Critical patent/WO2015076222A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids

Definitions

  • the present invention relates to a method for producing an epoxy compound from a compound having a carbon-carbon double bond and hydrogen peroxide.
  • the cured product is obtained by reacting the epoxy compound with various curing agents and curing catalysts.
  • epoxy compounds are useful as intermediates for making coatings, adhesives, inks, sealant components or other compounds useful for a variety of end uses including pharmaceuticals and medical supplies.
  • an epoxy compound for example, a method of oxidizing an olefin with a peracid such as peracetic acid is known.
  • peracid requires caution in handling, and a carboxylic acid in which an epoxy compound is present in the reaction system
  • the ester body and the like are produced by the reaction with the compound and the selectivity of the epoxy body is lowered, and the post-treatment after the reaction is troublesome. Therefore, a production method that uses hydrogen peroxide, which is easy to handle and harmless water after the reaction, as an oxidizing agent has been attracting attention.
  • a catalyst such as polyacids is used, and epoxidation is carried out by reacting olefins with hydrogen peroxide water using a halogenated hydrocarbon as a solvent.
  • a method Patent Document 1 is known.
  • halogen hydrocarbons are used, there are problems such as product halogen impurities and environmental impact.
  • Patent Document 2 discloses a solid-phase oxidation reaction system comprising a solid dispersion phase and a mixture of powders of the solid catalyst for the oxidation reaction, an organic compound and hydrogen peroxide.
  • the object of the present invention is to provide a method for epoxidizing an olefin compound with high productivity.
  • the present invention reacts a compound having a carbon-carbon double bond with hydrogen peroxide in the presence of a compound having a carbon-carbon double bond, aqueous hydrogen peroxide, a solid support powder, and a solid catalyst powder.
  • the solid catalyst contains isopolyacids, the isopolyacids comprising (a) tungstic acid or a salt thereof and (b) a salt of an alkaline earth metal and a cationic polymer. It is related with the manufacturing method of the epoxy compound manufactured from the catalyst raw material containing at least 1 type selected from the group which consists of.
  • the catalyst raw material in which the isopolyacid in the solid catalyst contains (a) tungstic acid or a salt thereof and (b) at least one selected from the group consisting of an alkaline earth metal salt and a cationic polymer Therefore, the elution of isopolyacids from the solid catalyst is sufficiently suppressed.
  • an epoxy compound can be manufactured with a high reaction rate and yield, and isolation and collection
  • the solid catalyst and the solid support can be reused after separation of the product, and the present invention provides stable quality, stable operation of production equipment, reduction of production cost, spent catalyst, etc. This has the advantage of reducing the environmental impact of waste materials and wastewater treatment.
  • the present invention also relates to a method for producing an epoxy compound, wherein the catalyst raw material contains an ammonium tungstate salt.
  • the present invention also relates to a method for producing an epoxy compound, wherein the catalyst raw material contains at least one salt of an alkaline earth metal selected from the group consisting of Ca, Sr and Ba.
  • the present invention is also an epoxy characterized in that the catalyst raw material contains at least one cationic polymer selected from the group consisting of a salt of poly-4-vinylpyridine and a salt of polyN-alkyl-4-vinylpyridine.
  • the present invention relates to a method for producing a compound.
  • the present invention also relates to a method for producing an epoxy compound, wherein the compound having a carbon-carbon double bond is an alicyclic olefin compound.
  • the present invention also relates to a method for producing an epoxy compound, wherein the compound having a carbon-carbon double bond is a compound represented by the following formula (2).
  • R 1 to R 12 each independently represents a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, or an alkoxy group which may have a substituent.
  • the present invention also relates to a method for producing an epoxy compound, wherein the solid support is selected from the group consisting of phosphates, diatomaceous earth, silica, alumina, white porcelain clay, silica alumina, and calcium fluoride.
  • the present invention also relates to a method for producing an epoxy compound, wherein the solid support is apatite.
  • an epoxy compound production method capable of producing an epoxy compound with high productivity from a compound having a carbon-carbon double bond.
  • the production method according to the present embodiment includes a compound having a carbon-carbon double bond, a hydrogen peroxide solution, a solid support powder, and a solid catalyst powder in the presence of a compound having a carbon-carbon double bond.
  • This is a method for producing an epoxy compound by reacting with hydrogen oxide.
  • the solid catalyst includes isopolyacids.
  • the isopolyacid is produced from a catalyst raw material containing (a) tungstic acid or a salt thereof and (b) at least one selected from the group consisting of alkaline earth metal salts and cationic polymers. Isopolyacids.
  • an epoxy compound can be produced from a compound having a carbon-carbon double bond with high productivity.
  • the isopolyacids in the solid catalyst are (a) tungstic acid or a salt thereof (hereinafter sometimes referred to as “component (a)”) and (b). Since it is produced from a catalyst raw material containing at least one selected from the group consisting of an alkaline earth metal salt and a cationic polymer (hereinafter sometimes referred to as “component (b)”), The elution of isopolyacids is sufficiently suppressed. For this reason, according to the manufacturing method which concerns on this embodiment, an epoxy compound can be manufactured with a high reaction rate and a yield, and isolation and collection
  • the manufacturing method according to the present embodiment has advantages such as stable quality, stable operation of manufacturing equipment, reduction of manufacturing costs, and reduction of environmental load due to waste materials such as used catalysts and wastewater treatment.
  • an ammonium tungstate salt such as (NH 4 ) 10 [H 2 W 12 O 42 ] can be suitably used.
  • the component (b) is selected from the group consisting of (b-1) an alkaline earth metal salt and (b-2) a cationic polymer.
  • the alkaline earth metal salt is a salt containing an alkaline earth metal cation, and Ca, Sr and Ba are preferably used as the alkaline earth metal. That is, (b-1) the alkaline earth metal salt may be at least one alkaline earth metal salt selected from the group consisting of Ca, Sr and Ba.
  • the alkaline earth metal salt contains an anion that ionically bonds with the alkaline earth metal cation.
  • the anion is not particularly limited, and examples of the anion include halide ions, nitrate ions, acetate ions, hydroxide ions, nitrite ions, and perchlorate ions. That is, (b-1) the alkaline earth metal salt may be, for example, an alkaline earth metal halide, nitrate, acetate, hydroxide, nitrite, perchlorate, or the like. (B-1) Among these alkaline earth metal salts, alkaline earth metal nitrates, acetates, halides and the like can be particularly preferably used.
  • alkaline earth metal salts include calcium chloride (II), barium (II) chloride, calcium nitrate (II), barium (II) nitrate, calcium acetate (II), barium acetate ( II), calcium hydroxide (II), barium hydroxide (II), calcium nitrite (II), barium (II) nitrite, calcium perchlorate (II), barium perchlorate (II), etc. .
  • (b-1) alkaline earth metal salts include calcium nitrate (II), barium nitrate (II), calcium acetate (II), barium acetate (II), calcium chloride (II), and barium chloride. (II) and the like can be preferably used.
  • the amount of the (b-1) alkaline earth metal salt used as the catalyst raw material is preferably 0.5 mol% or more, preferably 1 mol% or more with respect to the total amount of tungsten atoms contained in the component (a). It is more preferable.
  • the amount of (b-1) alkaline earth metal salt is preferably 50 mol% or less, and more preferably 20 mol% or less.
  • the cationic polymer can be said to be a polymer having a cationic functional group.
  • the cationic functional group include a group having an ammonium cation and a group having a pyridinium cation.
  • Examples of the cationic polymer include poly-4-vinylpyridine salt, polyN-alkyl-4-vinylpyridine salt, poly-2-vinylpyridine salt, and polyN-alkyl-2-vinylpyridine. Salt, anion exchange resin and the like.
  • preferred (b-2) cationic polymers are poly-4-vinylpyridine salts, polyN-alkyl-4-vinylpyridine salts, poly-2-vinylpyridine salts, polyN-alkyl-2 salts. More preferred (b-2) cationic polymer is a salt of vinylpyridine and a salt of poly-4-vinylpyridine and a salt of polyN-alkyl-4-vinylpyridine.
  • the amount of the (b-2) cationic polymer used as a catalyst raw material is preferably 1 part by weight or more and more preferably 5 parts by weight or more with respect to 100 parts by weight of the component (a). Further, the amount of the (b-2) cationic polymer is preferably 100 parts by weight or less, more preferably 80 parts by weight or less with respect to 100 parts by weight of the component (a).
