WO2020044760A1 - 動作装置のキャリブレーション方法、動作装置システムおよび制御装置 - Google Patents

動作装置のキャリブレーション方法、動作装置システムおよび制御装置 Download PDF

Info

Publication number
WO2020044760A1
WO2020044760A1 PCT/JP2019/025516 JP2019025516W WO2020044760A1 WO 2020044760 A1 WO2020044760 A1 WO 2020044760A1 JP 2019025516 W JP2019025516 W JP 2019025516W WO 2020044760 A1 WO2020044760 A1 WO 2020044760A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
unit
information
value
operating device
Prior art date
Application number
PCT/JP2019/025516
Other languages
English (en)
French (fr)
Inventor
和孝 豊田
裕太郎 丸野
Original Assignee
平田機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平田機工株式会社 filed Critical 平田機工株式会社
Priority to JP2020540102A priority Critical patent/JP6992188B2/ja
Priority to KR1020207033583A priority patent/KR102470613B1/ko
Priority to EP19853639.3A priority patent/EP3778143A4/en
Priority to CN201980038510.9A priority patent/CN112262023B/zh
Publication of WO2020044760A1 publication Critical patent/WO2020044760A1/ja
Priority to US17/078,209 priority patent/US11433543B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/087Controls for manipulators by means of sensing devices, e.g. viewing or touching devices for sensing other physical parameters, e.g. electrical or chemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/046Revolute coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1653Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39018Inverse calibration, find exact joint angles for given location in world space
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39023Shut off, disable motor and rotate arm to reference pin
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39024Calibration of manipulator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39027Calibrate only some links, part of dofs, lock some links, ref pins on links
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39049Calibration cooperating manipulators, closed kinematic chain by bolting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39051Calibration cooperating manipulators, closed kinematic chain by alignment

