WO2020045293A1 - 光学部材及びその製造方法 - Google Patents

光学部材及びその製造方法 Download PDF

Info

Publication number
WO2020045293A1
WO2020045293A1 PCT/JP2019/033094 JP2019033094W WO2020045293A1 WO 2020045293 A1 WO2020045293 A1 WO 2020045293A1 JP 2019033094 W JP2019033094 W JP 2019033094W WO 2020045293 A1 WO2020045293 A1 WO 2020045293A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical member
carbon
oxide layer
titanium oxide
titanium
Prior art date
Application number
PCT/JP2019/033094
Other languages
English (en)
French (fr)
Inventor
飯塚 章
毅士 大嶋
耕一 中野
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to US17/269,163 priority Critical patent/US20210325571A1/en
Priority to CN201980055994.8A priority patent/CN112639539B/zh
Priority to JP2020539422A priority patent/JP7259858B2/ja
Priority to EP19853661.7A priority patent/EP3845934A4/en
Priority to KR1020217008584A priority patent/KR102523913B1/ko
Publication of WO2020045293A1 publication Critical patent/WO2020045293A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • G02B1/116Multilayers including electrically conducting layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • G03F1/64Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof characterised by the frames, e.g. structure or material, including bonding means therefor

Definitions

  • the present invention relates to an optical member whose surface is required to be blackened or darkened, and a method for producing the same.
  • Optical members used for various optical components are lightweight.
  • the pellicle frame for the pellicle which is an optical component used in the lithography process, can be more easily and reliably inspected for foreign matter before use by making the surface black or dark. That is, the surface of the pellicle frame is required to be black or dark from the viewpoint of inspectability.
  • these optical components may be kept in a high-temperature environment, and if the distortion due to thermal expansion is large, the optical components cannot sufficiently exhibit their performance.
  • the wavelength of the exposure light source has been shortened due to an increase in the light source output and the miniaturization of the circuit line width due to a demand for improvement in productivity (throughput). Distortion is a problem.
  • a pellicle frame formed in a frame shape is formed of a sintered body having a Young's modulus of 150 GPa or more and a Vickers hardness of 800 or more.
  • the corner portion in the above secures a width equal to or greater than the width of the linear portion, at least one of the corner portions is a pellicle frame wider than the width of the linear portion, and the pellicle frame is made of ceramics, cemented carbide, or cermet.
  • the pellicle frame described in Patent Document 1 since a sintered body having a high Young's modulus and Vickers hardness is used, the pellicle frame is deformed by film tension generated when the pellicle film is stretched on the pellicle frame. Can be suppressed. Moreover, since the width of at least one corner portion is wider than the width of the straight portion, the strength of the corner portion can be increased, and the deformation and damage of the pellicle frame can be further suppressed.
  • a pellicle frame manufactured by pressing a single metal flat plate has a L-shaped cross section, and the pellicle frame is formed from an inner wall surface of the pellicle frame.
  • a pellicle frame having a pellicle film adhesive surface on an outer surface bent at a right angle toward the outside and a mask adhesive surface on an end surface in contact with an inner wall surface, wherein the pellicle frame is made of carbon steel or stainless steel. is disclosed.
  • the pellicle frame described in Patent Document 1 is made of a material having poor toughness, and is very brittle, so that it is difficult to handle. In addition, the workability is poor, and the production cost increases. In addition, cemented carbides and cermets have a high specific gravity, which increases the weight of the pellicle frame.
  • the pellicle frame described in Patent Document 2 can be manufactured at low cost, carbon steel and stainless steel have a high specific gravity, and the weight of the pellicle frame increases. In addition, it is difficult to sufficiently blacken the surface of the pellicle frame.
  • an object of the present invention is to provide a lightweight optical member that can be manufactured relatively inexpensively, suppresses distortion due to temperature rise, and sufficiently reduces the appearance color to black or dark. It is an object of the present invention to provide a manufactured optical member and an efficient manufacturing method thereof.
  • a light-weight pellicle frame that can be manufactured relatively inexpensively, a distortion caused by a rise in temperature is suppressed, and a pellicle frame whose appearance color is sufficiently blackened or darkened from the viewpoint of testability, and an efficient manufacturing method thereof It is intended to provide.
  • the present inventors have conducted intensive studies on optical members in order to achieve the above object, and as a result, it is extremely effective to form a titanium oxide layer doped with carbon on the surface using titanium or a titanium alloy as a material.
  • the inventors have found that the present invention has reached the present invention.
  • the present invention A substrate made of titanium or a titanium alloy, Having a carbon-doped titanium oxide layer formed on the surface of the substrate, An optical member is provided.
  • the optical member of the present invention has a substrate made of titanium or a titanium alloy, the optical member has a lower linear expansion coefficient than aluminum and effectively suppresses distortion during temperature rise.
  • titanium or a titanium alloy has a lower specific gravity than steel or a cemented carbide, and can reduce the weight of an optical member.
  • titanium or a titanium alloy is a metal material and has excellent toughness as compared with ceramics and cemented carbide, so that it is easy to handle. Further, since it has good workability, the manufacturing cost can be reduced, and high dimensional accuracy can be imparted to the optical member.
  • the surface of the optical member of the present invention is a carbon-doped titanium oxide layer, and is blackened. Since sufficient blackening can be obtained by carbon doping and the hardness also increases, the surface state is ideal for an optical member.
  • the carbon content in the carbon-doped titanium oxide layer is preferably 0.1 to 15 at%.
  • the carbon content is 0.1 at% or more, the surface can be blackened, and when it is 15 at% or less, excessive carbon doping that does not contribute to the blackening of the surface or increase in hardness can be suppressed. .
  • the carbon is doped in a state of Ti—C bond.
  • the surface hardness can be effectively increased.
  • the lightness index L * of the surface is 40 or less.
  • the surface brightness index L * value it is preferable that the lightness index L * of the surface is 40 or less.
  • the reflectance is 25% or less. By setting the reflectance to 25% or less, light reflection on various optical devices, pellicle frames, and the like can be sufficiently suppressed.
  • the linear expansion coefficient of the substrate is 6 ⁇ 10 ⁇ 6 to 11 ⁇ 10 ⁇ 6 / K.
  • the coefficient of linear expansion is 6 ⁇ 10 ⁇ 6 K or more, the coefficient of thermal expansion between the optical member and a material such as ceramic or silicon becomes close. This can reduce distortion and cracking caused by a difference in deformation between the optical member and a member made of ceramic, silicon, or the like due to thermal expansion when the temperature rises.
  • the optical member is a lens holder and the member made of ceramic or silicon is a lens of a camera or the like.
  • the coefficient of linear expansion to be equal to or less than 11 ⁇ 10 ⁇ 6 K, distortion during temperature rise can be reduced.
  • the base material is an ⁇ + ⁇ type titanium alloy.
  • a representative titanium alloy, Ti-6Al-4V alloy is an ⁇ + ⁇ type titanium alloy, which can achieve both mechanical properties such as strength and rigidity and workability at a high level, and is a highly reliable optical member. Can be manufactured at low cost.
  • the present invention A substrate manufacturing step of processing a substrate made of titanium or a titanium alloy into the shape of an optical member, A combustion flame of a gas containing hydrocarbon as a main component is brought into contact with the surface of the base material, and heat treatment is performed so that the temperature of the surface becomes 700 to 1500 ° C., or the temperature of the surface becomes 700 to 1500 ° C. Heat-treating in a combustion gas atmosphere of a gas containing hydrocarbons as a main component so as to form a carbon-doped titanium oxide layer on the surface, The present invention also provides a method for producing an optical member, characterized in that:
  • the substrate forming step is a step for forming a substrate made of titanium or a titanium alloy into the shape of the optical member, and the processing method is not limited as long as a desired shape is obtained, and various conventionally known processing methods are used. be able to.
  • the carbon doping step is a step for blackening or darkening the surface of the base material, and achieves blackening or darkening of the surface by forming a carbon-doped titanium oxide layer on the surface of the base material.
  • a titanium oxide layer is formed on the surface of the base material by surface oxidation in the atmosphere, the surface cannot be sufficiently blackened or darkened, but the combustion gas atmosphere of a gas mainly containing hydrocarbons is used.
  • the surface temperature of the base material to 700 to 1500 ° C. below, a black titanium oxide layer doped with carbon can be formed.
  • the method for manufacturing an optical member of the present invention preferably further includes a polishing step of polishing the outermost surface of the carbon-doped titanium oxide layer. Defects such as minute voids and cracks may have occurred on the outermost surface of the carbon-doped titanium oxide layer formed in the carbon doping process, but no defects exist by polishing the outermost surface Only good carbon-doped titanium oxide layers can be used.