  • Isopolyacids can be obtained, for example, by dissolving and mixing the components (a) and (b) in a solvent such as water and isolating and purifying the salt precipitated from the mixed solution.
  • the isopolyacids thus obtained can be used as a solid catalyst as they are.
  • the catalyst raw material for obtaining isopolyacids may further contain components other than (a) component and (b) component.
  • the catalyst raw material may further contain a nitrogen-containing salt compound selected from the group consisting of a quaternary ammonium salt compound and a pyridinium salt compound. The reactivity of a solid catalyst can be improved more by using the said nitrogen-containing salt compound as a catalyst raw material.
  • the amount of the nitrogen-containing salt compound used as the catalyst raw material is preferably 0 to 90 mol% with respect to the total amount of tungsten atoms contained in the component (a). Further, the amount of the nitrogen-containing salt compound is preferably 10 mol% or more, more preferably 20 mol% or more. Thereby, the effect by a nitrogen-containing salt compound is show
  • Quaternary ammonium salt compounds include benzyltrimethylammonium, benzyltriethylammonium, benzyltributylammonium, phenyltrimethylammonium, tetrabutylammonium, tetrahexylammonium, tetraoctylammonium, trioctylmethylammonium, trioctylethylammonium, dilauryldimethylammonium.
  • the quaternary ammonium salt compound is prepared from a naturally-derived raw material and has an unsaturated bond in a part of the alkyl group or a distribution in the carbon number of the alkyl group. Good.
  • a cetyltrimethylammonium salt can be particularly preferably used.
  • the pyridinium salt compound examples include hydroxides, nitrates, sulfates, hydrogen sulfates, acetates, methosulphates, etosulphates of alkylpyridiniums such as dodecylpyridinium and cetylpyridinium.
  • a cetylpyridinium salt can be particularly preferably used.
  • the compound having a carbon-carbon double bond (hereinafter sometimes referred to as “olefin compound”) is not particularly limited as long as it is a compound having one or more carbon-carbon double bonds in the molecule.
  • olefin compound examples include ethylene; Propylene, 1-butene, 1-pentene, 4,4-dimethyl-1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1- Tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-octadecene, 3,3-dimethyl-1-butene, vinylcyclopentane, vinylcyclohexane, allylcyclohexane, styrene, 4- (tert-butyl) styrene, allyl Monosubstituted olefins such as benzene, 4-methoxystyrene, safrole, eugenol, 3,4-dimethoxy-1-allylbenzene; 2-butene, isobutan
  • an alicyclic olefin compound can be suitably used as the olefin compound, and an alicyclic olefin compound represented by the following formula (2) can be more suitably used.
  • the alicyclic epoxy compound represented by the formula (1) can be obtained by epoxidizing the compound represented by the formula (2).
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 and R 12 are each independently , A hydrogen atom, a halogen atom, an alkyl group which may have a substituent, or an alkoxy group which may have a substituent.
  • an alkyl group having 1 to 10 carbon atoms is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • “may have a substituent” means that part or all of the hydrogen atoms of the alkyl group may be substituted with a group other than a hydrogen atom.
  • the substituent include a halogen atom (preferably a chlorine atom or a fluorine atom, more preferably a fluorine atom), an alkoxy group (preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 3 carbon atoms). ) And the like.
  • an alkoxy group having 1 to 10 carbon atoms is preferable, and an alkoxy group having 1 to 4 carbon atoms is more preferable.
  • “may have a substituent” means that part or all of the hydrogen atoms of the alkoxy group may be substituted with groups other than hydrogen atoms.
  • the substituent include a halogen atom (preferably a chlorine atom or a fluorine atom, more preferably a fluorine atom), an alkoxy group (preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 3 carbon atoms). ) And the like.
  • R 1 to R 12 are each independently preferably a hydrogen atom, a fluorine atom, an alkyl group or an alkoxy group, more preferably a hydrogen atom or a fluorine atom, and even more preferably a hydrogen atom.
  • a compound represented by the following formula (4) is preferably used as the alicyclic olefin compound represented by the formula (2). According to the epoxidation of the compound represented by the formula (4), the following formula The alicyclic diepoxy compound represented by (3) is obtained.
  • a solid catalyst As the solid support, a solid catalyst, a hydrogen peroxide solution, a compound having a carbon-carbon double bond dispersed therein, those having the property of not deteriorating and inhibiting the oxidation reaction (epoxidation reaction), preferably A powder having a property of promoting an oxidation reaction is used.
  • phosphates such as apatite, diatomaceous earth (main component: silica), white ceramics (main component: silica alumina), clays such as hydrotalcite, fluorides such as calcium fluoride, silica, titania, alumina, etc. These oxides can be exemplified.
  • a solid support selected from phosphates, diatomaceous earth, silica, alumina, white porcelain clay, silica alumina, and calcium fluoride is preferable, and a higher yield can be achieved.
  • solid carriers selected from apatite, diatomaceous earth and calcium fluoride can achieve particularly high yields.
  • apatite is a kind of calcium phosphate, and fluorine apatite, chlorapatite, carbonate apatite, hydroxyapatite, etc. are present as apatite-based minerals. Of these, hydroxyapatite and fluorapatite are preferably used.
  • Diatomaceous earth is a soft rock or soil mainly made of diatom shell and mainly composed of silica.
  • silica alumina, iron oxide, alkali metal oxides and the like are often included.
  • a porous material having a high porosity and a cake bulk density of about 0.2 to 0.45 is often used.
  • fired products are preferred, and freshwater diatomaceous earths are preferred, but other diatomaceous earths can also be used.
  • Specific examples of such diatomaceous earth include those sold by Celite under the trade name Celite (registered trademark) and those sold by Eagle Pitcher Minerals under the trade name Ceratom. .
  • what was baked with sodium carbonate etc. can also be used.
  • a mixture of the solid catalyst and the solid support can be obtained by adding a solid catalyst powder to the solid support powder in advance and stirring and mixing the powders.
  • the particle size of the solid catalyst powder and the solid support powder is not particularly limited, but a powder having a particle size of about 5 to 100 ⁇ m, which is easy to obtain and manufacture, can be used. The effect can be obtained more effectively.
  • the amount of the solid catalyst is preferably 5 to 100 parts by mass, more preferably 10 to 80 parts by mass with respect to 100 parts by mass of the total amount of the solid support.
  • the reaction rate of epoxidation reaction improves that it is 5 mass parts or more, and an epoxy compound can be obtained with a sufficient yield.
  • the yield is not improved, which is industrially disadvantageous.
  • the total amount of the solid support and the solid catalyst is preferably in the range of about 0.01 to 5 g, more preferably 0.02 to 3.0 g, with respect to 1 mmol of the compound having a carbon-carbon double bond. It is.
  • the tungsten content (the content of tungsten atoms) in the solid catalyst is preferably 1 to 25 parts by mass with respect to 100 parts by mass of the total amount of the solid catalyst and the solid support, and 2 to 20 parts by mass. It is more preferable that When the amount is 1 part by mass or more, the reaction rate of the epoxidation reaction is improved, and the epoxy compound can be obtained with higher yield. On the other hand, in the range exceeding 25 parts by mass, the ring-opening reaction of the epoxy tends to proceed and the yield decreases.
  • the tungsten content can be obtained, for example, by measuring the tungsten content in the mixture of the solid support and the solid catalyst.
  • the tungsten content in the mixture of the solid support and the solid catalyst can be measured by performing inductively coupled plasma emission (ICP emission) analysis after pretreating the mixture of the solid support and the solid catalyst with alkali melting.
  • ICP emission inductively coupled plasma emission
  • the measuring device for example, Optima4300DV manufactured by PerkinElmer, Inc. can be used.
  • the hydrogen peroxide concentration of the hydrogen peroxide solution is preferably 5 to 60% by mass.
  • the generated epoxide is hydrolyzed to produce a by-product such as a diol and the selectivity of the target product is low.
  • the selectivity is high and a high yield of the target product can be obtained.
  • the amount of hydrogen peroxide water added can be in the range of about 0.5 to 5 mmol as hydrogen peroxide with respect to 1 mmol of the double bond site of the compound having a carbon-carbon double bond. 6-2.5 mmol. If the amount is less than 0.5 mmol, hydrogen peroxide may be insufficient and the yield of the epoxy compound may decrease. If the amount exceeds 5 mmol, a ring-opening reaction may occur and the yield of the epoxy compound may decrease. In particular, in the case of producing the compound of formula (1), when hydrogen peroxide exceeds 5 mmol, the yield tends to decrease.