Definitions

  • the present invention relates to a method for calibrating an operating device, an operating device system, and a control device.
  • Patent Literature 1 describes a method of performing calibration using a plurality of distance sensors.
  • Patent Document 2 discloses an operating device in which the position of an operating device is selected from a plurality of reference positions having different rotation angles set around an axis extending in a vertical direction and is located at the selected reference position. Describes an industrial robot for mounting a calibration jig and performing calibration.
  • the object of the present invention is to provide a calibration method that does not cause interference between an operating device and peripheral devices and can avoid occurrence of input error of reference position information.
  • a first moving body that is rotatable about an axis extending in the horizontal direction, a first driving unit that drives the first moving body, and rotation of the first moving body
  • a first detection unit for detecting a position
  • a calibration method for an operating device including: An alignment step of adjusting the first moving body portion to one reference position selected from a plurality of predetermined reference positions, The drive parameter value of the first drive unit at the one reference position is compared with a discrimination parameter value set in advance for each of the plurality of reference positions to determine the one reference position.
  • a discriminating step A registration step of registering the position information of the one reference position determined in the determination step and the detection value information of the first detection unit as reference position information for calculating the rotation position,
  • a calibration method is provided.
  • FIG. 1 is a side view schematically showing an operation device system according to an embodiment.
  • FIG. 3 is an exploded side view of the operation device.
  • FIG. 4 is a side view showing an example of a calibration posture when there is no obstacle or the like in the periphery.
  • FIG. 6 is a side view showing an example of a calibration posture when there is an obstacle or the like in the vicinity.
  • 1 is a diagram showing a work system including an operation device.
  • FIG. 4 is a block diagram of the control device, showing a configuration related to calibration. Flowchart showing processing of the processing unit when performing calibration
  • FIG. 6 is a diagram illustrating characteristics of a rotation angle of a moving body with respect to a detection value of a detection unit before replacement.
  • FIG. 6 is a diagram illustrating characteristics of a rotation angle of a moving body with respect to a detection value of a detection unit before replacement.
  • FIG. 7 is a diagram illustrating characteristics of a rotation angle of a moving body with respect to a detection value of a detection unit after replacement.
  • FIG. 9B is a view (schematic diagram) in the direction of arrow A in FIG. 9A.
  • FIG. 10 is a diagram showing a modification of the operating device shown in FIGS. 9A and 9B.
  • FIG. 1 is a side view schematically showing an operation device system according to the present embodiment.
  • the operating device system 1 includes an operating device 10 and a control device 11 that controls the operating device 10.
  • the operating device 10 is a vertical articulated robot.
  • the operating device 10 includes a base 12 and a moving body 13.
  • the moving body 13 is provided rotatably with respect to the base 12 about an axis extending in the horizontal direction.
  • the operating device 10 includes, as the moving body 13, a vertical multi-arm including an upper arm 14 rotatably supported by the base 12 and a forearm 16 rotatably supported by the upper arm 14. It is a joint robot.
  • the configuration of the moving body 13 an example is described in which the forearm 16 is supported by the upper arm 14 supported by the base 12, and two moving bodies are connected in series.
  • the base 12 is provided stationary with respect to the installation location, and is electrically connected to the control device 11 via the connection unit 18.
  • the base 12 is provided with a drive section 121 for rotating the upper arm section 14 and a detection section 122 for detecting a rotation position of the drive section 121.
  • the drive unit 121 is a motor ⁇ ⁇ that can be numerically controlled
  • the detection unit 122 is an encoder.
  • the encoder is an absolute encoder that can detect the rotation angle of the motor as an absolute value.
  • the position (posture) of the upper arm 14 with respect to the base 12 can be determined from the detection result of the encoder.
  • a servomotor in which the drive unit 121 and the detection unit 122 are integrally configured is employed, but a configuration in which the drive unit 121 and the detection unit 122 are separate from each other may be employed.
  • the base 12 is provided stationary with respect to the installation location.
  • the base main body 12b that is stationary with respect to the installation location, and an axis extending in the vertical direction with respect to the base main body 12b.
  • a base swivel portion 12a that can swivel around the center, and the base swivel portion 12a can be swiveled by a motor (not shown) or the like.
  • FIG. 2 is an exploded side view schematically showing the operation device.
  • the upper arm 14 has a support 146a provided at one end 143 in the longitudinal direction E1 rotatably supported by the base 12, and the other end 144 rotatably supported by the forearm 16 at the other end 144. I have.
  • the other end 144 and the one end 143 are separated from each other by a predetermined distance, and the other end 144 moves on a circumferential orbit about the rotation axis of the rotation shaft member 146 of the upper arm 14.
  • the upper arm 14 is provided with a drive unit 141 for rotating the forearm 16 and a detection unit 142.
  • the drive unit 141 is a motor
  • the detection unit 142 is an encoder
  • the encoder is an absolute encoder that can detect the rotation angle of the motor as an absolute value.
  • a positioning hole 205 described later is provided in the upper arm portion near the support portion 146a.
  • a servomotor in which the drive unit 141 and the detection unit 142 are integrally configured is employed.
  • the drive unit It is also possible to adopt a configuration in which the detection unit 141 and the detection unit 142 are separate from each other.
  • the forearm 16 has a support 166 a provided at one end 163 in the longitudinal direction E ⁇ b> 2, which is rotatably supported by the upper arm 14. Further, the forearm portion 16 is provided with a positioning hole 225 described later near the support portion 166a.
  • the distal end 164, which is the other end, and the one end 163 are separated by a predetermined distance, and the distal end 164 moves on a circumferential orbit about the pivot shaft member 166 of the forearm 16.
  • Various tip tools can be attached to the tip 164.
  • the tip tool may have, for example, a mechanism for gripping the target work, a mechanism for performing mechanical processing such as drilling on the target work, and the like, and these can be replaced according to the work.
  • the base 12 when the upper arm 14 is positioned and the upper arm 14 when the forearm 16 is positioned may be referred to as a stationary body side.
  • the upper arm 14 when positioning the upper arm 14 and the forearm 16 when positioning the forearm 16 are sometimes referred to as the moving body side.
  • the rotation angle of the moving body side with respect to the stationary body side at one selected reference position is associated with the detection results of the detection units 122 and 142 and stored in the storage unit 112 described below. Register.
  • the positioning mechanism 20 selects from a plurality of reference positions set at different angles around the rotation axis of the rotation shaft member 146 of the base 12 (static body side). This is a mechanism for adjusting the position of the upper arm 14 (moving body side) with respect to one of the reference positions.
  • the positioning mechanism 20 includes reference holes 201 and 202 provided on the base 12 side, and positioning holes 205 provided on the upper arm 14 side.
  • the reference holes 201 and 202 are holes formed in bracket members provided respectively at the outer edges of the base turning portion 12a.
  • the positioning mechanism 20 can also adopt a configuration further including a positioning member.
  • the positioning member is a pin member, and the operator inserts the pin member into one of the reference holes 201 and 202 and the positioning hole 205 to check the alignment of the rotation angle of the upper arm 14 with respect to the base 12. May be performed.
  • the reference hole 201 is provided on a first line extending in a first direction in the radial direction from the rotation axis of the rotation shaft member 146, and the reference hole 202 is provided from the rotation axis of the rotation shaft member 146. It is provided separately on a second line extending in the second direction in the radiation direction having a phase difference of 90 degrees from the first direction.
  • the first direction is the vertical direction
  • the reference hole 201 and the positioning hole 205 since the first direction is the vertical direction, by aligning the reference hole 201 and the positioning hole 205, the position where the longitudinal direction E1 of the upper arm portion 14 is the vertical direction (hereinafter, referred to as the vertical position). There is).
  • the reference hole 202 and the positioning hole 205 are aligned with each other so that the longitudinal direction E1 of the upper arm 14 is aligned with the horizontal direction (hereinafter, may be referred to as a horizontal position). be able to.
  • the positioning mechanism 22 selects from among a plurality of reference positions set at different angles around the rotation axis of the rotation shaft member 166 on the upper arm 14 (static body side). This is a mechanism for adjusting the position of the forearm 16 (moving body side) with respect to one selected reference position.
  • the positioning mechanism 22 includes reference holes 221, 222, and 223 provided on the upper arm 14 side, and positioning holes 225 provided on the forearm 16 side.
  • the reference holes 221, 222, and 223 are holes formed in bracket members provided on the outer edge of the other end 144 of the upper arm 14.
  • the forearm 16 When performing positioning, the forearm 16 is rotated by an operator's operation so that any one of the reference holes 221, 222, and 223 and the positioning hole 225 overlap (the centers of the respective holes coincide with each other). Thereby, the alignment of the rotation angle of the forearm 16 with respect to the upper arm 14 is confirmed.
  • the positioning mechanism 22 can also adopt a configuration further including a positioning member.
  • the positioning member is a pin member, and the operator inserts the pin member into one of the reference holes 221, 222, and 223 and the positioning hole 225, and the position of the rotation angle of the forearm 16 with respect to the upper arm 14. A matching check may be performed.
  • the reference hole 222 is provided apart from a line extending in the first direction in the radial direction from the rotation axis of the rotation shaft member 166, and the reference hole 221 is provided first from the rotation axis of the rotation shaft member 166.
  • the reference hole 223 is provided on a line extending in the second direction in the radiation direction having a phase difference of 90 degrees from the first direction, and the reference hole 223 is provided between the first direction and the second direction. It is provided on a line extending in the third direction in a radial direction that is 45 degrees out of phase with the first direction from the axis.
  • the second direction is the horizontal direction
  • the longitudinal direction E2 of the forearm 16 can be adjusted to the vertical position in the vertical direction.
  • the reference hole 222 and the positioning hole 225 are aligned with each other, so that a line extending from the center of the support portion 166a to the positioning hole 225 and the rotation axis of the rotation shaft member 166 are used as the reference hole 222.
  • the longitudinal direction E2 of the forearm 16 can be adjusted to a horizontal position in which the upper arm 14 is oriented in the horizontal direction.
  • the third direction is inclined at an angle of 45 °
  • the reference hole 223 and the positioning hole 225 are aligned with each other, so that the reference line is extended from the line extending from the center of the support portion 166a to the positioning hole 225 and the rotation axis of the rotation shaft member 166. Since the line extending to the hole 223 coincides, when the upper arm portion 14 is at the vertical position, the longitudinal direction E2 of the forearm portion 16 can be adjusted to the inclined position inclined upward by 45 ° from the horizontal direction.
  • This inclined position is, in other words, a position inclined 45 ° downward from the vertical position or a position inclined 45 ° upward from the horizontal position.
  • the positioning mechanisms 20 and 22 perform positioning using the reference holes 201, 202, 221, 222, and 223 and the positioning holes 205 and 225, and the positioning members 206 are positioned in the holes aligned by the operator. , 226 are inserted and the position is mechanically confirmed, but other configurations can be adopted.
  • a predetermined point on the stationary body side and a predetermined point on the moving body side are set as positioning points, a predetermined distance of each point is set as a positioning reference distance, and the distance can be measured.
  • the posture positions of the stationary body side and the moving body side at a plurality of reference positions are respectively set as reference positions, and the postures of the set reference positions are set to the same positions. It may be determined whether or not there is.
  • the control device 11 may automatically rotate the moving body side to perform the positioning without the operator performing the operation of rotating the moving body side.
  • FIGS. 3A to 3C are diagrams illustrating an example of a posture at the time of calibration and a work system S including the operation device 10.
  • FIG. When there is no obstacle such as a peripheral device or a safety fence around the operation device 10, for example, the calibration can be performed in a state where the upper arm 14 and the forearm 16 are in the vertical position as shown in FIG. 3A. .
  • FIG. 3B On the other hand, when there is an obstacle at the top of the operating device 10 as shown in FIG. 3B, for example, both the upper arm 14 and the forearm 16 cannot be set to the vertical position, but only the forearm 16 is set to the horizontal position. Calibration can be performed without causing interference with obstacles and the like.
  • the postures of the upper arm portion 14 and the forearm portion 16 can be respectively selected from a plurality of postures and adjusted.
  • the upper arm 14 and the forearm 16 are in the vertical position as shown in FIG. 3A. Calibration cannot be performed in the state. In such a case, for example, calibration is performed in the posture of FIG. 3B.
  • FIG. 8 is a diagram illustrating an example in which the operating device 10 of the operating device system 1 is arranged in a work system S that performs a predetermined work.
  • the work system S is installed at a predetermined position in a factory.
  • the work system S identifies the component P stored in the storage container C, removes the component P from the storage container C by the operating device 10 based on the component information of the identified component P, and performs a predetermined process of the product W waiting in the work unit 3 described later.
  • the component P is mounted at the position X.
  • the work system S includes a supply unit 2 to which the component P is supplied, a work unit 3 in which the product W waits and the component P is attached, and an identification unit 4 for identifying the component P supplied to the supply unit 2. , Is provided.
  • the work area of the operation device 10 includes the operation range of the supply unit 2, the operation unit 3, and the operation device 10.
  • safety fences 5 are arranged on opposite sides between the work area and the outside thereof. At one of the other sides of the work system S (the left side in FIG. 8), the loading / unloading of the storage container C with respect to the supply unit 2 is performed, and at the other side (the right side in FIG. 8). Is carried in and out of the work unit 3.
  • the supply unit 2 is provided on one side of the work system S, and includes a placement unit 2b on which the storage container C is placed, and a placement support unit 2c that positions the placement unit 2b at a predetermined height position.
  • Component mounting including the mounting table 2a, a mounting positioning mechanism 2e # for positioning and holding the container C at a predetermined position of the mounting portion 2b, and a drive mechanism (actuator) (not shown) for operating the mounting positioning mechanism 2e.
  • a placement unit 2d # is provided on one side of the work system S, and includes a placement unit 2b on which the storage container C is placed, and a placement support unit 2c that positions the placement unit 2b at a predetermined height position.
  • Component mounting including the mounting table 2a, a mounting positioning mechanism 2e # for positioning and holding the container C at a predetermined position of the mounting portion 2b, and a drive mechanism (actuator) (not shown) for operating the mounting positioning mechanism 2e.
  • actuator actuator
  • the placement and positioning mechanism 2e includes a placement reference member 2f contacting one end of the storage container C, a placement regulation member 2g contacting the other end of the storage container C, and a placement regulation member.
  • a moving mechanism (not shown) that reciprocates 2 g with respect to the mounting reference member 2 f is included. By driving an actuator (not shown) in the moving mechanism, the placement defining member 2g presses the storage container C against the placement reference member 2f, and the storage container C is positioned and held.
  • the container C is replaced by a transfer device (not shown) or an operator.
  • the work unit 3 includes a product positioning mechanism 3b for positioning and holding the product W transferred to the work position, a drive mechanism (actuator) (not shown) for operating the product positioning and moving mechanism 3b, and a product transfer mechanism 3c for transferring the product W.
  • a work setting unit 3e provided on the other side of the work system S, and a work setting unit 3e on which the work setting unit 3d is set, and a work support for positioning the work setting unit 3e at a predetermined height position.
  • a work table 3g including the section 3f.
  • As the product transfer mechanism 3c a conveyor having an endless moving body (for example, a belt) and a driving mechanism for operating the moving body is employed.
  • the product positioning mechanism 3b includes a work reference member 3h that abuts a part of the product W, and a movement mechanism (not shown) configured to reciprocate a product defining member 3i that approaches and separates from the work reference member 3h. Is included.
  • the product defining member 3i presses the product W against the work reference member 3h, and the product W is positioned and held.
  • the identification unit 4 is supported by the identification support member 4a at a predetermined position separated from the mounting portion 2b of the supply portion 2 upward.
  • the identification unit 4 includes an imaging unit 4b for imaging the component P accommodated in the accommodation container C positioned and held on the placement unit 2b of the supply unit 2, an illumination unit 4c for irradiating light necessary for imaging, and an imaging unit. 4b, an image processing unit (not shown) for digitizing the acquired image information captured by 4b, and a communication unit (not shown) for communicating with an external device.
  • the identification unit 4 also compares a registration unit (not shown) in which reference image information serving as reference information of the component P is registered with the acquired image information subjected to image processing and the reference image information.
  • a determination unit (not shown) for determining the type of P.
  • the information of the component P acquired by the identification unit 4 also includes position information and posture information of the acquired component P in the storage container C.
  • the safety fence 5 is provided over the supply unit 2, the operating device 10, and the working unit 3, and is disposed on the opposite side of the working system S, respectively.
  • the work system S includes a work control unit (host computer 42) (not shown) that controls the work mounting unit 3a, the component mounting unit 2d, and the identification unit 4.
  • the system control unit also manages the operation of the operation device 10 based on the information on the product W positioned and held in the work unit 3 and the information on the component P stored in the storage container C positioned and held in the supply unit 2. , And controls and manages the entire work system S.
  • FIG. 4 is a block diagram illustrating a control configuration of the control device 11, and particularly illustrates a configuration regarding calibration of the detection units 122 and 142.
  • the control device 11 includes a processing unit 111, a storage unit 112, and an interface unit 113, and these are connected to each other by a bus (not shown).
  • the processing unit 111 executes a program stored in the storage unit 112.
  • the processing unit 111 is, for example, a CPU.
  • the storage unit 112 is, for example, a RAM, a ROM, a hard disk, or the like.
  • the interface unit 113 is provided between the processing unit 111 and external devices (the host computer 42, the drive units 121 and 141, the detection units 122 and 142, and the operation unit 44), and includes, for example, a communication interface, an I / O Interface.
  • the host computer 42 is a control device that manages and controls the entire production facility (work system S) in which the operating device system 1 is provided.
  • the operation unit 44 constitutes an interface for the operator to operate the operation device 10, and is, for example, a teach pendant or an operation panel. Further, for example, a personal computer or the like connected to the control device 11 via an interface unit may be used.
  • the processing unit 111 acquires information on the drive parameter value of the drive unit. In the case of the present embodiment, the processing unit 111 acquires the current drive current values ri1 and ri2 of the respective motors as information on the drive parameter values of the drive units 121 and 141, respectively. Further, the processing unit 111 acquires information on the detection values rp1 and rp2 of the detection unit. In the case of the present embodiment, the processing unit 111 acquires the pulse values detected by the encoders of the detection units 122 and 142, respectively.
  • the acquired information of the current drive current values ri1 and ri2 as the drive parameter values of the drive units 121 and 141 and the information of the detected values rp1 and rp2 as the pulse values of the detection units 122 and 142 are processed by the processing unit 111.
  • the current information acquisition unit R4 is acquired, for example, in a temporary storage area such as a cache memory included in the processing unit 111.
  • the current information acquisition unit R4 updates the acquired current drive current values ri1 and ri2 of the motor and the pulse values detected by the encoders of the detection units 122 and 142 at predetermined timings (including real time). Is done.
  • the storage unit 112 stores various data in addition to the program executed by the processing unit 111.
  • the storage unit 112 includes a determination unit 112a, a calibration information registration unit 112b, and an operation position setting information registration unit 112c as storage regions for storing data.
  • the determination parameter information M4a, the calibration information M4b, and the operation position setting information M4c are stored in the storage unit 112, respectively. It is remembered.
  • the discrimination parameter information M4a is information for discriminating a position (for example, a vertical position, a horizontal position, and the like) on the moving body side at the time of calibration.
  • the discrimination parameter information 4a includes “axis information”, “discrimination angle information”, “current lower limit information”, and “current upper limit information”.
  • these positions when the longitudinal directions E1 and E2 of the upper arm portion 14 and the forearm portion 16 are vertical are referred to as vertical positions, and when the longitudinal directions E1 and E2 are horizontal. May be referred to as a horizontal position.
  • “Axis information” is information unique to the rotation axis.
  • axis information J1 and J2 regarding two rotation axes are set, and the axis information J1 is the axis information (information of the first rotation axis) of the rotation axis member 146 of the upper arm 14.
  • the axis information J2 is the axis information of the rotation shaft member 166 of the forearm 16 (information of the second rotation axis).
  • the “determination angle information” is information on angles set corresponding to a plurality of reference positions provided in the positioning mechanism, and is set according to axis information.
  • two positioning mechanisms 20 and 22 are provided, and two pieces of axis information J1 and J2 are set, respectively.
  • the vertical position of the posture of the forearm portion 16 (when the angle of the upper arm portion 14 with respect to the vertical direction is 0 degree, the rotation shaft member corresponds to the axis information J1 included in the first positioning mechanism 20).
  • 0 ° at which the line connecting the tip 164 from the axis of 166 is positioned parallel to the vertical line) is defined as the reference posture when discriminating the axis information J1, and is defined as 0 ° corresponding to the vertical position and the horizontal position.
  • a corresponding 90 degree is set.
  • the processing unit 111 determines whether the posture of the upper arm 14 at the time of calibration is the vertical position (the angle of the upper arm 14 with respect to the vertical direction is 0 degree), or the horizontal position (the upper arm with respect to the vertical direction). (The angle of the part 14 is 90 degrees).