  • the lithography process it is necessary to strictly suppress the generation of dust, and it is necessary to reliably prevent the formation of a brittle region on the outermost surface of the pellicle frame. From this viewpoint, it is particularly preferable to polish the outermost surface of the carbon-doped titanium oxide layer when the optical member is a pellicle frame.
  • an optical member which is a lightweight optical member that can be manufactured relatively inexpensively, in which distortion due to a rise in temperature is suppressed, and whose appearance color is sufficiently blackened or darkened, and an efficient manufacturing method thereof.
  • a pellicle frame that can be provided in particular, is a lightweight pellicle frame that can be manufactured relatively inexpensively, in which distortion due to temperature rise is suppressed, and the appearance color is sufficiently blackened or darkened from the viewpoint of testability.
  • the efficient manufacturing method can be provided.
  • FIG. 2 is a perspective view of the pellicle frame of the embodiment.
  • FIG. 3 is a cross-sectional view taken along line C-C ′ of the pellicle frame of the embodiment. It is a process figure of the manufacturing method of the pellicle frame of an embodiment.
  • 4 is a cross-sectional observation result (backscattered electron composition image) of the optical member of Example 1.
  • 9 is a cross-sectional observation result (backscattered electron composition image) of the optical member of Example 2.
  • a pellicle frame will be described as a typical example of an optical component, and a typical embodiment of an optical component and a method for manufacturing the optical component of the present invention will be described in detail with reference to the drawings.
  • the present invention is not limited to only these. Not something.
  • some or all of the components in the embodiments can be appropriately combined.
  • the same or corresponding portions are denoted by the same reference characters, and duplicate description may be omitted.
  • drawings are for conceptually explaining the present invention, dimensions of components shown and ratios thereof may be different from actual ones.
  • the pellicle frame 1 is formed of a frame 4 made of titanium or a titanium alloy and having a carbon-doped titanium oxide layer 2 on the surface.
  • the frame body 4 is made of titanium or a titanium alloy, it has higher strength and a higher Young's modulus than a pellicle frame made of an aluminum alloy which is generally used conventionally.
  • the specific gravity of titanium and titanium alloy is relatively light, about 4.5, so that an increase in the weight of the pellicle frame 1 can be suppressed.
  • titanium alloy used for the frame 4 is not particularly limited as long as the effects of the present invention are not impaired, and various conventionally known titanium alloys can be used.
  • titanium alloys Ti-6Al-4V alloy, Ti-6Al-6V-2Sn alloy, Ti-6Al-2Sn-4Zr-6Mo alloy, Ti-10V-2Fe-3Al alloy, Ti-7Al-4Mo alloy, Ti- 5Al-2.5Sn alloy, Ti-6Al-5Zr-0.5Mo-0.2Si alloy, Ti-5.5Al-3.5Sn-3Zr-0.3Mo-1Nb-0.3Si alloy, Ti-8Al-1Mo -1V alloy, Ti-6Al-2Sn-4Zr-2Mo alloy, Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy, Ti-11.5Mo-6Zr-4.5Sn alloy, Ti-15V-3Cr-3Al-3Sn Alloy, Ti-15Mo-5Zr-3Al alloy, Ti-15Mo-5Zr alloy, Ti-13V-11
  • From the viewpoint of achieving both high strength and good workability, it is preferable to use an ⁇ + ⁇ type alloy, and more preferably, from the viewpoint of material price and availability, a Ti-6Al-4V alloy is used. Although the principle is not necessarily clear, the use of a Ti-6Al-4V alloy makes it possible to form the carbon-doped titanium oxide layer 2 to more reliably blacken the surface.
  • the shape of the pellicle frame 1 is not particularly limited as long as the effects of the present invention are not impaired, and may be any of various conventionally known shapes according to the shape of the exposure original plate.
  • the planar shape is a ring shape, a rectangular shape, or a square shape, and has a size and a shape that cover a circuit pattern portion provided on the exposure original plate.
  • the height (thickness) of the pellicle frame 1 is preferably 0.5 to 10 mm, more preferably 1 to 7 mm, and most preferably 1.0 to 3.0 mm.
  • the cross-sectional shape of the pellicle frame 1 is not particularly limited as long as the effects of the present invention are not impaired, and may be any of various conventionally known shapes, but is preferably a quadrilateral whose upper side and lower side are parallel.
  • the upper side of the pellicle frame 1 needs to have a width for stretching the pellicle film, and the lower side needs to have a width for providing an adhesive layer for bonding and bonding to the original exposure plate. For this reason, it is preferable that the width (W) of the upper side and the lower side of the pellicle frame 1 be about 1 to 3 mm.
  • the flatness of the pellicle frame 1 is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less. By improving the flatness of the pellicle frame 1, the deformation amount of the exposure original when the pellicle is attached to the exposure original can be reduced.
  • the flatness of the pellicle frame 1 is calculated by calculating a virtual plane by measuring the height at a total of eight points, that is, four points at each corner of the pellicle frame 1 and four points at the center of the four sides. The distance can be calculated by subtracting the lowest point from the highest point among the distances between the points.
  • the carbon content in the carbon-doped titanium oxide layer 2 is preferably 0.1 to 15 at%.
  • the carbon content is 0.1 at% or more, the surface can be blackened, and when it is 15 at% or less, excessive carbon doping that does not contribute to the blackening of the surface or increase in hardness can be suppressed.
  • the more preferable content of the carbon content is 0.3 to 10 at%, and the most preferable content is 1 to 5 at%.
  • the content of carbon refers to a value measured by the method described in Examples.
  • carbon is preferably doped in a Ti—C bond state.
  • the surface hardness can be effectively increased, and the scratch resistance, abrasion resistance, and the like of the pellicle frame 1 can be improved.
  • the surface hardness is preferably at least 500 Hv, more preferably at least 1000 Hv, most preferably at least 1200 Hv.
  • the thickness of the carbon-doped titanium oxide layer 2 is preferably 10 nm or more, more preferably 50 nm or more, and most preferably 100 nm or more. When the thickness of the carbon-doped titanium oxide layer 2 is equal to or more than these values, not only blackening of the surface can be achieved, but also scratch resistance and wear resistance can be secured.
  • the brightness index L * value of the surface of the pellicle frame 1 is preferably 40 or less. By setting the surface brightness index L * value to 40 or less, light reflection from various optical components can be sufficiently suppressed. Further, in the case of a pellicle frame, it is possible to easily and reliably perform a foreign matter non-adhesion inspection before use.
  • the more preferable value of the lightness index L * value is 35 or less, and the most preferable value is 30 or less.
  • the lightness index L * value refers to a value measured by the method described in Examples.
  • the reflectance of the pellicle frame 1 is preferably 25% or less. By setting the reflectance to 25% or less, light reflection on various optical devices, pellicle frames, and the like can be sufficiently suppressed. A more preferred reflectance is 20% or less, and a most preferred reflectance is 18% or less.
  • the reflectance of the pellicle frame 1 described above is preferably satisfied at least in the range of 600 to 750 nm, more preferably in the range of 500 to 800 nm, further preferably in the range of 400 to 900 nm, and more preferably 350. It is particularly preferable to satisfy the condition in the range of up to 1000 nm.
  • the term “reflectance” refers to a value measured by the method described in Examples.
  • the coefficient of linear expansion of the frame 4 is preferably 6 ⁇ 10 ⁇ 6 to 11 ⁇ 10 ⁇ 6 / K.
  • the coefficient of thermal expansion between the optical member and a material such as ceramic or silicon becomes close. This can reduce distortion and cracking caused by a difference in deformation between the optical member and a member made of ceramic, silicon, or the like due to thermal expansion when the temperature rises.
  • the optical member is a lens holder and the member made of ceramic or silicon is a lens of a camera or the like.
  • the coefficient of linear expansion indicates a value in a temperature range of 0 to 100 ° C.
  • the linear expansion coefficient of the frame 4 described above can be achieved, for example, by the frame 4 being made of titanium or a titanium alloy.
  • the method for manufacturing a pellicle frame includes a base material manufacturing step (S01) of processing a base material made of titanium or a titanium alloy into a pellicle frame shape; And a carbon doping step (S02) of forming a carbon-doped titanium oxide layer on the surface of the substrate.
  • S01 base material manufacturing step
  • S02 carbon doping step
  • Substrate preparation step (S01) is a step for obtaining the frame 4, and if necessary, bonding or cutting is performed on titanium or a titanium alloy material to form the frame 4 of the pellicle frame 1 with high dimensional accuracy. This is the step to obtain.
  • the frame 4 can be cut out from the material.
  • the frame 4 can also be obtained by joining titanium or a titanium alloy material, and in this case, the yield of the titanium or titanium alloy material can be increased.
  • the frame 4 obtained by cutting or joining may be further cut.
  • the carbon doping step (S02) is a step for forming the carbon-doped titanium oxide layer 2 on the surface of the frame 4 obtained in the base material forming step (S01).
  • the appearance color of the pellicle frame 1 can be determined (it can be blackened) by the carbon doping step (S02).