  • the epoxidation can be carried out by adding a compound having a carbon-carbon double bond and a hydrogen peroxide solution to a mixture of a solid support powder and a solid catalyst powder. This addition is performed so that both (the compound having a carbon-carbon double bond and the hydrogen peroxide solution) are dispersed in the mixture and come into contact with each other.
  • mixing and stirring may be performed after the addition. Thereafter, the reaction may be performed in a state where the mixture is left standing, or the reaction may be performed while mixing and stirring.
  • an organic solvent may be further added to the mixed powder of the solid support and the solid catalyst before or after the addition of the compound having a carbon-carbon double bond and the hydrogen peroxide solution.
  • an organic solvent By using an organic solvent, it is possible to suppress contact between the epoxy and water, and it is easy to prevent ring opening of the produced epoxy.
  • the amount of the organic solvent to be added is preferably 500 parts by mass or less with respect to 100 parts by mass of the total amount of compounds having a carbon-carbon double bond. When the amount of the organic solvent exceeds 500 parts by mass, the reaction rate becomes slow and the yield of the epoxy compound tends to decrease.
  • organic solvents As types of organic solvents, alcohols, ethers, esters, ketones, nitriles, amides, sulfones, epoxies, aliphatic compounds, aromatic compounds, and the like can be used.
  • Preferred organic solvents are ethanol, ethyl acetate, hexane, toluene and the like, and particularly preferred is toluene.
  • the reaction temperature of the oxidation reaction is preferably 0 to 50 ° C., more preferably 5 to 40 ° C. If the reaction temperature is too low, the progress of the reaction tends to be slow, and if the reaction temperature is too high, the yield may decrease due to deactivation of the solid catalyst or ring opening of the epoxy.
  • the reaction time of the oxidation reaction is preferably 1 to 24 hours, and more preferably 1 to 12 hours. If the reaction time is too short, the reaction may not proceed sufficiently and the yield may be reduced. If the reaction time is too long, the production efficiency will be reduced.
  • the conversion rate of the olefin compound by epoxidation is preferably 80% or more.
  • the yield of the epoxy compound is preferably 50% or more.
  • the isolation method of the epoxy compound is not particularly limited, and examples thereof include a method of concentrating after solvent extraction. Moreover, the obtained epoxy compound can also be purified by a known purification method.
  • the chlorine content of the epoxy compound obtained by the production method according to the present embodiment is preferably 100 mass ppm or less, because the moisture resistance reliability when a cured resin is produced is further improved, and is preferably 10 mass ppm or less. More preferably.
  • the chlorine content is a value measured in accordance with JIS standard K-7243-3. Specifically, an epoxy compound is dissolved in diethylene glycol monobutyl ether, and saponification is carried out under heating and reflux with a potassium hydroxide alcohol solution. The value measured by performing potentiometric titration of a silver nitrate solution.
  • the chlorine content of the epoxy compound can be reduced by distillation purification, and can also be reduced by methods such as alkaline aqueous solution washing and adsorbent treatment.
  • the metal content of the epoxy compound obtained by the production method according to the present embodiment is preferably 100 ppm by mass or less because the mechanical properties and electrical properties of the cured resin are further improved. More preferably, it is at most ppm by mass.
  • the metal content can be measured by inductively coupled plasma emission (ICP emission) analysis of a 10% toluene solution of an epoxy compound.
  • ICP emission inductively coupled plasma emission
  • Optima4300DV manufactured by PerkinElmer, Inc. can be used.
  • quantitative analysis can be performed using a calibration curve created using a commercially available metal standard solution.
  • the metal content of the epoxy compound can also be reduced by distillation purification, and can also be reduced by methods such as alkaline aqueous solution washing and adsorbent treatment.
  • the second aqueous solution and the third aqueous solution were mixed to obtain a fourth aqueous solution. While stirring the first aqueous solution at room temperature, the fourth aqueous solution was added to the first aqueous solution and stirred at room temperature for 30 minutes. The resulting white suspension was filtered and washed with 10 ml of water. The obtained solid was dried at room temperature under reduced pressure to obtain 1.1 g of a white solid. This was designated as solid catalyst 5.
  • the tungsten content in the mixture of the solid support and the solid catalyst is analyzed by inductively coupled plasma emission (ICP emission) after the mixture of the solid support and the solid catalyst is pretreated with an alkali melt. It was measured by.
  • ICP emission inductively coupled plasma emission
  • Optima 4300 DV manufactured by PerkinElmer was used as the measuring device.
  • Example 1 In a screw test tube, 1.0 g of apatite as a solid support and 0.15 g of solid catalyst 1 were weighed and mixed well. As a result of ICP analysis of these mixtures, the tungsten content was 59 mg. To these mixtures, 0.61 g of toluene, 1.2 g (10 mmol) of tetrahydroindene, and 1.7 g (18 mmol) of 35% aqueous hydrogen peroxide were added. After stirring at 20 ° C. for 6 hours, the reaction mixture was extracted with toluene (1 mL ⁇ 3 times). The solvent was distilled off from the extract to obtain a crude product.
  • the crude product was charged into a still and distilled at a pressure of 2 mmHg. As a fraction having a tower top temperature of 90 ° C., 0.81 g of tetrahydroindene diepoxide was obtained. The product yield (diepoxide yield) was 53%. Further, as a result of ICP analysis of the mixture of the solid support and the solid catalyst, which is a residue in the extraction, the tungsten content was 45 mg.
  • Example 2 The epoxidation reaction was performed in the same manner as in Example 1 except that the solid catalyst 1 in Example 1 was replaced with the solid catalyst 2.
  • the tungsten content in the mixture of the solid support and the solid catalyst before the reaction was 59 mg, and the tungsten content in the mixture of the solid support and the solid catalyst (residue in the extraction) after the reaction was 47 mg.
  • the yield of tetrahydroindene diepoxide was 0.71 g, and the yield was 47%.
  • Example 3 The epoxidation reaction was carried out by the same method as in Example 1 except that the solid catalyst 1 in Example 1 was changed to the solid catalyst 3.
  • the tungsten content in the mixture of the solid support and the solid catalyst before the reaction was 61 mg, and the tungsten content in the mixture of the solid support and the solid catalyst (residue in the extraction) after the reaction was 52 mg.
  • the yield of tetrahydroindene diepoxide was 0.61 g, and the yield was 40%.
  • Example 4 The epoxidation reaction was performed in the same manner as in Example 1 except that the solid catalyst 1 in Example 1 was replaced with the solid catalyst 4.
  • the tungsten content in the mixture of the solid support and the solid catalyst before the reaction was 57 mg, and the tungsten content in the mixture of the solid support and the solid catalyst (of the residue in the extraction) after the reaction was 42 mg.
  • the yield of tetrahydroindene diepoxide was 0.81 g, and the yield was 53%.
  • Example 5 The epoxidation reaction was performed in the same manner as in Example 1 except that the solid catalyst 1 in Example 1 was replaced with the solid catalyst 5.
  • the tungsten content in the mixture of the solid support and the solid catalyst before the reaction was 58 mg, and the tungsten content in the mixture of the solid support and the solid catalyst (residue in the extraction) after the reaction was 46 mg.
  • the yield of tetrahydroindene diepoxide was 0.59 g, and the yield was 39%.
  • Example 1 The epoxidation reaction was performed in the same manner as in Example 1 except that the solid catalyst 1 in Example 1 was replaced with the solid catalyst 6.
  • the tungsten content in the mixture of the solid support and the solid catalyst before the reaction was 59 mg, and the tungsten content in the mixture of the solid support and the solid catalyst (residue in the extraction) after the reaction was 40 mg.
  • the yield of tetrahydroindene diepoxide was 0.58 g, and the yield was 38%.
  • Table 1 shows the yield (the yield of tetrahydroindene diepoxide) and the tungsten residual ratio (ratio of the tungsten content after the reaction to the tungsten content before the reaction) in Examples 1 to 5.
  • an epoxy compound can be produced with high productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 炭素-炭素二重結合を有する化合物、過酸化水素水、固体担体の粉末、及び固体触媒の粉末の共存下に、炭素-炭素二重結合を有する化合物と過酸化水素とを反応させてエポキシ化合物を製造する方法であって、前記固体触媒が、イソポリ酸類を含み、前記イソポリ酸類が、(a)タングステン酸又はその塩と(b)アルカリ土類金属の塩及びカチオン性ポリマーからなる群より選択される少なくとも一種とを含む触媒原料より製造される、エポキシ化合物の製造方法。