  • the vertical position of the posture of the upper arm 14 (the angle of the upper arm 14 with respect to the vertical direction is 0 degree) is indicated by the axis information J2 with respect to the axis information J2 included in the second positioning mechanism 22. Is determined as a reference posture when performing the determination, and 0 degree corresponding to the vertical direction, 90 degrees corresponding to the horizontal direction, and 45 degrees are set. Therefore, in the case of the present embodiment, the processing unit 111 determines whether the posture of the forearm 16 at the time of calibration is the vertical position (the angle of the forearm 16 with respect to the vertical direction is 0 degree) or the horizontal position (the forearm with respect to the vertical direction). 16 is 90 degrees) or the angle of the forearm 16 is 45 degrees with respect to the vertical direction.
  • the number of discrimination angle information set for each piece of axis information J1 and J2 is two for the piece of axis information J1 and three for the piece of axis information J2, but is not limited thereto. For example, two may be set for each, three may be set for each, or a number other than these may be set. Further, sign information of “ ⁇ ” may be further added so that it is possible to identify which of the first to fourth quadrants the information belongs to by a combination of the angle and the sign.
  • “Current lower limit information” and “current upper limit information” are information used as thresholds for setting a determination range set when determining the posture of a moving object, and are fixed values set in advance for each determination angle information. This is information on a discrimination parameter value (discrimination current value). That is, the range value of the discrimination current value is set by the current lower limit value information and the current upper limit value information. The information on the moving body side is determined by comparing the information with the current current value information of the drive parameter value of the drive unit acquired by the current information acquisition unit R4 of the processing unit 111.
  • two moving bodies of the upper arm 14 and the forearm 16 are provided, and two pieces of discrimination angle information are set for the upper arm 14 as two different discrimination postures.
  • two pieces of determination angle information are set as three different determination postures.
  • “current lower limit information” and “current upper limit information” are set in advance for each determination angle information.
  • the “current lower limit information” and the “current upper limit information” as information for determining the posture of the moving body portion set in the present embodiment include a lower limit of a tolerance value based on a reference current value.
  • the current value upper limit information is stored in the discriminating unit 112a as the upper limit value of the tolerance value based on the value information and the reference current value.
  • the reference current value absolute value
  • the value may be stored in the determination unit 112a as information for determination.
  • the drive parameter value of the drive unit 121 is the current drive current value of the motor, and the value is proportional to the torque applied to the rotating shaft member 146.
  • the torque applied to the rotating shaft member 146 is small when the upper arm 14 is in the vertical position, and is large when the upper arm 14 is in the horizontal position.
  • the range value of the discrimination current value set for the vertical position includes the minimum value of the discrimination current value
  • the range value of the discrimination current value set for the horizontal position indicates the maximum value of the discrimination current value. This is set in the discriminating unit 112a so as to include the information.
  • the moving body 13 is determined to be in the vertical posture, and the current drive current value ri is set to the maximum value of the discrimination current value.
  • the moving body portion 13 is in the horizontal posture.
  • the discrimination angle information set for the axis information J1 is two degrees of 0 degree and 90 degrees with respect to the vertical direction
  • the discrimination angle information includes 0 ° and 90 ° angles that are not actually set, “ ⁇ ” sign information is further added and set, and one side is set based on the minimum value of the discrimination current value.
  • the side By setting the side as the + side and the other side as the ⁇ side, 0 degree on the + side and 0 degree on the ⁇ side are determined, with one side being the + side and the other side being the ⁇ side based on the maximum value of the determined current value.
  • 90 degrees it is also possible to determine 90 degrees on the + side and 90 degrees on the-side.
  • the calibration information M4b is information for registering the detection value information of the detection unit and the information of the reference position of the moving body unit.
  • the calibration information M4b includes “axis information”, “set value angle information”, and “set angle value detection value information”. In the case of this embodiment, calibration information is registered for each of the two detection units 122 and 142.
  • “Set angle value information” is information on the angle of the rotating unit corresponding to the determined position, and is set as reference position information of the detection unit. In the case of the present embodiment, the value of “determination angle information” determined by the determination parameter information M4a is set. “Set angle value detection value information” is detection value information of the detection unit at the reference position. In the case of the present embodiment, the processing unit 111 associates the information on the angle of the moving body determined as the reference position with the information on the pulse value detected by the encoder at the reference position (set angle value information) and associates the calibration information with the information. The information is stored in the registration unit 112b. In the present embodiment, “set angle value information” and “set angle value detected value information” are set and registered for the two detectors 122 and 142, respectively.
  • the operation position setting information M4c is information for managing the operation position when the operation device 10 performs an operation.
  • the operation position setting information M4c includes “operation position information”, “J1 operation position angle information”, and “J2 operation position angle information”.
  • the operating device 10 operates when the processing unit 111 executes the program stored in the storage unit 112. At this time, the operating device 10 performs a predetermined operation at each position set in the operating position setting information M4c. .
  • the “operating position information” is information for identifying a position at which the operating device 10 performs a work (in the case of the present embodiment, a mounting work for mounting the component P) on a work (product W).
  • One or a plurality of pieces of operation position information can be set in the position setting information registration unit 112c according to the work.
  • the J1 operation position angle information and the J2 operation position angle information are angle information of the axis information J1 and the axis information J2 at the set operation position, and are set for each operation position information. In the case of the present embodiment, a plurality of J1 operation position angle information and a plurality of J2 operation position angle information are respectively set.
  • FIG. 5 is a flowchart showing the processing of the processing unit 111 when executing the calibration. This processing is started, for example, when the operator presses a calibration start button provided on the teach pendant as the operation unit 44.
  • a calibration start button provided on the teach pendant as the operation unit 44.
  • the detection unit 142 of the forearm 16 is calibrated in a posture in which the interference between the operating device 10 and the upper obstacle does not occur, as illustrated in FIG. 3B.
  • step S ⁇ b> 5001 the processing unit 111 selects a second rotation axis corresponding to the rotation axis member 166 that supports the forearm 16 as a rotation axis for performing calibration.
  • the processing unit 111 receives the input information (selection information). Is performed based on the selection of the rotation axis of the moving body.
  • the processing unit 111 performs calibration on the second rotation axis for operating the forearm 16. Recognize and determine as the target axis.
  • step S5002 the processing unit 111 moves the moving object that is not selected as the calibration target axis from the plurality of moving objects included in the moving object unit 13 to a predetermined position specified in advance, and aligns the moving object with the corresponding reference hole. Then, the posture of the moving body is held (moving body holding).
  • the operator operates the teach pendant to instruct the processing unit 111 with respect to the first rotation axis that has not been selected as the target axis of the calibration, and the processing unit 111 operates the upper arm unit 14. Then, the driving of the driving unit 121 is controlled to move to the reference hole 201 which is a specified position, thereby performing positioning.
  • the operator selects a specified value (holding position selection) from a plurality of predetermined specified positions (holding positions) at the time of positioning to the specified position (holding position) can also be adopted.
  • a configuration in which the processing unit 111 automatically moves the upper arm unit 14 to adjust the position to the specified position based on an instruction by the operator to input the selection of the specified position may be adopted.
  • the processing unit 111 may limit the rotation of the upper arm 14 after adjusting the upper arm 14 of the first rotation axis on which the calibration is not performed to the specified position. For example, the processing unit 111 moves the upper arm 14 of the first rotation axis, which is not selected as a calibration target, to a predetermined position, and after the alignment, inputs an operation of rotating the upper arm 14 by the operator. May be received but not rotated. With such a configuration, the operation is restricted so that the upper arm 14 of the first rotating shaft, which has not been selected as a calibration target during the execution of the calibration, is not driven. The calibration operation of the second rotation axis selected as can be performed.
  • step S5003 the processing unit 111 performs positioning of the forearm 16 of the second rotation axis selected as the calibration target axis.
  • the processing unit 111 performs drive control of the drive unit 141 based on an input from the operation unit 44 by an operator. At this time, for example, the operator rotates the forearm 16 by operating the teach pendant to adjust the positions of the reference hole 222 and the positioning hole 225, and then inserts the positioning member 226 into those holes to perform the alignment. Check the position.
  • the processing unit 111 acquires drive information of the drive unit 141 that drives the forearm 16 of the second rotation axis for performing calibration. For example, when receiving the information registration command from the operator, the processing unit 111 calculates the current drive current value ri2 which is the drive parameter value of the drive unit 141 that drives the forearm unit 16 of the second rotation axis selected in S5001. Acquire (confirm). The processing unit 111 receives an information registration command when, for example, an operator presses a registration button provided on the operation unit 44.
  • the processing unit 111 determines the position of the forearm 16 of the second rotation axis selected in S5001. For example, the processing unit 111 determines the drive parameter value of the drive unit 141 (current current value information ri2 of the current information acquisition unit R4) acquired in S5004 and the axis information J2 (second rotation axis) of the discrimination parameter information M4a. Then, the calibration position of the forearm 16 actually aligned is automatically determined by comparing the current lower limit value information and the range information included while including the current upper limit value information.
  • the axis information J2 is set as the axis information related to the forearm 16
  • the positioning of the positioning hole 225 to the reference hole 222 is performed as the calibration position of the forearm 16, so that the forearm Reference numeral 16 is set to a horizontal position (horizontal posture).
  • the current value of the motor of the drive unit 141 becomes a numerical value larger than 0, and the processing unit 111 determines the J2 of the axis information of the discrimination parameter information 4a.
  • the determination angle information is determined to be “90” degrees, and as a result, the calibration position of the forearm 16 is determined to be 90 degrees.
  • the position of the upper arm portion 14 is specified to be performed at a vertical position where the positioning hole 205 is aligned with the reference hole 201.
  • step S5006 the processing unit 111 performs a registration process of the calibration information.
  • the processing unit 111 corresponds to the axis information J2 of the calibration information 4b, using the angle of the forearm 16 with respect to the upper arm 14 as set angle value information, and the detected value of the detection unit 142 as set angle value detected value information. Then, it is registered in the calibration information registration unit 112b.
  • the angle of the forearm 16 determined in S5005 is the angle of the forearm 16 with respect to the vertical direction. In this description, since the upper arm 14 is at the vertical position, the angle determined in S5005 and the angle of the forearm 16 with respect to the upper arm 14 match.
  • the processing unit 111 sets the calibration information by registering the information on the angle determined in S5005 as “90” degrees in the set angle value information of the axis information J2 of the calibration information 4b as the set angle value information. The registration processing of the angle value information is completed.
  • FIGS. 6A and 6B are relationship diagrams showing characteristics between the detection value of the detection unit and the rotation angle value.
  • FIG. 6A shows, for example, the characteristics of the detection unit 142 of the forearm unit 16.
  • the horizontal axis in the figure is the detection value (pulse value in the present embodiment) of the detection unit 142
  • the vertical axis is the detection unit 142.
  • the pulse value and the rotation angle value are in a proportional relationship
  • the proportional constant (inclination) is a value determined by the specifications of the detection unit (the encoder in the present embodiment).
  • the reference position and the pulse value at the reference position are set by the above-described calibration method, one point of a straight line indicating these characteristics is determined.
  • the posture (position of the tip) of the moving body portion 13 in the motion device 10 is set as J1 motion position angle information and J2 motion position angle information for each motion position information of the motion position setting information 4c. Therefore, the value of the set angle information set in the calibration information becomes the reference angle, and each operating position is derived from the reference angle. Further, a detection value (pulse value) is employed as the control internal processing.
  • the processing unit 111 controls the attitude of the moving body unit 13 based on the detection values of the detection units 122 and 142 and the characteristics of the rotation angles of the detection units 122 and 142 included in the moving body unit 13 with respect to the detected values. be able to.
  • FIG. 6B is a diagram illustrating characteristics of the detection unit 142 after the encoder serving as the detection unit 142 is replaced.
  • the operating device 10 may replace the driving units 121 and 141, the detecting units 122 and 142, etc. due to the consumption of the components, etc., and when the detecting units 122, 142 are replaced, the respective detecting units may be replaced. It is necessary to execute the calibration of 122 and 142 again.
  • the rotation angle value set by the above-described calibration method becomes the reference position, and the pulse value at the rotation angle value is set as the pulse value at the reference position, whereby the pulse value in the entire rotation range is obtained. .
  • the detecting unit of the operating device 10 installed as a part of the work system 1 even if the detecting unit is replaced, the detecting unit may be replaced according to the angle of the moving body whose encoder has been replaced. Thus, it is not necessary to reset the operating position information by matching the set value angle information of the encoder calibration information M4b.
  • the detection value when set as the installation value angle information as the set angle value detection value information the characteristic of the pulse value in the operation position information is calculated and set internally. You. For example, when the calibration is performed in the posture of FIG.
  • the value registered as the pulse value is X2 before the replacement, Y2 after the replacement, and the rotation angle The value is 90 degrees both before and after replacement. Therefore, as shown in FIG. 4, since the operation position setting information M4c is set with the angle information (b1, b2) for each operation position of the forearm 16 included in the moving body 13, the detection unit 142 Does not depend on the detection value of Therefore, even if the detection unit 142 is replaced, the operation device 10 can be made to work at a predetermined position without resetting the operation position setting information, and the setting operation can be made more efficient.
  • the posture at which the calibration has been performed can be automatically determined and stored as the calibration information. Calibration information can be registered, and human errors can be avoided.
  • the posture at the time of performing the calibration can be selected from a plurality of postures, the calibration can be performed in a posture that avoids contact with surrounding obstacles.
  • the discrimination parameter information M4a indicates one predetermined position ( (Posture), one current lower limit value information and one current upper limit information are set for one discrimination angle information for the moving body part to be calibrated, but the moving body part for which calibration is not performed is set.
  • a plurality of postures at the time of calibration may be set, and a plurality of current lower limit value information and a plurality of current upper limit value information for discrimination angle information corresponding to each set angle may be set.
  • FIG. 7 shows discrimination parameter information according to another embodiment.
  • the discrimination parameter information M7a indicates the current lower limit value information and the current upper limit information in accordance with the plurality of holding position information of the second moving body part. Value information is set.
  • the first moving body portion corresponds to the upper arm portion 14, and the second moving body portion corresponds to the forearm portion 16.
  • the axis information J1 of the upper arm 14 is set to 0 ° and 90 ° as discrimination angle information, and the 0 ° and 90 ° of the forearm 16 are set as holding positions of other moving body parts. Therefore, the discrimination angle information relating to the axis information J1 of the upper arm 14 is set to 0 ° and 90 ° of the holding position information of the forearm 16 with respect to 0 ° of the upper arm 14, respectively. , A total of four pieces of discrimination angle information are set.
  • the torque generated in the rotating shaft member 146 is such that the upper arm 14 is in the vertical position and the forearm 16 is in the horizontal position than when the upper arm 14 and the forearm 16 are in the vertical position (the position in FIG. 3A).
  • the time (the position in FIG. 3B) is larger.
  • the drive current value of the motor which is the drive parameter value of the drive unit 121
  • the drive current value of the motor is proportional to the torque generated in the rotating shaft member 146. That is, the acquired value of the drive parameter value of the drive unit 121 by the processing unit 111 changes according to the posture of the forearm 16 even if the posture of the upper arm 14 is the same. Therefore, when determining the position of the upper arm 14, it is possible to determine the position of the upper arm 14 more accurately by having a plurality of current lower limit value information and current upper limit information according to the position of the forearm 16. Can be.
  • the processing unit 111 when determining the position of the upper arm 14, acquires the drive parameter value of the drive unit 121 (current location current information of the current information acquisition unit R4) in S5003 of FIG.
  • the position of the forearm 16 is automatically determined by specifying which range of the four current lower limit information and the current upper limit information set in the axis information J1 of the determination parameter information M7a.
  • the processing unit 111 when determining the position of the upper arm 14, when the position of the forearm 16 is the horizontal position (90 degrees) shown in FIG. 3B, the processing unit 111 outputs the current lower limit information (a1 ') and the current upper limit
  • the drive parameter value is determined as a value included in the range set by the information (a1 ′ + ⁇ 1 ′).
  • FIG. 9A is a diagram schematically illustrating an operation device 90 according to an embodiment
  • FIG. 9B is a diagram (schematic diagram) in the direction of arrow A in FIG. 9A.
  • This embodiment is different from the above-described embodiment in that one moving body is provided and a base is provided so as to be movable.
  • the operation device 90 constitutes a gantry 91 and a horizontal moving unit supported by the gantry 91 and capable of moving a later-described horizontal moving elevating unit 95 in a first horizontal direction.
  • the horizontal moving unit includes a pair of traveling guide portions 92 and a traveling body 94 movably supported across the pair of traveling guide portions 92.
  • the traveling body 94 is provided on one of the pair of traveling guide portions 92 so as to extend over the driving portion 941 that can travel on the traveling guide portion 92 and the pair of traveling guide portions 92, and the traveling guide 94 is driven by the driving portion 941.
  • a traveling body 942 movable on the portion 92.
  • the traveling direction of the traveling body 94 in the first horizontal direction may be referred to as a traveling direction.
  • the drive unit 941 can employ, for example, a servomotor that can be numerically controlled.
  • the operating device 90 also includes a horizontal moving elevating unit 95 supported by the traveling body 942 and movable along the traveling body 942.
  • the horizontal movement elevating unit 95 can move not only in the direction along the traveling body 942 (the direction perpendicular to the traveling direction) but also in the vertical direction. These movements are performed by a drive source such as a motor (not shown).
  • the operating device 90 includes a base 96 supported at the lower part of the horizontal moving elevating unit 95, and a moving body 97 rotatably supported by the base 96.
  • the base 96 includes a swivel part 961 rotatably supported below the horizontal moving elevating part 95 and a base body 962 supported below the swivel part 961.
  • the turning portion 961 By the turning portion 961, the base main body 962 can turn around a vertical axis.
  • the turning unit 961 turns, for example, by a motor (not shown).
  • the moving body 97 is rotatably supported by the base body 962.
  • the moving body 97 can be rotated by, for example, the same configuration as the upper arm 14 of the above-described embodiment.
  • a tip 971 is provided at an end of the moving body 97 opposite to the end supported by the base body 962, and various tip tools can be attached to the tip 971.
  • the moving body 97 of the operating device 90 can move in the traveling direction, the direction perpendicular to the traveling direction, and the vertical direction, it can rotate around the vertical axis and rotate around the horizontal axis.
  • the operation device 90 has a positioning mechanism 98.
  • the positioning mechanism 98 includes reference holes 981 and 982 provided on the moving body 97 side and positioning holes 983 provided on the base 96 side.
  • the moving body 97 is rotated by an operator's operation, and the positioning is performed so that one of the reference holes 981 and 982 and the positioning hole 983 overlap, whereby the rotation of the moving body 97 with respect to the base 96 is performed. An angle alignment check is made.
  • the operating device 90 employed in the operating device system includes the horizontal moving unit and the horizontal moving elevating unit 95, when calibrating the moving body unit 97, it avoids the surrounding obstacle environment, Calibration work can be performed at an optimal position.
  • FIG. 9C is a schematic diagram showing a modification of the operating device shown in FIGS. 9A and 9B, and is a diagram showing a state viewed from a direction B in FIG. 9A.
  • the modification of FIG. 9C is different in that the moving body unit 193 has the configuration of the horizontal movement unit shown in the above-described embodiment. Further, the difference is that a horizontal moving portion 191 movable in a direction perpendicular to the traveling direction is movably supported by the traveling body 942.
  • the horizontal moving unit 191 moves in a direction orthogonal to the traveling direction by, for example, a motor or the like.
  • the horizontal moving part 191 has a moving body part 193 at the lower part.
  • the moving body 193 includes a base main body 192b fixed to a lower portion of the horizontal moving section 191; As in the embodiment, one end is pivotally supported by the base turning portion 192a, and the other end of the upper arm 194 and the upper end 194 including the other end that moves along a circumferential trajectory about the pivotally supported axis is provided at the other end. One end thereof is pivotally supported, and forearm portions 195 including the other end that move in a circumferential orbit around the pivotally supported shaft are rotatably supported. Therefore, the vertical position of the distal end portion 196 can be adjusted by a combination of these rotating operations.
  • the horizontal moving unit 191 may have a configuration capable of moving up and down.
  • the positioning mechanisms 20 and 22 described in the above embodiment are provided, the positioning of the moving body 193 rotation angle is confirmed by these mechanisms.
  • This modified example also includes a horizontal moving unit and a horizontal moving unit 191 as in the other embodiments. Therefore, when calibrating the moving body unit 193, the surrounding obstacle environment is avoided, and the calibration is performed at an optimal position. Work can be performed.