  • the frame 4 be degreased as a pretreatment in the carbon doping step (S02). Specifically, the frame 4 is washed with acetone or the like, then washed with pure water, and dried to remove oil.
  • a combustion flame of a gas containing hydrocarbon as a main component is brought into contact with the surface of the frame 4 and heat-treated so that the temperature of the surface becomes 700 to 1500 ° C., or the surface temperature becomes 700 to 1500 ° C.
  • the carbon-doped titanium oxide layer 2 can be formed on the surface of the frame 4 by performing the heat treatment in a combustion gas atmosphere of a gas containing hydrocarbon as a main component.
  • the temperature of the heat treatment is preferably 800 ° C. or higher, more preferably 900 ° C. or higher, preferably 1400 ° C. or lower, more preferably 1300 ° C. or lower.
  • the treatment time of the heat treatment is not particularly limited as long as the carbon-doped titanium oxide layer 2 can be formed on the surface of the frame 4, and peeling of the carbon-doped titanium oxide layer 2 during cooling after heating can be suppressed. Desirably time.
  • the heat treatment time is preferably at least 1 second, more preferably at least 1 minute, preferably at most 10 hours, more preferably at most 1 hour.
  • a titanium oxide layer is formed on the surface of the frame 4 by surface oxidation in the air, the surface cannot be sufficiently blackened or darkened, but the treatment is performed in a combustion gas atmosphere of a gas containing hydrocarbon as a main component. Accordingly, a black titanium oxide layer doped with carbon can be formed.
  • a combustion flame obtained by burning a fuel gas containing 50% by volume or more of hydrocarbon a combustion gas atmosphere obtained by burning a fuel gas containing 50% by volume or more of hydrocarbon, or 50% by volume of hydrocarbon % Is preferably used, and it is particularly preferable to use a reducing flame.
  • a fuel having a low hydrocarbon content the doping amount of carbon may be insufficient or nonexistent, resulting in insufficient blackening.
  • the fuel gas containing 50% by volume or more of a hydrocarbon include natural gas, hydrocarbons such as LPG, methane, ethane, propane, butane, ethylene, propylene, and acetylene, or a gas obtained by appropriately mixing these.
  • a gas in which air, hydrogen, oxygen, or the like is appropriately mixed can be used.
  • the fuel gas containing 50% by volume or more of hydrocarbon preferably contains 30% by volume or more of unsaturated hydrocarbon, more preferably 50% by volume or more of acetylene, and 100% by volume of acetylene. Most preferred.
  • an unsaturated hydrocarbon, particularly acetylene having a triple bond is used, an intermediate radical substance is decomposed during the combustion process, particularly in a reducing flame portion, and an intermediate radical substance is formed. It is thought that carbon doping is likely to occur because of the high activity.
  • the surface layer of the frame 4 to be subjected to the heat treatment is made of titanium or a titanium alloy (when there is no oxide layer), oxygen for oxidizing the titanium or the titanium alloy is necessary. Must include.
  • the processing temperature low as long as a good carbon-doped titanium oxide layer 2 can be obtained.
  • the ⁇ transus temperature at which the ⁇ phase transformation occurs in the alloy is about 980 ° C.
  • the strain is remarkable. Will occur. Therefore, when a Ti-6Al-4V alloy is used, it is preferable to perform carbon doping treatment so that the surface temperature becomes 900 to 980 ° C. Even if the surface temperature becomes higher, it is 980 ° C. or less. Is preferably present in the frame 4.
  • the carbon content of the carbon-doped titanium oxide layer 2, the lightness index L * value of the surface of the frame 4 and the reflectance can be controlled by the processing conditions of the carbon doping step (S02), and the carbon content is 0.1. It is preferable to adjust the composition of the gas, the processing temperature, the processing time, and the like so that ⁇ 15 at%, the lightness index L * value is 40 or less, and the reflectance is 25% or less.
  • Polishing process step (S03) The method for manufacturing a pellicle frame of the present embodiment preferably includes a polishing step (SO3) for polishing the outermost surface of the carbon-doped titanium oxide layer 2. There is a possibility that defects such as minute holes and cracks may occur on the outermost surface of the carbon-doped titanium oxide layer 2 formed in the carbon doping step (S02). Only good carbon-doped titanium oxide layers 2 without defects can be used.
  • SO3 polishing step for polishing the outermost surface of the carbon-doped titanium oxide layer 2.
  • the polishing of the outermost surface of the carbon-doped titanium oxide layer 2 is particularly performed when the optical member is a pellicle frame.
  • polishing When polishing the surface of the carbon-doped titanium oxide layer 2, it is difficult to remove only the outermost surface if the polishing power is too strong.
  • the polishing amount is preferably about 1 ⁇ m from the outermost surface of the carbon-doped titanium oxide layer 2.
  • the pellicle frame 1 has been described as an example of the optical member, but the optical member is not limited to this.
  • the optical member include a pellicle frame, a lens holder, a barrel, a shade, a reflector, and the like.
  • Example 1 A 0.8 mm thick titanium material made of pure titanium was cut out to produce a plate-shaped titanium base material. This titanium base material was subjected to a carbon doping treatment by heat treatment using an acetylene combustion flame so that the surface temperature became 800 ° C. Thus, the optical member of Example 1 was manufactured.
  • FIG. 4 shows a reflected electron composition image by SEM (ULTRA @ PLUS, manufactured by Carl Zeiss).
  • Table 1 shows each element concentration (wt%) and carbon content (at%) of the carbon-doped titanium oxide layer obtained by using EPMA (EPMA-8050G, manufactured by Shimadzu Corporation).
  • EPMA EPMA-8050G, manufactured by Shimadzu Corporation.
  • each element concentration at each position indicated by reference numerals A1 and A2 in FIG. 4 is shown. The carbon content was calculated from the concentration of each element.
  • the lightness index L * of the optical member of Example 1 was measured using a lightness meter (NF777, manufactured by Nippon Denshoku Industries Co., Ltd.). Table 2 shows the obtained results.
  • Example 1 The hardness of the optical member surface of Example 1 was measured using a micro Vickers hardness tester (HM-221, manufactured by Mitutoyo Corporation) with a load of 5 gf. The hardness was measured five times while changing the measurement position, and the average value of the five measurements was taken as the hardness. Table 4 shows the obtained results.
  • Example 2 An optical member of Example 2 was produced in the same manner as in Example 1 except that the conditions of the carbon doping treatment were such that the heat treatment was performed so that the surface temperature of the titanium base material became 740 ° C.
  • FIG. 5 shows a reflected electron composition image of the optical member of Example 2 obtained in the same manner as in Example 1.
  • Table 1 shows the concentration of each element (wt%) and carbon content (at%) of the carbon-doped titanium oxide layer obtained in the same manner as in Example 1,
  • Table 2 shows the lightness index L *, and
  • Table 2 shows the reflectance.
  • Table 3 shows the hardness in Table 4. In Table 1, each element concentration at each position indicated by reference numerals B1 and B2 in FIG. 5 is shown.
  • Tables 2 to 4 show the lightness index L * , reflectance, and hardness of the surface layer (titanium oxide layer) measured in the same manner as in Example 1.
  • the optical member of Example 1 had at least two layers having different compositions.
  • the distribution of the elemental concentrations of oxygen and titanium obtained by EPMA is substantially consistent with the layer configuration observed by SEM, where the oxygen concentration was higher on the surface side and lower on the lower side, whereas the titanium concentration was It was low on the surface side and high on the lower side. From this, it was found that in the optical member of Example 1, the surface of the substrate made of titanium was oxidized. Further, from the distribution of the elemental concentration of carbon and the values of the elemental concentrations at the positions indicated by reference symbols A1 and A2, it is clear that the surface layer has a carbon-doped titanium oxide layer doped with carbon. It became. From these results, it was confirmed that the optical member of Example 1 had a carbon-doped titanium oxide layer on the surface of the substrate made of titanium.
  • the thickness of the layer on the surface side is smaller than that of Example 1 from the distribution of the SEM and the element concentration, but the surface of the base material made of titanium is similar to that of Example 1. It was found to be oxidized.
  • the optical member of the second embodiment as in the first embodiment, Having a carbon-doped titanium oxide layer was supported.
  • the optical members of Examples 1 and 2 having the carbon-doped titanium oxide layer on the surface of the base material were the optical members of Comparative Example 1 in which the surface was made of titanium.
  • the lightness index L * value and the reflectance were lower than those of the member, and the optical member had a sufficiently darkened appearance color.
  • the optical members of Examples 1 and 2 had significantly higher surface hardness than the optical member of Comparative Example 1.
  • pellicle frame 1 ... pellicle frame, 2 ... carbon-doped titanium oxide layer, 4 ... frame.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Lens Barrels (AREA)
  • Diaphragms For Cameras (AREA)
  • Glass Compositions (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、比較的安価に製造できる軽量な光学部材であって、温度上昇による歪が抑制され、外観色が十分に黒色化又は暗色化された光学部材及びその効率的な製造方法を提供する。本発明の光学材料は、チタン又はチタン合金からなる基材と、当該基材の表面に形成された炭素ドープ酸化チタン層と、を有すること、を特徴とする。炭素ドープ酸化チタン層における炭素の含有量は0.1~15at%であることが好ましい。