Description

固体触媒を用いたエポキシ化合物の製造方法
 本発明は、炭素-炭素二重結合を有する化合物と過酸化水素からエポキシ化合物を製造する方法に関する。
 エポキシ化合物は種々の硬化剤および硬化触媒と反応させることにより硬化物が得られる。これらエポキシ化合物は、コーティング剤、接着剤、インキ、シーラントの成分または医薬品および医療用品を含む種々の最終用途に有用な他の化合物を製造するための中間体として有用である。
 エポキシ化合物の製造方法としては、例えばオレフィン類を過酢酸等の過酸で酸化する方法が知られているが、過酸は取扱いに注意を要し、エポキシ体が反応系内に存在するカルボン酸と反応することによりエステル体等が生成してエポキシ体の選択率が低下する、反応後の後処理が面倒である等の問題がある。そこで、取扱いが容易で、反応後には無害な水となる過酸化水素を酸化剤として用いる製造法が注目されてきている。
 過酸化水素を用いてオレフィン類からエポキシ化合物を製造する方法としては、例えば、ポリ酸類等の触媒を用い、オレフィン類と過酸化水素水とをハロゲン化炭化水素を溶媒として反応させエポキシ化を行う方法(特許文献1)が知られている。しかしながら、ハロゲン炭化水素を用いているため、製品のハロゲン不純物、環境負荷等の問題がある。
 特許文献2は固体分散相及び前記酸化反応の固体触媒の粉末の混合物、有機化合物及び過酸化水素水からなる固相系酸化反応システムを開示する。
特開昭62-234550号公報 国際公開第2008/093711号
 本発明はオレフィン化合物のエポキシ化を、生産性良く行う方法を提供することを目的とする。
 本発明は、炭素-炭素二重結合を有する化合物、過酸化水素水、固体担体の粉末、及び固体触媒の粉末の共存下に、炭素-炭素二重結合を有する化合物と過酸化水素とを反応させてエポキシ化合物を製造する方法であって、前記固体触媒が、イソポリ酸類を含み、前記イソポリ酸類が、(a)タングステン酸又はその塩と(b)アルカリ土類金属の塩及びカチオン性ポリマーからなる群より選択される少なくとも一種とを含む触媒原料より製造される、エポキシ化合物の製造方法に関する。
 本発明によれば、固体触媒中のイソポリ酸類が、(a)タングステン酸又はその塩と(b)アルカリ土類金属の塩及びカチオン性ポリマーからなる群より選択される少なくとも一種とを含む触媒原料より製造されるものであるため、固体触媒からのイソポリ酸類の溶出が十分に抑制される。このため、本発明によれば、エポキシ化合物を高い反応率及び収率で製造することができ、かつ反応混合物からのエポキシ化合物の単離及び回収操作を容易に行うことができる。また、固体触媒及び固体担体は、生成物の分離後、再使用することが可能であり、本発明は、品質の安定、製造設備の安定的運転、製造コストの低減、並びに、使用済み触媒等の廃材及び排水処理による環境負荷の軽減といった利点を有する。
 本発明はまた、上記触媒原料がタングステン酸アンモニウム塩を含むことを特徴とするエポキシ化合物の製造方法に関する。
 本発明はまた、上記触媒原料が、Ca、Sr及びBaからなる群より選択される少なくとも一種のアルカリ土類金属の塩を含むことを特徴とするエポキシ化合物の製造方法に関する。
 本発明はまた、上記触媒原料が、ポリ4-ビニルピリジンの塩及びポリN-アルキル-4-ビニルピリジンの塩からなる群より選択される少なくとも一種のカチオン性ポリマーを含むことを特徴とするエポキシ化合物の製造方法に関する。
 本発明はまた、上記炭素-炭素二重結合を有する化合物が、脂環式オレフィン化合物であることを特徴とするエポキシ化合物の製造方法に関する。
 本発明はまた、上記炭素-炭素二重結合を有する化合物が、下記式(2)で表される化合物であることを特徴とするエポキシ化合物の製造方法に関する。
Figure JPOXMLDOC01-appb-C000002
[式中、R~R12はそれぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、又は置換基を有していてもよいアルコキシ基を示す。]
 本発明はまた、上記固体担体が、リン酸塩類、珪藻土、シリカ、アルミナ、白陶土、シリカアルミナ及びフッ化カルシウムからなる群より選択されることを特徴とするエポキシ化合物の製造方法に関する。
 本発明はまた、上記固体担体がアパタイトであることを特徴とするエポキシ化合物の製造方法に関する。
 本発明によれば、炭素-炭素二重結合を有する化合物から生産性良くエポキシ化合物を製造することが可能な、エポキシ化合物の製造方法が提供される。
 本発明の製造方法の好適な実施形態について以下に説明する。
 本実施形態に係る製造方法は、炭素-炭素二重結合を有する化合物、過酸化水素水、固体担体の粉末、及び固体触媒の粉末の共存下に、炭素-炭素二重結合を有する化合物と過酸化水素とを反応させてエポキシ化合物を製造する方法である。
 本実施形態において、上記固体触媒は、イソポリ酸類を含む。また、本実施形態において、上記イソポリ酸類は、(a)タングステン酸又はその塩と(b)アルカリ土類金属の塩及びカチオン性ポリマーからなる群より選択される少なくとも一種とを含む触媒原料より製造されるイソポリ酸類である。
 本実施形態に係る製造方法によれば、炭素-炭素二重結合を有する化合物から、生産性良くエポキシ化合物を製造することができる。
 より具体的には、本実施形態に係る製造方法においては、固体触媒中のイソポリ酸類が、(a)タングステン酸又はその塩(以下、場合により「(a)成分」という。)と(b)アルカリ土類金属の塩及びカチオン性ポリマーからなる群より選択される少なくとも一種(以下、場合により「(b)成分」という。)とを含む触媒原料より製造されるものであるため、固体触媒からのイソポリ酸類の溶出が十分に抑制される。このため、本実施形態に係る製造方法によれば、エポキシ化合物を高い反応率及び収率で製造することができ、かつ反応混合物からのエポキシ化合物の単離及び回収操作を容易に行うことができる。
 また、本実施形態では、固体触媒からのイソポリ酸類の溶出が十分に抑制されるため、固体触媒及び固体担体を、生成物の分離後、再使用することができる。このため、本実施形態に係る製造方法は、品質の安定、製造設備の安定的運転、製造コストの低減、並びに、使用済み触媒等の廃材及び排水処理による環境負荷の軽減といった利点を有する。
 (a)タングステン酸又はその塩としては、例えば、HWO、NaWO、NaHWO、(NHWO、(NH)HWO、(NH24、(NH10[H1242]、[WO(O(HO)]、K[WO(O(HO)O、Na[WO(O(HO)O、K[W1032]等が挙げられる。
 また、(a)タングステン酸又はその塩としては、(NH10[H1242]等のタングステン酸アンモニウム塩を好適に用いることができる。
 (b)成分は、(b-1)アルカリ土類金属の塩、及び(b-2)カチオン性ポリマーからなる群より選択される。
 (b-1)アルカリ土類金属の塩は、アルカリ土類金属のカチオンを含む塩であり、アルカリ土類金属としては、Ca、Sr及びBaが好適に用いられる。すなわち、(b-1)アルカリ土類金属の塩は、Ca、Sr及びBaからなる群より選択される少なくとも一種のアルカリ土類金属の塩であってよい。
 (b-1)アルカリ土類金属の塩は、アルカリ土類金属カチオンとイオン結合するアニオンを含む。当該アニオンに特に制限はないが、当該アニオンとしては、例えばハロゲン化物イオン、硝酸イオン、酢酸イオン、水酸化物イオン、亜硝酸イオン、過塩素酸イオンが挙げられる。すなわち、(b-1)アルカリ土類金属の塩は、例えば、アルカリ土類金属のハロゲン化物、硝酸塩、酢酸塩、水酸化物、亜硝酸塩、過塩素酸塩等であってよい。(b-1)アルカリ土類金属の塩としては、これらのうちアルカリ土類金属の硝酸塩、酢酸塩、ハロゲン化物等を特に好適に用いることができる。
 (b-1)アルカリ土類金属の塩の具体例としては、塩化カルシウム(II)、塩化バリウム(II)、硝酸カルシウム(II)、硝酸バリウム(II)、酢酸カルシウム(II)、酢酸バリウム(II)、水酸化カルシウム(II)、水酸化バリウム(II)、亜硝酸カルシウム(II)、亜硝酸バリウム(II)、過塩素酸カルシウム(II)、過塩素酸バリウム(II)等が挙げられる。これらのうち、(b-1)アルカリ土類金属の塩としては、硝酸カルシウム(II)、硝酸バリウム(II)、酢酸カルシウム(II)、酢酸バリウム(II)、塩化カルシウム(II)、塩化バリウム(II)等を好適に用いることができる。