Abstract

動作装置は、回動可能な動体部と、動体部を駆動する第一の駆動部と、動体部の回動位置を検出する第一の検出部と、を備える。動作装置のキャリブレーション方法は、動体部を予め定めた複数の基準位置の中から選択される一の基準位置に合わせる位置合わせ工程と、一の基準位置での第一の駆動部の駆動パラメータ値と、複数の基準位置のそれぞれに対して予め設定された判別パラメータ値とを比較して、一の基準位置を判別する判別工程と、判別工程で判別した一の基準位置の位置情報と第一の検出部の検出値情報とを、前記回動位置を算出するための基準位置情報として登録する登録工程と、を含む。

Description

動作装置のキャリブレーション方法、動作装置システムおよび制御装置
 本発明は動作装置のキャリブレーション方法、動作装置システムおよび制御装置に関する。
 一般に、産業用ロボット等の動作装置の作業位置を設定する場合には、予め動作装置に対し、作業位置の基準となる基準位置合わせ(キャリブレーション)を行う。特許文献1には、キャリブレーションを複数の距離センサを用いて行う方法が記載されている。また、特許文献2には、動作装置の位置を、鉛直方向に延びる軸回りに設定された回転角度が異なる複数の基準位置から一つ選択し、その選択された基準位置に位置させた動作装置にキャリブレーション用の冶具を装着し、キャリブレーションを行う産業用ロボットが記載されている。
特開2003-220587号公報 特開昭62-297082号公報
 複数の装置等によって所定の作業を行う作業システムにおいて、動作装置が複数の装置と共に工場に設置された後にキャリブレーションを行うことがある。この条件でキャリブレーションを行う際は、動作装置と、動作装置の周りに設置された周辺装置(複数の装置)や安全柵等、周囲の障害物との干渉が生じないようにそれぞれを位置させる必要がある。しかし、特許文献1では、キャリブレーションを実行可能な姿勢(基準位置)が一つに定まっているため、その姿勢に位置させた動作装置と干渉が生じない位置に周辺装置等を配置しなければならず、周辺装置等の配置に制限が生じてしまう。一方、特許文献2では、複数の基準位置から干渉が生じない任意の位置を選択してキャリブレーションを行うことができるが、選択した位置の情報をオペレータが入力する際に、ヒューマンエラー等による入力ミスが発生する場合がある。
 本発明は、動作装置と周辺装置等との干渉が生じることがなく、かつ、基準位置情報の入力ミスの発生を回避することができるキャリブレーション方法を提供することを目的とする。
 本発明によれば、水平方向に延びる軸を中心に回動可能な第一の動体部と、該第一の動体部を駆動する第一の駆動部と、該第一の動体部の回動位置を検出する第一の検出部と、を備える動作装置のキャリブレーション方法であって、
 前記第一の動体部を予め定めた複数の基準位置の中から選択される一の基準位置に合わせる位置合わせ工程と、
 前記一の基準位置での前記第一の駆動部の駆動パラメータ値と、前記複数の基準位置のそれぞれに対して予め設定された判別パラメータ値とを比較して、前記一の基準位置を判別する判別工程と、
 前記判別工程で判別した前記一の基準位置の位置情報と前記第一の検出部の検出値情報とを、前記回動位置を算出するための基準位置情報として登録する登録工程と、を含む、
 ことを特徴とするキャリブレーション方法が提供される。
 本発明によれば、動作装置と周辺装置等との干渉が生じることがなく、かつ、基準位置情報の入力ミスの発生を回避することができるキャリブレーション方法を提供することができる。
実施形態に係る動作装置システムの概略を示す側面図。 動作装置の分解側面図。 周囲に障害物等がない場合のキャリブレーション姿勢の一例を示す側面図。 周囲に障害物等がある場合のキャリブレーション姿勢の一例を示す側面図。 は動作装置が含まれる作業システムを示す図。 制御装置のブロック図であって、キャリブレーションに関する構成を示す図。 キャリブレーション実行時の処理部の処理を示すフローチャート 交換前の検出部の検出値に対する動体部の回動角度の特性を示す図。 交換後の検出部の検出値に対する動体部の回動角度の特性を示す図。 他の実施形態に係る判別パラメータ情報を示す図。 動作装置システムを所定の作業を行う作業システムSに配置した例を示す図。 他の実施形態における動作装置の概略を示す図。 図9AのA方向の矢視図(概略図)。 図9Aおよび図9Bで示す動作装置の変形例を示す図。
 以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴が任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。なお、図面に対する上下左右方向を、本実施形態における装置または部材の上下左右方向として、本文中の説明の際に用いることとする。
 図1は、本実施形態に係る動作装置システムの概略を示す側面図である。動作装置システム1は、動作装置10と、動作装置10を制御する制御装置11とを備える。本実施形態の場合、動作装置10は垂直多関節ロボットである。
 <動作装置の概要>
 動作装置10は、基部12と、動体部13とを含む。動体部13は、水平方向に延びる軸を中心に基部12に対して回動可能に設けられる。本実施形態の場合、動作装置10は、動体部13として、基部12に回動可能に支持された上腕部14と、上腕部14に回動可能に支持された前腕部16とを含む垂直多関節ロボットである。本実施形態の場合、動体部13の構成として、基部12に支持された上腕部14に前腕部16が支持されており、2つの動体部が直列に接続された例を挙げて説明しているが、上腕部14のみの構成や動体部が3つ以上直列に接続される構成も採用可能である。また、基部12に複数の動体部が並列に支持される構成やこれらの組み合わせも採用可能である。
 基部12は設置場所に対して静止して設けられており、接続部18を介して制御装置11と電気的に接続される。基部12には上腕部14を回動させるための駆動部121および駆動部121の回動位置を検出する検出部122が設けられている。本実施形態の場合、駆動部121は数値制御可能なモータ であり、検出部122はエンコーダである。また、本実施形態の場合、エンコーダは、モータの回転角度を絶対値として検出可能なアブソリュートエンコーダである。これにより、エンコーダの検出結果から基部12に対する上腕部14の位置(姿勢)を判別することができる。
 なお、本実施形態では、駆動部121と検出部122とが一体に構成されたサーボモータを採用しているが、駆動部121と検出部122とがそれぞれ別々の構成も採用可能である。
 また、本実施形態の場合、基部12は設置場所に対して静止して設けられているが、例えば、設置場所に対して静止した基部本体12bと、基部本体12bに対して鉛直方向に延びる軸を中心に旋回可能な基部旋回部12aと、を有し、基部旋回部12aが不図示のモータ等により旋回可能な構成も採用可能である。
 図1とともに図2を参照する。図2は動作装置の概略を示す分解側面図である。上腕部14は、その長手方向E1の一方端部143に設けられた支持部146aが基部12に回動可能に軸支され、他方端部144において前腕部16を回動可能に軸支している。他方端部144と一方端部143とは所定距離離間しており、他方端部144は上腕部14の回動軸部材146の回動軸を中心とする円周軌道上を移動する。上腕部14には前腕部16を回動させるための駆動部141および検出部142が設けられている。
 本実施形態の場合、駆動部141はモータであり、検出部142はエンコーダである。また、本実施形態の場合、エンコーダは、モータの回転角度を絶対値として検出可能なアブソリュートエンコーダである。これにより、エンコーダの検出結果から上腕部14に対する前腕部16の位置(姿勢)を判別することができる。また、上腕部14には、支持部146aの近傍に、後述する位置決め孔205が設けられる。なお、本実施形態では、駆動部141と検出部142とが一体に構成されたサーボモータを採用しているが、上述の駆動部121および検出部122と同様の他の構成、例えば、駆動部141と検出部142がそれぞれ別体の構成等も採用可能である。
 前腕部16は、その長手方向E2の一方端部163に設けられた支持部166aが上腕部14に回動可能に軸支されている。また、前腕部16は、支持部166aの近傍に後述する位置決め孔225が設けられる。他方側の端部である先端部164と、一方端部163とは所定距離離間しており、先端部164は前腕部16の回動軸部材166を中心とする円周軌道上を移動する。先端部164には各種の先端ツールを取り付け可能である。先端ツールは、例えば、対象のワークを把持する機構や、対象のワークに対して穴あけ加工等の機械加工を施す機構等を有していてもよく、これらを作業に応じて付け替えることができる。
 <位置合わせ機構の構成>
 本実施形態の位置合わせ機構20、22について説明する。以下の説明において、上腕部14の位置合わせを行う場合の基部12、および、前腕部16の位置合わせを行う場合の上腕部14を静体側と呼ぶ場合がある。また、上腕部14の位置合わせを行う場合の上腕部14、および、前腕部16の位置合わせを行う場合の前腕部16を動体側と呼ぶ場合がある。なお、本実施形態の場合、キャリブレーションでは、選択された一の基準位置における静体側に対する動体側の回動角度と、検出部122,142の検出結果とを対応付けて後述の記憶部112に登録を行う。
 位置合わせ機構20は、検出部122のキャリブレーションを行う際に、基部12(静体側)の回動軸部材146の回動軸を中心に異なる角度で設定された複数の基準位置の中から選択された一の基準位置に対する上腕部14(動体側)の位置を合わせるための機構である。本実施形態の場合、位置合わせ機構20は、基部12側に設けられる基準孔201,202と、上腕部14側に設けられる位置決め孔205とを含む。基準孔201,202は、基部旋回部12aの外縁部にそれぞれ設けられるブラケット部材に形成された孔である。位置合わせを行う場合は、オペレータの操作により上腕部14を回動させ、基準孔201,202のいずれかと位置決め孔205が重なる(それぞれの孔の中心同士が一致する)ように合わせることによって、基部12に対する上腕部14の回動角度の位置合わせ確認がなされる。なお、位置合わせ機構20は、位置決め部材をさらに備える構成も採用可能である。例えば、位置決め部材はピン部材であり、オペレータが、基準孔201,202のいずれかと位置決め孔205とにピン部材を挿入することにより、基部12に対して上腕部14の回動角度の位置合わせ確認を行ってもよい。
 基準孔201は、回動軸部材146の回動軸心から放射方向における第一方向に延びる第一線上に離間して設けられ、基準孔202は、回動軸部材146の回動軸心から第一方向と90度位相が異なる放射方向における第二方向に延びる第二線上に離間して設けられる。本実施形態の場合、第一方向を鉛直方向としているので、基準孔201と位置決め孔205を合わせることにより、上腕部14の長手方向E1が鉛直方向となる位置(以下、鉛直位置と呼ぶことがある)に合わせることができる。また、第二方向を水平方向としているので、基準孔202と位置決め孔205を合わせることにより、上腕部14の長手方向E1が水平方向を向く位置(以下、水平位置と呼ぶことがある)に合わせることができる。
 位置合わせ機構22は、検出部142のキャリブレーションを行う際に、上腕部14(静体側)に回動軸部材166の回動軸を中心に異なる角度で設定された複数の基準位置の中から選択された一の基準位置に対する前腕部16(動体側)の位置を合わせるための機構である。本実施形態の場合、位置合わせ機構22は、上腕部14側に設けられる基準孔221,222,223と、前腕部16側に設けられる位置決め孔225と)を含む。基準孔221,222,223は、上腕部14の他方端部144の外縁部にそれぞれ設けられるブラケット部材に形成された孔である。位置合わせを行う場合は、オペレータの操作により前腕部16を回動させ、基準孔221,222,223のいずれかと位置決め孔225とが重なる(それぞれの孔の中心同士が一致する)ように合わせることによって、上腕部14に対する前腕部16の回動角度の位置合わせ確認がなされる。なお、位置合わせ機構22は、位置決め部材をさらに備える構成も採用可能である。例えば、位置決め部材はピン部材であり、オペレータが基準孔221,222,223のいずれかと位置決め孔225とにピン部材を挿入することにより、上腕部14に対して前腕部16の回動角度の位置合わせ確認を行ってもよい。
 基準孔222は、回動軸部材166の回動軸心から放射方向における第一方向に延びる線上に離間して設けられ、基準孔221は、回動軸部材166の回動軸心から第一方向と90度位相が異なる放射方向における第二方向に延びる線上に離間して設けられ、基準孔223は、第一方向と第二方向との間に設けられ、回動軸部材166の回動軸心から第一方向と45度位相が異なる放射方向における第三方向に延びる線上に離間して設けられる。本実施形態の場合、第二方向を水平方向としているので基準孔221と位置決め孔225を合わせることにより、支持部166aの中心から位置決め孔225に延びる線と回動軸部材166の回動軸心から基準孔221に延びる線とが一致するので、上腕部14が鉛直位置にある場合、前腕部16の長手方向E2が鉛直方向上向きの鉛直位置に合わせることができる。
 また、第一方向を鉛直方向としているので基準孔222と位置決め孔225を合わせることにより、支持部166aの中心から位置決め孔225に延びる線と回動軸部材166の回動軸心から基準孔222に延びる線とが一致するので、上腕部14が鉛直位置にある場合、前腕部16の長手方向E2が水平方向に向いた水平位置に合わせることができる。
 さらに、第三方向を斜め45°方向としているので基準孔223と位置決め孔225を合わせることにより、支持部166aの中心から位置決め孔225に延びる線と回動軸部材166の回動軸心から基準孔223に延びる線とが一致するので、上腕部14が鉛直位置にある場合、前腕部16の長手方向E2が水平方向から斜め45°上向きに傾いた傾斜位置に合わせることができる。この傾斜位置は、言い換えると鉛直位置から45°下向きに傾いた位置、または水平位置から45°上向きに傾いた位置である。
 本実施形態の場合、位置合わせ機構20および22は、基準孔201,202,221,222,223および、位置決め孔205,225を用いて位置合わせを行い、オペレータが位置合わせした孔に位置決め部材206,226を挿通させて機械的に位置を確認しているが、他の構成も採用可能である。例えば、位置合わせ時に静体側の所定の点と、動体側の所定の点とを位置合わせ用の点として設定し、それぞれの点の所定の距離を位置決め基準距離として設定し、その距離を測定可能な距離センサを用いて、静体側に対して動体側が基準位置にあるかを判別してもよい。また、例えば、カメラ等の撮像装置を用いて、複数の基準位置における静体側と動体側との姿勢位置を基準位置としてそれぞれ設定し、設定したいずれかの基準位置の姿勢と同じ位置の姿勢にあるか否かを判別してもよい。なお、距離センサや撮像装置を用いる際は、オペレータが動体側を回動させる操作を行わずに、制御装置11が動体側を自動で回動させて位置合わせを行ってもよい。
 図3Aないし図3Cはキャリブレーション時の姿勢の一例および動作装置10が含まれる作業システムSを示す図である。動作装置10の周囲に周辺装置や安全柵等の障害物等がない場合は、例えば、図3Aに示すように上腕部14および前腕部16が鉛直位置にある状態でキャリブレーションを行うことができる。一方、例えば図3Bに示すように動作装置10の上部に障害物がある場合、上腕部14および前腕部16の両方が鉛直位置にさせることができないが、前腕部16のみを水平位置に合わせることで障害物等との干渉を生じさせることなく、キャリブレーションを行うことができる。このように、上腕部14および前腕部16の姿勢をそれぞれ複数の姿勢から選択し、位置を合わることができる。例えば、図3Cで示すように、作業システムSにおいては、動作装置10の上方に後述する識別ユニット4等が配置されるため、図3Aのように上腕部14および前腕部16が鉛直位置にある状態でキャリブレーションを行うことができない。このような場合に、例えば図3Bの姿勢でキャリブレーションを行う。