Description

光学部材及びその製造方法
 本発明は、表面の黒色化又は暗色化が求められる光学部材及びその製造方法に関する。
 デジタルカメラ、デジタルビデオカメラ及びカメラ付き携帯電話等の光学機器を構成する各種光学部品(筐体、筐体内部の各種支持部、シャッター羽根及び絞り等)に使用される光学部材は、軽量であることに加えて表面の光反射率が低いことが要求され、表面の黒色度を高くすることが一般的である。
 また、リソグラフィ工程で使用される光学部品であるペリクル用のペリクルフレームについても、表面を黒色又は暗色とすることで、使用前の異物不着検査等をより容易かつ確実に行うことができる。即ち、検査性の観点から、ペリクルフレームの表面は黒色又は暗色であることが求められる。
 また、これらの光学部品は高温環境下に保持される場合もあり、熱膨張による歪が大きいと、光学部品は十分にその性能を発現することができない。特に、露光装置については生産性向上(スループット)の要求から光源出力が増大や回路線幅の微細化のため、露光光源の短波長化が進行しており、光路となる光学部材において温度上昇による歪が問題となっている。
 従来、比重が小さく切削加工性が良好であることから光学部材にはアルミニウムが使用されてきたが、アルミニウムは線膨張係数が高く、アルミニウム製の光学部材は温度上昇による歪が生じやすい。これに対し、光学部材の素材はアルミニウムに限られず、セラミックスや鋼等の使用についても検討が進められている。
 例えば、特許文献1(特開2016-177120号公報)においては、枠形状に形成されたペリクルフレームであり、ヤング率が150GPa以上で、かつビッカース硬度が800以上の焼結体からなり、枠形状におけるコーナー部は直線部の幅以上の幅を確保し、コーナー部のうちの少なくとも1つの幅は直線部の幅より広いペリクルフレームであって、当該ペリクルフレームはセラミックス、超硬合金又はサーメット製とすることが開示されている。
 上記特許文献1に記載のペリクルフレームにおいては、高いヤング率およびビッカース硬度の焼結体を用いているので、ペリクルフレームにペリクル膜を張設した際に発生する膜張力により、ペリクルフレームが変形するのを抑制できる。しかも、少なくとも一つのコーナー部の幅が直線部の幅より広いので、コーナー部の強度が高くでき、ペリクルフレームの変形や損壊を、更に抑制できる、とされている。
 また、特許文献2(特開2014-085435号公報)においては、一枚の金属平板からプレス加工により製作されたペリクルフレームであって、その断面はL字形状を成し、ペリクルフレーム内壁面から外側に向かって直角に折り曲げた外面にペリクル膜接着面を有し、内壁面に接する端面にマスク粘着面を有することを特徴とするペリクルフレームであって、当該ペリクルフレームを炭素鋼やステンレス鋼とすることが開示されている。
 上記特許文献2に記載のペリクルフレームにおいては、量産性に優れたプレス加工により製作されるペリクルフレームであるから、製作コストが極めて安価であるとともに、断面L字形状またはコの字形状に成形されているから、ペリクルフレームとして必要十分な剛性を確保することができる、とされている。
特開2016-177120号公報 特開2014-085435号公報
 しかしながら、上記特許文献1に記載されているペリクルフレームは靭性に乏しい素材からなっており、非常に脆いことから取り扱いが困難である。また、加工性に乏しく、製造コストも高くなってしまう。加えて、超硬合金やサーメットは比重が高く、ペリクルフレームの重量が増加してしまう。
 また、上記特許文献2に記載されているペリクルフレームは安価に製造できるものの、炭素鋼やステンレス鋼は比重が高く、ペリクルフレームの重量が増加してしまう。加えて、ペリクルフレームの表面を十分に黒色化することが困難である。
 以上のような従来技術における問題点に鑑み、本発明の目的は、比較的安価に製造できる軽量な光学部材であって、温度上昇による歪が抑制され、外観色が十分に黒色化又は暗色化された光学部材及びその効率的な製造方法を提供することを目的としている。特に、比較的安価に製造できる軽量なペリクルフレームであって、温度上昇による歪が抑制され、検査性の観点から外観色が十分に黒色化又は暗色化されたペリクルフレーム及びその効率的な製造方法を提供することを目的としている。
 本発明者らは、上記目的を達成すべく、光学部材について鋭意研究を重ねた結果、素材にチタン又はチタン合金を用い、表面に炭素をドープした酸化チタン層を形成させること等が極めて有効であることを見出し、本発明に到達した。
 即ち、本発明は、
 チタン又はチタン合金からなる基材と、
 前記基材の表面に形成された炭素ドープ酸化チタン層と、を有すること、
 を特徴とする光学部材、を提供する。
 本発明の光学部材はチタン又はチタン合金からなる基材を有していることから、アルミニウムと比較して線膨張係数が低く、昇温時の歪みが効果的に抑制される。また、チタン又はチタン合金は鋼や超硬合金と比較して比重が小さく、光学部材を軽量とすることができる。加えて、チタン又はチタン合金は金属材であり、セラミックスや超硬合金と比較して優れた靭性を有していることからハンドリングが容易である。更に、良好な加工性を有していることから製造コストを低減することができることに加え、光学部材に高い寸法精度を付与することができる。
 また、本発明の光学部材は表面が炭素ドープ酸化チタン層となっており、黒色化されている。炭素のドープによって十分な黒色化が得られることに加え、硬度も上昇することから、光学部材としては理想的な表面状態となっている。
 本発明の光学部材においては、前記炭素ドープ酸化チタン層における炭素の含有量が0.1~15at%であること、が好ましい。炭素含有量を0.1at%以上とすることで表面を黒色化することができ、15at%以下とすることで表面の黒色化や硬度上昇に寄与しない過剰な炭素のドープを抑制することができる。
 また、本発明の光学部材においては、前記炭素がTi-C結合の状態でドープされていること、が好ましい。Ti-C結合の状態で炭素をドープすることで、表面硬度を効果的に上昇させることができる。
 また、本発明の光学部材においては、表面の明度指数L値が40以下であること、が好ましい。表面の明度指数L値を40以下とすることで、各種光学部品の光反射を十分に抑制することができる。また、ペリクルフレームの場合は、使用前の異物不着検査等を容易かつ確実に行うことができる。
 また、本発明の光学部材においては、反射率が25%以下であること、が好ましい。反射率を25%以下とすることで、各種光学機器やペリクルフレーム等における光反射を十分に抑制することができる。
 また、本発明の光学部材においては、前記基材の線膨張係数が6×10-6~11×10-6/Kであること、が好ましい。線膨張係数を6×10-6K以上とすることで、光学部材と、セラミックやシリコン等からなる材料との熱膨張係数が近くなる。これにより、光学部材と、セラミックやシリコン等からなる部材との温度上昇時の熱膨張による変形の差に起因して生じる、歪みや割れを低減することができる。このような効果が奏される組み合わせとしては、例えば、光学部材がレンズホルダーであって、セラミックやシリコン等からなる部材がカメラ等のレンズである場合が挙げられる。また、線膨張係数を11×10-6K以下とすることで、昇温時の歪みを低減することができる。