 触媒原料として用いる(b-1)アルカリ土類金属の塩の量は、(a)成分に含まれるタングステン原子の総量に対して、0.5mol%以上であることが好ましく、1mol%以上であることがより好ましい。また、(b-1)アルカリ土類金属の塩の量は、50mol%以下であることが好ましく、20mol%以下であることがより好ましい。
 (b-2)カチオン性ポリマーは、カチオン性官能基を有するポリマーということができる。カチオン性官能基としては、アンモニウムカチオンを有する基、ピリジニウムカチオンを有する基等が挙げられる。
 (b-2)カチオン性ポリマーとしては、例えば、ポリ4-ビニルピリジンの塩、ポリN-アルキル-4-ビニルピリジンの塩、ポリ2-ビニルピリジンの塩、ポリN-アルキル-2-ビニルピリジンの塩、陰イオン交換樹脂等が挙げられる。これらのうち、好適な(b-2)カチオン性ポリマーは、ポリ4-ビニルピリジンの塩、ポリN-アルキル-4-ビニルピリジンの塩、ポリ2-ビニルピリジンの塩、ポリN-アルキル-2-ビニルピリジンの塩であり、より好適な(b-2)カチオン性ポリマーは、ポリ4-ビニルピリジンの塩及びポリN-アルキル-4-ビニルピリジンの塩である。
 触媒原料として用いる(b-2)カチオン性ポリマーの量は、(a)成分100重量部に対して、1重量部以上であることが好ましく、5重量部以上であることがより好ましい。また、(b-2)カチオン性ポリマーの量は、(a)成分100重量部に対して、100重量部以下であることが好ましく、80重量部以下であることがより好ましい。
 イソポリ酸類は、例えば、(a)成分及び(b)成分を、水等の溶媒にそれぞれ溶解させて混合し、混合溶液から析出した塩を単離精製することで得ることができる。このようにして得られたイソポリ酸類は、そのまま固体触媒として用いることができる。
 なお、イソポリ酸類を得るための触媒原料は、(a)成分及び(b)成分以外の成分を更に含んでいてもよい。例えば、触媒原料は、4級アンモニウム塩化合物及びピリジニウム塩化合物からなる群より選択される含窒素塩化合物をさらに含んでいてもよい。触媒原料として上記含窒素塩化合物を用いることで、固体触媒の反応性をより向上させることができる。
 触媒原料としいて用いる含窒素塩化合物の量は、(a)成分に含まれるタングステン原子の総量に対して、好ましくは0~90mol%である。また、含窒素塩化合物の量は、10mol%以上が好ましく、20mol%以上がより好ましい。これにより、含窒素塩化合物による効果がより顕著に奏される。また、含窒素塩化合物の量は、(a)成分に含まれるタングステン原子の総量に対して90mol%以下が好ましく、80mol%以下がより好ましい。含窒素塩化合物が過剰にあると、含窒素塩化合物を用いない場合と比較して固体触媒からのイソポリ酸類の溶出が起こりやすくなる場合がある。
 4級アンモニウム塩化合物としては、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ベンジルトリブチルアンモニウム、フェニルトリメチルアンモニウム、テトラブチルアンモニウム、テトラヘキシルアンモニウム、テトラオクチルアンモニウム、トリオクチルメチルアンモニウム、トリオクチルエチルアンモニウム、ジラウリルジメチルアンモニウム、ラウリルトリメチルアンモニウム、ジステアリルジメチルアンモニウム、ステアリルトリメチルアンモニウム、ジオクタデシルジメチルアンモニウム、オクタデシルトリメチルアンモニウム、ジセチルジメチルアンモニウム、セチルトリメチルアンモニウム、トリカプリルメチルアンモニウム等のテトラアルキルアンモニウムの、水酸化物、硝酸塩、硫酸塩、硫酸水素塩、酢酸塩、メトサルフェート、エトサルフェート等を挙げることができる。また、4級アンモニウム塩化合物は、天然由来の原料から調製されたものであって、アルキル基の一部に不飽和結合を有するものや、アルキル基の炭素数に分布を有するものであってもよい。4級アンモニウム塩化合物としては、セチルトリメチルアンモニウムの塩を特に好適に用いることができる。
 ピリジニウム塩化合物の具体例としては、ドデシルピリジニウム、セチルピリジニウム等のアルキルピリジニウムの、水酸化物、硝酸塩、硫酸塩、硫酸水素塩、酢酸塩、メトサルフェート、エトサルフェート等を挙げることができる。ピリジニウム塩化合物としては、セチルピリジニウムの塩を特に好適に用いることができる。
 炭素-炭素二重結合を有する化合物(以下、場合により「オレフィン化合物」という。)としては、分子内に一つ以上の炭素-炭素二重結合を有する化合物であれば特に制限されない。
 オレフィン化合物としては、例えば、エチレン;
プロピレン、1-ブテン、1-ペンテン、4,4-ジメチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-オクタデセン、3,3-ジメチル-1-ブテン、ビニルシクロペンタン、ビニルシクロヘキサン、アリルシクロヘキサン、スチレン、4-(tert-ブチル)スチレン、アリルベンゼン、4-メトキシスチレン、サフロール、オイゲノール、3,4-ジメトキシ-1-アリルベンゼン等の一置換オレフィン類;
2-ブテン、イソブチレン、2-メチル-1-ブテン、2-ペンテン、2-ヘキセン、2-メチル-1-ヘキセン、3-ヘキセン、2-ヘプテン、2-メチル-1-ヘプテン、3-ヘプテン、2-オクテン、3-オクテン、4-オクテン、2-ノネン、2-メチル-2-ノネン、3-ノネン、4-ノネン、5-デセン、2-メチル-1-ウンデセン、シクロペンテン、シクロヘキセン、4-メチルシクロヘキセン、シクロヘプテン、シクロオクテン、シクロデセン、シクロドデセン、メチレンシクロヘキサン、β-メチルスチレン、スチルベン、イソサフロール、イソオイゲノール、β-ピネン、ノルボルネン等の二置換オレフィン類;
2-メチル-2-ブテン、2-メチル-2-ペンテン、2-メチル-2-ヘキセン、2,5-ジメチル-2,4-ヘキサジエン、2-メチル-2-ヘプテン、1-メチルシクロペンテン、1-メチルシクロヘキセン、1-(tert-ブチル)シクロヘキセン、1-イソプロピルシクロヘキセン、2-カレン、3-カレン、α-ピネン等の三置換オレフィン類;
2,3-ジメチル-2-ブテン、2,3,4-トリメチル-2-ペンテン等の四置換オレフィン類;などが挙げられる。
 本実施形態では、オレフィン化合物として、脂環式オレフィン化合物を好適に用いることができ、下記式(2)で表される脂環式オレフィン化合物をより好適に用いることができる。本実施形態に係る製造方法では、その一態様において、式(2)で表される化合物をエポキシ化することにより、式(1)で表される脂環式エポキシ化合物が得ることができる。
Figure JPOXMLDOC01-appb-C000003
 式(1)及び式(2)において、R、R、R、R、R、R、R、R、R、R10、R11及びR12はそれぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基又は置換基を有していてもよいアルコキシ基を示す。
 アルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。なお、「置換基を有していてもよい」とは、アルキル基が有する水素原子の一部又は全部が、水素原子以外の基で置換されていてもよいことを示す。置換基としては、例えば、ハロゲン原子(好ましくは塩素原子又はフッ素原子、より好ましくはフッ素原子)、アルコキシ基(好ましくは炭素数1~10のアルコキシ基、より好ましくは炭素数1~3のアルコキシ基)等が挙げられる。
 アルコキシ基としては、炭素数1~10のアルコキシ基が好ましく、炭素数1~4のアルコキシ基がより好ましい。なお、「置換基を有していてもよい」とは、アルコキシ基が有する水素原子の一部又は全部が、水素原子以外の基で置換されていてもよいことを示す。置換基としては、例えば、ハロゲン原子(好ましくは塩素原子又はフッ素原子、より好ましくはフッ素原子)、アルコキシ基(好ましくは炭素数1~10のアルコキシ基、より好ましくは炭素数1~3のアルコキシ基)等が挙げられる。
 R~R12は、それぞれ独立に、水素原子、フッ素原子、アルキル基又はアルコキシ基であることが好ましく、水素原子又はフッ素原子であることがより好ましく、水素原子であることがさらに好ましい。