 図3Cとともに図8を参照する。図8は、このような動作装置システム1の動作装置10を所定の作業を行う作業システムSに配置した例を示す図である。なお、説明のため、図中で動作装置10の手前側に位置する安全柵5を取り外した状態を示している。作業システムSは、工場の所定の位置に設置される。作業システムSは、収容容器Cに収容される部品Pを識別し、識別した部品Pの部品情報に基づき動作装置10により収容容器Cから取り出し、後述する作業部3に待機する製品Wの所定の位置Xに部品Pの取り付けを行う。
 作業システムSは、部品Pが供給される供給部2と、製品Wが待機し、部品Pの取り付けが行われる作業部3と、供給部2に供給された部品Pを識別する識別ユニット4と、を備える。動作装置10による作業エリアは、供給部2と作業部3と動作装置10の動作範囲を含む。また、作業システムSには、作業エリアとその外部との間の対向する側部に、それぞれ安全柵5が配置される。また、作業システムSの他側部の一方(図8中では左方)においては、供給部2に対する収容容器Cの搬入出が行われ、他側部の他方(図8中では右方)においては、作業部3に対する製品Wの搬入出が行われる。
 供給部2は、作業システムSの一方側に設けられ、収容容器Cが載置される載置部2bと、載置部2bを所定の高さ位置に位置付ける載置支持部2cと、を含む載置台2aと、収容容器Cを載置部2bの所定の位置に位置決め保持する載置位置決め機構2e と、載置位置決め機構2eを動作させる不図示の駆動機構(アクチュエータ)と、を含む部品載置ユニット2d と、を備える。
 載置位置決め機構2eとしては、一般的な機構が採用可能である。例えば、載置位置決め機構2eは、収容容器Cの一方端部が当接される載置基準部材2f、収容容器Cの他方端部に当接される載置規定部材2gと、載置規定部材2gを載置基準部材2fに対して往復移動させる不図示の移動機構とが含まれる。移動機構における不図示のアクチュエータを駆動させることで、載置規定部材2gが収容容器Cを載置基準部材2f側に押し付け、収容容器Cが位置決め保持される。
 収容容器Cの入替えは、不図示の移送装置または、オペレータにより行われる。
 作業部3は、作業位置に移送された製品Wを位置決め保持する製品位置決め機構3bと、製品位置決め移動機構3bを動作させる不図示の駆動機構(アクチュエータ)と、製品Wを移送する製品移送機構3cと、を含む作業載置ユニット3aと、作業システムSの他方側に設けられ、作業載置ユニット3dが設置される作業設置部3eと、作業設置部3eを所定の高さ位置に位置付ける作業支持部3fと、を含む作業台3gと、を備える。製品移送機構3cには、無端状の移動体(例えば、ベルト)と、移動体を動作させる駆動機構をと備えたコンベアが採用される。
 製品位置決め機構3bとしては、一般的な機構が採用可能である。例えば、製品位置決め機構3bは、製品Wの一部を当接させる作業基準部材3hと、作業基準部材3h対して接近離間する製品規定部材3iが往復移動可能に構成される不図示の移動機構とが含まれる。移動機構における不図示のアクチュエータを駆動させることで、製品規定部材3iが製品Wを作業基準部材部材3h側に押し付け、製品Wが位置決め保持される。
 識別ユニット4は、供給部2の載置部2bから上方に離間した所定の位置に識別支持部材4aに支持されて配置される。識別ユニット4は、供給部2の載置部2bに位置決め保持された収容容器Cに収容される部品Pを撮像する撮像部4bと、撮像に必要な光を照射する照明部4cと、撮像部4bによって撮像された取得画像情報を数値化処理する画像処理部(不図示)と、外部機器と通信を行う通信部(不図示)と、を備える。識別ユニット4は、また、部品Pの基準情報となる基準画像情報が登録される登録部(不図示)と、画像処理された取得画像情報と基準画像情報とを比較処理し、取得された部品Pの種類を判別する判別部(不図示)と、を含む。識別ユニット4によって取得される部品Pの情報には、取得した部品Pの収容容器Cにおける位置情報および姿勢情報も含まれる。
 安全柵5は、供給部2、動作装置10および作業部3に亘って設けられ、作業システムSの対向する側部にそれぞれ配置される。
 また、作業システムSは、作業載置ユニット3a、部品載置ユニット2dおよび、識別ユニット4の制御を行う不図示のシステム制御ユニット(ホストコンピュータ42)を備える。また、システム制御ユニットは、作業部3に位置決め保持される製品Wの情報、供給部2に位置決め保持される収容容器Cに収容される部品Pの情報を基に動作装置10の動作管理も行い、作業システムS全体のシステムの制御管理を行う。
 <制御装置>
 次に図4を参照して制御装置11の構成について説明する。図4は制御装置11の制御構成を示すブロック図であり、特に、検出部122、142のキャリブレーションに関する構成を示す図である。制御装置11は、処理部111と、記憶部112と、インターフェース部113と、を備え、これらは互いに不図示のバスにより接続されている。処理部111は記憶部112に記憶されたプログラムを実行する。処理部111は例えばCPUである。記憶部112は、例えば、RAM、ROM、ハードディスク等である。インターフェース部113は、処理部111と、外部デバイス(ホストコンピュータ42、駆動部121,141、検出部122、142、操作部44)と、の間に設けられ、例えば、通信インターフェースや、I/Oインターフェースである。ホストコンピュータ42は動作装置システム1が設けられる生産設備全体(作業システムS)の管理および制御を行う制御装置である。操作部44はオペレータが動作装置10を操作するためのインターフェースを構成し、例えば、ティーチペンダントや操作パネル等である。また、例えば、制御装置11にインターフェース部を介して接続されたパソコン等でもよい。
 処理部111は、駆動部の駆動パラメータ値の情報を取得する。本実施形態の場合、処理部111は、駆動部121,141の駆動パラメータ値の情報として、それぞれのモータの現駆動電流値ri1、ri2をそれぞれ取得する。また、処理部111は、検出部の検出値rp1、rp2の情報をそれぞれ取得する。本実施形態の場合、処理部111は、検出部122,142のそれぞれのエンコーダにより検出されたパルス値をそれぞれ取得する。取得された駆動部121,141のそれぞれの駆動パラメータ値となる現駆動電流値ri1、ri2の情報および検出部122,142のそれぞれのパルス値となる検出値rp1、rp2の情報は、処理部111の現情報取得部R4(駆動情報取得部R4)に取得される。現情報取得部R4は、例えば、処理部111が備えるキャッシュメモリ等の一時記憶領域に取得される。現情報取得部R4は、取得したモータの現駆動電流値ri1、ri2および検出部122,142のそれぞれのエンコーダにより検出されるパルス値が、所定のタイミング(リアルタイムを含む)でそれぞれ更新され、取得される。
 記憶部112には、処理部111が実行するプログラムの他に各種のデータが記憶される。記憶部112はデータを記憶する記憶領域として、判別部112a、キャリブレーション情報登録部112bおよび動作位置設定情報登録部112cを含み、判別パラメータ情報M4a、キャリブレーション情報M4bおよび動作位置設定情報M4cがそれぞれ記憶されている。
 判別パラメータ情報M4aは、キャリブレーション時の動体側の位置(例えば、鉛直位置、水平位置など)を判別するための情報である。本実施形態の場合、判別パラメータ情報4aは、「軸情報」と、「判別角度情報」と、「電流下限値情報」と、「電流上限値情報」とを含む。なお、以下の説明において、上腕部14および前腕部16の長手方向E1,E2が鉛直方向であるときのこれらの位置を鉛直位置と呼び、各長手方向E1,E2が水平方向であるときのこれらの位置を水平位置と呼ぶことがある。
 「軸情報」は、回動軸固有の情報である。本実施形態の場合、2つの回動軸に関する軸情報J1,J2が設定されており、軸情報J1は上腕部14の回動軸部材146の軸情報(第一の回動軸の情報)であり、軸情報J2は前腕部16の回動軸部材166の軸情報(第二の回動軸の情報)である。
 また、「判別角度情報」は、位置合わせ機構に設けられる複数の基準位置に対応して設定された角度の情報であり、軸情報に応じて設定されている。本実施形態の場合、2つの位置合わせ機構20,22を備えており、2つの軸情報J1,J2がそれぞれ設定される。
 本実施形態の場合、第1の位置合わせ機構20に含まれる軸情報J1に対して、前腕部16の姿勢の鉛直位置(鉛直方向に対する上腕部14の角度が0度のとき、回動軸部材166の軸心から先端部164結ぶ線が鉛直線と平行に位置する0度)を軸情報J1の判別を行う際の基準姿勢として規定しており、鉛直位置に対応する0度および水平位置に対応する90度が設定されている。よって、本実施形態の場合、処理部111は、上腕部14がキャリブレーション時の姿勢が鉛直位置(鉛直方向に対する上腕部14の角度が0度)であるか、または水平位置(鉛直方向に対する上腕部14の角度が90度)であるかを判別する。
 また、本実施形態の場合、第2の位置合わせ機構22に含まれる軸情報J2に対して、上腕部14の姿勢の鉛直位置(鉛直方向に対する上腕部14の角度が0度)を軸情報J2の判別を行う際の基準姿勢として規定しており、鉛直方向に対応する0度、水平方向に対応する90度、および45度が設定されている。よって、本実施形態の場合、処理部111は、前腕部16のキャリブレーション時の姿勢が鉛直位置(鉛直方向に対する前腕部16の角度が0度)であるか、水平位置(鉛直方向に対する前腕部16の角度が90度)であるか、または前腕部16の角度が鉛直方向に対して45度の位置であるかを判別する。
 本実施形態の場合、各軸情報J1、J2に対して設定される判別角度情報の数は、軸情報J1に対して2つ、軸情報J2に対して3つであるが、これに限定されることなく例えば、それぞれに対して2つずつ設定しても良いし、3つずつ設定しても良く、これら以外の数でもよい。また、「±」の符号情報を更に加え、角度と符号との組み合わせにより第1ないし第4象限におけるどの象限の情報かを識別できるようにしても良い。
 「電流下限値情報」および「電流上限値情報」は、動体の姿勢を判別する際に設定される判別範囲を設定する閾値として用いられる情報であり、予め判別角度情報毎に設定された固定の判別パラメータ値(判別電流値)の情報である。すなわち、電流下限値情報および電流上限値情報によって、判別電流値の範囲値が設定されている。これらの情報と、処理部111の現情報取得部R4に取得された駆動部の駆動パラメータ値の現在電流値情報とを比較して動体側の位置の判別が行われる。
 本実施形態の場合、上腕部14および前腕部16の2つの動体を備えており、上腕部14に対しては、2つの異なる判別姿勢として判別角度情報が2つ設定される。また、前腕部16に対しては、3つの異なる判別姿勢として判別角度情報が3つ設定される。そして、それぞれの動体の姿勢をそれぞれ判別するために、予めそれぞれの判別角度情報毎に「電流下限値情報」および「電流上限値情報」がそれぞれ設定される。
 本実施形態で設定される動体部の姿勢を判別するための情報としての「電流下限値情報」および「電流上限値情報」は、基準となる電流値を基準に公差値の下限値として電流下限値情報および、基準となる電流値を基準に公差値の上限値として電流上限値情報を判別部112aに記憶させているが、例えば、基準となる電流値(絶対値)を設定し、その公差値を判別のための情報として判別部112aに記憶させてもよい。
 ここで、本実施形態の位置決め部20の場合、駆動部121の駆動パラメータ値はモータの現駆動電流値であり、その値は回動軸部材146に対してかかるトルクに比例する。また、回動軸部材146に対してかかるトルクは上腕部14が鉛直位置にあるときは小さく、上腕部14が水平位置にあるときは大きくなる。この関係から、鉛直位置に対して設定された判別電流値の範囲値が判別電流値の最小値を含み、水平位置に対して設定された判別電流値の範囲値が判別電流値の最大値を含むように、判別部112aにそれぞれ設定される。よって、現駆動電流値riが判別電流値の最小値を含む範囲値の範囲内にあるときは動体部13が鉛直姿勢であると判別され、現駆動電流値riが判別電流値の最大値を含む範囲値の範囲内にあるときは、動体部13が水平姿勢であると判別される。
 また、本実施形態の場合、軸情報J1に対して設定された判別角度情報が鉛直方向に対して0度および90度の2つであるため、キャリブレーション実行時に選択される上腕部14の位置は鉛直位置および水平位置のいずれかとなる。よって、各位置における回動軸に生じるトルクの差が大きくなることで駆動パラメータ値の差が大きくなり、取得した駆動パラメータ値に基づく上腕部14の位置の判別を容易に行うことができる。
 なお、実際には設定されていない0度および90度の角度も含めて判別角度情報とする場合は、更に「±」符号情報を追加して設定し、判別電流値の最小値を基準に一方側を+側、他方側を-側として設定することで+側における0度および-側における0度を判別し、判別電流値の最大値を基準に一方側を+側、他方側を-側として設定することで+側における90度および-側における90度を判別することも可能となる。
 キャリブレーション情報M4bは、検出部の検出値情報および動体部の基準位置の情報の登録を目的とした情報である。キャリブレーション情報M4bは、「軸情報」と、「設定値角度情報」と、「設定角度値検出値情報」と、を含む。本実施例の場合、2つの検出部122、142に対してそれぞれキャリブレーション情報が登録される。
 「設定角度値情報」は、判別された位置に対応する回動部の角度の情報であり、検出部の基準位置情報として設定される。本実施形態の場合、判別パラメータ情報M4aで判別された「判別角度情報」の値が設定されることになる。「設定角度値検出値情報」は、基準位置における検出部による検出値情報である。本実施形態の場合、処理部111は、基準位置として判別された動体側の角度の情報と、基準位置(設定角度値情報)においてエンコーダが検出したパルス値の情報とを紐づけてキャリブレーション情報登録部112bに記憶する。本実施形態においては、2つの検出部122,142に対して「設定角度値情報」および「設定角度値検出値情報」がそれぞれ設定され登録される。
 動作位置設定情報M4cは、動作装置10が作業を行う際の作業位置を管理することを目的とした情報である。動作位置設定情報M4cは、「動作位置情報」と、「J1動作位置角度情報」と、「J2動作位置角度情報」と、を含む。動作装置10は処理部111が記憶部112に記憶されたプログラムを実行することにより作動するが、このとき、動作装置10は動作位置設定情報M4cに設定されたそれぞれの位置において所定の作業を行う。
 「動作位置情報」は、動作装置10がワーク(製品W)に対して作業(本実施例の場合、部品Pの取り付けを行う取り付け作業)を行う位置についての位置を識別する情報であり、動作位置設定情報登録部112cには、作業に応じて1または複数の動作位置情報を設定可能である。J1動作位置角度情報およびJ2動作位置角度情報は設定された動作位置における軸情報J1および軸情報J2の角度情報であり、動作位置情報毎にそれぞれ設定されている。本実施形態の場合、J1動作位置角度情報およびJ2動作位置角度情報は、それぞれ複数設定されている。
 <キャリブレーション方法>
 続いて、複数の動体が含まれる動体部13を備える動作装置10の検出部のキャリブレーション方法について説明する。図5は、キャリブレーション実行時の処理部111の処理を示すフローチャートである。本処理は、例えば、オペレータが操作部44としてのティーチペンダントに設けられたキャリブレーション開始ボタンを押下することにより開始する。以下では、図3Bのように、動作装置10と上方の障害物との干渉が生じない姿勢で、前腕部16の検出部142のキャリブレーションを行う場合について説明する。
 S5001において、処理部111は、キャリブレーションを実行する回動軸として前腕部16を軸支する回動軸部材166に該当する第二の回動軸を選択する。本実施形態の場合、オペレータがティーチペンダントを操作し、キャリブレーションを実行する動体部13に含まれる動体の情報を入力(動体部選択)することで、処理部111はその入力情報(選択情報)に基づいた動体の回動軸の選択処理を実行する。本実施形態においては、オペレータがキャリブレーションの対象軸として第二の回動軸を選択し、その情報を入力することで、処理部111は前腕部16を動作させる第二の回動軸をキャリブレーション対象軸として認識し、決定する。
 S5002において、処理部111は、動体部13に含まれる複数の動体の内、キャリブレーション対象軸として選択されなかった動体については、予め規定した規定位置に移動させ、対応する基準孔に位置合わせを行って動体部の姿勢保持(動体部保持)を行う。