 また、本発明の光学部材においては、前記基材がα+β型チタン合金であること、が好ましい。例えば、代表的なチタン合金であるTi-6Al-4V合金はα+β型チタン合金であり、強度及び剛性等の機械的性質と加工性を高いレベルで両立することができ、信頼性の高い光学部材を安価に製造することができる。
 また、本発明は、
 チタン又はチタン合金からなる基材を光学部材の形状に加工する基材作製工程と、
 前記基材の表面に炭化水素を主成分とするガスの燃焼炎を当接させ、前記表面の温度が700~1500℃となるように加熱処理するか、又は前記表面の温度が700~1500℃となるように炭化水素を主成分とするガスの燃焼ガス雰囲気中で加熱処理して、前記表面に炭素ドープ酸化チタン層を形成させる炭素ドープ処理工程と、を有すること、
 を特徴とする光学部材の製造方法、も提供する。
 基材作製工程はチタン又はチタン合金からなる基材を光学部材の形状にするための工程であり、所望の形状が得られる限りにおいて加工方法は限定されず、従来公知の種々の加工方法を用いることができる。
 また、炭素ドープ処理工程は基材の表面を黒色化又は暗色化するための工程であり、基材の表面に炭素ドープ酸化チタン層を形成することで表面の黒色化又は暗色化を達成する。ここで、例えば、大気中の表面酸化によって基材の表面に酸化チタン層を形成させると表面を十分に黒色化又は暗色化させることができないが、炭化水素を主成分とするガスの燃焼ガス雰囲気下で基材の表面温度を700~1500℃とすることで、炭素がドープされた黒色の酸化チタン層を形成させることができる。
 本発明の光学部材の製造方法においては、前記炭素ドープ酸化チタン層の最表面を研磨する研磨処理工程をさらに有すること、が好ましい。炭素ドープ処理工程にて形成された炭素ドープ酸化チタン層の最表面には微小な空孔やクラック等の欠陥が生じている可能性があるが、最表面を研磨することで、欠陥が存在しない良好な炭素ドープ酸化チタン層のみを使用することができる。
 ここで、リソグラフィ工程では粉塵の発生を厳密に抑制する必要があり、ペリクルフレームの最表面に脆い領域が形成されることは確実に避けなければならない。当該観点から、炭素ドープ酸化チタン層最表面の研磨は、光学部材がペリクルフレームである場合には特に施すことが好ましい。
 本発明によれば、比較的安価に製造できる軽量な光学部材であって、温度上昇による歪が抑制され、外観色が十分に黒色化又は暗色化された光学部材及びその効率的な製造方法を提供することができ、特に、比較的安価に製造できる軽量なペリクルフレームであって、温度上昇による歪が抑制され、検査性の観点から外観色が十分に黒色化又は暗色化されたペリクルフレーム及びその効率的な製造方法を提供することができる。
実施形態のペリクルフレームの斜視図である。 実施形態のペリクルフレームのC-C’断面図である。 実施形態のペリクルフレームの製造方法の工程図である。 実施例1の光学部材の断面観察結果(反射電子組成像)である。 実施例2の光学部材の断面観察結果(反射電子組成像)である。
 以下、光学部品の代表例としてペリクルフレームを取り上げ、図面を参照しながら本発明の光学部品及びその製造方法についての代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。また、実施形態における構成要素は、一部又は全部を適宜組み合わせることができる。なお、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。
1.ペリクルフレーム
 図1及び図2に示すように、ペリクルフレーム1は、炭素ドープ酸化チタン層2を表面に有するチタン又はチタン合金製の枠体4で構成されている。
 枠体4はチタン又はチタン合金製であることから、従来一般的に使用されているアルミニウム合金製のペリクルフレームと比較して、高い強度及びヤング率を有している。また、チタン及びチタン合金の比重は約4.5程度と比較的軽量であり、ペリクルフレーム1の重量増加を抑制することができる。
 枠体4に用いるチタン合金は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々のチタン合金を用いることができる。チタン合金としては、Ti-6Al-4V合金、Ti-6Al-6V-2Sn合金、Ti-6Al-2Sn-4Zr-6Mo合金、Ti-10V-2Fe-3Al合金、Ti-7Al-4Mo合金、Ti-5Al-2.5Sn合金、Ti-6Al-5Zr-0.5Mo-0.2Si合金、Ti-5.5Al-3.5Sn-3Zr-0.3Mo-1Nb-0.3Si合金、Ti-8Al-1Mo-1V合金、Ti-6Al-2Sn-4Zr-2Mo合金、Ti-5Al-2Sn-2Zr-4Mo-4Cr合金、Ti-11.5Mo-6Zr-4.5Sn合金、Ti-15V-3Cr-3Al-3Sn合金、Ti-15Mo-5Zr-3Al合金、Ti-15Mo-5Zr合金、又はTi-13V-11Cr-3Al合金等を挙げることができる。
 高い強度及び良好な加工性を両立させる観点からは、α+β型合金を用いることが好ましく、更に、材料価格や入手容易性の観点から、Ti-6Al-4V合金を用いることがより好ましい。また、原理については必ずしも明らかではないが、Ti-6Al-4V合金を用いることで、炭素ドープ酸化チタン層2の形成により、表面をより確実に黒色化することができる。
 ペリクルフレーム1の形状は、本発明の効果を損なわない限りにおいて特に制限されず、露光原版の形状に応じて従来公知の種々の形状とすることができるが、一般的には、ペリクルフレーム1の平面形状はリング状、矩形状又は正方形状であり、露光原版に設けられた回路パターン部を覆う大きさと形状とを備えている。
 ペリクルフレーム1の高さ(厚さ)は、0.5~10mmであることが好ましく、1~7mmであることがより好ましく、1.0~3.0mmであることが最も好ましい。ペリクルフレーム1の高さ(厚さ)をこれらの値とすることで、ペリクルフレーム1の変形を抑制できると共に、良好なハンドリング性を担保することができる。
 ペリクルフレーム1の断面形状は、本発明の効果を損なわない限りにおいて特に制限されず、従来公知の種々の形状とすることができるが、上辺及び下辺が平行な四辺形とすることが好ましい。ペリクルフレーム1の上辺にはペリクル膜を張設するための幅が必要であり、下辺には接着用粘着層を設けて露光原版に接着するための幅が必要である。当該理由から、ペリクルフレーム1の上辺及び下辺の幅(W)は1~3mm程度とすることが好ましい。
 ペリクルフレーム1の平坦度は、30μm以下とすることが好ましく、20μm以下とすることがより好ましい。ペリクルフレーム1の平坦度を向上させることで、ペリクルを露光原版に貼り付けた場合の露光原版の変形量を小さくすることができる。なお、上記のペリクルフレーム1の平坦度は、ペリクルフレーム1の各コーナー4点と4辺の中央4点の計8点において高さを測定することで仮想平面を算出し、当該仮想平面からの各点の距離のうち、最高点から最低点を差引いた差により算出することができる。