 すなわち、式(2)で表わされる脂環式オレフィン化合物としては、下記式(4)で表される化合物が好ましく用いられ、式(4)で表される化合物のエポキシ化によれば、下記式(3)で表される脂環式ジエポキシ化合物が得られる。
Figure JPOXMLDOC01-appb-C000004
 固体担体としては、固体触媒、過酸化水素水、炭素-炭素二重結合を有する化合物を分散し、これらにより劣化せず、かつ酸化反応(エポキシ化反応)を阻害しない性質を有するもの、好ましくは酸化反応を促進する性質を有するものの粉末が用いられる。具体的には、アパタイトなどリン酸塩類、珪藻土〔主成分:シリカ〕、白陶土〔主成分:シリカアルミナ〕、ハイドロタルサイトなどクレイ類、フッ化カルシウムなどフッ化物類、シリカ、チタニア、アルミナなどの酸化物類を例示することができる。中でも、リン酸塩類、珪藻土、シリカ、アルミナ、白陶土、シリカアルミナ及びフッ化カルシウムから選択される固体担体が好ましく、より高い収率を達成できる。特に、アパタイト、珪藻土及びフッ化カルシウムから選択される固体担体は特に高い収率を達成できる。
 ここで、アパタイトとは、リン酸カルシウムの一種であり、フッ素アパタイト、塩素アパタイト、炭酸アパタイト、水酸アパタイト等がリン灰石系鉱物として存在する。これらの中でも水酸アパタイト、フッ素アパタイトが好適に用いられる。
 珪藻土とは、主に珪藻の殻からなる軟質の岩石又は土壌で、シリカを主成分とするが、シリカ以外にもアルミナ、酸化鉄、アルカリ金属の酸化物等が含まれていることが多い。又、ポーラスで高い空隙率を有し、ケーク嵩密度が0.2~0.45程度のものが用いられることが多い。珪藻土の中でも、焼成品が好ましく、又淡水産珪藻土が好ましいが、他の珪藻土を使用することも可能である。このような珪藻土の具体例としては、セライト社からセライト(登録商標)の商品名で販売されているものやイーグルピッチャーミネラルズ社よりセラトムの商品名で販売されているものを例示することができる。又、炭酸ナトリウム等とともに焼成したものも用いることができる。
 固体触媒は固体担体に固定化する必要はなく、単に固体触媒の粉末と固体担体の粉末を混合するだけでよい。例えば、予め固体担体の粉末に固体触媒の粉末を添加し、粉末同士を攪拌混合する方法により、固体触媒と固体担体との混合物を得ることができる。固体触媒の粉末及び固体担体の粉末の粒度は特に限定されないが、入手・製造の容易な粒径5~100μm程度の粉末を用いることができ、これにより生成物の高い収率等、本発明の効果をより有効に得ることができる。
 固体触媒の量は、固体担体の総量100質量部に対して、5~100質量部であることが好ましく、より好ましくは10~80質量部である。5質量部以上であるとエポキシ化反応の反応速度が向上して、エポキシ化合物をより収率良く得ることができる。一方、80質量部を超える範囲では、固体触媒の量を多くしても収率は向上せず、工業的に不利となる。
 また、固体担体及び固体触媒の合計量は、炭素-炭素二重結合を有する化合物1mmolに対して、0.01~5g程度の範囲とすることが好ましく、より好ましくは0.02~3.0gである。
 本実施形態において、固体触媒におけるタングステン含有量(タングステン原子の含有量)は、固体触媒及び固体担体の合計量100質量部に対して1~25質量部であることが好ましく、2~20質量部であることがより好ましい。1質量部以上であるとエポキシ化反応の反応速度が向上して、エポキシ化合物をより収率良く得ることができる。一方、25質量部を超える範囲では、エポキシの開環反応が進行しやすくなり収率が低下する。
 上記タングステン含有量は、例えば、固体担体及び固体触媒の混合物中のタングステン含有量を測定して求めることができる。固体担体及び固体触媒の混合物中のタングステン含有量は、固体担体及び固体触媒の混合物をアルカリ溶融で前処理した後、誘導結合プラズマ発光(ICP発光)分析することにより測定することができる。測定装置は、例えばパーキンエルマー社のOptima4300DVなどが使用できる。
 過酸化水素水の過酸化水素濃度は、好ましくは5~60質量%である。過酸化水素を用いるエポキシ化合物の製造法では、一般に低濃度の過酸化水素水を用いた場合は、生成したエポキシドが加水分解されてジオールなど副生成物が生成し目的生成物の選択率が低くなるが、本実施形態に係る製造方法では、低濃度の過酸化水素水を用いた場合でも選択率が高く目的生成物の高い収率が得られる。
 過酸化水素水の添加量は、炭素-炭素二重結合を有する化合物の二重結合部位1mmolに対して、過酸化水素として0.5~5mmol程度の範囲とすることができ、好ましくは0.6~2.5mmolである。0.5mmol未満では過酸化水素が不足してエポキシ化合物の収率が低下する場合があり、5mmolを超えると、開環反応が生じてエポキシ化合物の収率が下がるおそれがある。特に、式(1)の化合物を製造する場合には、過酸化水素が5mmolを超えると収率が低下する傾向が顕著である。
 本実施形態において、エポキシ化は、固体担体の粉末及び固体触媒の粉末の混合物に、炭素-炭素二重結合を有する化合物及び過酸化水素水を添加して、行うことができる。この添加は、両者(炭素-炭素二重結合を有する化合物及び過酸化水素水)が混合物中に分散し互いに接触するように行われるが、例えば、両者の分散及び互いの接触を良好にするように、添加後混合撹拌を行ってもよい。その後は、この混合物を静置した状態で反応を行ってもよく、混合や撹拌を行いながら反応を行ってもよい。
 本実施形態では、固体担体と固体触媒の混合粉末に、炭素-炭素二重結合を有する化合物及び過酸化水素水を添加する前後、あるいは同時に、さらに有機溶剤を添加してもよい。有機溶剤を使用することでエポキシと水の接触を抑えることができ、これにより生成したエポキシの開環が防止しやすくなる。添加する有機溶剤の量は、炭素-炭素二重結合を有する化合物の総量100質量部に対して、500質量部以下であることが好ましい。有機溶剤の量が500質量部を超えると、反応速度が遅くなり、エポキシ化合物の収率が低下する傾向がある。
 有機溶剤の種類としては、アルコール類、エーテル類、エステル類、ケトン類、ニトリル類、アミド類、スルホン類、エポキシ類、脂肪族化合物、芳香族化合物等を用いることができる。好ましい有機溶剤はエタノール、酢酸エチル、ヘキサン、トルエン等であり、特にトルエンが好ましい。
 本実施形態において、酸化反応(エポキシ化反応)の反応温度は、0~50℃であることが好ましく、5~40℃であることがより好ましい。反応温度が低すぎると反応の進行が遅くなる傾向にあり、反応温度が高すぎると固体触媒の失活やエポキシの開環により収率が低下する場合がある。
 本実施形態において、酸化反応の反応時間は、1~24時間が好ましく、1~12時間がより好ましい。反応時間が短すぎると反応が十分に進行せず収率が低下する場合があり、反応時間が長すぎると生産効率が低下する。
 本実施形態において、エポキシ化によるオレフィン化合物の転化率は、好ましくは80%以上である。また、本実施形態において、エポキシ化合物の収率は好ましくは50%以上である。
 エポキシ化合物の単離方法は特に制限されず、例えば、溶剤抽出の後に濃縮する方法が挙げられる。また、得られたエポキシ化合物は、公知の精製方法によって精製することもできる。
 本実施形態に係る製造方法で得られるエポキシ化合物の塩素含量は、樹脂硬化物を作製した場合の耐湿信頼性が一層向上することから、100質量ppm以下であることが好ましく、10質量ppm以下であることがより好ましい。なお、塩素含量は、JIS規格K-7243-3に準拠して測定される値であり、具体的には、ジエチレングリコールモノブチルエーテルにエポキシ化合物を溶解させ、水酸化カリウムアルコール溶液で加熱還流下けん化し、硝酸銀溶液の電位差滴定を行うことで測定される値である。エポキシ化合物の塩素含量は、蒸留精製で低減することもでき、アルカリ水溶液洗浄、吸着剤処理等の方法で低減することもできる。
 また、本実施形態に係る製造方法で得られるエポキシ化合物の金属含量は、樹脂硬化物を作製した場合の機械特性や電気特性が一層向上することから、100質量ppm以下であることが好ましく、10質量ppm以下であることがより好ましい。なお、金属含量は、エポキシ化合物の10%トルエン溶液を、誘導結合プラズマ発光(ICP発光)分析することにより測定することができる。測定装置は、例えばパーキンエルマー社のOptima4300DVなどが使用できる。この測定では、定性分析で検出された金属種において、それぞれ市販の金属標準液を使用して作成した検量線を用い、定量分析を行うことができる。エポキシ化合物の金属含量は、蒸留精製で低減することもでき、アルカリ水溶液洗浄、吸着剤処理等の方法で低減することもできる。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