 本実施形態の場合、キャリブレーションの対象軸として選択されなかった第一の回動軸について、オペレータがティーチペンダントを操作し処理部111に指示を行うことで、処理部111が上腕部14を動作させ、駆動部121の駆動を制御して規定位置となる基準孔201に移動させて位置合わせを行う。なお、規定位置(保持位置)への位置合わせの際、オペレータが予め定められた複数の規定位置(保持位置)から規定値選択(保持位置選択)を行う構成も採用可能である。また、オペレータによる規定位置の選択の入力による指示に基づいて、処理部111が上腕部14を自動で移動させ、規定位置に位置を合わせる構成も採用可能である。さらに、処理部111は、キャリブレーションが行われない第一の回動軸の上腕部14を規定位置に合わせた後、その上腕部14の回動を制限してもよい。例えば、処理部111は、キャリブレーションの対象として選択されなかった第一の回動軸の上腕部14を規定位置に移動させ、位置合わせた後は、オペレータによる上腕部14の回動操作の入力を受け付けても回動させないようにしてもよい。このような構成により、キャリブレーション実行中にキャリブレーションの対象として選択されなかった第一の回動軸の上腕部14が駆動しないように動作制限することで、それらの影響を受けずにキャリブレーションとして選択された第二の回動軸のキャリブレーション動作を実行することができる。
 S5003において、処理部111は、キャリブレーション対象軸として選択された第二の回動軸の前腕部16の位置合わせを行う。本実施形態の場合、処理部111は、オペレータからの操作部44による入力に基づいて、駆動部141の駆動制御を行う。このとき、例えばオペレータは、ティーチペンダントを操作することで前腕部16を回動させて基準孔222と位置決め孔225との位置を合わせた後、それらの孔に位置決め部材226を挿入することで合わせた位置の確認を行う。
 S5004において、処理部111は、キャリブレーションを行う第二の回動軸の前腕部16を駆動する駆動部141の駆動情報取得を行う。例えば、処理部111は、オペレータからの情報登録命令を受け付けると、S5001において選択された第二の回動軸の前腕部16を駆動する駆動部141の駆動パラメータ値となる現駆動電流値ri2を取得(確認)する。処理部111は、例えばオペレータにより操作部44に設けられた登録ボタンが押下されると、情報登録命令を受け付ける。
 S5005において、処理部111は、S5001において選択された第二の回動軸の前腕部16の位置を判別する。例えば、処理部111は、S5004において取得した駆動部141の駆動パラメータ値(現情報取得部R4の現在電流値情報ri2)と、判別パラメータ情報M4aのうち軸情報J2(第二の回動軸)に対して設定されている電流下限値情報と電流上限値情報とを含む間に含まれる範囲情報とを比較することにより実際に位置合わせされた前腕部16のキャリブレーション位置を自動で判別する。
 本実施例の場合、軸情報J2は前腕部16に関係する軸情報として設定しているので、前腕部16のキャリブレーション位置として基準孔222に位置決め孔225の位置合わせを行ったことから前腕部16は、水平位置(水平姿勢)に設定されている。そして、前腕部16が水平位置に設定されていることから駆動部141のモータの電流値は、0値より大きい数値になることから、処理部111は、判別パラメータ情報4aの軸情報のJ2の判別角度情報を「90」度と判別することになり、その結果、前腕部16のキャリブレーション位置を90度として判別する。なお、前腕部16のキャリブレーション作業中は、上腕部14の位置を基準孔201に位置決め孔205を合わせた鉛直位置で行うとして規定している。
 S5006において、処理部111は、キャリブレーション情報の登録処理を行う。例えば、処理部111は、上腕部14に対する前腕部16の角度を設定角度値情報として、取得した検出部142の検出値を設定角度値検出値情報として、キャリブレーション情報4bの軸情報J2に対応付けてキャリブレーション情報登録部112bにそれぞれ登録する。ここで、S5005において判別される前腕部16の角度は、鉛直方向に対する前腕部16の角度である。本説明では、上腕部14は鉛直位置にあるので、S5005で判別された角度と、上腕部14に対する前腕部16の角度が一致する。この場合、処理部111は、S5005で判別された角度の情報を設定角度値情報としてキャリブレーション情報4bの軸情報J2の設定角度値情報に「90」度として登録することでキャリブレーション情報の設定角度値情報の登録処理が完了する。
 図6A及び図6Bは、検出部の検出値と回動角度値との特性を示す関係図である。図6Aは、例えば、前腕部16の検出部142の特性を示しており、図の横軸が検出部142の検出値(本実施形態の場合、パルス値)であり、縦軸が検出部142の回動角度値を示している。本実施形態の場合、パルス値と回動角度値は比例関係にあり、その比例定数(傾き)は検出部(本実施形態の場合エンコーダ)の仕様によって決まる値である。また、上述したキャリブレーション方法により、基準位置および基準位置におけるパルス値が設定されるので、これらの特性を示す直線の一点が定まる。
 動作装置10における動体部13の姿勢(先端部の位置)は、動作位置設定情報4cの動作位置情報毎にJ1動作位置角度情報およびJ2動作位置角度情報として設定されている。そのため、キャリブレーション情報に設定される設定角度情報の値が基準角度となって、その基準角度からそれぞれの動作位置が導出されることになる。また、制御的な内部処理としては、検出値(パルス値)が採用されている。
 処理部111は、それぞれの検出部122,142の検出値および検出値に対する動体部13に含まれるそれぞれの検出部122,142の回動角度の特性に基づいて、動体部13の姿勢を制御することができる。
 また、図6Bは、検出部142となるエンコーダを交換した後の検出部142の特性を示す図である。動作装置10は、構成部品の消耗等により、駆動部121,141や検出部122,142等の交換が行われる場合があり、検出部122,142の交換が行われた場合、それぞれの検出部122,142のキャリブレーションを再度実行する必要がある。本実施形態の場合、パルス値に対する回動角度値の特性の傾きはエンコーダの仕様によって決まっているため、同一仕様のエンコーダであれば、交換の前後において特性の傾きは変わらない。よって、上述のキャリブレーション方法により設定された回動角度値が基準位置となり、その回動角度値におけるパルス値が基準位置のパルス値として設定されることで全回動範囲におけるパルス値が求められる。
 そのため、特に、作業システム1の一部として設置された動作装置10の検出部の交換が必要になった場合、検出部の交換を行ったとしてもエンコーダの交換が行われた動体の角度に応じてエンコーダのキャリブレーション情報M4bの設定値角度情報とを一致させることで動作位置情報を再設定する必要がない。また、制御的な内部処理として、設置値角度情報として設定したときの検出値を設定角度値検出値情報として設定することにより、動作位置情報におけるパルス値の特性が算出され、内部的に設定される。例えば、検出部142の交換前後において、図3Bの姿勢でキャリブレーションを行った場合、パルス値として登録される値は、交換前がX2であるのに対し交換後はY2であり、回動角度値は、交換前および交換後、共に90度である。そのため、図4で示すように、動作位置設定情報M4cは、動体部13に含まれる前腕部16の各動作位置に対してそれぞれ角度情報(b1、b2)で設定されているため、検出部142の検出値に依存しない。したがって、検出部142を交換した場合であっても動作位置設定情報の再設定をすることなく、動作装置10に所定の位置で作業させることができ、設定作業の効率化を図ることができる。
 以上説明したように、本実施形態では、キャリブレーションを実行した姿勢を自動で判別しキャリブレーション情報として記憶させることができるので、仮にオペレータによる位置情報の登録ミスが発生したとしても正しいキャリブレーション姿勢でのキャリブレーション情報を登録することができ、ヒューマンエラーを回避することができる。また、キャリブレーションを実行するときの姿勢を複数の姿勢から選択できるので、周囲の障害物との接触を回避した姿勢でキャリブレーションを実行することができる。
 <他の実施形態>
 上記実施形態では、判別パラメータ情報M4aは、2つの動体部が直列に接続されている動作装置10(鉛直多関節ロボット)として、キャリブレーションを行わない動体部については、予め定めた一つの位置(姿勢)に設定したうえでキャリブレーション対象となった動体部に対する一つの判別角度情報に対して一つの電流下限値情報及び電流上限値情報を設定しているが、キャリブレーションを行わない動体部のキャリブレーション時の姿勢を複数設定し、それぞれの設定角度に応じた判別角度情報に対する電流下限値情報および電流上限値情報を複数設定してもよい。
 図7は、他の実施形態に係る判別パラメータ情報を示す。例えば、判別パラメータ情報M7aは、第1の動体部の軸情報J1について、判別角度情報が0度の場合、第2の動体部の複数の保持位置情報に応じてそれぞれ電流下限値情報及び電流上限値情報設定している。本実施形態の場合、第1の動体部は、上腕部14が該当し、第2の動体部は、前腕部16が該当する。
 上腕部14の軸情報J1は、判別角度情報として、0度および90度が設定され、他の動体部の保持位置としては、前腕部16の0度および90度が設定される。そのため、上腕部14の軸情報J1に関する判別角度情報は、上腕部14の0度に対して、前腕部16の保持位置情報の0度および90度がそれぞれ設定されることになり、軸情報J1としては、合計4つの判別角度情報が設定されることになる。
 ここで、回動軸部材146に生じるトルクは、上腕部14および前腕部16が鉛直位置にあるとき(図3Aの位置)よりも上腕部14が鉛直位置にあり前腕部16が水平位置にあるとき(図3Bの位置)の方が大きくなる。また、本実施形態の場合、駆動部121の駆動パラメータ値であるモータの駆動電流値は、回動軸部材146に生じるトルクに比例する。すなわち、処理部111による駆動部121の駆動パラメータ値の取得値は、上腕部14の姿勢が同じであっても前腕部16の姿勢に応じて変化する。したがって、上腕部14の位置を判別する場合、電流下限値情報及び電流上限値情報を前腕部16の位置に応じて複数有していることにより、より正確に上腕部14の位置を判別することができる。
 本実施形態の場合、上腕部14の位置を判別するときは、処理部111は、図5のS5003において、駆動部121の駆動パラメータ値(現情報取得部R4の現在地電流情報)を取得し、その値が判別パラメータ情報M7aの軸情報J1に設定された4つの電流下限値情報および電流上限値情報のどの範囲に含まれるかを特定することにより前腕部16の位置を自動で判別する。例えば、上腕部14の位置を判別する場合において、前腕部16の位置が図3Bで示す水平位置(90度)である場合、処理部111は、電流下限値情報(a1´)及び電流上限値情報(a1´+α1´)で設定される範囲に含まれる値として駆動パラメータ値を判別することになる。このような構成により、周囲の障害環境に対しても柔軟にキャリブレーションの姿勢を設定し、判別することでキャリブレーションを行う動体部の姿勢の判別を正確に行うことができる。
 さらなる他の実施形態に係る動作装置システムについて説明する。なお、上述の実施形態と同一の構成については説明を省略する。図9Aは、一実施形態における動作装置90の概略を示す図であり、また、図9Bは、図9AのA方向の矢視図(概略図)である。本実施形態は、動体部が1つの点、および基部が移動可能に設けられている点で上述の実施形態と異なる。
 動作装置90は、架台91と、架台91に支持され、後述の水平移動昇降部95を第一の水平方向に移動可能な水平移動ユニットと、を構成する。水平移動ユニットは、一対の走行ガイド部92と、一対の走行ガイド部92に跨って移動可能に支持される走行体94とを含む。走行体94は、一対の走行ガイド部92のうち一方に、走行ガイド部92上を走行可能な駆動部941と、一対の走行ガイド部92に跨って設けられ、駆動部941の駆動により走行ガイド部92上を移動可能な走行体本体942とを含む。以下、走行体94の第一の水平方向の移動方向を走行方向と呼ぶことがある。駆動部941は、例えば、数値制御可能なサーボモータを採用可能である。
 また、動作装置90は、走行体本体942に支持され、走行体本体942に沿って移動可能な水平移動昇降部95を含む。水平移動昇降部95は、走行体本体942に沿った方向(走行方向に直交した方向)の移動に加え、鉛直方向にも移動可能である。これらの移動は、例えば不図示のモータ等の駆動源により行われる。
 さらに、動作装置90は、水平移動昇降部95の下部に支持された基部96と、基部96に回動可能に支持された動体部97とを含む。基部96は、水平移動昇降部95の下部に旋回可能に支持された旋回部961と、旋回部961の下部に支持された基部本体962を含む。旋回部961により、基部本体962は、鉛直軸周りに旋回可能である。旋回部961は、例えば不図示のモータにより旋回する。動体部97は、基部本体962に回動可能に支持される。動体部97は、例えば、上述の実施例の上腕部14と同様の構成により回動することができる。動体部97の、基部本体962に支持される側の端部と反対側の端部には、先端部971が設けられ、先端部971には各種の先端ツールを取り付け可能である。
 上記構成により、動作装置90の動体部97は、走行方向、走行方向に直交する方向、鉛直方向に移動可能であると鉛直軸周りの旋回および水平軸周りの回動が可能である。
 動作装置90は、位置合わせ機構98を有している。位置合わせ機構98は、動体部97側に設けられる基準孔981,982と、基部96側に設けられる位置決め孔983を含む。位置合わせを行う場合は、オペレータの操作により動体部97を回動させ、基準孔981,982のいずれかと位置決め孔983とが重なるように位置合わせすることによって、基部96に対する動体部97の回動角度の位置合わせ確認がなされる。
 さらなる他の実施形態に係る動作装置システムに採用される動作装置90は、水平移動ユニットおよび水平移動昇降部95を備えるため、動体部97のキャリブレーションを行う際に周囲の障害環境を回避し、最適な位置でキャリブレーション作業を実行することができる。
 図9Cは、図9Aおよび図9Bで示す動作装置の変形例を示す概略図であり、図9AのB方向からみた状態を示す図である。図9Cの変形例では、動体部193が上述の実施形態で示した水平移動ユニットの構成を備える点で異なる。また走行方向に直交する方向に移動可能な水平移動部191が、走行体本体942に移動可能に支持されている点で異なる。水平移動部191は、例えばモータ等により、走行方向に直交する方向に移動する。水平移動部191は、下部に動体部193が構成される。本変形例の場合、動体部193は、水平移動部191の下部に固定される基部本体192bと、基部本体192bに対して鉛直方向に延びる軸を中心に旋回可能な基部旋回部192aと、本実施形態と同様に、基部旋回部192aに一方端部が軸支され、軸支される軸を中心に円周軌道を移動する他方端部を含む上腕部194および上端部194の他方端部にその一方端部が軸支され、軸支される軸を中心に円周軌道を移動する他方端部を含む前腕部195がそれぞれ回動可能に支持されている。
そのため、これらの回動動作の組み合わせにより、先端部196の鉛直方向の位置を調整することができる。したがって、図9A及び図9Bで示す実施形態の水平移動昇降部95のように、基部192を鉛直方向に移動させる構成が不要となる。しかし、水平移動部191を昇降可能な構成を有していてもよい。本変形例では上述の実施形態で説明した位置合わせ機構20および22を有しているため、これらの機構により動体部193回動角度の位置合わせ確認がなされる。
 本変形例もさらなる他の実施形態と同様に水平移動ユニットを備えると共に水平移動部191を備えるため、動体部193のキャリブレーションを行う際に周囲の障害環境を回避し、最適な位置でキャリブレーション作業を実行することができる。
 以上、発明の実施形態について説明したが、発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。