 炭素ドープ酸化チタン層2における炭素の含有量は0.1~15at%であることが好ましい。炭素含有量を0.1at%以上とすることで表面を黒色化することができ、15at%以下とすることで表面の黒色化や硬度上昇に寄与しない過剰な炭素のドープを抑制することができる。炭素含有量のより好ましい含有量は0.3~10at%であり、最も好ましい含有量は1~5at%である。本明細書において、炭素の含有量とは、実施例に記載の方法によって測定される値をいう。
 また、炭素ドープ酸化チタン層2において、炭素はTi-C結合の状態でドープされていることが好ましい。Ti-C結合の状態で炭素をドープすることで、表面硬度を効果的に上昇させることができ、ペリクルフレーム1の耐スクラッチ性及び耐摩耗性等を向上させることができる。表面硬度は500Hv以上であることが好ましく、1000Hv以上であることがより好ましく、1200Hv以上であることが最も好ましい。
 炭素ドープ酸化チタン層2の厚さは10nm以上であることが好ましく、50nm以上であることがより好ましく、100nm以上であることが最も好ましい。炭素ドープ酸化チタン層2の厚さをこれらの値以上とすることで、表面の黒色化が達成されるだけでなく、耐スクラッチ性及び耐摩耗性を確保することができる。
 ペリクルフレーム1表面の明度指数L値は40以下であることが好ましい。表面の明度指数L値を40以下とすることで、各種光学部品の光反射を十分に抑制することができる。また、ペリクルフレームの場合は、使用前の異物不着検査等を容易かつ確実に行うことができる。明度指数L値のより好ましい値は35以下であり、最も好ましい値は30以下である。なお、本明細書において、明度指数L値とは、実施例に記載の方法によって測定される値をいう。
 また、ペリクルフレーム1の反射率は25%以下であることが好ましい。反射率を25%以下とすることで、各種光学機器やペリクルフレーム等における光反射を十分に抑制することができる。より好ましい反射率は20%以下であり、最も好ましい反射率は18%以下である。上述したペリクルフレーム1の反射率は、少なくとも600~750nmの範囲において満足することが好ましく、500~800nmの範囲において満足することがより好ましく、400~900nmの範囲において満足することがさらに好ましく、350~1000nmの範囲において満足することが特に好ましい。上述した範囲内で反射率が満足することで、可視光を含む反射光が抑制されて、カメラを用いた光学部材の光学観察を良好に行うことができる。なお、本明細書において、反射率とは、実施例に記載の方法によって測定される値をいう。
 また、枠体4の線膨張係数は6×10-6~11×10-6/Kであることが好ましい。線膨張係数を6×10-6K以上とすることで、光学部材と、セラミックやシリコン等からなる材料との熱膨張係数が近くなる。これにより、光学部材と、セラミックやシリコン等からなる部材との温度上昇時の熱膨張による変形の差に起因して生じる、歪みや割れを低減することができる。このような効果が奏される組み合わせとしては、例えば、光学部材がレンズホルダーであって、セラミックやシリコン等からなる部材がカメラ等のレンズである場合が挙げられる。また、線膨張係数を11×10-6K以下とすることで、昇温時の歪みを低減することができる。より好ましい線膨張係数は7×10-6~10×10-6/Kであり、最も好ましい線膨張係数は8×10-6~9×10-6/Kである。本明細書において線膨張係数は、0~100℃の温度範囲における値を表すものとする。上述した枠体4の線膨張係数は、例えば、枠体4がチタン又はチタン合金製であることで達成することができる。
2.ペリクルフレームの製造方法
 図3に示すように、本実施形態のペリクルフレームの製造方法は、チタン又はチタン合金からなる基材をペリクルフレームの形状に加工する基材作製工程(S01)と、基材の表面に炭素ドープ酸化チタン層を形成させる炭素ドープ処理工程(S02)と、を含んでいる。以下、任意の工程も含めて各工程等について詳細に説明する。
(1)基材作製工程(S01)
 基材作製工程(S01)は枠体4を得るための工程であり、必要に応じてチタン又はチタン合金材に対して接合及び切削等を施し、ペリクルフレーム1の枠体4を高い寸法精度で得るための工程である。
 チタン又はチタン合金材が十分な大きさを有している場合、当該材料から枠体4を切り出すことができる。一方で、チタン又はチタン合金材を接合することでも枠体4を得ることができ、この場合はチタン又はチタン合金材の歩留まりを高くすることができる。ここで、チタン又はチタン合金材の接合には固相接合を用いることが好ましい。固相接合を用いることで、接合部で生じる歪みを抑制することができ、接合部と母材との機械的性質の差異を小さくすることができる。なお、切り出し又は接合で得られた枠体4に対しては、更に切削加工を行ってもよい。
(2)炭素ドープ処理工程(S02)
 炭素ドープ処理工程(S02)は、基材作製工程(S01)で得られた枠体4の表面に炭素ドープ酸化チタン層2を形成させるための工程である。炭素ドープ処理工程(S02)によって、ペリクルフレーム1の外観色を決定することができる(黒色化することができる)。
 炭素ドープ処理工程(S02)の前処理として、枠体4を脱脂処理することが好ましい。具体的には、枠体4をアセトン等で洗浄した後に純水で洗浄し、乾燥することで油分を除去することができる。
 枠体4の表面に炭化水素を主成分とするガスの燃焼炎を当接させ、当該表面の温度が700~1500℃となるように加熱処理するか、又は表面の温度が700~1500℃となるように炭化水素を主成分とするガスの燃焼ガス雰囲気中で加熱処理することで、枠体4の表面に炭素ドープ酸化チタン層2を形成することができる。加熱処理の温度は、好ましくは800℃以上、より好ましくは900℃以上であり、好ましくは1400℃以下、より好ましくは1300℃以下である。
 加熱処理の処理時間は、枠体4の表面に炭素ドープ酸化チタン層2を形成することができる時間であれば特に限定されず、加熱後の冷却時に炭素ドープ酸化チタン層2の剥離が抑えられる時間であることが望ましい。加熱処理時間は、好ましくは1秒以上、より好ましくは1分以上であり、好ましくは10時間以下、より好ましくは1時間以下である。
 大気中の表面酸化によって枠体4の表面に酸化チタン層を形成させると表面を十分に黒色化又は暗色化させることができないが、炭化水素を主成分とするガスの燃焼ガス雰囲気下で処理することで、炭素がドープされた黒色の酸化チタン層を形成させることができる。
 より具体的には、炭化水素を50容量%以上含有する燃料ガスを燃焼させた燃焼炎、炭化水素を50容量%以上含有する燃料ガスを燃焼させて得た燃焼ガス雰囲気又は炭化水素を50容量%以上含有する燃料ガス雰囲気を用いることが好ましく、特に還元炎を利用することが好ましい。炭化水素含有量が少ない燃料を用いる場合には、炭素のドープ量が不十分であったり、皆無であったりし、その結果として黒色化が不十分となる。炭化水素を50容量%以上含有する燃料ガスとしては、例えば、天然ガス、LPG、メタン、エタン、プロパン、ブタン、エチレン、プロピレン、アセチレン等の炭化水素、あるいはこれらを適宜混合したガスを含有し、適宜、空気、水素、酸素等を混合したガスを用いることができる。炭化水素を50容量%以上含有する燃料ガスは不飽和炭化水素を30容量%以上含有することが好ましく、アセチレンを50容量%以上含有することがより好ましく、炭化水素がアセチレン100%であることが最も好ましい。不飽和炭化水素、特に三重結合を有するアセチレンを用いた場合には、その燃焼の過程で、特に還元炎部分で、不飽和結合部分が分解して中間的なラジカル物質が形成され、このラジカル物質は活性が強いので炭素ドープが生じ易いと考えられる。