(製造例1:固体触媒1の製造)
 水650mlにパラタングステン酸アンモニウム四水和物16g(5.0mmol)と硝酸バリウム(II)0.16g(0.60mmol)を加え、65℃に加熱して溶解させて第一の水溶液を得た。水250mlにセチルピリジニウムクロライド一水和物14g(40mmol)を加え、35℃に加熱して溶解させて第二の水溶液を得た。第一の水溶液を室温で攪拌しながら、第二の水溶液を第一の水溶液に加え、室温で30分間攪拌した。生成した白色懸濁液をろ過し、水700mlで洗浄した。得られた固体を室温、減圧下で乾燥し、27gの白色固体を得た。これを固体触媒1とした。
(製造例2:固体触媒2の製造)
 水650mlにパラタングステン酸アンモニウム四水和物16g(5.0mmol)を加え、65℃に加熱して溶解させて第一の水溶液を得た。水250mlにセチルピリジニウムクロライド一水和物14g(40mmol)と硝酸バリウム(II)1.6g(6.0mmol)を加え、35℃に加熱して溶解させて第二の水溶液を得た。第一の水溶液を室温で攪拌しながら、第二の水溶液を第一の水溶液に加え、室温で30分間攪拌した。生成した白色懸濁液をろ過し、水700mlで洗浄した。得られた固体を室温、減圧下で乾燥し、27gの白色固体を得た。これを固体触媒2とした。
(製造例3:固体触媒3の製造)
 水650mlにパラタングステン酸アンモニウム四水和物16g(5.0mmol)を加え、65℃に加熱して溶解させて第一の水溶液を得た。水250mlにセチルピリジニウムクロライド一水和物14g(40mmol)と硝酸バリウム(II)3.1g(12mmol)を加え、35℃に加熱して溶解させて第二の水溶液を得た。第一の水溶液を室温で攪拌しながら、第二の水溶液を第一の水溶液に加え、室温で30分間攪拌した。生成した白色懸濁液をろ過し、水700mlで洗浄した。得られた固体を室温、減圧下で乾燥し、27gの白色固体を得た。これを固体触媒3とした。
(製造例4:固体触媒4の製造)
 水650mlにパラタングステン酸アンモニウム四水和物16g(5.0mmol)と硝酸カルシウム(II)0.16g(1.0mmol)を加え、65℃に加熱して溶解させて第一の水溶液を得た。水250mlにセチルピリジニウムクロライド一水和物14g(40mmol)を加え、35℃に加熱して溶解させて第二の水溶液を得た。第一の水溶液を室温で攪拌しながら、第二の水溶液を第一の水溶液に加え、室温で30分間攪拌した。生成した白色懸濁液をろ過し、水700mlで洗浄した。得られた固体を室温、減圧下で乾燥し、27gの白色固体を得た。これを固体触媒4とした。
(製造例5:固体触媒5の製造)
 水34mlにパラタングステン酸アンモニウム四水和物0.67g(0.21mmol)を加え、室温で攪拌して溶解させ、第一の水溶液を得た。水24mlにセチルトリメチルアンモニウムメトスルフェート0.77g(1.9mmol)を加え、35℃に加熱して溶解させ、第二の水溶液を得た。水0.65mlにポリ4-ビニルピリジン0.067gを加えた。これを攪拌しながら、20%硫酸0.11gを滴下した。ろ過により不溶分を除去し、第三の水溶液を得た。第二の水溶液と第三の水溶液を混合し、第四の水溶液を得た。第一の水溶液を室温で攪拌しながら、第四の水溶液を第一の水溶液に加え、室温で30分間攪拌した。生成した白色懸濁液をろ過し、水10mlで洗浄した。得られた固体を室温、減圧下で乾燥し、1.1gの白色固体を得た。これを固体触媒5とした。
(製造例6:固体触媒6の製造)
 水160mlにパラタングステン酸アンモニウム四水和物3.1g(1.0mmol)を加え、35℃に加熱して溶解させて第一の水溶液を得た。メタノール60ml、水40mlからなる溶媒にセチルトリメチルアンモニウムメトスルフェート3.8g(9.5mmol)を加え、室温にて溶解させて第二の水溶液を得た。第一の水溶液を室温で攪拌しながら、第二の水溶液を第一の水溶液に加え、室温で12時間攪拌した。生成した白色懸濁液をろ過し、メタノール50mlで洗浄し、続いて水50mlで2回洗浄した。得られた白色固体を室温、減圧下で乾燥し、4.5gの白色固体を得た。これを固体触媒6とした。
(固体担体及び固体触媒の混合物中のタングステン含有量の分析方法)
 以下の実施例及び比較例において、固体担体及び固体触媒の混合物中のタングステン含有量は、固体担体及び固体触媒の混合物をアルカリ溶融で前処理した後、誘導結合プラズマ発光(ICP発光)分析することにより測定した。測定装置は、パーキンエルマー社のOptima4300DVを使用した。
(実施例1)
 ねじ口試験管に、固体担体であるアパタイト 1.0g及び固体触媒1 0.15gを秤取り、よく混合した。これらの混合物のICP分析を行った結果、タングステン含有量は59mgであった。これらの混合物に、トルエン 0.61g、テトラヒドロインデン 1.2g(10mmol)、35%過酸化水素水 1.7g(18mmol)を加えた。20℃で6時間攪拌した後、反応混合物をトルエン(1mL×3回)で抽出した。抽出液から溶媒を留去し、粗生成物を得た。粗生成物を蒸留器に仕込み、圧力2mmHgで蒸留を行った。塔頂温度90℃の留分として、テトラヒドロインデンジエポキシド0.81gを得た。生成物の収率(ジエポキシド収率)は53%であった。また、抽出における残渣である固体担体及び固体触媒の混合物のICP分析を行った結果、タングステン含有量は45mgであった。
(実施例2)
 実施例1における固体触媒1を固体触媒2に替えた以外は、実施例1と同じ方法によりエポキシ化反応を行った。反応前の固体担体及び固体触媒の混合物中のタングステン含有量は59mg、反応後の(抽出における残渣の)固体担体及び固体触媒の混合物中のタングステン含有量は47mgであった。テトラヒドロインデンジエポキシドの収量は0.71g、収率は47%であった。
(実施例3)
 実施例1における固体触媒1を固体触媒3に替えた以外は、実施例1と同じ方法によりエポキシ化反応を行った。反応前の固体担体及び固体触媒の混合物中のタングステン含有量は61mg、反応後の(抽出における残渣の)固体担体及び固体触媒の混合物中のタングステン含有量は52mgであった。テトラヒドロインデンジエポキシドの収量は0.61g、収率は40%であった。
(実施例4)
 実施例1における固体触媒1を固体触媒4に替えた以外は、実施例1と同じ方法によりエポキシ化反応を行った。反応前の固体担体及び固体触媒の混合物中のタングステン含有量は57mg、反応後の(抽出における残渣の)固体担体及び固体触媒の混合物中のタングステン含有量は42mgであった。テトラヒドロインデンジエポキシドの収量は0.81g、収率は53%であった。
(実施例5)
 実施例1における固体触媒1を固体触媒5に替えた以外は、実施例1と同じ方法によりエポキシ化反応を行った。反応前の固体担体及び固体触媒の混合物中のタングステン含有量は58mg、反応後の(抽出における残渣の)固体担体及び固体触媒の混合物中のタングステン含有量は46mgであった。テトラヒドロインデンジエポキシドの収量は0.59g、収率は39%であった。
(比較例1)
 実施例1における固体触媒1を固体触媒6に替えた以外は、実施例1と同じ方法によりエポキシ化反応を行った。反応前の固体担体及び固体触媒の混合物中のタングステン含有量は59mg、反応後の(抽出における残渣の)固体担体及び固体触媒の混合物中のタングステン含有量は40mgであった。テトラヒドロインデンジエポキシドの収量は0.58g、収率は38%であった。
 実施例1~5における収率(テトラヒドロインデンジエポキシドの収率)及びタングステン残存率(反応前のタングステン含有量に対する反応後のタングステン含有量の割合)を表1に示す。なお、タングステン残存率は、下記式で計算される。
 タングステン残存率(%)=(反応後の固体担体及び固体触媒の混合物中のタングステン含有量)×100/(反応前の固体担体及び固体触媒の混合物中のタングステン含有量)
Figure JPOXMLDOC01-appb-T000005
 本発明によれば、生産性良くエポキシ化合物を製造することができる。