Claims (19)

  1.  水平方向に延びる軸を中心に回動可能な第一の動体部と、該第一の動体部を駆動する第一の駆動部と、該第一の動体部の回動位置を検出する第一の検出部と、を備える動作装置のキャリブレーション方法であって、
     前記第一の動体部を予め定めた複数の基準位置の中から選択される一の基準位置に合わせる位置合わせ工程と、
     前記一の基準位置での前記第一の駆動部の駆動パラメータ値と、前記複数の基準位置のそれぞれに対して予め設定された判別パラメータ値とを比較して、前記一の基準位置を判別する判別工程と、
     前記判別工程で判別した前記一の基準位置の位置情報と前記第一の検出部の検出値情報とを、前記回動位置を算出するための基準位置情報として登録する登録工程と、を含む、
     ことを特徴とする、動作装置のキャリブレーション方法。
  2.  前記動作装置は、ロボットであり、
     静止された基部をさらに備え、
     前記第一の動体部は、前記基部に接続された垂直多関節ロボットの上腕部である
    ことを特徴とする請求項1に記載の動作装置のキャリブレーション方法。
  3.  前記動作装置は、ロボットであり、
     垂直多関節ロボットの上腕部をさらに備え、
     前記第一の動体部は、前記上腕部に接続された垂直多関節ロボットの前腕部である、
     ことを特徴とする請求項1に記載の動作装置のキャリブレーション方法。
  4.  前記検出された駆動パラメータ値が前記第一の駆動部の現駆動電流値であり、
     予め設定された前記判別パラメータ値が固定の判別電流値であり、
     前記判別工程において、前記位置合わせ工程において合わせられた前記一の基準位置で検出された現駆動電流値が、前記判別電流値として設定された最小値を含む所定の範囲値に含まれるときは、前記第一の動体部が鉛直姿勢であると判別し、
     前記位置合わせ工程において合わせられた前記一の基準位置で検出された、前記現駆動電流値と異なる現駆動電流値が、前記判別電流値として設定された最大値を含む所定の範囲値に含まれるときは、前記第一の動体部が水平姿勢であると判別する、
     ことを特徴とする請求項1に記載の動作装置のキャリブレーション方法。
  5.  前記動作装置は、水平方向に延びる第二の軸を中心に回動可能な第二の動体部と、該第二の動体部を駆動する第二の駆動部と、該第二の動体部の回動位置を検出する第二の検出部と、をさらに備え、
     前記キャリブレーション方法は、
     キャリブレーションを実行する動体として前記第一の動体部を選択する動体部選択工程と、
     前記第二の動体部の前記回動位置として予め定められた保持位置に、前記第二の動体部を保持させる動体部保持工程と、を含む、
     ことを特徴とする請求項1に記載の動作装置のキャリブレーション方法。
  6.  前記第二の動体部は前記保持位置を予め複数有し、
     前記第二の動体部の複数の前記保持位置から一つを選択し、選択された前記保持位置へ前記第二の動体部を移動させる保持位置選択工程をさらに含み、
     前記第一の動体部の前記判別工程は、前記保持位置選択工程において選択された前記第二の動体部の前記保持位置に応じて設定された判別電流値により判別する、
     ことを特徴とする、請求項5に記載の動作装置のキャリブレーション方法。
  7.  前記第一の動体部は、回動可能に軸支される一方端部と、該一方端部から離間して設けられ、前記第一の動体部の回動軸を中心とする円周軌道上を移動する他方端部と、を含み、
     前記複数の基準位置は、前記一方端部と前記他方端部とが水平方向に並ぶ水平位置、および、前記一方端部と前記他方端部とが鉛直方向に並ぶ鉛直位置である、ことを特徴とする請求項1に記載の動作装置のキャリブレーション方法。
  8.  動作装置と、該動作装置の制御装置を備える動作装置システムであって、
     前記動作装置は、水平方向に延びる軸を中心に回動可能な第一の動体部と、
     該第一の動体部を駆動する第一の駆動部と、
     該第一の動体部の回動位置を検出する第一の検出部と、
     前記第一の動体部の基準となる位置として予め定めた複数の基準位置と、
    を備え、
     前記制御装置は、前記第一の動体部を予め定めた複数の基準位置の中から選択された一の基準位置に合わせる位置合わせ手段と、
     前記複数の基準位置のそれぞれに対して予め設定された判別パラメータ値と、前記第一の駆動部の駆動パラメータ値とに基づいて前記一の基準位置を判別する判別手段と、
     前記判別手段で判別した前記一の基準位置の位置情報と前記第一の検出部の検出値情報とを、前記回動位置を算出するための基準位置情報として登録する登録手段と、を含む、
     ことを特徴とする、動作装置システム。
  9.  前記制御装置は、前記駆動パラメータ値の情報を取得する駆動情報取得部と、
     前記判別パラメータ値の情報が登録される判別部と、
     判別した、前記一の基準位置の検出値情報および前記検出値情報に基づく位置情報が登録されるキャリブレーション情報登録部と、を含む、
    ことを特徴とする請求項8に記載の動作装置システム。
  10.  前記動作装置はロボットであり、
     前記ロボットは、回動可能な第二の動体部と、該第二の動体部を駆動する第二の駆動部と該第二の動体部の回動位置を検出する第二の検出部をさらに含み、
     前記制御装置は、キャリブレーションを実行する複数の動体部からいずれか一つの動体部を選択する動体部選択手段をさらに含む、
     ことを特徴とする請求項8に記載の動作装置システム。
  11.  前記第一の動体部は、
    回動可能に軸支される一方端部と、
    該一方端部から離間して設けられ、前記第一の動体部の回動軸を中心とする円周軌道上を移動する他方端部と、
    を備えることを特徴とする請求項8に記載の動作装置システム。
  12.  前記第一の動体部は、回動可能に軸支される第一の一方端部と、
    該第一の一方端部から離間して設けられ、前記第一の動体部の回動軸を中心とする第一の円周軌道上を移動する第一の他方端部と、を備え、
     前記第二の動体部は、前記第一の他方端部に回動可能に軸支される第二の一方端部と、
    該第二の一方端部から離間して設けられ、前記第二の動体部の回動軸を中心とする第二の円周軌道上を移動する第二の他方端部と、
    を備えることを特徴とする請求項10に記載の動作装置システム。
  13.  前記第一の駆動部および前記第二の駆動部は、モータであり、前記駆動パラメータ値は前記モータの電流値であることを特徴とする請求項12に記載の動作装置システム。
  14.  前記第一の検出部の検出値は前記第一の動体部の回動角度に応じたパルス値であることを特徴とする請求項8に記載の動作装置システム。
  15.  前記制御装置は、少なくとも一つの動作位置情報を設定可能な設定手段をさらに備え、
     前記少なくとも一つの動作位置情報は、前記第一の動体部及び第二の動体部の角度情報である、
     ことを特徴とする請求項13に記載の動作装置システム。
  16.  水平方向に延びる軸を中心に回動可能な第一の動体部と、
     該第一の動体部を駆動する第一の駆動部と、
     該第一の動体部の回動位置を検出する第一の検出部と、を備える動作装置を制御する制御装置であって、
     前記第一の動体部を予め定めた複数の基準位置の中から選択される一の基準位置に合わせる位置合わせ手段と、
     前記第一の動体部の基準位置それぞれに対して予め設定された判別パラメータ値と、前記一の基準位置での前記第一の駆動部の駆動パラメータ値とに基づいて前記一の基準位置を判別する判別手段と、
     前記判別手段で判別した前記一の基準位置の位置情報と前記第一の検出部の検出値情報とを、前記回動位置を算出するための基準位置情報として登録する登録手段と、を含む、
    ことを特徴とする制御装置。
  17.  前記制御装置は、
    前記駆動パラメータ値の情報を取得する駆動情報取得部と、
    前記判別パラメータ値の情報が登録される判別部と、
    判別した、前記一の基準位置の検出値情報および前記検出値情報に基づく位置情報を登録されるキャリブレーション情報登録部と、を含む、
    ことを特徴とする請求項16に記載の制御装置。
  18.  前記検出された駆動パラメータ値は前記第一の駆動部の現駆動電流値であり、
     予め設定された前記判別パラメータ値は固定の判別電流値であり、
     前記判別パラメータ値は、第一判別電流値Ia0と当該第一判別電流値Ia0と異なる第二判別電流値Ib0とを含み、
     前記判別部には、前記第一判別電流値Ia0を含む所定の第一範囲値と、
     前記第二判別電流値Ib0を含む所定の第二範囲値と、が登録され、
     前記判別手段は、
    前記現駆動電流値が前記所定の第一範囲値に含まれるときは、第一の姿勢として判別し、
    前記現駆動電流値が前記所定の第二範囲値に含まれるときは、第二の姿勢として判別する、
    ことを特徴とする請求項17に記載の制御装置。
  19.  前記所定の第一範囲値は最小値を含んで設定され、
     前記所定の第二範囲値は前記現駆動電流値の最大値を含んで設定され、
     前記判別手段は、
     前記位置合わせ手段において合わせられた前記一の基準位置の、検出された現駆動電流値Iaが0を含む前記第一範囲値の範囲内であると判別したとき、前記第一の動体部が鉛直姿勢であると判別し、
     前記位置合わせ工程において合わせられた前記一の基準位置の、検出された前記現駆動電流値Iaと異なる現駆動電流値Ibが前記最大値を含む前記第二範囲値の範囲内であると判別したとき、前記第一の動体部が水平姿勢であると判別する、
    ことを特徴とする請求項18に記載の制御装置。
PCT/JP2019/025516 2018-08-30 2019-06-27 動作装置のキャリブレーション方法、動作装置システムおよび制御装置 WO2020044760A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020540102A JP6992188B2 (ja) 2018-08-30 2019-06-27 動作装置のキャリブレーション方法、動作装置システムおよび制御装置
KR1020207033583A KR102470613B1 (ko) 2018-08-30 2019-06-27 동작 장치의 캘리브레이션 방법, 동작 장치 시스템 및 제어 장치
EP19853639.3A EP3778143A4 (en) 2018-08-30 2019-06-27 HANDLING DEVICE CALIBRATION PROCESS, HANDLING DEVICE SYSTEM AND ASSOCIATED CONTROL DEVICE
CN201980038510.9A CN112262023B (zh) 2018-08-30 2019-06-27 动作装置的校准方法、动作装置系统及控制装置
US17/078,209 US11433543B2 (en) 2018-08-30 2020-10-23 Calibration method for operation apparatus, operation apparatus system, and control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018162072 2018-08-30
JP2018-162072 2018-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/078,209 Continuation US11433543B2 (en) 2018-08-30 2020-10-23 Calibration method for operation apparatus, operation apparatus system, and control apparatus