 なお、加熱処理する枠体4の表面層がチタン又はチタン合金である場合(酸化層が存在しない場合)には、チタン又はチタン合金を酸化する酸素が必要であり、その分だけ空気又は酸素を含んでいる必要がある。
 ここで、温度上昇による枠体4の歪みを抑制するために、良好な炭素ドープ酸化チタン層2が得られる限りにおいて、処理温度は低く設定することが好ましい。例えば、Ti-6Al-4V合金を用いる場合、当該合金でαβ相変態が生じるβトランザス温度は約980℃であり、炭素ドープ処理によって枠体4の温度がβトランザス温度以上となると、歪みが顕著に発生してしまう。よって、Ti-6Al-4V合金を用いる場合は、表面温度が900~980℃となるように炭素ドープ処理を施すことが好ましく、表面温度がより高い温度となる場合であっても、980℃以下となる領域が枠体4に存在することが好ましい。
 炭素ドープ酸化チタン層2の炭素含有量、枠体4の表面の明度指数L値及び反射率は炭素ドープ処理工程(S02)の処理条件によって制御することができ、炭素含有量が0.1~15at%、明度指数L値が40以下、反射率が25%以下となるように、ガスの組成、処理温度及び処理時間等を調整することが好ましい。
(3)研磨処理工程(S03)
 本実施形態のペリクルフレームの製造方法は、炭素ドープ酸化チタン層2の最表面を研磨する研磨処理工程(SO3)を含むことが好ましい。炭素ドープ処理工程(S02)にて形成された炭素ドープ酸化チタン層2の最表面には微小な空孔やクラック等の欠陥が生じている可能性があるが、最表面を研磨することで、欠陥が存在しない良好な炭素ドープ酸化チタン層2のみを使用することができる。
 ここで、リソグラフィ工程では粉塵の発生を厳密に抑制する必要があり、ペリクルフレーム1の最表面に脆い領域が形成されることは確実に避けなければならない。当該観点から、炭素ドープ酸化チタン層2の最表面の研磨は、光学部材がペリクルフレームである場合には特に施すことが好ましい。
 炭素ドープ酸化チタン層2の表面を研磨する場合、研磨力が強過ぎる場合には最表面のみを除去することが困難である。ここで、当該研磨には、例えば、核となるガラスの周囲をゼラチン質で被覆したビーズ等の研磨力の小さな研磨材を使用して、徐々に研磨を行うことが好ましい。研磨量は、炭素ドープ酸化チタン層2の最表面から約1μm程度とすることが好ましい。
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。
3.光学部材
 上述した実施形態では、光学部材としてペリクルフレーム1を例示して説明したが、光学部材はこれに限定されない。光学部材としては、例えば、ペリクルフレーム、レンズホルダー、バレル、シェード、リフレクター等が挙げられる。
<実施例1>
 純チタンからなる厚さ0.8mmのチタン材を切り出して、板状のチタン基材を作製した。このチタン基材に対して、アセチレンの燃焼炎を用いて、表面温度が800℃となるように加熱処理することにより炭素ドープ処理を行った。これにより、実施例1の光学部材を作製した。
 実施例1の光学部材の断面観察を行った。SEM(カールツァイス社製、ULTRA PLUS)による反射電子組成像を図4に示す。また、EPMA(島津製作所社製、EPMA-8050G)を用いて得られた炭素ドープ酸化チタン層の各元素濃度(wt%)及び炭素含有量(at%)を表1に示す。なお、表1では、図4の符号A1、及び符号A2で示した各位置の各元素濃度を示す。また、炭素含有量は各元素濃度から算出した。
 明度測定器(日本電色工業社製、NF777)を用いて、実施例1の光学部材の明度指数Lを測定した。得られた結果を表2に示す。
 反射率測定器(PerkinElmer社製、Lambda750)を用いて、実施例1の光学部材の反射率を測定した。得られた結果を表3に示す。
 マイクロビッカース硬度計(ミツトヨ社製、HM-221)を用い、荷重を5gfとして実施例1の光学部材表面の硬度の測定を行った。測定位置を変更して硬度の測定を5回行い、5回の測定値の平均値を硬度とした。得られた結果を表4に示す。
<実施例2>
 炭素ドープ処理の条件を、チタン基材の表面温度が740℃となるように加熱処理すること以外は実施例1と同様にして、実施例2の光学部材を作製した。
 実施例1と同様にして得られた実施例2の光学部材の反射電子組成像を図5に示す。また、実施例1と同様にして得られた炭素ドープ酸化チタン層の各元素濃度(wt%)及び炭素含有量(at%)を表1に、明度指数Lを表2に、反射率を表3に、硬度を表4に、それぞれ示す。なお、表1では、図5の符号B1、及び符号B2で示した各位置の各元素濃度を示す。
<比較例1>
 実施例1と同様にしてチタン基材を作製した後に炭素ドープ処理を行わないことで、表面層として炭素ドープ酸化チタン層を有しない、比較例1の光学部材を作製した。
 実施例1と同様にして測定した表面層(酸化チタン層)の明度指数L、反射率、及び硬度を表2乃至表4にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1の光学部材は、SEMによる観察結果から、組成の異なる少なくとも2層を有していることが明らかとなった。EPMAにより得られた酸素とチタンの元素濃度の分布はSEMにより観察された層構成と略一致しており、酸素の濃度が表層側では高く下層側では低かったのに対して、チタンの濃度は表層側では低く下層側では高かった。このことから、実施例1の光学部材では、チタンからなる基材の表面が酸化を受けていることが分かった。さらに、炭素の元素濃度の分布と、符号A1と符号A2との各位置における元素濃度の値から、表面側の層が、炭素がドープされた炭素ドープ酸化チタン層を有していることが明らかとなった。これらの結果から、実施例1の光学部材では、チタンからなる基材の表面に、炭素ドープ酸化チタン層を有することが裏付けられた。
 実施例2の光学部材は、SEM及び元素濃度の分布から、実施例1よりも表面側の層の膜厚が薄くなっているものの、実施例1と同様に、チタンからなる基材の表面が酸化を受けていることが分かった。また、炭素の元素濃度の分布と、符号B1と符号B2との各位置における元素濃度の値から、実施例1と同様に、実施例2の光学部材では、チタンからなる基材の表面に、炭素ドープ酸化チタン層を有することが裏付けられた。
 さらに、表2,表3の結果から明らかなように、基材の表面に炭素ドープ酸化チタン層を有する実施例1,2の光学部材は、表面がチタンからなる層である比較例1の光学部材よりも、明度指数L値と反射率が抑えられており、外観色が十分に暗色化された光学部材となっていた。また、表4の結果から明らかなように、実施例1,2の光学部材では、比較例1の光学部材よりも表面の硬度が大幅に向上したものであった。
1・・・ペリクルフレーム、
2・・・炭素ドープ酸化チタン層、
4・・・枠体。

Claims (9)

  1. チタン又はチタン合金からなる基材と、
    前記基材の表面に形成された炭素ドープ酸化チタン層と、を有すること、
    を特徴とする光学部材。
  2. 前記炭素ドープ酸化チタン層における炭素の含有量が0.1~15at%であること、
    を特徴とする請求項1に記載の光学部材。
  3. 前記炭素がTi-C結合の状態でドープされていること、
    を特徴とする請求項1又は2に記載の光学部材。
  4. 表面の明度指数L値が40以下であること、
    を特徴とする請求項1~3のうちの何れかに記載の光学部材。
  5. 反射率が25%以下であること、
    を特徴とする請求項1~4のうちの何れかに記載の光学部材。
  6. 前記基材の線膨張係数が6×10-6~11×10-6/Kであること、
    を特徴とする請求項1~5のうちの何れかに記載の光学部材。
  7. 前記基材がα+β型チタン合金であること、
    を特徴とする請求項1~6のうちの何れかに記載の光学部材。
  8. チタン又はチタン合金からなる基材を光学部材の形状に加工する基材作製工程と、
    前記基材の表面に炭化水素を主成分とするガスの燃焼炎を当接させ、前記表面の温度が700~1500℃となるように加熱処理するか、又は前記表面の温度が700~1500℃となるように炭化水素を主成分とするガスの燃焼ガス雰囲気中で加熱処理して、前記表面に炭素ドープ酸化チタン層を形成させる炭素ドープ処理工程と、を有すること、
    を特徴とする光学部材の製造方法。
  9. 前記炭素ドープ酸化チタン層の最表面を研磨する研磨処理工程をさらに有すること、
    を特徴とする請求項8に記載の光学部材の製造方法。   
PCT/JP2019/033094 2018-08-31 2019-08-23 光学部材及びその製造方法 WO2020045293A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/269,163 US20210325571A1 (en) 2018-08-31 2019-08-23 Optical member and method for producing same
CN201980055994.8A CN112639539B (zh) 2018-08-31 2019-08-23 光学构件及其制造方法
JP2020539422A JP7259858B2 (ja) 2018-08-31 2019-08-23 光学部材及びその製造方法
EP19853661.7A EP3845934A4 (en) 2018-08-31 2019-08-23 OPTICAL ELEMENT AND METHOD OF MANUFACTURING THEREOF
KR1020217008584A KR102523913B1 (ko) 2018-08-31 2019-08-23 광학 부재 및 그의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-162970 2018-08-31
JP2018162970 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020045293A1 true WO2020045293A1 (ja) 2020-03-05

Family

ID=69644198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033094 WO2020045293A1 (ja) 2018-08-31 2019-08-23 光学部材及びその製造方法

Country Status (7)

Country Link
US (1) US20210325571A1 (ja)
EP (1) EP3845934A4 (ja)
JP (1) JP7259858B2 (ja)
KR (1) KR102523913B1 (ja)
CN (1) CN112639539B (ja)
TW (1) TWI821375B (ja)
WO (1) WO2020045293A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149056A1 (ja) * 2022-02-04 2023-08-10 日本軽金属株式会社 光学部材及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121825A (ja) * 1998-10-19 2000-04-28 Asahi Glass Co Ltd 遮光層付き基板、その製造方法並びにスパッタターゲット、カラーフィルタ基板、及び表示素子
JP2006243044A (ja) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind 鏡面を有する多機能材
JP2009169380A (ja) * 2007-12-21 2009-07-30 Mitsui Chemicals Inc ペリクル
WO2010026853A1 (ja) * 2008-09-05 2010-03-11 住友金属鉱山株式会社 黒色被覆膜とその製造方法、黒色遮光板、及び、それを用いた絞り、光量調整用絞り装置、シャッター、並びに耐熱遮光テープ
JP2014085453A (ja) 2012-10-23 2014-05-12 Brother Ind Ltd 画像形成装置
JP2014085435A (ja) 2012-10-22 2014-05-12 Shin Etsu Chem Co Ltd ペリクルフレーム及びこのペリクルフレームで構成されたペリクル
JP2016177120A (ja) 2015-03-20 2016-10-06 日本特殊陶業株式会社 ペリクル枠およびペリクル枠の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3948739B2 (ja) * 2003-12-09 2007-07-25 財団法人電力中央研究所 炭素ドープ酸化チタン層を有する多機能材
CN1657976A (zh) * 2004-02-16 2005-08-24 柯尼卡美能达精密光学株式会社 光学元件和光接收装置
JP5459696B2 (ja) * 2008-11-05 2014-04-02 一般財団法人電力中央研究所 耐食性基体の製造方法
JP5292090B2 (ja) * 2008-12-25 2013-09-18 グローブライド株式会社 スポーツ用品
JP5344682B2 (ja) * 2008-12-26 2013-11-20 グローブライド株式会社 釣糸ガイド、及び釣糸ガイドの製造方法
JP5344683B2 (ja) * 2008-12-26 2013-11-20 グローブライド株式会社 釣糸ガイド、及びガイドリングの製造方法
SG187145A1 (en) * 2010-08-05 2013-02-28 3M Innovative Properties Co Multilayer film comprising matte surface layer and articles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000121825A (ja) * 1998-10-19 2000-04-28 Asahi Glass Co Ltd 遮光層付き基板、その製造方法並びにスパッタターゲット、カラーフィルタ基板、及び表示素子
JP2006243044A (ja) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind 鏡面を有する多機能材
JP2009169380A (ja) * 2007-12-21 2009-07-30 Mitsui Chemicals Inc ペリクル
WO2010026853A1 (ja) * 2008-09-05 2010-03-11 住友金属鉱山株式会社 黒色被覆膜とその製造方法、黒色遮光板、及び、それを用いた絞り、光量調整用絞り装置、シャッター、並びに耐熱遮光テープ
JP2014085435A (ja) 2012-10-22 2014-05-12 Shin Etsu Chem Co Ltd ペリクルフレーム及びこのペリクルフレームで構成されたペリクル
JP2014085453A (ja) 2012-10-23 2014-05-12 Brother Ind Ltd 画像形成装置
JP2016177120A (ja) 2015-03-20 2016-10-06 日本特殊陶業株式会社 ペリクル枠およびペリクル枠の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149056A1 (ja) * 2022-02-04 2023-08-10 日本軽金属株式会社 光学部材及びその製造方法

Also Published As

Publication number Publication date
KR102523913B1 (ko) 2023-04-19
EP3845934A1 (en) 2021-07-07
CN112639539A (zh) 2021-04-09
JPWO2020045293A1 (ja) 2021-08-26
KR20210047916A (ko) 2021-04-30
TWI821375B (zh) 2023-11-11
JP7259858B2 (ja) 2023-04-18
TW202020174A (zh) 2020-06-01
CN112639539B (zh) 2023-04-14
US20210325571A1 (en) 2021-10-21
EP3845934A4 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
JP2005268750A (ja) 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法
TWI526769B (zh) 波長轉換裝置及其製造方法
WO2015037564A1 (ja) 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
TWI436159B (zh) 反射型光罩基底及反射型光罩之製造方法
JP2006332153A (ja) 反射型マスクブランク及び反射型マスク並びに半導体装置の製造方法
WO2020045293A1 (ja) 光学部材及びその製造方法
JP7208163B2 (ja) 導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法
JP4521696B2 (ja) 反射多層膜付き基板及び反射型マスクブランクス並びに反射型マスク
JP6223756B2 (ja) 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
KR101894160B1 (ko) 광반도체장치용 리드 프레임용 기체와 그 제조방법, 이것을 이용한 광반도체장치용 리드 프레임과 그 제조방법, 및 광반도체장치
JP6036363B2 (ja) 遮光フィルムとその製造方法、および、それを用いた絞り、シャッター羽根、光量調整絞り羽根
JP4410367B2 (ja) 金属鏡および金属回転多面鏡およびその製造方法
JP4418700B2 (ja) 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法
WO2018128160A1 (ja) 合金部材およびその表面硬化方法
WO2023149056A1 (ja) 光学部材及びその製造方法
JP2021039144A (ja) 導電膜付基板、反射型マスクブランク及び反射型マスク、並びに半導体デバイスの製造方法
JP2005037798A (ja) 反射型マスクブランクス及びその製造方法、反射型マスク、並びに反射多層膜付き基板及びその製造方法
TW201903216A (zh) 鋁積層體及其製造方法
JP6864952B2 (ja) 導電膜付き基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク及び半導体装置の製造方法
JP6039207B2 (ja) Euvリソグラフィー用多層反射膜付き基板の製造方法及びeuvリソグラフィー用反射型マスクブランクの製造方法、euvリソグラフィー用反射型マスクの製造方法、及び半導体装置の製造方法
JP7367901B1 (ja) 反射型マスクブランク、反射型マスクブランクの製造方法、反射型マスク、反射型マスクの製造方法
WO2021111780A1 (ja) 光学部材及びその製造方法
JP2008180770A (ja) 赤外線光学部品および赤外線光学部品の製造方法
EP3767001A1 (en) Titanium member, manufacturing method for titanium member, and decorative item including titanium member
JP6210451B2 (ja) 反射防止膜の製造方法及び積層膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217008584

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019853661

Country of ref document: EP

Effective date: 20210331