Claims (8)

  1.  炭素-炭素二重結合を有する化合物、過酸化水素水、固体担体の粉末、及び固体触媒の粉末の共存下に、炭素-炭素二重結合を有する化合物と過酸化水素とを反応させてエポキシ化合物を製造する方法であって、
     前記固体触媒が、イソポリ酸類を含み、
     前記イソポリ酸類が、(a)タングステン酸又はその塩と、(b)アルカリ土類金属の塩及びカチオン性ポリマーからなる群より選択される少なくとも一種と、を含む触媒原料より製造される、エポキシ化合物の製造方法。
  2.  前記触媒原料が、タングステン酸アンモニウム塩を含む、請求項1に記載の製造方法。
  3.  前記触媒原料が、Ca、Sr及びBaからなる群より選択される少なくとも一種のアルカリ土類金属の塩を含む、請求項1又は2に記載の製造方法。
  4.  前記触媒原料が、ポリ4-ビニルピリジンの塩及びポリN-アルキル-4-ビニルピリジンの塩からなる群より選択される少なくとも一種のカチオン性ポリマーを含む、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記炭素-炭素二重結合を有する化合物が、脂環式オレフィン化合物である、請求項1~4のいずれか一項に記載の製造方法。
  6.  前記炭素-炭素二重結合を有する化合物が、下記式(2)で表される化合物である、請求項1~5のいずれか一項に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R~R12はそれぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよいアルキル基、又は置換基を有していてもよいアルコキシ基を示す。]
  7.  前記固体担体が、リン酸塩類、珪藻土、シリカ、アルミナ、白陶土、シリカアルミナ及びフッ化カルシウムからなる群より選択される、請求項1~6のいずれか一項に記載の製造方法。
  8.  前記固体担体がアパタイトである、請求項1~7のいずれか一項に記載の製造方法。
PCT/JP2014/080375 2013-11-20 2014-11-17 固体触媒を用いたエポキシ化合物の製造方法 WO2015076222A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/038,107 US9783548B2 (en) 2013-11-20 2014-11-17 Production method for epoxy compound using solid catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-239919 2013-11-20
JP2013239919A JP6312075B2 (ja) 2013-11-20 2013-11-20 固体触媒を用いたエポキシ化合物の製造方法

Publications (1)

Publication Number Publication Date
WO2015076222A1 true WO2015076222A1 (ja) 2015-05-28

Family

ID=53179485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080375 WO2015076222A1 (ja) 2013-11-20 2014-11-17 固体触媒を用いたエポキシ化合物の製造方法

Country Status (3)

Country Link
US (1) US9783548B2 (ja)
JP (1) JP6312075B2 (ja)
WO (1) WO2015076222A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049991A1 (ja) * 2018-09-07 2020-03-12 Jxtgエネルギー株式会社 エポキシ化合物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3106063C (en) * 2018-07-30 2024-06-11 Kao Corporation Method for producing epoxyalkane and solid oxidation catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108793A (ja) * 1982-11-10 1984-06-23 モンテディソン・エッセ・ピ・ア タングステン及び燐又はひ素を基材とした新規なペルオキシド及びそれらの製造法
JP2002059007A (ja) * 2000-08-22 2002-02-26 Kawamura Inst Of Chem Res エポキシ化触媒組成物、及びエポキシ化合物の製造方法
JP2004209449A (ja) * 2003-01-09 2004-07-29 Kuraray Co Ltd エポキシ化触媒組成物およびそれを用いるエポキシ化合物の製造方法
JP2008094916A (ja) * 2006-10-10 2008-04-24 Showa Denko Kk 新規なアンモニウム塩含有ポリマー、その製造方法およびそれを触媒に用いたエポキシ化合物の製造方法
WO2008093711A1 (ja) * 2007-01-31 2008-08-07 Osaka University 固相系酸化反応システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234550A (ja) 1985-12-24 1987-10-14 San Petoro Chem:Kk 触媒およびその使用法
GB9114127D0 (en) * 1991-06-29 1991-08-14 Laporte Industries Ltd Epoxidation
JP2010235649A (ja) * 2009-03-30 2010-10-21 Sanyo Chem Ind Ltd 精製エポキシ樹脂の製造方法
JP5979632B2 (ja) * 2012-05-22 2016-08-24 Jxエネルギー株式会社 エポキシ化合物の製造方法
JP5979633B2 (ja) * 2012-05-22 2016-08-24 Jxエネルギー株式会社 エポキシ化合物の製造方法
JP5979631B2 (ja) * 2012-05-22 2016-08-24 Jxエネルギー株式会社 エポキシ化合物の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108793A (ja) * 1982-11-10 1984-06-23 モンテディソン・エッセ・ピ・ア タングステン及び燐又はひ素を基材とした新規なペルオキシド及びそれらの製造法
JP2002059007A (ja) * 2000-08-22 2002-02-26 Kawamura Inst Of Chem Res エポキシ化触媒組成物、及びエポキシ化合物の製造方法
JP2004209449A (ja) * 2003-01-09 2004-07-29 Kuraray Co Ltd エポキシ化触媒組成物およびそれを用いるエポキシ化合物の製造方法
JP2008094916A (ja) * 2006-10-10 2008-04-24 Showa Denko Kk 新規なアンモニウム塩含有ポリマー、その製造方法およびそれを触媒に用いたエポキシ化合物の製造方法
WO2008093711A1 (ja) * 2007-01-31 2008-08-07 Osaka University 固相系酸化反応システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020049991A1 (ja) * 2018-09-07 2020-03-12 Jxtgエネルギー株式会社 エポキシ化合物の製造方法
JP2020040897A (ja) * 2018-09-07 2020-03-19 Jxtgエネルギー株式会社 エポキシ化合物の製造方法
US11485717B2 (en) 2018-09-07 2022-11-01 Eneos Corporation Method for producing epoxy compound

Also Published As

Publication number Publication date
US20160347763A1 (en) 2016-12-01
US9783548B2 (en) 2017-10-10
JP6312075B2 (ja) 2018-04-18
JP2015098462A (ja) 2015-05-28

Similar Documents

Publication Publication Date Title
JP5376505B2 (ja) 固相系酸化反応用混合物
TWI473795B (zh) 製備環氧乙烷的方法
Turco et al. New findings on soybean and methylester epoxidation with alumina as the catalyst
TWI523689B (zh) 使用預處理環氧催化劑製備環氧丙烷之方法
JP2006316034A (ja) ジオレフィン化合物の選択酸化による2官能性エポキシモノマーの製造方法
JP6312075B2 (ja) 固体触媒を用いたエポキシ化合物の製造方法
JP5979631B2 (ja) エポキシ化合物の製造方法
JP5979633B2 (ja) エポキシ化合物の製造方法
US9212188B2 (en) Method for producing alicyclic diepoxy compound
Pillai et al. Epoxidation of olefins and α, β-unsaturated ketones over sonochemically prepared hydroxyapatites using hydrogen peroxide
JP5979632B2 (ja) エポキシ化合物の製造方法
US7074947B2 (en) Process for producing epoxide compound
JP2004059573A (ja) エポキシ化合物の製造方法
JP5517352B2 (ja) ポリ酸担持触媒の製造方法
PL228752B1 (pl) Sposób utleniania limonenu na węglach aktywnych
JP4211261B2 (ja) エポキシド類の製造方法
JP5506074B2 (ja) エポキシ化合物の製造方法
JP2005306803A (ja) 不飽和化合物の酸化方法
JP2004059575A (ja) エポキシド類の製造方法
JP2004099587A (ja) タングステン種を用いる液相酸化反応
JP2003238545A (ja) エポキシ化合物の製造方法
WO2020026599A1 (ja) エポキシアルカンの製造方法、及び固体酸化触媒
WO2003101976A1 (fr) Procede de production d'epoxyde
WO2015123092A1 (en) Epoxidation process
JPWO2014007144A1 (ja) 脂環式n−オキシル化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15038107

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14863960

Country of ref document: EP

Kind code of ref document: A1