Publications (1)

Publication Number Publication Date
WO2020044760A1 true WO2020044760A1 (ja) 2020-03-05

Family

ID=69645094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025516 WO2020044760A1 (ja) 2018-08-30 2019-06-27 動作装置のキャリブレーション方法、動作装置システムおよび制御装置

Country Status (7)

Country Link
US (1) US11433543B2 (ja)
EP (1) EP3778143A4 (ja)
JP (1) JP6992188B2 (ja)
KR (1) KR102470613B1 (ja)
CN (1) CN112262023B (ja)
TW (1) TWI712474B (ja)
WO (1) WO2020044760A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021190947A1 (de) * 2020-03-23 2021-09-30 Kuka Deutschland Gmbh Verfahren zum justieren eines roboterarms
CN113942034A (zh) * 2020-07-17 2022-01-18 睿信科机器人股份有限公司 用于机器人臂的定向的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111376256A (zh) * 2018-12-29 2020-07-07 深圳市优必选科技有限公司 一种舵机角度校准方法、系统、机器人及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148173A (ja) * 1985-12-20 1987-07-02 フアナツク株式会社 関節型ロボツトの原点調整方法
JPS62297082A (ja) 1986-06-16 1987-12-24 フアナツク株式会社 産業用ロボツトの基準位置決め装置の取付構造
JPH08281582A (ja) * 1995-04-10 1996-10-29 Kobe Steel Ltd 工業用ロボットのキャリブレーション方法
JP2003220587A (ja) 2002-01-29 2003-08-05 Nachi Fujikoshi Corp 産業用ロボットのキャリブレーション方法
JP2005028529A (ja) * 2003-07-08 2005-02-03 Yaskawa Electric Corp 産業用ロボットの原点位置合わせ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239855A (en) * 1991-07-12 1993-08-31 Hewlett-Packard Company Positional calibration of robotic arm joints relative to the gravity vector
EP2269783A1 (de) * 2009-06-30 2011-01-05 Leica Geosystems AG Kalibrierungsverfahren für ein Messsystem
JP5938954B2 (ja) * 2012-03-06 2016-06-22 株式会社ジェイテクト ロボットのキャリブレーション方法及びキャリブレーション装置
EP2722136A1 (en) * 2012-10-19 2014-04-23 inos Automationssoftware GmbH Method for in-line calibration of an industrial robot, calibration system for performing such a method and industrial robot comprising such a calibration system
CN107443389B (zh) * 2016-05-31 2019-12-31 发那科株式会社 机器人控制装置及机器人控制方法
CN107932554A (zh) * 2017-10-26 2018-04-20 苏州乐轩科技有限公司 电动关节校准方法及校准装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148173A (ja) * 1985-12-20 1987-07-02 フアナツク株式会社 関節型ロボツトの原点調整方法
JPS62297082A (ja) 1986-06-16 1987-12-24 フアナツク株式会社 産業用ロボツトの基準位置決め装置の取付構造
JPH08281582A (ja) * 1995-04-10 1996-10-29 Kobe Steel Ltd 工業用ロボットのキャリブレーション方法
JP2003220587A (ja) 2002-01-29 2003-08-05 Nachi Fujikoshi Corp 産業用ロボットのキャリブレーション方法
JP2005028529A (ja) * 2003-07-08 2005-02-03 Yaskawa Electric Corp 産業用ロボットの原点位置合わせ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778143A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021190947A1 (de) * 2020-03-23 2021-09-30 Kuka Deutschland Gmbh Verfahren zum justieren eines roboterarms
CN113942034A (zh) * 2020-07-17 2022-01-18 睿信科机器人股份有限公司 用于机器人臂的定向的方法
EP3939753A1 (de) * 2020-07-17 2022-01-19 Rethink Robotics GmbH Verfahren zur ausrichtung eines roboterarms

Also Published As

Publication number Publication date
JPWO2020044760A1 (ja) 2021-06-03
KR20200142078A (ko) 2020-12-21
CN112262023B (zh) 2023-06-09
JP6992188B2 (ja) 2022-01-13
CN112262023A (zh) 2021-01-22
EP3778143A4 (en) 2021-07-28
US11433543B2 (en) 2022-09-06
TWI712474B (zh) 2020-12-11
TW202012129A (zh) 2020-04-01
US20210039260A1 (en) 2021-02-11
KR102470613B1 (ko) 2022-11-25
EP3778143A1 (en) 2021-02-17

Similar Documents

Publication Publication Date Title
WO2020044760A1 (ja) 動作装置のキャリブレーション方法、動作装置システムおよび制御装置
US10799937B2 (en) Component mounting system and component mounting method
JP5561260B2 (ja) ロボットシステム及び撮像方法
US9884425B2 (en) Robot, robot control device, and robotic system
JP6879697B2 (ja) 改良型ロボットティーチング用ツール
CN109834710B (zh) 机器人和机器人系统
US10328582B2 (en) Process system including robot that transfers workpiece to process machine
US10020216B1 (en) Robot diagnosing method
KR101155692B1 (ko) 자율 이동 장치에서의 검출 기능 검사방법 및 검출 기능 검사용 시트
JP2019000923A (ja) 多関節ロボットの機構モデルパラメータ推定方法
JP6924112B2 (ja) 基板搬送装置及び基板搬送ロボットと基板載置部との位置関係を求める方法
WO2016071996A1 (ja) 自動車の開閉部品の取り付け装置及び取り付け方法
JP6325507B2 (ja) 嵌合部品と被嵌合部品とをロボットによって嵌合する方法
JP2016182648A (ja) ロボット、ロボット制御装置およびロボットシステム
CN108237525B (zh) 水平多关节型机器人用校正夹具及校正方法
KR102341754B1 (ko) 로봇의 진단 방법
JP6923688B2 (ja) ロボットおよびロボットシステム
WO2019176809A1 (ja) ロボットハンド、ロボット
JPWO2020045277A1 (ja) ロボット及びその原点位置調整方法
JP2019115950A (ja) ロボット制御装置、ロボットおよびロボットシステム
CN111052339B (zh) 基板搬运装置及基板载置部的旋转轴的探索方法
WO2023012894A1 (ja) ロボットシステム、制御装置、診断方法および診断プログラム
WO2023277095A1 (ja) 補正システム及び教示データの補正方法
TW202337653A (zh) 作業機器人系統
JP2019025635A (ja) ロボットハンド、ロボットシステム、ロボットハンドの調芯方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020540102

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019853639

Country of ref document: EP

Effective date: 20201029

ENP Entry into the national phase

Ref document number: 20207033583

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE